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Abstract
The blind deconvolution problem aims to recover a rank-one matrix from a set of rank-one linear
measurements. Recently, Charisopoulos et al. [9] introduced a nonconvex nonsmooth formulation
that can be used, in combination with an initialization procedure, to provably solve this problem
under standard statistical assumptions. In practice, however, initialization is unnecessary. As we
demonstrate numerically, a randomly initialized subgradient method consistently solves the prob-
lem. In pursuit of a better understanding of this phenomenon, we study the random landscape of
this formulation. We characterize in closed form the landscape of the population objective and
describe the approximate location of the stationary points of the sample objective. In particular, we
show that the set of spurious critical points lies close to a codimension two subspace. In doing this,
we develop tools for studying the landscape of a broader family of singular value functions, these
results may be of independent interest.

1. Introduction

An increasing amount of research has shown how matrix recovery problems, which in the worst
case are hard, become tractable under appropriate statistical assumptions. Examples include phase
retrieval [7, 17, 42], blind deconvolution [9, 31], matrix sensing [36, 45], matrix completion [19, 41],
and robust PCA [6, 43], among others [5, 8, 30, 40]. Convex relaxations have proven to be a great
tool to tackle these problems, but they often require lifting the problem to a higher dimensional
space and consequently end up being computationally expensive. Thus, focus has shifted back to
iterative methods for nonconvex formulations that operate in the natural parameter space. One of
the difficulties of nonconvex optimization is that, in general, it is hard to find global minimizers.
To overcome this issue, recent works have suggested two stage methods: One starts by running an
initialization procedure – usually based on spectral techniques – and then refines the solution by
warm-starting a local search method that minimizes a nonconvex formulation. This thread of ideas
has proven very successful, and we refer the reader to [10] for a survey.

Initialization procedures are nontrivial to develop and can sometimes be more expensive than the
refinement stage. Thus, it is important to understand when initialization methods are superfluous.
There are iterative methods, for specific problems, that provably converge to minimizers [5, 12, 19,
20, 26]. Analysis of these methods are of two types: those based on studying the iterate sequence
[16, 25, 46], and those based on characterizing the landscape of smooth loss functions [20, 33, 39].

In this work, we study the landscape of a nonsmooth nonconvex formulation (2) for the (real)
blind deconvolution problem. Unlike the aforementioned works, we consider a nonsmooth loss,
which presents fundamentally different technical challenges. We show that, as the number of mea-
surements grow, the set of spurious stationary points converges to a codimension two subspace.
This suggests that there is an extensive region with friendly geometry.
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The blind deconvolution problem aims to recover a pair of real vectors (w̄, x̄) ∈ Rd1×Rd2 from
a set of m observations given by

yi = 〈ai, w̄〉〈x̄, bi〉 for all i ∈ 1, . . . ,m (1)

where ai and bi are known vectors for all indices. This problem has important applications in a
variety of different fields, we describe two below.

Signal processing. The complex analogue of this problem is intimately linked to the problem of
recovering a pair of vectors (u, v) from the convolution (Au) ∗ (Bv), where A and B are tall-
skinny matrices. In fact, when passed to the frequency domain, this problem becomes equivalent
to the one mentioned above. This problem has applications in image deblurring and channel
protection with random codes [1, 39].
Shallow neural networks. Solving this problem is equivalent to learning the weights of a shal-
low neural network with bilinear activation functions. Taking

{
((ai, bi), yi)

}
as training data,

writing the output of the network as y = σ(a>w, b>x), with (w, x) ∈ Rd1×d2 , and the setting
the activation function to σ(z1, z2) = z1z2.

To tackle the blind deconvolution problem, [9] proposed the following nonconvex nonsmooth for-
mulation

argmin
w,x

fS(w, x) ,
1

m

m∑
i=1

|〈ai, w〉〈x, bi〉 − yi|. (2)

The authors of [9] designed a two-stage method based on this formulation and showed that if the
measuring vectors, ai and bi, are i.i.d standard Gaussian, then their algorithm converges rapidly to a
solution wheneverm & (d1 +d2). 1 Nonetheless, experimentally the initialization stage seems to be
superfluous. Indeed, a simple randomly-initialized subgradient algorithm is successful at solving the
problem most of the time provided that m/(d1 + d2) is big enough. See Section 3 for experimental
evidence of this claim.

Aiming to get a better understanding of the high-dimensional geometry of fS , we study the
landscape of fS when A and B are standard Gaussian random matrices. Following the line of ideas
in [13], we think of fS as the empirical average approximation of the population objective

fP (w, x) , EfS(w, x) = E
(
|a>(wx− w̄x̄)b>|

)
,

where a ∈ Rd1 and b ∈ Rd2 are standard Gaussian vectors. From now on, we will refer to fS as
the sample objective. The rationale is simple: we will describe the stationary points of fP , then
we will prove that the graph of the subdifferential ∂fS concentrates around the graph of ∂fP and
combine these to describe the landscape of fS .2 This strategy allows us to show that the set of
spurious stationary points converges to a codimension two subspace at a controlled rate. We remark
that these results are geometrical and not computational.

Related work. There is a vast recent literature on blind deconvolution. A variety of algorithmic
solutions have been proposed, including convex relaxations [1, 2], Riemannian optimization meth-
ods [21], gradient descent algorithms [31, 34], and nonsmooth procedures [9]. Related to this work,
the authors of [24, 44] studied variations of the blind deconvolution problem via landscape analysis;

1. This is information-theoretically optimal up to constants [11, 23].
2. We will give a formal definition of ∂f in Section A.
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their approach is based on smooth formulations and therefore their tools are of a different nature.
Besides algorithms, researchers have also been interested in information-theoretical limits of the
problem under different assumptions[11, 23, 32].

On the other hand, the study of the high-dimensional landscape of nonconvex formulations is
an emergent area of research. Examples for smooth formulations include the analysis for phase
retrieval [39], matrix completion [19], robust PCA [20], and synchronization networks [33]. The
majority of these results focus on using second order information to show that under reasonable
assumptions the formulations do not exhibit spurious stationary points. The machinery developed
for nonsmooth formulations is based on different ideas and is more case-oriented. Despite this,
there are remarkable examples [3, 13, 18, 22]. Our work is closer to the paper [13]; the authors of
this article studied a similar nonsmooth formulation for the phase retrieval problem, which can be
regarded as a symmetric analogue of blind deconvolution.

2. Main Contributions

In this section we state our contributions, all the proofs are defer to appendices. Before starting, let
us observe that one can only wish to recover the pair (w̄, x̄) up to scaling. In fact, the measurements
(1) are invariant under the mapping (w, x) 7→ (αw, x/α) for any α 6= 0. Hence the set of solutions
of the problems is defined as S , {(αw̄, x̄/α) | α ∈ R \ {0}} .

2.1. Population objective

We start by observing that fP is a singular value function, see Appendix A for a formal definition.
Indeed, if we setX = wx>−w̄x̄> then due to the orthogonal invariance of the Gaussian distribution
we get

fP (w, x) = E|a>Udiag(σ(X))V >b| = E|σ1(X)a1b1 + σ2(X)a2b2|, (3)

where of course Udiag(σ(X))V > is the singular value decomposition of X. This simple observa-
tion leads to our first result, a closed form characterization of this function in terms σ(X). We defer
the proof to Appendix C.

Proposition 1 (Population objective) The population objective can be written as

fP (w, x) = σmax(X)

∞∑
n=0

(
(2n)!

22n(n!)2

)2
(
1− κ−2(X)

)n
1− 2n

(4)

where X = wx> − w̄x̄> and κ(X) = σmax(X)/σmin(X) is the condition number of X.

Theb next result characterizes in closed form the set of critical points of the population objective. To
derive this result, we develop tools to study the critical points of a family of singular value functions.
These arguments and the proof of this theorem can be found in Appendix B.

Theorem 2 The set of critical points of the population objective fP is exactly

S ∪ {0} ∪ {(w, x) | 〈w, w̄〉 = 0, 〈x, x̄〉 = 0, and wx> = 0}.

Revealing that the set of extraneous critical points of fP is the subspace (w̄, 0)⊥ ∩ (0, x̄)⊥. When
the signal (w̄, x̄) lives in R2 the landscape of the population objective is rather simple, the only
critical points are the solutions and zero, see Figure 2 in the appendix. This is not the case in higher
dimensions where an entire subspace of critical points appear.
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2.2. Sample objective

In this section we describe the approximate locations of the critical points of the sample objective.
Unlike in the smooth case, nonsmooth losses do not exhibit point-wise concentration of the subgra-
dients, or in other words, ∂fS(w, x) doesn’t converges to ∂fP (w, x). To overcome this obstacle, we
show that the graph of ∂fS approaches that of ∂fP at a quantifiable rate. Intuitively, this means that
if (w, x) is a critical point of fS , then nearby there exists a point (ŵ, x̂) such that dist(0, ∂fP (ŵ, x̂))
small.

The following result can be regarded as an analogous version of Theorem 2 for the sample
objective. However, the proof of this result is more involved and will require us to study the loca-
tion of epsilon critical points of the population. We defer the development of these arguments to
Appendices E and F.

Theorem 3 Consider the sample objective (2) generated with two Gaussian matrices A and B.
For any fixed ν > 1 there exist numerical constants c1, c2, c3 > 0 such that if m ≥ c1(d1 + d2 + 1),
then with probability at least 1− c2 exp(−c3(d1 + d2 + 1)), every stationary point (w, x) of fS for
which ‖(w, x)‖ ≤ ν‖(w̄, x̄)‖ satisfies at least one of the following conditions

1. Near zero.
‖(w, x)‖ ≤ ‖(w̄, x̄)‖∆,

2. Near a solution.
‖wx> − w̄x̄>‖ . (ν2 + 1)‖w̄x̄>‖∆,

3. Near orthogonal. {
|〈w, w̄〉| . (ν2 + 1)‖(w, x)‖‖w̄‖∆,
|〈x, x̄〉| . (ν2 + 1)‖(w, x)‖‖x̄‖∆.

where ∆ =
(
d1+d2+1

m log
(

m
d1+d2+1

)) 1
8
.

We remark that one can further prove that with high probability, there exists a neighborhood
around the solutions set S in which the only critical points are the solutions [9]. Hence at the cost
of potentially increasing c1, the second condition can be strengthened to (w̄, x̄) ∈ S.

3. Experiments

In this section we empirically investigate the behavior of a randomly-initialized subgradient algo-
rithm applied to (2). It is known that well-tuned subgradient algorithms converge to critical points
for any locally Lipschitz function [15]. Further, this type of iterative procedures are computation-
ally cheap, easy to implement, and widely used in practice. This makes them a great proxy for our
purposes. For the experiments, we use Polyak’s subgradient method, a classical algorithm known to
exhibit rapid convergence near solutions for sharp weakly-convex functions [14].3 Polyak’s method
is an iterative algorithm given by

xk+1 ← xk −
(
f(xk)− inf f

‖gk‖2

)
gk with gk ∈ ∂f(xk). (5)

3. It was shown in [9] that fS satisfies these assumptions with high probability provided m & (d1 + d2).
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(a) (d1, d2) = (100, 50)
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(b) (d1, d2) = (200, 100)
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(c) (d1, d2) = (100, 50)
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(d) (d1, d2) = (200, 100)

Figure 1: Empirical probability of recovery with random Gaussian initialization (two images on the
left) and random inialization on a cube (two images on the right) for different dimensions.
White denotes probability one and black denotes probability zero.

Notice that the step size requires us to know the minimum value, which in this case is exactly
zero. Polyak’s algorithm was used in [8] as one of the procedures in the two-stage method for blind
deconvolution.

In all the experiments the goal is to recover a pair of canonical vectors (e1, e1) ∈ Rd1 × Rd2 .
Observe that this instance is a good representative of the average performance of the method due to
the rotational invariance of the measurements. We evaluate the frequency of successful recovery of
(5) using two different random initialization strategies:

1. (Uniform over a cube) We set (w0, x0) to be an uniform vector on the cube [−ν, ν]d1+d2 .

2. (Random Gaussian) We setw0 and x0 to be distributed N(0, ν
2

d1
Id1) and N(0, ν

2

d2
Id2), respec-

tively. This ensures that with high probability, both ‖w0‖ and ‖x0‖ are close to ν.

We generate phase transition plots for both initialization strategies by varying the value of ν and
C , m/(d1 + d2) between {24, 25, . . . , 210} and {1, 2, . . . , 8}, respectively. For each choice of
parameters we generate ten random instances (w0, x0, A,B) and record in how many instances
Polyak’s method achieves a relative error smaller than 10−6. The method stops whenever it reaches
100 000 iterations or the function value is less than 10−10. We repeat these experiments for two
different pairs of dimensions, (d1, d2) ∈ {(100, 50), (200, 100)}, see the results in Figure 1.

A first immediate observation is that the random initialization, the dimension, and the scaling
parameter ν do not seem to be affecting the recovery frequency of the algorithm. The only parameter
that controls the recovery frequency is C. This is intuitively consistent with Theorem 3, since this
parameter determines the concentration of spurious critical points around a subspace. Nonetheless,
the effect of this parameter seems to be stronger in practice. Indeed, the probability of recovery
exhibits a sharp phase transition at C ∼ 3.

Reproducible research. The experiments were run in a 2013 MacBook Pro with 2.4 GHz Intel
Core i5 Processor and 8 GB of RAM. All the results and code concerning these experiments are pub-
licly available in https://github.com/mateodd25/BlindDeconvolutionLandscape.

Acknowledgments. I thank Jose Bastidas, Damek Davis, Dmitriy Drusvyatskiy, Robert Klein-
berg, and Mauricio Velasco for insightful and encouraging conversations. Finally, I would like to
thank my advisor Damek Davis for research funding during the completion of this work.
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(a) Graph (b) Contour

Figure 2: Population objective d1 = d2 = 1.

Appendix A. Preliminaries

We will follow standard notation. The symbols R and R+ denote the real line and the nonnegative
reals, respectively. The set of extended reals R ∪ {+∞} is written as R. We always endow Rd
with its standard inner product, 〈x, y〉 = x>y, and its induced norm ‖x‖ =

√
〈x, x〉. We also use

‖x‖1 =
∑
|xi| to denote the `1-norm. For a set S ⊆ Rd, we denote the distance from a point x to

the set by dist(x,Q) = infy∈Q ‖x − y‖. For any pair of real-valued functions f, g : Rn → R, we
say that f . g if there exists a constant C such that f ≤ Cg. Moreover, we write f � g if both
f . g and g . f.

The adjoint of a linear operator A : Rd → Rn is indicated by A> : Rn → Rd. Assuming
d ≤ n, the map σ : Rn×d → Rd+ returns the vector of ordered singular values of a matrix with
σ1(A) ≥ σ2(A) ≥ · · · ≥ σd(A). We will use the symbols ‖A‖op = σ1(A) and ‖A‖F = ‖σ(A)‖2
to indicate the operator and Frobenius norm, respectively. When not specified it is understood that
‖A‖ := ‖A‖op. We will use the symbol O(d) to denote the set of d× d orthogonal matrix.

Variational analysis. Since we will handle nonsmooth functions, we need a definition of gen-
eralized derivatives. We refer the interested reader to some excellent references on the subject
[4, 35, 38]. Let f : Rd → R be a lower semicontinuous proper function and x̄ be a point. The
Fréchet subdifferential ∂̂f(x) is the set of all vectors ξ for which

f(x) ≥ f(x̄) + 〈ξ, x− x̄〉+ o(‖x− x̄‖) as x→ x̄.

Intuitively, ξ ∈ ∂f(x̄) if the function x 7→ f(x̄) + 〈ξ, x − x̄〉 locally minorizes f up to first order
information. Unfortunately, the set-valued mapping x 7→ ∂̂f(x) lacks some desirable topologi-
cal properties. For this reason it is useful to consider an extension. The limiting subdifferential
∂f(x̄) is the set of all ξ such that there are sequences (xn) and (ξn) with ξn ∈ ∂̂f(xn) satisfying
(xn, f(xn), ξn)→ (x̄, f(x̄), ξ). It is well-known that ∂f(x̄) reduces to the classical derivative when
f is Fréchet differentiable and that for f convex, ∂f(x̄) is equal to the usual convex subdifferential

ξ ∈ ∂f(x̄) ⇐⇒ f(x) ≥ f(x̄) + 〈ξ, x− x̄〉 ∀x.

We say that a point x̄ is stationary if 0 ∈ ∂f(x̄). The graph of ∂f is given by gph ∂f = {(x, ζ) |
ζ ∈ ∂f(x)}.

10
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For ρ > 0, we say that f is ρ-weakly convex if the regularized function f + ρ
2‖ · ‖

2
2 is convex.

This encompasses a broad class of functions: Any function that can be decomposed as f = h ◦ g,
where h : Rm → R is a Lipschitz convex function and g : Rd → Rm is smooth map, is weakly
convex. It is worth noting that for functions that can be decomposed in this fashion, the chain rule
[38, Theorem 10.6] yields ∂f(x) = ∇g(x)>∂h(g(x)) for all x.

Singular value functions. For a pair of dimensions d1, d2 we will denote d = min{d1, d2}. A
function f : Rd → R is symmetric if f(πx) = f(x) for any permutation matrix π ∈ {0, 1}d×d. Ad-
ditionally, a function f is sign invariant if f(sx) = f(x) for any diagonal matrix s ∈ {−1, 0, 1}d×d
with diagonal entries in {±1}.We say that fσ : Rd1×d2 → R is a singular value function if it can be
decomposed as fσ = (f ◦ σ) for a symmetric sign invariant function f. A simple and illuminating
example is the Frobenius norm, since ‖A‖F = ‖σ(A)‖2. This type of function has been deeply
studied in variational analysis [27–29].

A pair of matrices X and Y in Rd1×d2 have a simultaneous ordered singular value decompo-
sition if there exist matrices U ∈ O(d1) and V ∈ O(d2) such that X = Udiag(σ(X))V > and
Y = Udiag(σ(Y ))V >. We will make great use of the following remarkable theorem.

Theorem 4 (Theorem 7.1 in [29]) The limiting subdifferential of a singular value function fσ =
f ◦ σ at a matrix M ∈ Rd1×d2 is given by

∂fσ(M) = {Udiag(ζ)V > | ζ ∈ ∂f(σ(M)) and Udiag (σ(M))V > = M}. (6)

Hence M and any of its subgradients have simultaneous ordered singular value decomposition.

Appendix B. Population objective

B.1. Landscape analysis for a class of singular value functions

From now on we consider an arbitrary function g : Rd1 × Rd2 → R for which there exists a rank
one matrix w̄x̄> and a singular value function fσ satisfying

g(w, x) = fσ(wx> − w̄x̄>) = f ◦ σ
(
wx> − w̄x̄>

)
.

This gives us two useful characterizations of g that we will use throughout. In the following section
we will see a way of recasting fP in this form.

A simple application of the chain rule yields

∂g(w, x) =

{[
Y x
Y >w

] ∣∣∣Y ∈ ∂fσ(X)

}
. (7)

Notice that we already have a description of ∂fσ(X) given by Theorem 4, that is Y ∈ ∂fσ(X) if
and only if there exists matrices U ∈ O(d1) and V ∈ O(d2) satisfying

σ(Y ) ∈ ∂f(σ(X)), Y = Udiag(σ(Y ))V >, and X = Udiag(σ(X))V >. (8)

Equipped with these tools we derive the following result regarding the critical points of g. We defer
a proof to Appendix D.

11
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Theorem 5 Suppose that (w, x) is a stationary point for g, i.e. Y x = 0, Y >w = 0. Then at least
one of the following conditions hold:

1. Small objective. g(w, x) ≤ g(w̄, x̄),

2. Zero. (w, x) = 0,

3. One zero component. 〈w, w̄〉 = 〈x, x̄〉 = 0, wx> = 0, and (assuming that x is not zero)
Y x = 0 (similarly for w).

4. Small product norm. 〈w, w̄〉 = 〈x, x̄〉 = 0, rank(Y ) = 1, and 0 < ‖wx>‖ < ‖w̄x̄>‖.

Moreover, if (w̄, x̄) minimizes g, then (w, x) is a critical point if, and only if, it satisfies 1, 2, 3, or 4
for some Y ∈ ∂fσ(X).

B.2. Landscape of the population objective

Our goal now is to apply Theorem 5 to describe the landscape of fP . In order to do it we need to
write fP (w, x) = f ◦ σ(X) with f : Rd → R a symmetric sign-invariant convex function. An easy
way to do this is to define

f(s1, . . . , sd) = E

(∣∣∣∣∣
d∑
i=1

aibisi

∣∣∣∣∣
)
.

To use Theorem 5, we need to study ∂f. The next lemma shows that the function is actually
differentiable at every point but zero. We defer the proof of this result to Appendix D.1.

Lemma 6 For any nonzero vector s ∈ Rd+ \ {0}, the partial derivatives of f satisfy

∂f

∂sj
(s) =

√
2

π
sj E

a2
j

(
d∑
i

(aisi)
2

)− 1
2

 . (9)

This lemma gives us the final tool to derive the main theorem regarding the landscape of fP .
Proof [Proof of Theorem 2] Notice that (w̄, x̄) minimizes the population objective fP , therefore
Theorem 5 gives a complete description of the critical points. Let us examine each one of the
conditions in this theorem.

The points in {(w, x) | wx> = w̄x̄>} and {0} are contained in the set of stationary points
because they satisfy the first and second condition, respectively.

Now, let (w, x) ∈ {w̄}⊥ × {x̄}⊥ such that wx> = 0. Thus, the matrix X is rank 1, and
consequently (9) reveals that that any Y ∈ ∂fσ(X) satisfies σ(Y ) = ∇f(σ(X)) = (2/π, 0, . . . , 0).
Therefore, due to (8), we get Y = 2

π w̄x̄
>/‖w̄‖‖x̄‖.Without loss of generality, assume x is not zero.

Then, ‖Y x‖ = 2
π‖x̄‖ |〈x, x̄〉| = 0 and, consequently, (w, x) is stationary.

On the other hand, let (w, x) ∈ {w̄}⊥ × {x̄}⊥ such that 0 < ‖wx>‖ < ‖w̄x̄>‖. Therefore, the
matrix X is rank 2 and so (9) gives that σ2(Y ) > 0 for all Y ∈ ∂fσ(X). Hence, (w, x) is not a
stationary point, giving the result.
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Appendix C. Proof of Proposition 1

Recall that we defined the functions f : Rd+ → R and fσ : Rd×n → R to be such that fP (w, x) =

fσ(X) = f(σ(X)). It is known that for constants c1, c2 ∈ R+ we have that c1b1 + c2b2
(d)
=√

c2
1 + c2

2b1, where
(d)
= denotes equality in distribution. Then

f(s1, s2, 0, . . . , 0) = E(|s1a1b1 + s2a2b2|)
= E (E(|s1a1b1 + s2a2b2| | a1, a2))

= E
(
E(
√

(s1a1)2 + (s2a2)2|b1| | a1, a2)
)

=

√
2

π
E
√

(s1a1)2 + (s2a2)2

=

√
π√

2π2

∫ ∞
−∞

∫ ∞
−∞

√
(a1s1)2 + (a2s2)2 exp

(
−a

2
1 + a2

2

2

)
da1da2

= 4

√
π√

2π2

∫ ∞
0

∫ ∞
0

√
(a1s1)2 + (a2s2)2 exp

(
−a

2
1 + a2

2

2

)
da1da2

= 2

√
2π

π2

∫ ∞
0

∫ π/2

0
r2
√
s2

1 cos2 θ + s2
2 sin2 θ exp

(
−r

2

2

)
dθdr

=
2

π

∫ π/2

0

√
s2

1 cos2 θ + s2
2 sin2 θdθ

=
2s1

π

∫ π/2

0

√
cos2 θ +

s2
2

s2
1

sin2 θdθ

=
2s1

π

∫ π/2

0

√
1−

(
1− s2

2

s2
1

)
sin2 θdθ

=
2s1

π
E

(
1− s2

2

s2
1

)

where E(·) is the complete elliptic integral of the second kind (with parameter m = k2). Thus
altogether we obtain

fσ(X) = σmax(X)

∞∑
n=0

(
(2n)!

22n(n!)2

)2
(
1− κ−2(X)

)n
1− 2n

where κ(X) = σmax(X)/σmin(X) is the condition number of X.

Appendix D. Proof of Theorem 5

The proof of this result builds upon the next three lemmas. We will prove these lemmas and before
we dive into the proof. Recall that U ∈ O(d1) and V ∈ O(d2) are any pair of matrices for which
X = Uσ(X)V =

∑
i σi(X)UiV

>
i .

Lemma 7 The following are true.
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1. Anticorrelation. The next equalities hold

〈U1, w〉〈x, V2〉 = 〈U1, w̄〉〈x̄, V2〉 and 〈U2, w〉〈x, V1〉 = 〈U2, w̄〉〈x̄, V1〉.

2. Singular values. The singular values of X satisfy

σ1(X) = 〈U1, w〉〈x, V1〉 − 〈U1, w̄〉〈x̄, V1〉 ≥ 0,

σ2(X) = 〈U2, w〉〈x, V2〉 − 〈U2, w̄〉〈x̄, V2〉 ≥ 0.

3. Correlation. Assume that σ2(wx>−w̄x̄>) > 0, then span{x, x̄} = span{V1, V2}, span{w, w̄} =
span{U1, U2}, and consequently,

〈w, w̄〉 = 〈U1, w〉〈U1, w̄〉+ 〈U2, w〉〈U2, w̄〉,
〈x, x̄〉 = 〈V1, x〉〈V1, x̄〉+ 〈V2, x〉〈V2, x̄〉.

Proof The first equality in item one follows by observing that U>1 XV2 = 0, expanding the expres-
sion on the left-hand-side gives the result. The same argument starting from U>2 XV1 = 0 gives the
other equality. The second item follows by definition.

To prove the last item note that

〈Ui, w〉x− 〈Ui, w̄〉x̄ = X>Ui = σi(X)Vi ∀i ∈ {1, 2}.

Dividing through by σi(X) in the previous inequality shows that span{x, x̄} = span{V1, V2}.
Therefore, we can write x = 〈x, V1〉V1 + 〈x, V2〉V2 and x̄ = 〈x̄, V1〉V1 + 〈x̄, V2〉V2. Hence,

〈x, x̄〉 = 〈〈x, V1〉V1 + 〈x, V2〉V2, 〈x̄, V1〉V1 + 〈x̄, V2〉V2〉 = 〈V1, x〉〈V1, x̄〉+ 〈V2, x〉〈V2, x̄〉

An analogous argument shows the statement for w and w̄.

Lemma 8 The following hold true.

1. Maximum correlation.

max{|σ1(Y )〈v1, x〉|, |σ2(Y )〈v2, x〉|} ≤ ‖Y x‖,

max{|σ1(Y )〈u1, w〉|, |σ2(Y )〈u2, w〉|} ≤ ‖Y >w‖.
(10)

2. Objective gap.
g(w, x)− g(w̄, x̄) ≤ σ1(Y )σ1(X) + σ2(Y )σ2(X). (11)

Proof Note that ‖Y x‖ ≥ 〈z, Y x〉 for all z ∈ Sd−1, then the very first claim follows by testing
with z ∈ {±U1,±U2}. An analogous argument gives the statement for w. Recall that f is convex,
consequently fσ is convex and the subgradient inequality gives

g(w, x)− g(w̄, x̄) = fσ(X)− fσ(0) ≤ 〈Y,X〉 = σ1(Y )σ1(X) + σ2(Y )σ1(X).

14
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Lemma 9 Assume w̄ ∈ Rd1 and x̄ ∈ Rd2 are nonzero vectors. Set X = wx> + w̄x̄>, then X is a
rank 1 matrix if, and only if, w = λw̄ or x = λx̄ for some λ ∈ R.

Proof It is trivial to see that if the later holds then X is rank 1. Let us prove the other direction.
Notice that if any of the vectors is zero we are done, so assume that none of them is. Recall that all
the columns of X are span from one vector. Consider the case where x and x̄ have different support
(i.e. set of nonzero entries), then it is immediate that w and w̄ have to be multiples of each other.

Now assume that this is not the case, without loss of generality assume that w /∈ span{w̄} and x
and x̄ are nonzero and their first component is equal to one. Then the first column of X is equal to
w + w̄, furthermore the second column is equal to x2w + x̄2w̄ has to be a multiple of the first one.
By assumption w, w̄ are linearly independent therefore x2 = x̄2. Using the same procedure for the
rest of the entries we obtain x = x̄.

We are now in good shape to describe the landscape of the function g.
Proof [Proof of Theorem 5] To prove that at least one of the conditions hold we will show that if
the first two don’t hold then at least one of the other two have two hold. Assume that that the first
two conditions are not satisfied, therefore g(w, x) > g(w̄, x̄) and (w, x) 6= (0, 0). Let us furnished
some facts before we prove this is the case. Notice that from (11) we can derive

0 < σ1(Y )σ1(X) + σ2(Y )σ1(X) ≤ 2σ1(Y )σ1(X),

thus σ1(Y ), σ1(X) > 0. On the other hand, since (w, x) is critical inequalities (10) immediately
give

σ1(Y )〈V1, x〉 = σ2(Y )〈V2, x〉 = 0, and σ1(Y )〈U1, w〉 = σ2(Y )〈U2, w〉 = 0. (12)

So 〈V1, x〉 = 0 and 〈U1, w〉 = 0, then the first claim in Lemma 7 gives. Additionally, this and the
second claim in Lemma 7 imply that

〈U1, w̄〉〈x̄, V2〉 = 〈U2, w̄〉〈x̄, V1〉 = 0, and − 〈U1, w̄〉〈x̄, V1〉 = σ1(X) > 0.

Combining these two gives 〈U2, w̄〉 = 〈x̄, V2〉 = 0. Then by applying the second claim in Lemma 7
we get σ2(X) = 〈U2, w〉〈x, V2〉. Using Equations (12) we conclude that σ2(Y )σ2(X) = 0.

Now we will show that at least one of the conditions holds, depending on the value of σ2(X),
let us consider two cases:

Case 1. Assume σ2(X) = 0. This means thatX = wx>−w̄x̄> is a rank 1 matrix. By Lemma 9
we have that w = λw̄ or x = λx̄ for some λ ∈ R. Note that if w = λw̄ then U1 = ±w̄/‖w̄‖, then
using Equation 12 we get that λ‖w̄‖ = 0. Which implies that λ = 0, and consequently wx> = 0.
An analogous argument applies when x = λx̄. By assumption we have that Y x = 0 and Y >w = 0.
Additionally, since X = −w̄x̄> we get that that U1 = ±w̄/‖w̄‖ and V1 = ±x̄/‖x̄‖. Recall that
Y = Udiag(σ(Y ))V >, then using the fact that (w, x) is critical we conclude 〈w, w̄〉 = 〈x, x̄〉 = 0.
Implying that property three holds.

Case 2. Assume σ2(X) 6= 0. This immediately implies that σ2(Y ) = 0. By the third part of
Lemma 7 we get that

〈x, x̄〉 = 〈V1, x〉〈V1, x̄〉+ 〈V2, x〉〈V2, x̄〉 = 0

and analogously 〈w, w̄〉 = 0. Moreover, since w ⊥ w̄ and x ⊥ w̄ (and none of them are zero by
assumption) we get that (w/‖w‖, x/‖x‖) and (w̄/‖w̄‖, x̄/‖x̄‖) are pairs of left and right singular
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vectors, with associated singular values w>Xx = ‖wx>‖ and w̄>Xx̄ = ‖w̄x̄>‖, respectively.
Assume that ‖wx>‖ ≥ ‖w̄x̄>‖, thus 0 = w>Y x = ‖wx>‖σ1(Y ) > 0, yielding a contradiction.
Hence the condition four holds true.

Finally, we will prove the reverse statement. Assume that (w̄, x̄) minimize g. In this case, the
set of points that satisfies the first conditions is the collection of minimizers so they are critical.
Clearly (w, x) = 0 is always a stationary point, since ‖Y >w‖ = ‖Y x‖ = 0. Now let’s construct a
certificate Y ∈ ∂fσ(X) that ensures criticality for the remaining cases.

Assume that (w, x) that wx> = 0, without loss of generality let’s assume that w = 0. Further,
assume that there exists Y ∈ ∂fσ(w, x) such that Y x = 0 and 〈x, x̄〉 = 0. It is immediate that
(w, x) is a stationary point.

Assume that (w, x) is such that 0 < ‖wx>‖ < ‖w̄x̄>‖, 〈w, w̄〉 = 〈x, x̄〉 = 0 and there exists
Y ∈ ∂fσ(X) with σ2(Y ) = 0. By our argument above since ‖wx>‖ < ‖w̄x̄>‖, any pair of
admissible matrices U, V satisfy U1 = ±w̄/‖w̄‖ and V1 = ±x̄/‖x̄‖. Therefore

Y x = (σ1(Y )U1V
>

1 )x = ±σ1(Y )

‖x̄‖
〈x̄, x〉U1 = 0,

analogously Y >w = 0.

D.1. Proof of Lemma 6

It is well-known that if (a1, a2, . . . , ad) is fixed (i.e. if we conditioned on it), then

d∑
i=1

aibisi
(d)
=

(
d∑
i=1

(aisi)
2

) 1
2

b

and b is a standard normal random variable independent of the rest of the data. Therefore

f(s1, . . . , sd) = E

(∣∣∣∣∣
d∑
i=1

aibisi

∣∣∣∣∣
)

= E

(
E

(∣∣∣∣∣
d∑
i=1

aibisi

∣∣∣∣∣ ∣∣∣a1, . . . , ad

))

= E

( d∑
i=1

(aisi)
2

) 1
2

E (b | a1, . . . , ad)

 =

√
2

π
E

(
d∑
i=1

(aisi)
2

) 1
2

.

Now, we need a technical tool in order to procede.

Theorem 10 (Leibniz Integral Rule, Theorem 5.4.12 in [37]) Let U be an open subset of Rd and
Ω be a measure space. Suppose that the function h : U × Ω→ R satisfies the following:

1. For all x ∈ U , the function h(x, ·) is Lebesgue integrable.

2. For almost all w ∈ Ω, if we define hω(·) = f(·, ω) the partial derivatives ∂hω

∂xi
(x) exists for

all x ∈ U .

3. There is an integrable function Φ : Ω → R such that |∂hω∂xi
(x)| ≤ Φ(ω) for all x ∈ U and

almost every ω ∈ Ω.
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Then, we have that for all x ∈ U

∂

∂xi

∫
Ω
h(x, ω)dω =

∫
Ω

∂hω

∂xi
(x)dω.

This theorem tell us that we can swap partial derivatives and integrals provided that the function
satisfies all the conditions above. Consider Ω to be the set Rd endow with the Borel σ-algebra and
the multivariate Gaussian measure. Define h : Rd × Ω→ R to be given by

(s, a) 7→

(
d∑
i=1

(aisi)
2

) 1
2

.

Take s ∈ Rd \ {0} to be an arbitary element, set S = {u ∈ Rd | supp(s) ⊆ supp(u)}, and define
U = Bε(s) with ε small enough such that U ⊆ S and infu∈U mini∈supp(s) |ui| > 0. Then it is
easy to see that the first two conditions hold, in particular the second condition hold for all a 6= 0.
Further, for any x ∈ U

∣∣∣∣∂ha∂sj
(x)

∣∣∣∣ =

∣∣∣∣∣∣∣
a2
jxj(∑d

i (aixi)
2
) 1

2

∣∣∣∣∣∣∣ ≤
supu∈U ‖u‖∞

infu∈U mini∈supp(s) |ui|

∑
i∈supp(s) a

2
j(∑

i∈supp(s) a
2
i

) 1
2

≤ supu∈U ‖u‖∞
infu∈U mini |ui|

 ∑
i∈supp(s)

a2
i

 1
2

,

where the last function is integrable with respect to the Gaussian measure. Thus, Theorem 10
ensures that the function f is differentiable at every nonzero point. Consequently, for all s ∈ Rd\{0}

∂f

∂sj
(s) =

√
2

π
sj E

a2
j(∑d

i (aisi)
2
) 1

2

.

Appendix E. Approximate critical points of a spectral function family

In Section B we characterize the points for which 0 ∈ ∂fP (w, x). In order to derive similar
results for fS we will need to understand ε-critical points of fP , i.e. points (w, x) for which
dist(0, ∂f(w, x)) ≤ ε. Just as before we adopt a more general viewpoint and consider spectral
functions of the form g(w, x) = f ◦ σ(wx> − w̄x̄>).

The main result in this section is Theorem 13. Given the fact that we don’t have second order
information in the form of a Hessian, we need to appeal to a different kind of growth condition.
Turns out that the natural condition for this problem is

g(w, x)− g(w̄, x̄) ≥ κ
∥∥∥wx> − w̄x̄>∥∥∥

F
∀(w, x) ∈ Rd1 × Rd2 , (13)

for some κ > 0. Intuitively this means that the function grows sharply away from minimizers.
Before we dive into the main theorem, let us provide some technical lemmas.
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Lemma 11 Suppose there exists a constant κ > 0 such that (13) holds. Then, for any point (w, x)
such that wx> 6= w̄x̄> we have σ1(Y ) + σ2(Y ) ≥ κ.

Proof By definition σ2(X) ≤ σ1(X) ≤
∥∥wx> − w̄x̄>∥∥

F
. Then, applying (11) gives

κ
∥∥∥wx> − w̄x̄>∥∥∥

F
≤ g(w, x)− g(w̄, x̄) ≤ σ1(Y )σ1(X) + σ2(Y )σ2(X)

≤ (σ1(Y ) + σ2(Y ))
∥∥∥wx> − w̄x̄>∥∥∥

F
.

Lemma 12 Suppose there exists a constant κ > 0 such that (13) holds. Then any pair (w, x) ∈
Rd1+d2 \ {0} satisfies

1

min{‖w‖ , ‖x‖}

(
κ
∥∥∥wx> − w̄x̄>∥∥∥− (σ1(Y ) + σ2(Y ))

∥∥∥w̄x̄>∥∥∥) ≤ dist(0; ∂g(w, x)).

Proof Notice that the result holds trivially for any pair such that wx> = w̄x̄>. Let’s assume that
this is not the case. Recall that ∂g(w, x) = ∂fσ(X)x× (∂fσ(X))>w. Pick Y ∈ ∂g(w, x) such that
dist(0, ∂g(w, x)) =

√
‖Y x‖2 + ‖Y >w‖2. Using the convexity of fσ we get

κ‖wx> − w̄x̄‖F ≤ g(w, x)− g(w̄, x̄) = fσ(X)− fσ(0)

≤ 〈Y,wx> − w̄x̄>〉
≤ ‖x‖‖Y >w‖+ |w>Y x| ≤ ‖x‖dist(0, ∂g(w, x)) + |w>Y x|,

where the last inequality follows by Cauchy-Schwartz. Applying the same argument usingw>Y x ≤
‖w‖‖Y x‖ gives

g(w, x)− g(w̄, x̄) ≤ min{‖w‖, ‖x‖}dist(0, ∂g(w, x)) + |w>Y x|.

Now, let’s bound the second term on the right-hand-side. Note that

|w̄>Y x̄| = |〈Y,wx>〉| ≤ ‖Y ‖‖wx>‖ ≤ (σ1(Y ) + σ2(Y ))
∥∥∥w̄x̄>∥∥∥ .

The result follows immediately.

We can now prove the main result of this section, a detailed location description of ε-critical
points. This can be thought of as a quantitative version of Corollary 5. Its proof is however more
involved due to the inexactness of the assumptions.

Theorem 13 Assume that ‖w̄‖ = ‖x̄‖ and that there exists a constant κ > 0 such that (13) holds.
Further assume that σ1(Y ) is bounded by some numerical constant.4 Let ζ = (Y x, Y >w) ∈
∂g(w, x), and set ε = ‖ζ‖. Then if wx> = 0 we have that

max{‖Y x‖, ‖Y >w‖} ≤ ε, and
{
|〈w, w̄〉| . ε‖w̄‖
|〈x, x̄〉| . ε‖x̄‖ .

4. This is implied for example when f is Lipschitz.

18



THE NONSMOOTH LANDSCAPE OF BLIND DECONVOLUTION

On the other hand, if wx> 6= 0 and ‖(w, x)‖ ≤ ν‖(w̄, x̄)‖ for some fixed ν > 1. There exists a
constant5 γ > 0 such that if ε ≤ γmax{‖w‖, ‖x‖} then

∥∥wx>∥∥ .
∥∥w̄x̄>∥∥ and at least one of the

following holds

1.
max{‖w‖ , ‖x‖}

∥∥∥wx> − w̄x̄>∥∥∥ . ε
∥∥∥w̄x̄>∥∥∥

2.

min{‖w‖, ‖x‖} . ε and
{
|〈w, w̄〉| . ν2ε‖w̄‖
|〈x, x̄〉| . ν2ε‖x̄‖ .

3.

σ2(Y ) .
ε

max{‖w‖, ‖x‖}
and

{
|〈w, w̄〉| . ν2ε‖w̄‖
|〈x, x̄〉| . ν2ε‖x̄‖ .

Proof First assume that wx> = 0, then it is clear that max{‖Y x‖, ‖Y >w‖} = ‖ζ‖ ≤ ε. Without
loss of generality assume that x = 0, let Y = Uσ(Y )V > be the singular value decomposition.
Since X = −w̄x̄> then U1 = ±w̄/‖w̄‖ and V1 = ±x̄/ ‖x̄‖ and so

ε ≥ ‖Y >w‖ =

∥∥∥∥σ1(Y )

‖w̄‖
〈w̄, w〉V1 + z

∥∥∥∥ ≥ σ1(Y )

‖w̄‖
|〈w̄, w〉| ≥ κ

2 ‖w̄‖
〈w̄, w〉 (14)

where z is orthogonal to V1 and the second inequality follows by Lemma 11. This proves the first
statement in the theorem.

We know move to the “On the other hand” statement, assume wx> 6= 0 and ‖(w, x)‖ ≤
ν‖(w̄, x̄)‖. Notice that the result holds immediately if (w, x) ∈ {(αw̄, x̄/α) | α ∈ R}. Fur-
ther, due to Theorem 5 it also holds when ε = 0. Let us assume that none of these two conditions
are satisfied.

We will start by showing that
∥∥wx>∥∥ .

∥∥w̄x̄>∥∥ . Set

δ =

√
2

κ
(σ1(Y ) + σ2(Y )) + 1. (15)

We showed in Lemma 11 that (σ1(Y ) + σ2(Y )) ≥ κ and thus δ > 1.

Claim 1 The inequality
∥∥wx>∥∥ ≤ δ ∥∥w̄x̄>∥∥ holds true.

Proof Seeking contradiction assume that this is not the case. By the previous lemma
√

2

‖wx>‖
κ
∥∥∥wx> − w̄x̄>∥∥∥− ε

max{‖w‖, ‖x‖}
≤ (σ1(Y ) + σ2(Y ))

∥∥w̄x̄>∥∥
‖wx>‖

. (16)

Notice that
√

2

‖wx>‖
κ
∥∥∥wx> − w̄x̄>∥∥∥ =

√
2κ

∥∥∥∥ wx>

‖wx>‖
− w̄x̄>

‖wx>‖

∥∥∥∥ ≥ √2κ

∣∣∣∣1− 1

δ

∣∣∣∣ .
5. Independent of ν.
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If we set γ <
√

2κ
2

∣∣1− 1
δ

∣∣ then we ensure ε
max{‖w‖,‖x‖} <

√
2κ
2

∣∣1− 1
δ

∣∣ , thus

√
2κ
∣∣1− 1

δ

∣∣
2(σ1(Y ) + σ2(Y ))

≤ 1

(σ1(Y ) + σ2(Y ))

( √
2

‖wx>‖
κ
∥∥∥wx> − w̄x̄>∥∥∥− ε

max{‖w‖, ‖x‖}

)

≤
∥∥w̄x̄>∥∥
‖wx>‖

<
1

δ
.

Rearranging we get

|δ − 1| <
√

2

κ
(σ1(Y ) + σ2(Y )),

leading to a contradiction.

We now move on to proving that at least one of the three conditions has to hold. To this end,
define

ρ1 =
max{‖w‖, ‖x‖}√

2
and ρ2 =

1

κ
max

{
2
√

2(1 + δ), 4σ1(Y )
} ∥∥w̄x̄>∥∥

max{‖w‖, ‖x‖}
.

Observe that if assume that if ερ2 ≥
∥∥wx> − w̄x̄>∥∥ then the result holds immediately. Assume

from now on that ερ2 <
∥∥wx> − w̄x̄>∥∥ . Our road map is as follows, we will start by assuming

min{‖w‖, ‖x‖} ≤ 2ε/κ and we will show that this implies the second condition in item two. Then
we will move to assume that min{‖w‖, ‖x‖} > 2ε/κ and show that item three has to hold.

Before we continue let us list some important facts. By Lemma 8

max{σ1(Y )|〈V1, x〉|, σ2(Y )|〈V2, x〉|, σ1(Y )|〈U1, w〉|, σ2(Y )|〈U2, w〉|} ≤ ε (17)

which together with σ1(Y ) > κ/2 implies that

max{|〈U1, w〉| , |〈V1, x〉|} ≤
ε

σ1(Y )
≤ 2ε

κ
. (18)

Notice that this implies by Lemma 7

|〈U1, w̄〉〈x̄, V2〉| = |〈U1, w〉〈x, V2〉| ≤
2‖x‖ε
κ

and |〈U2, w̄〉〈x̄, V1〉| ≤
2‖w‖ε
κ

. (19)

Observe that

max{‖w‖, ‖x‖} ≤ ‖(w, x)‖ ≤ ν‖(w̄, x̄)‖ =
√

2νmin{‖w̄‖, ‖x̄‖}. (20)

We can now continue with the proof. We will now assume that min{‖w‖, ‖x‖} ≤ 4δε/κ and
prove that item two holds.

Claim 2 Assume that min{‖w‖, ‖x‖} ≤ 4δε/κ. Then

|〈w, w̄〉| . ν2ε‖w̄‖ and |〈x, x̄〉| . ν2ε‖x̄‖.
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Proof Notice∣∣∣∣〈w, w̄

‖w̄‖
〉
∣∣∣∣ ≤ ∣∣∣∣〈w, w̄

‖w̄‖
− U1〉

∣∣∣∣+ |〈w,U1〉| ≤ ‖w‖
∥∥∥∥ w̄

‖w̄‖
− U1

∥∥∥∥+
2ε

κ

where the last inequality follows by Cauchy-Schwartz and (18). A similar argument gives the same
bound with ‖w̄/‖w̄‖+ U1‖ instead. Now we need to make use of the Davis-Kahan Theorem.

Theorem 14 Let A, Â ∈ Rd1×d2 with rank(A) = 1. Let A = Uσ(A)V > and Â = Ûσ(Â)V̂ > be
their singular value decompositions. Then the

sin θ(V1, V̂1) ≤ 2(2σ1(A) + ‖A− Â‖op)

‖A‖2
‖A− Â‖,

the same bound holds for U1, Û1.

By letting A = −w̄x̄> and Â = wx> − w̄x̄> in the previous theorem we get

min

{∥∥∥∥ w̄

‖w̄‖
+ U1

∥∥∥∥ ,∥∥∥∥ w̄

‖w̄‖
− U1

∥∥∥∥} ≤ √2 sin (θ(w̄/‖w̄‖, U1))

≤ 2
√

2
(2‖w̄x̄>‖+ ‖wx>‖)

‖w̄x̄>‖2
‖wx>‖

≤ 2
√

2(2 + δ)
‖wx>‖
‖w̄x̄>‖

≤ 2
√

2(2 + δ)ν
ε

‖w̄‖

where the last inequality follows since ‖wx>‖ ≤ εmax{‖w‖, ‖x‖} and (20). Hence from the
previous inequalities we derive∣∣∣∣〈w, w̄

‖w̄‖
〉
∣∣∣∣ ≤ ‖w‖ ∥∥∥∥ w̄

‖w̄‖
− U1

∥∥∥∥+
2ε

κ
≤ 2
√

2(2 + δ)ν
‖w‖
‖w̄‖

ε+
2ε

κ
=

(
2
√

2(2 + δ)ν2 +
2

κ

)
ε.

A completely analogous result holds for |〈x, x̄〉|.

Suppose now that min{‖w‖, ‖x‖} > 4δε/κ. In the remainder of the proof we will show that in
this case, item three has to hold.

Claim 3 The rank of X = wx> − w̄x̄> is two.

Proof Assume w = λw̄, then U1 = ±w/‖w̄‖ and using the same computation as in Equation (14)
we get λ‖w̄‖ ≤ 2ε/κ ≤ 4δε/κ which implies min{‖w‖, ‖x‖} ≤ 4δε/κ, yielding a contradiction.
An analogous argument holds for x = λx̄. Thus, Lemma 9 implies that σ2(wx> − w̄x̄>) > 0.

Claim 4 σ2(Y ) < ε
ρ1
.
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Proof Without loss of generality suppose ‖w‖ = max{‖w‖, ‖x‖}. Assume seeking contradiction
that this isn’t true, thus σ2(Y ) ≥ ε/ρ1 then Inequality (17) gives |〈U2, w〉| ≤ ρ1. Furthermore,
notice that due to Lemma 7 we have that ‖w‖2 = 〈U1, w〉2+〈U2, w〉2 and consequently |〈U1, w〉| ≥√
‖w‖2 − ρ2

1. Again, due to (17)

σ1(Y ) ≤ ε

|〈U1, w〉|
≤ ε√

‖w‖2 − ρ2
1

.

In turn this implies

κερ2 < κ
∥∥∥wx> − w̄x̄>∥∥∥ ≤ g(w, x)− g(w̄, x̄) ≤ σ1(Y )σ1(X) + σ2(Y )σ2(X)

≤ 2σ1(Y )σ1(X)

≤ 2
ε√

‖w‖2 − ρ2
1

|〈U1, w〉〈x, V1〉 − 〈U1, w̄〉〈x̄, V1〉|

≤ 2
ε√

‖w‖2 − ρ2
1

(∥∥∥wx>∥∥∥+
∥∥∥w̄x̄>∥∥∥)

≤ 2
√

2ε

‖w‖
(1 + δ)

∥∥∥w̄x̄>∥∥∥
Rearranging we get

ρ <
2
√

2(1 + δ)

κ

∥∥w̄x̄>∥∥
max{‖w‖, ‖x‖}

,

yielding a contradiction.

We now need to prove an additional claim.

Claim 5 |〈U2, w̄〉| ≤ |〈U1, w̄〉| and |〈V2, x̄〉| ≤ |〈V1, x̄〉|

Proof Seeking contradiction we assume the possible contrary cases.
Case 1. Assume |〈U2, w̄〉| > |〈U1, w̄〉| and |〈V2, x̄〉| > |〈U1, x̄〉|, then(18) and (19) imply

max{|〈U1, w〉〈V1, x〉|, |〈U1, w̄〉〈V1, x̄〉|} ≤
2 min{‖w‖, ‖x‖}ε

κ
.

From which we derive

κερ2 < g(w, x)− g(w̄, x̄) ≤ 2σ1(Y )σ1(X) ≤ 4σ1(Y )δ

∥∥w̄x̄>∥∥
max{‖w‖, ‖x‖}

ε.

contradicting the definition of ρ2.
Case 2. Assume that |〈U2, w̄〉| ≤ |〈U1, w̄〉| and |〈V2, x̄〉| > |〈V1, x̄〉| . Notice that ‖w̄‖2 =

〈U1, w̄〉2 + 〈U2, w̄〉2, hence |〈U1, w̄〉| ≥ ‖w̄‖/
√

2 and similarly |〈V2, x̄〉| > ‖x̄‖/
√

2. Thus,

‖w̄‖√
2
≤ |〈U1, w̄〉| ≤

2‖x‖ε
κ|〈x̄, V2〉|

<
2
√

2‖x‖ε
κ‖x̄‖

.

This implies that

min{‖w‖, ‖x‖} ≤ ‖w‖ ≤ δ
∥∥w̄x̄>∥∥
‖x‖

<
4δε

κ
,

yielding a contradiction.

Without loss of generality let us assume ‖w‖ ≤ ‖x‖.
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THE NONSMOOTH LANDSCAPE OF BLIND DECONVOLUTION

Claim 6
|〈w, w̄〉| . ε ‖w̄‖ and |〈x, x̄〉| . ν2ε ‖x̄‖ .

Proof By the previous claim and the fact that ‖w̄‖2 = 〈U1, w̄〉2 + 〈U2, w̄〉2 we get that |〈U1, w̄〉| ≥
‖w‖/

√
2, combining this with (19) gives

|〈x̄, V2〉| ≤
2
√

2‖x‖ε
κ‖w̄‖

≤ 4δ

κ
νε

Then by Lemma 7

|〈x, x̄〉| = |〈V1, x〉〈V1, x̄〉+ 〈V2, x〉〈V2, x̄〉| ≤ |〈V1, x〉〈V1, x̄〉|+ |〈V2, x〉〈V2, x̄〉|

≤ 2ε

κ
‖x̄‖+ ‖x‖|〈V2, x̄〉|

≤
(

2

κ
+

4δ

κ
ν2

)
ε‖x̄‖ ≤

(
2

κ
+

4δ

κ
ν2

)
ε‖x̄‖.

where we used (20). Notice that the same analysis gives

|〈w, w̄〉| ≤

(
2

κ
+

2
√

2δ

κ

‖w‖
‖x‖

)
ε‖w̄‖ ≤

(
2

κ
+

2
√

2δ

κ

)
ε‖w̄‖.

This last claim finishes the proof of the theorem.

Appendix F. Proof of Theorem 3

In order to prove the theorem we will apply three steps: we will show that the graphs of ∂fS and
∂fP are close, then use Theorem 13 to study the ε-critical points of fP and finally conclude about
the landscape of fS by combining the previous two steps. The following two propositions handle
the first part.

Proposition 15 Fix two functions f, g : Rd1 × Rd2 → R such that g is ρ-weakly convex. Suppose
that there exists a point (w̄, x̄) and a real δ > 0 such that the inequality

|f(w, x)− g(w, x)| ≤ δ
∥∥∥wx> − w̄x̄>∥∥∥

F
holds for all (w, x) ∈ Rd1 × Rd2 .

Then for any stationary point (w, x) of g, there exists a point (ŵ, x̂) satisfying ‖(w, x)− (ŵ, x̂)‖ ≤ 2

√
δ‖wx>−w̄x̄>‖

ρ+δ

‖dist(0, ∂f(ŵ, x̂))‖ ≤
(
δ +

√
2δ(ρ+ δ)

)
(‖(w, x)‖+ ‖(w̄, x̄)‖) .
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Proof The proposition is a corollary of Theorem 6.1 of [13]. Recall that for a function l : Rd → R
the Lipschitz constant at ȳ ∈ Rd is given by

lip(l, y) := lim sup
y→ȳ

|l(y)− l(ȳ)|
|y − ȳ|

.

Set u(x) = δ
∥∥wx> − w̄x̄>∥∥, and l(x) = −δ

∥∥wx> − w̄x̄>∥∥. It is easy to see that at differentiable
points the gradient of l(·) is equal to

∇l(w, x) = − δ

‖wx> − w̄x̄>‖F

[
(wx> − w̄x̄>)x

(wx> − w̄x̄>)>w

]
=⇒ ‖∇l(w, x)‖ ≤ δ‖(w, x)‖

Then, since lip(l;w, x) = lim sup(w′,x′)→(w,x) ‖∇l(w′, x′)‖, we can over estimate

lip(l;w, x) ≤ δ (‖(w, x)‖+ ‖(w̄, x̄)‖) .

Thus applying Theorem 6.1 of [13] we get that for all γ > 0 there exists (ŵ, x̂) such that ‖(w, x)−
(ŵ, x̂)‖ ≤ 2γ and

dist(0, ∂f(ŵ, x̂)) ≤ 2ργ + 2δ

∥∥wx> − w̄x̄>∥∥
γ

+ δ (‖(ŵ, x̂)‖+ ‖(w̄, x̄)‖)

By the triangular inequality we get ‖(ŵ, x̂)‖ ≤ 2γ + ‖(w, x)‖ and therefore

dist(0, ∂f(ŵ, x̂)) ≤ 2(ρ+ δ)γ + 2δ

∥∥wx> − w̄x̄>∥∥
γ

+ δ ‖(w, x)‖ .

Hence setting γ =

√
δ‖wx>−w̄x̄>‖

ρ+δ , gives

dist(0, ∂f(ŵ, x̂)) ≤ 2
√
δ(ρ+ δ) ‖wx> − w̄x̄>‖+ δ (‖(ŵ, x̂)‖+ ‖(w̄, x̄)‖)

≤ 2
√
δ(ρ+ δ) (‖wx>‖+ ‖w̄x̄>‖) + δ (‖(ŵ, x̂)‖+ ‖(w̄, x̄)‖)

≤ 2
√
δ(ρ+ δ)

(√
‖wx>‖+

√
‖w̄x̄>‖

)
+ δ (‖(ŵ, x̂)‖+ ‖(w̄, x̄)‖)

≤
(
δ +

√
2δ(ρ+ δ)

)
(‖(w, x)‖+ ‖(w̄, x̄)‖)

where we used that
√
a+ b ≤

√
a+
√
b and ab ≤ (a2 + b2)/2.

Proposition 16 There exist numerical constants c1, c2 > 0 such that for all (w, x) ∈ Rd1×d2 we
have ∣∣∣fS(w, x)− fP (w, x)

∣∣∣ . (d1 + d2 + 1

m
log

(
m

d1 + d2 + 1

)) 1
2

‖wx> − w̄x̄>‖ (21)

with probability at least 1− 2 exp(−c1(d1 + d2 + 1)) provided m ≥ c2(d1 + d2 + 1).
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Proof The proof of this proposition is almost entirely analogous to the proof of Theorem 4.6 in [9]
(noting that Gaussian matrices satisfy the hypothesis of this result). The proof follows exactly the
same up to Equation (4.19) in the aforementioned paper. Where the authors proved that there exists
constants c1, c2, c3, c4 > 0 such that for any t ∈ (0, c4) the following uniform concentration bound
holds ∣∣∣fS(w, x)− fP (w, x)

∣∣∣ ≤ 3

2
t‖wx> − w̄x̄>‖F for all (w, x) ∈ Rd1×d2

with probability at least 1 − 2 exp(c1(d1 + d2 + 1 + 1) log(c2/t) − c3t
2m). This probability is at

least 1− 2 exp(−c3t
2m/2) provided that

d1 + d2 + 1

m
≤ c3t

2

2c1 log(c2/t)
. (22)

Set t = max
(√

2c1
c3
, c2

)(
d1+d2+1

m log
(

m
d1+d2+1

)) 1
2 . This choice ensures that (22) holds, since

d1 + d2 + 1

m
≤ (d1 + d2 + 1) log(m/(d1 + d2 + 1))

m log
(

m
d1+d2+1 log−1

(
m

d1+d2+1

)) ≤ c3t
2

2c1 log(c2/t)
.

We can ensure that t ∈ (0, c4) by setting m ≥ C(d1 +d2 +1) with C sufficiently large. This proves
the result (after relabeling the constants).

We are finally in position to proof the theorem.
Proof [Proof of Theorem 3] Fix v ≥ 1 and a fix point (w, x) satisfying ‖(w, x)‖ ≤ ν‖(w̄, x̄)‖.
Proposition 16 shows that there exist constants c1, c2 > 0 such that with probability at least 1 −
2 exp(−c1(d1 + d2 + 1)) we have

|fS(w, x)− fP (w, x)| ≤ Õ

((
d1 + d2 + 1

m

) 1
2

)
‖wx> − w̄x̄>‖F ∀(w, x) ∈ Rd1 × Rd2

provided that m ≥ c2(d1 + d2 + 1). To ease the notation let us denote ∆̄ := Õ
((

d1+d2+1
m

) 1
2

)
.

Assume that we are in the event in which this holds, it is known that fS is ρ-weakly with high
probability provided that m ≥ C(d1 + d2 + 1), see Section 3 and Theorem 4.6 in [9]. Now, assume
that m is big enough and we are in the intersection of this two events. This holds with probability
1− c3 exp(c1(d1 + d2 + 1)) (for some possibly different constants c1, c3). Hence by Proposition 15
there exits a point (ŵ, x̂) such that

‖(w, x)− (ŵ, x̂)‖ ≤ 2
√
ρ

√
∆Dwx and dist(0, ∂f(w̄, x̄)) ≤ C

√
∆Dwx

where Dwx = ‖(w, x)‖+ ‖(w̄, x̄)‖.
Notice that if ‖(w, x)‖ ≤ ∆̄

1
4 ‖(w̄, x̄)‖ holds then the result holds immediately. So assume that

this inequality is not satisfied. So we can lower bound

‖(ŵ, x̂)‖ ≥ ‖(w, x)‖ − ‖(ŵ, x̂)− (w, x)‖ ≥

(
1− 2

(
∆̄

ρ

) 1
2 (

1 + ∆̄−
1
4

))
‖(w, x)‖ ≥ 1

2
‖(w, x)‖
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where the first inequality follow by applying the triangle inequality and the last inequality follows
for m sufficiently large, since we can ensure that for such m the term in the parenthesis is bigger
than 1/2. Therefore,

dist(0, ∂f(ŵ, x̂)) ≤ C∆
1
2 (‖(w, x)‖+ ‖(w̄, x̄)‖)

≤ C∆
1
2

(
1 + ∆−

1
4

)
‖(w, x)‖

≤ 2C∆
1
2

(
1 + ∆−

1
4

)
‖(ŵ, x̂)‖

≤ 4C∆
1
4 ‖(ŵ, x̂)‖.

Hence, by reducing ∆̄ if necessary we can guarantee that dist(0, ∂f(ŵ, x̂)) ≤ γ‖(ŵ, x̂)‖ and con-
sequently Theorem 13 gives that at least one of the following two holds

max{‖ŵ‖, ‖x̂‖}‖ŵx̂> − w̄x̄>‖ . ∆
1
2Dwx‖w̄x̄>‖ and

{
|〈w, w̄〉| . ν2∆

1
2Dwx‖w̄‖

|〈x, x̄〉| . ν2∆
1
2Dwx‖x̄‖

(23)
Let us prove that this implies the statement of the theorem.

Case 1. Assume that the second condition in (23) holds. Then

|〈w, w̄〉| ≤ |〈ŵ, w̄〉|+ ‖w̄‖‖ŵ − w‖ . (ν2 + 1)∆
1
2Dwx‖w̄‖ . (ν2 + 1)∆

1
4 ‖(w, x)‖‖w̄‖

where we used that ∆
1
2Dwx . ∆

1
4 ‖(w, x)‖ for m big enough. A similar argument yields the result

for |〈w, x〉|.
Case 2. On the other hand, if the first condition holds, there exist ew ∈ Rd1 , ex ∈ Rd2 such that

ŵ = w + ew and x̂ = x+ ex with ‖ew‖, ‖ex‖ ≤ ∆
1
2Dwx. Then

‖(w, x)‖‖wx> − w̄x̄>‖ ≤ ‖(w, x)‖‖wx> − ŵx̂>‖+ ‖(w, x)‖‖ŵx̂> − w̄x̄>‖
≤ ‖(w, x)‖‖wx> − ŵx̂>‖+ 2‖(ŵ, x̂)‖‖ŵx̂> − w̄x̄>‖

. ‖(w, x)‖‖wx> − (w + ew)(x+ ex)>‖+ ∆
1
2Dwx‖w̄x̄>‖

≤ ‖(w, x)‖
(
‖we>x ‖+ ‖ewx>‖+ ‖ewe>x ‖

)
+ ∆

1
2Dwx‖w̄x̄>‖

≤ ‖(w, x)‖∆
1
2Dwx

(
‖w‖+ ‖x>‖+ ∆

1
2Dwx

)
+ ∆

1
2Dwx‖w̄x̄>‖

. ‖(w, x)‖∆
1
2Dwx

(
‖(w, x)‖+ ∆

1
4 ‖(w, x)‖

)
+ ∆

1
2Dwx‖w̄x̄>‖

. ‖(w, x)‖2∆
1
2Dwx + ∆

1
2Dwx‖w̄x̄>‖

. (ν2 + 1)‖w̄x̄>‖∆
1
2Dwx

. (ν2 + 1)∆
1
4 ‖(w, x)‖‖w̄x̄>‖.

Proving the desired result.
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