Non-Negative Matrix Factorization

Meets Time-Inhomogeneous Markov Chains

Ievgen Redko Marc Sebban Amaury Habrard
Université de Lyon, LUM-Saint-Etienne, CNRS, Institut d’Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023, Saint-Etienne, France

Non-negative matrix factorization 101

A standard NMF [3] is represented as the following optimization problem:

\[\min_{W,H} F(W,H) = \|X - WH\|^2 \]

Commonly optimized using multiplicative update rules (MURs):

\[W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]

\[\text{or} \quad W^{(t+1)} = \frac{XH^T}{\text{vec}(XH^TW^TWX)} \]

\[H^{(t+1)} = \frac{X^TW}{\text{vec}(X^THW^TWX)} \]