In distributed optimization the objective function is given by,
\[
\min_{x \in \mathcal{X}} \sum_{i=1}^{N} f_i(x),
\]
with \(\mathcal{X} \subset \mathbb{R}^d \) a closed convex constraint set and \(f_i \) a convex function and \(N \) is the total number of nodes in the system. Each node \(i \) has access to its local objective function \(f_i \). The communication structure is defined through the underlying communication graph \(G := (V,E) \), where \(V \) and \(E \) are the vertices and edges, resp. The matrix \(A \) represents the communication graph and is assumed to be doubly stochastic.

Optimizing the objective amounts to finding a solution such that:
1. Consensus holds: \(\bar{x} = \bar{\bar{x}} \)
2. Optimality holds: \(\sum_{i=1}^{N} \nabla f_i(\bar{x}) = 0 \).

Can we find an algorithm such that both of these objectives are achieved?

The setting

A standard interacting stochastic mirror descent (ISMD) algorithm for estimating the minimizer is,
\[
\begin{align*}
\dot{x}_t &= -\eta \nabla \Phi^*(x_t) - \sigma dB_t, \\
\dot{v}_t &= \nabla \Phi^*(x_t)
\end{align*}
\]
where
\[
\nabla \Phi_i(x_t) := \nabla f_i \circ \nabla \Phi^*(x_t) \quad B_t := (B^1_t, \ldots, B^N_t)^T \quad \nabla \Phi(x_t) = (\nabla \Phi_1(x_t)^T, \ldots, \nabla \Phi_N(x_t)^T)^T
\]
Will this algorithm converge to consensus and optimality?

Algorithm 1.

Under the assumptions of smoothness and convexity of \(f_i \) it holds,
\[
\frac{1}{T} \int_0^T \mathbb{E} \left[(f(x_t) - f(x^*)) \right] dt \leq C_1 + C_2 \sigma^2 + C_3 \frac{\sigma^2}{\eta} + C_4 \frac{\sigma^2}{\eta N} + C_5 \frac{\sigma}{\sqrt{T}},
\]
so that:
1. Imposing a small learning rate slows down convergence but allows to converge closer to the optimum if the noise is small or number of particles is big.
2. Imposing a high interaction strength allows to converge closer to the optimum.

Exact convergence is this not achieved due to:
• An additional term arising from the noise,
• An additional term arising from the gradients. This term can only be mitigated by imposing a small learning rate, but this slows down convergence!

How can we mitigate this?

The exact algorithm converges a lot closer and faster to the optimum. Using a small learning rate or high interaction can help converge closer too.

Algorithm 2.

We propose an exact algorithm:
\[
\begin{align*}
\dot{x}_t &= -\eta \nabla \Phi^*(x_t) - \nabla f_i(x_t) dB_t + \sigma dB_t, \\
\dot{v}_t &= \nabla \Phi^*(x_t)
\end{align*}
\]
and note that \(\nabla^2 f_i(x_t) dx_t = d [\nabla f_i(x_t)], \) which when discretized yields the update \(\nabla f(x_{t+1}) = \nabla f(x_t). \)
So what is special here?
• This algorithm incorporates a form of history information.
• Before, the algorithm would be unstable if 1 and 2. was satisfied. Now it is stable.

Example 1. A linear system

The exact algorithm converges a lot closer and faster to the optimum. Using a small learning rate or high interaction can help converge closer too.

Example 1. A federated learning model.

Theoretically all should work in convex case. But what about the non-convex case where the model is a neural network? We see the exact algorithm performs good too.