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Abstract
We exploit the connection between boosting and greedy coordinate optimization to produce new accelerated
boosting methods. Specifically, we look at increasing block sizes, better selection rules, and momentum-
type acceleration. Numerical results show training convergence gains over several data sets. The code is
made publicly available.

1. Introduction
Boosting [26] is a technique for sequentially building complex machine learning models as a linear combi-
nation of weak learners. Specifically, at each iteration, a weak learner is trained on a proxy loss function
over data that is constantly reweighted to emphasize badly fitted training samples. Despite its simplicity,
the success of boosting methods on tabular data [6] makes it a ubiquitous and highly relevant tool in data
science.

When run for a long time, boosting methods suffer computational costs from fitting and retaining a
large number of weak learners. This motivates accelerating the convergence of simple boosting methods.
Traditionally, such techniques included subsampling data or features randomly [9, 13] or greedily [5], or
improving the weak learners [6, 14].

Another avenue is to exploit the close connection between boosting and greedy coordinate descent
(GCD) methods. In particular, it has previously been observed that Adaboost [11] is equivalent to co-
ordinate minimization under the Gauss-Southwell rule [17, 19, 25], and LogitBoost [10] is inspired by a
greedy selection rule of a Taylor approximation of the loss function. Similar observations have also been
made about gradient boosted machines [12, 20]. This has inspired the development of several “acceler-
ated” boosting schemes, such as MultiBoost [16], GradBoost [8], LPBoost [7], and Accelerated Gradient
Boosting (AGB) [2].

This work explores the practical impact of GCD-inspired acceleration techniques on a generalized boost-
ing framework. The exact connection is reviewed in Section 2, and acceleration is presented in 3 and demon-
strated numerically in 4. Although more work is required to show theoretical speedup, in practice we often
observe faster training error convergence.

2. Boosting and Gauss Southwell coordinate minimization
Consider the empirical risk minimization problem for binary classification

∗ Equal Contribution
Code is made available at https://github.com/xmengju/Accelerated Boosting

c© X.J. ∗, Y.S. ∗, S.V. ∗ & M. Schmidt.



Adaboost t = argmax
t′=1,...,T

∣∣∇f(w(t−1))
∣∣
t′

LogitBoost t = argmin
t′=1,...,T

(∇f(w(t−1)))t′ +
1
2(∇2f(w(t−1)))t′,t′

Gradient Boosting t = argmin
t′=1,...,T

(∇freg(w(t−1)))t′

where freg(w) = f(w) + 1
2

N∑
i=1

T∑
t=1
wt(h

(t)(xi))
2

Table 1: Explicit update rules of boosting schemes, which inspire our coordinate selection rules when in-
creasing block sizes. Proofs are given in Appendix A.

minimize
w∈RT , h(t)∈H

1

N

N∑
i=1

L(yih̄(xi)) subject to h̄(x) =
T∑
t=1

wth
(t)(x)

where {xi ∈ Rd, yi ∈ {±1}}Ni=1 are the training data and labels, and L : R → R is some convex smooth
loss function acting over the sample margin (binary label × soft prediction). Here, H is a class of weak
learners (e.g. linear combinations of decision stumps [12], neural networks [28], or other types of base
functions [4, 27].

Boosting algorithms for classification form the classifier h̄ ∈ span(H) sequentially, where at iteration
t, we first train h(t) to minimize the weighted misclassification error, and then update wt optimally. In
Adaboost, the data weight is exactly the negative gradient of the margin loss for that sample, e.g.

fi(w
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wt′h
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(Adaboost, which usually minimizes the exponential loss, hasL(θ) = exp(−θ) = −L′(θ), so this weighting
corresponds to multiplicitively punishing each data sample for its current loss.) Therefore,

h(t) = argmin
h∈H

d
(t)
i 1h(xi)6=yi ⇒ t = argmin

t=1,...,T

∂
∂wτ

f(w(t)) h(t) ∈ H for all t, past or future

⇒ t = argmax
t=1,...,T

∣∣∣∣ ∂

∂wτ
f(w(t))

∣∣∣∣︸ ︷︷ ︸
Gauss Southwell selection rule

ifH is closed under sign.

Similar connections have been observed for LogitBoost and Gradient boosting machines. (See also [3, 25].)
We list a full summary in Table 1 and refer to Appendix A for derivations.
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3. Improvements
Block size Block coordinate updates can often offer speedup over their coordinate counterparts. However,
in boosting, increasing to K > 1 introduces several complications. First, the update of the weak learner
weight may not be closed form, as it is in LogitBoost and Adaboost. Second, without retraining weak
learners, there is no guarantee that the new coordinates selected represent the largest gradient magnitude
value in the past and future, as we only have access to the weak learners of the past.

However, in the regime where training weak learners accounts for the bulk of the computational burden,
taking several gradient steps in order to fine tune past weights may be worth it, especially since aggregating
fewer weak learners provides both storage and generalization advantages. MultiBoost [16] employs fast
coordinate descent with a mix of sequential (cyclic) and stochastic (random) coordinate selection rules. In
the extreme case of LPBoost [7] and TotalBoost [29], all past weights are perfectly fitted in each step in a
fully corrective way.

3.1. Coordinate selection rule
It has been previously shown [23] that the coordinate selection rule can also affect convergence rates. In-
spired by the connection of LogitBoost and Adaboost to coordinate-wise Taylor approximations of the loss
function, we explore these modified selection rules as well.

1. Largest gradient magnitude (GMAX). Equivalent to the Gauss-Southwell update rule.

2. Smallest gradient value (GMIN). In practice, if H is not closed under sign, then Adaboost is not
exactly equivalent to the Gauss-Southwell update. We explicitly force this rule to evaluate any perfor-
mance differences with the previous scheme.

3. Smallest second-order Taylor approximation (GHMIN). This scheme is inspired by LogitBoost
and picks the coordinate that minimizes the coordinate-wise Taylor expansion; we extend this to
general loss functions.

4. Random selection. Uniform selection over weights wτ for τ = 1, ..., t− 1.

3.2. Accelerating coordinate descent
Several works present fast boosting methods developed based on accelerated optimization schemes. Con-
jugate gradient boosting (CGBoost) [15] accelerates GBM by performing conjugate gradient descent in the
function space. The works of Mukherjee et al. [21], Biau et al. [1], and Lu et al. [18] incorporate Nesterov’s
acceleration techniques into the design of boosting algorithms. A convergence rate has been proved for
accelerated gradient boosting by [18]. We explore both the impact of Nesterov [22] and Polyak acceleration
[24], as they are most straightforward to implement on general boosting schemes.

4. Experiments
In all experiments, we use decision stumps as weak learners, and use 10 gradient steps at each iteration, with
a Armijo-Wolfe line search to determine the steplength. We use the abbreviations for each update rule given
in the previous section, appended by the block size, e.g. 5-ghmin means that, aside from updating the latest
weight, we update 5 additional weights according to the GHMIN selection rule.

Figs. 1 and 2 compare the different acceleration schemes on random data, and Fig. 3 on several real
datasets. For classification, overall, we found these techniques most effective when using the exponential
loss function; when logistic loss is used, both the training and testing error simply converge better for all
methods, almost equally, suggesting that there is something sub-optimal about the exponential loss function
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Figure 1: Classification on random data. Boosting via exponential (top) and logistic (bottom) loss.

Figure 2: Acceleration and regularization. Boosting on random data via LAD loss (regression). Except
for vanilla and total, all run with 5-GMAX selection rule. For l2 loss under Nesterov acceleration,
numerical errors caused the method to terminate early.

itself. More consistent improvements are observed in regression problems; however, the accelerated conver-
gence in training error is not always carried out to the test error and improvements in optimization do not
always translate to improvements in generalization.

Fig. 4 compares the average runtime of boosting over 100 iterations across 10 random data trials. It
is hard to compete against the vanilla algorithm, suggesting that this method is more advantageous when
more computationally burdensome weak learners are used. Additionally, while we don’t see much variance
across different update rules, different loss functions have variable runtimes as bad conditioning causes the
line search to slow down.

5. Future work
We believe that finding a scheme that improves performance in test error as much as train error is essential
for practical usage. Additionally, we would like to extend our results to weak learners similar to those
used in XGBoost [6] and LightGBM [14] to improve the performance of state-of-the-art boosting methods.
Finally, we would like to give improved convergence rates under these acceleration schemes.
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Figure 3: Classification on real data. Boosting via exponential (top) and logistic (bottom) loss.

Figure 4: Runtime comparison. Total runtime after 100 iterations, comparing different methods. In the
first four experiments, there are 100 samples and 50 features. In Exp (F), the number of features
is doubled, and in Exp (S), the number of data samples is doubled.
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