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Abstract
Accelerated gradient (AG) methods have been instrumental in significantly improving the training
time and efficiency of several machine learning algorithms. In this work, we propose fast dis-
tributed accelerated gradient (DAG) method for big-data based convex loss minimization problems
in machine learning, particularly in a synchronous distributed setting. We offer a new analysis by
characterizing the proposed method as a variant of Nesterov’s scheme. We demonstrate using the
proposed analysis for the first time, the o(1/k) rate of convergence of iterates of an accelerated
gradient method in a distributed setting. We also establish the optimal convergence of objective
function values with rate o(k−2) using the proposed DAG method.

1. Introduction

In this paper, we consider the task of optimizing a convex objective function of the following form:

min
x∈Rn

F(x) =
m∑
i=1

fi(x). (1)

We assume that m agents collaborate to solve problem (1) and the constituent functions fi : Rn →
R, of F are convex cost functions local to the i-th agent and are not visible to other agents. We
assume also that agent i possesses sufficient memory storage and processing capabilities to process
fi. Without additional information other than fi, it is in general not possible for the m agents to
collaboratively solve problem (1). To allow for this flow of additional information among agents,
we assume that communication links exist between pairs of agents. Since the fi functions are
assumed to be literally distributed over the m agents, the problem (1) is correspondingly called a
distributed optimization problem. The description of the distributed optimization problem (1) leads
us to a general graph model G = (V,E) where V = {1, . . . ,m} represents the node-set of graph
G corresponding to the set of agent identifiers, and E ⊆ V × V captures the communication links
between the agents in terms of edges of the graph G. In this work, we are interested in designing
an efficient algorithm to solve problem (1) in a fully decentralized setting. We list below the main
contributions of our work.

Contributions: We design a simple accelerated gradient-based algorithm (where the accelera-
tion is in the sense of generalized Nesterov’s acceleration scheme) called Distributed Accelerated
Gradient (DAG) method, to solve problem (1) in a distributed manner. We provide a novel analysis
of the proposed algorithm based on a Lyapunov energy function approach which provides further
insights into the behavior of convergence of function values and iterates. We derive optimal con-
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vergence rates for objective function values and iterates generated by DAG. Numerical experiments
validating our theoretical guarantees are also illustrated.

Paper organization: In the next section, we introduce the underlying distributed setup and the
assumptions to be used for our algorithm design and analysis. We illustrate the proposed DAG
method in Section 3. Section 4 provides the results on convergence rates of objective function
values and iterates along with a sketch of our convergence analysis. Empirical experiments using
the proposed DAG method are illustrated in Section 5.

Notations: 〈·, ·〉 represents the standard inner product in Rn and the Euclidean norm (respec-
tively Frobenius norm) is denoted by ‖·‖2 (respectively ‖·‖F ). The iterate information in agent i at
time k is represented using xik ∈ Rn. Other notations to be introduced in the paper will be made
clear according to the context.

2. Model and Assumptions

We assume a synchronous communication model where the agents communicate with their neigh-
bors only at the ticks of a global clock, and these clock ticks are associated with corresponding
discrete time steps k ∈ N = {1, 2, . . .}. At each time step k, the set of neighbors of each agent can
vary according to k; this is captured by the notation Gk=(V,Ek) (note however that the node set V
is fixed over time). We state below the other standing assumptions to be used throughout the paper:

1. The set of optimal solutions X? = arg minx∈Rn F(x) of problem (1) is non-empty.
2. Each function fi : Rn −→ R is continuously differentiable, convex and has L-Lipschitz

continuous gradients∇fi.
3. ∀i ∈ {1, · · · ,m}, there exists a constant B > 0 such that ‖∇fi(x)‖2 ≤ B, ∀x ∈ Rn.
4. Graph Gk=(V,Ek) is undirected and simple (without self-edges) ∀k ∈ N.
5. ∀k ∈ N, assume weights Wij(k) ∈ [0, 1] associated with (i, j) ∈ V × V . Collecting these

weights into a matrix W (k) of size m × m corresponding to time step k, we assume that
W (k) satisfies the following conditions:

(a) Each weight matrix W (k) is doubly stochastic.
(b) Wij(k) > 0 if and only if (i, j) ∈ Ek and Wii(k) > 0 for all i ∈ {1, · · · ,m}.
(c) There exist positive scalars C1>0 and γ<1 such that the following inequality holds

(assuming 1 to be a column vector of one of size m):∥∥∥∥Wij(k)− 1

m
11>

∥∥∥∥ ≤ C1γ
k ∀ i, j ∈ {1, · · · ,m}. (2)

Assumption 5c plays a crucial role in controlling the consensus error accumulated due to the time-
varying topolgy of the network. Many existing distributed accelerated gradient methods, for ex-
ample [3], [5], [4], [7] require fully-consensus step at each iteration to control the consensus error
which gives rise to high communication cost. Assumption 5c takes away the fully-consensus step
as demanded by most of the distributed accelerated methods and thus amortized the communication
cost incurred at each iteration.

2



A SIMPLE AND FAST DISTRIBUTED ACCELERATED GRADIENT METHOD

3. Distributed Accelerated Gradient (DAG) algorithm

Our Distributed Accelerated Gradient (DAG) scheme is described in Algorithm 1. The DAG scheme
is similar to the algorithm proposed in [3], except that we have a general momentum coefficient and
a sequence of connected graphs converging to a fully connected graph.

Algorithm 1: Distributed Accelerated Gradient (DAG) Algorithm (Behavior at node i)
Input: Lipschitz parameter L > 0, 0 < s ≤ 1/L, m ≥ 1, α > 0, xi0 = yi0 = 0.
for k = 1, 2, . . . do

xik = yik−1 − s∇fi(yik−1).

vik =
m∑
j=1

Wij(k)xjk.

yik = vik + k−1
k+α−1

(
vik − vik−1

)
.

end

In the next section, we give a short overview of our analysis of DAG scheme (done along the
lines of the analysis in [1]) and state the major results on the convergence of objective function
values and iterates generated by Algorithm 1.

4. Convergence analysis

Our analysis is similar in spirit to the analysis done in [1], however the extension is non-trivial.
We define a function F : Rmn −→ R such that F (x) ,

∑m
i=1 fi(x

i). Using notations xk =(
(x1k)

> . . . (xmk )>
)>, yk =

(
(y1k)

> . . . (ymk )>
)>, vk =

(
(v1k)

> . . . (vmk )>
)>, we can write the up-

date steps in Algorithm 1 as:

xk+1 = yk − s∇F (yk), (3)

vk+1 = (W (k + 1)⊗ In)xk+1, (4)

yk+1 = vk+1 +
k

k + α
(vk+1 − vk) , (5)

where ⊗ denotes the Kronecker product and In denotes the identity matrix of size n. We define a
function h : Rmn −→ R and a perturbation term gk as follows:

h(xk) =
∑m

j=1 fj(x̄k), (6)

gk := 1
s (W (k + 1)⊗ In − Imn)yk − (W (k + 1)⊗ In)∇F (yk) +∇h(yk). (7)

Using assumption 5c, we can prove that
∑∞

k=1 ‖gk‖ < ∞. The summability of the norm of error
term gk leads us to the following Lemma 1.

Lemma 1 Under Assumptions 1–5, let
(
x1k
)
k∈N , · · · , (x

m
k )k∈N be the sequences generated by

Algorithm 1. Let x̃ ∈ X? be an optimal solution of (1). Then,

F(x̄k)−F(x̃) ≤ C(α− 1)

2s(k + α− 2)2
for all α ≥ 3, (8)
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where C =
G(0)

(α− 1)
+ 2sM

∞∑
r=0

(r + α− 1) ‖gr‖ , M =
G(0)

(α− 1)
+

∞∑
j=1

‖gj‖.

∞∑
k=1

k (F(x̄k)−F(x̃)) <∞ for all α > 3. (9)

Using Lemma 1, we are ready to present our main result, stated below in Theorem 2, on the conver-
gence of objective function values and iterates.

Theorem 2 Suppose that Assumptions 1–5 hold. Let
(
v1k
)
k∈N , · · · , (v

m
k )k∈N be the sequences

generated by Algorithm 1. Let x̃ be an optimal solution of (1). Then, the following hold for all
α > 3.

1. F(v̄k)−F(x̃) = o(1/k2)
2. F(vik)−F(x̃) = o(1/k2) ∀ i ∈ {1, . . . ,m}
3.
∥∥vik+1 − vik

∥∥
2

= o(1/k) ∀ i ∈ {1, . . . ,m}
4. ∀i ∈ {1, . . . ,m}, the sequence (vik)k∈N converges to an optimal solution of problem (1).

Attouch et al. ([2], Example 2.13) showed that there does not exist p > 2 such that the rate
of convergence is O(1/kp) for every convex function. Nesterov [8] gave an example of a convex

function f : Rn −→ R such that f(xk)− f(x?) ≥ 3L‖x0−x?‖2
32(k+1)2

as long as k ≤ (n−1)
2 ([6], equation

(3.6)) where xk is a sequence generated by any first order optimization method and x? minimizes
f(·). So, Theorem 2 does not contradict the optimal convergence rate of first order optimization
methods to solve convex program.

5. Numerical Experiments

In this section, we conduct numerical experiments on binary classification problems over a data
set D={(ai, bi), }Ni=1 with ai ∈ Rn and bi∈{+1,−1}. We consider a problem of minimizing the
regularized logistic regression function minx∈Rn

1
N

∑N
i=1 log

(
1 + exp−bi〈x,ai〉

)
+ λ ‖x‖2. For our

numerical simulations, we use a4a data set and ijcnn1 data set from https://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/, containing N = 4781, n = 123 features and
N = 49, 990, n = 22 features respectively. The weight matrices used in the experiments are gen-
erated randomly to satisfy assumption 5. In particular, for k = 1, . . . , 2000, we generated random
graphs with gradually increasing edge-probability from 0.8 to 1, and after k = 2000, we consid-
ered fully connected graphs. This resembles the setting γ ≈ 0.3. The data set is divided equally
among 20 agents. We compare DAG method with three existing methods namely, Distributed gra-
dient method [9], EXTRA method [10] and mD-NG [4]. We used fixed weight matrix generated at
1200 iteration to implement distributed gradient method, EXTRA and m-DNG. All methods used
in our comparison were implemented in Python programming language and were run on a ma-
chine with Ubuntu Linux (version 18.04.2 LTS), 8 GB RAM and Intel i7-700 (3.6 GHz, 8 core)
processor. The convergence of objective function values for the compared methods is presented
in Figure 1, where the relative function value differences 1

m

∑m
i=1 |

F(vik)−F(x̃)
F(x̃) | are plotted, against

iterations. To compute x̃, we ran the algorithms for a large number of iterations first until the con-
dition maxi,j∈V ‖xik − x

j
k‖2 < 10−15 was met. We illustrate also the convergence behavior of the
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average residual 1
m

∑m
i=1

∥∥vik − x̃∥∥22 against iterations in the plot of Figure 2. The convergence of
the proposed DAG method is better when compared to the other methods. Also, we plot average
relative error and residual behavior against iterations for different values of α in Figure 3 and Figure
4. We observe that smaller α gives better performance in the beginning. The reason for this behav-
ior is that small α (less friction) moves the iterates quickly towards the optimal solution. But for
large k, the progress becomes slow because less friction moves the iterate away from the optimal
solution. Therefore, for large k, larger α (more friction) enhances stable convergence behavior.

Figure 1: Average relative error conver-
gence (λ = 10−2, α = 20, ijcnn1
data)

Figure 2: Average residual convergence
(λ = 10−2, α = 20, ijcnn1 data)

Figure 3: Average relative error behavior
with different α values (λ =
10−3, a4a data)

Figure 4: Average residual behavior with
different α values (λ = 10−3,
a4a data)

6. Conclusion

In this paper we have proposed a synchronous distributed accelerated gradient (DAG) algorithm.
Our novel analysis of the proposed DAG method shows the convergence of objective function values
at rate o(1/k2). Apparently, our work is the first to provide a o(1/k) convergence rate of iterates of
an accelerated gradient method in a distributed setting. Despite this, we note that the smoothness
assumptions placed on fi, the asymptotic convergence of graph Gk to a fully connected graph and
double stochasticity assumption of weight matrices W (k) are restrictive. Also, the implications of
the analysis for strong regularity assumptions on fi (e.g. strong convexity) are not clear.
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