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Abstract

We present a novel minibatch stochastic optimization method for empirical risk minimization
problems. The method efficiently leverages variance reduced first-order and sub-sampled
higher-order information to accelerate the convergence. We prove improved iteration
complexity over state-of-the-art methods under suitable conditions.

1 Introduction

We consider the following optimization problem of finite-sums:

min
w
f(w) :=

1

n

n∑
i=1

fi(w), (1)

which arises in many machine learning problems. In the context of regularized loss minimization of linear
predictors, we have fi(w) = `(w>xi; bi) + λ

2 ‖w‖
2. Let x1, x2, ..., xn ∈ Rd be feature vectors of n data

samples, and b1, ..., bn ∈ R or {−1, 1} be the corresponding target variables of interest. We note that (1) covers
many popular models used in machine learning: for example when `(w>xi; bi) = log(1 + exp(−bi〈w, xi〉))
we obtain `2 regularized logistic regression. The ubiquitousness of such finite-sum optimization problems and
the massive scale of modern datasets motivate significant research effort on efficient optimization algorithms
to solve (1). Throughout the paper, we assume each component function is L-smooth and λ-strongly convex.

In recent years there have been significant advances in developing fast optimization algorithms for (1), and we
refer the readers to bottou2016optimization for a comprehensive survey of these developments. For large-scale
problems in the form of (1), randomized methods are particularly efficient because of their low per iteration
computation. Below we briefly review two lines of research: i) randomized variance reduced first-order
methods; ii) randomized methods leveraging second-order information.

Variance Reduced First-order Methods The key technique for developing fast stochastic first-order
methods is variance reduction, which makes the variance of the randomized update direction approching
zero when the iterate gets closer to the optimum. Representative methods of this category include
SAG roux2012stochastic, SVRG johnson2013accelerating, SDCA shalev2013stochastic and SAGA de-
fazio2014saga, etc. In order to find a solution that reaches ε-suboptimality, these methods requires
O
((
n+ L

λ

)
log
(

1
ε

))
calls to the first-order oracle to compute the gradient of an individual function. In

the large condition number regime (e.g. L
λ > n), by using an acceleration technique (such as Cat-

alyst shalev2016accelerated,frostig2015regularizing,lin2015universal, APCG lin2015accelerated, SPDC
zhang2015stochastic, Katyusha allen2016katyusha, etc), one can further improve the iteration complexity to

O
((
n+

√
n · Lλ

)
log
(

1
ε

))
.

Leveraging Second-order Information Second-order information is often useful in improving the con-
vergence of optimization algorithms. However for large-scale problems, obtaining and inverting the exact
Hessian matrix is often computational expensive, making vanilla Newton methods not well suited in solv-
ing (1). Therefore, there have been emerging studies in designing randomized algorithms that effectively
utilize the approximated Hessian information. One line of such research is the sub-sampled Newton method
which approximates the Hessian matrix based on a sub-sampled minibatch of data. Several work, such
as byrd2011use,am2015sub,roosta2016sub,roosta2016sub2,bollapragada2016exact, established local linear

OPTML 2017: 10th NIPS Workshop on Optimization for Machine Learning (NIPS 2017).



Algorithm 1 MB-SVRP: Minibatch Stochastic Variance Reduced Proximal Iterations.

Parameters η, b, λ̃, ν, ε.
Initialize w̃0 = 0.
Sampling Sampling b items from [n] to form a minibatch B̄.
for s = 1, 2, . . . do

Calculate ṽ = 1
n

∑n
i=1∇fi(w̃s−1).

Initialize y0 = w0 = w̃s.
for t = 1, 2, . . . ,m do

Sampling b items from [n] to form a minibatch Bt.
Find wt that approximately solve (2) such that f̃t(wt)−minw f̃t(w) ≤ ε.

f̃t(w) :=
1

2
(w − wt−1)

>

1

b

∑
i∈B̄

∇2fi(wt−1)

 (w − wt−1)

+

〈
η

b

∑
i∈Bt

∇fi(yt−1) + ηṽ − η

b

∑
i∈Bt

∇fi(w̃s−1), w

〉
+
λ̃

2
‖w − yt−1‖2 . (2)

Update:
yt = wt + ν(wt − wt−1).

end for
Update w̃s = wm.

end for
Return w̃s

convergence rates for different variants of sub-sampled Newton methods, when the size of the sub-sampled
data is large enough. All of the aforementioned methods employ the full first-order gradient, and require
calling the second-order oracle to compute the Hessian and solving a resulting linear system at every iteration.
Therefore the computational complexity (as compared in Table 2 of xu2016sub) are often worse than stochastic
algorithms such as SVRG. Another line of research is to consider randomness in both first and second-order
information to design lower per-iteration cost algorithms. In particular, byrd2016stochastic considered com-
bining minibatch SGD with Limited-memory BFGS (L-BFGS) liu1989limited type update. Inspired by
this, moritz2016linearly,gower2016stochastic,wang2017stochastic proposed to combine variance reduced
stochastic gradient with L-BFGS, and proved linear convergence for strongly convex and smooth objectives.
However, theoretically it is hard to guarantee the quality of approximated Hessian using L-BFGS update, and
thus the iteration complexity obtained by moritz2016linearly,gower2016stochastic,wang2017stochastic can be
pessimistic, and can be much worse than vanilla SVRG.

In this paper, we make effort in this direction and make the following contributions: i) we propose a novel
approach that combines the advantages of variance-reduced first-order methods and sub-sampled Newton
methods, in a efficient way that does not require expensive Hessian matrix computation and inversion. The
method can be naturally extended to solve composite optimization problems with non-smooth regularization;
ii) we theoretically show under certain conditions the proposed approach can improve state-of-the-art iteration
complexity, and empirically demonstrate it can substantially improve the convergence of existing methods.

2 Minibatch Stochastic Variance Reduced Proximal Iterations

In this section we present the proposed approach for minimizing (1). The high-level description is given
in Algorithm 1, which consists of two main innovations: i) simultaneous incorporation of first-order and
higher-order information via sub-sampling; ii) allowing larger minibatch sizes through acceleration with
inexact minimization. We explain these features below.
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Sampling both First-order and Higher-order Information

We first discuss the main building block of the algorithm. Suppose at iteration t, given the previous iterate
wt−1, we consider the following update rule:

wt ≈ arg min
w

1

2
(w − wt−1)

>

1

b

∑
i∈B̄

∇2fi(wt−1)

 (w − wt−1) +
λ̃

2
‖w − wt−1‖2

+

〈
η

b

∑
i∈Bt

∇fi(wt−1) + η∇f(w̃)− η

b

∑
i∈Bt

∇fi(w̃), w

〉
(3)

=wt−1 − η

1

b

∑
i∈B̄

∇2fi(wt−1) + λ̃I

−1(
1

b

∑
i∈Bt

∇fi(wt−1) +∇f(w̃)− 1

b

∑
i∈Bt

∇fi(w̃)

)
, (4)

where B̄, Bt are some randomly sampled minibatch from 1, ..., n, both with minibatch size b; η and λ̃ are
stepsize parameters, and w̃ is a “reference” predictor used for reducing variance. The main feature of updating
rule (3) is it considered both noisy first-order and higher-order information via minibatch sampling. The term
1
b

∑
i∈B̄ fi(w)−

〈
1
b

∑
i∈B̄ ∇fi(wt−1), w

〉
in (3) incorporates noisy higher-order information of the objective

function. It which can be treated as a variant of sub-sampled Newton method, combined with the minibatch
stochastic gradient with variance reduction. And the update rule (3) can be treated as a preconditioned

minibatch SVRG update rule, with
(

1
b

∑
i∈B̄ ∇2fi(wt−1) + λ̃I

)−1

as a precondition matrix.

Large Minibatch Size via Acceleration with Inexact Minimization

Using (3) as the building block, we propose the MB-SVRP (minibatch stochastic variance reduced proximal
iterations) method, which is detailed in Algorithm 1. At the beginning of the algorithm, we form a minibatch
B̄ by sampling from 1, ..., n and fix it for the whole optimization process. Then following the SVRG method
johnson2013accelerating, the algorithm is divided to multiple stages, indexed by s. At each stage, we iteratively
solve a minimization problem of the form (2) based on the randomly sampled minibatch Bt.

Compared with the simple update rule in (3), the major difference in Algorithm 1 is that we consider a
momentum scheme by maintaining two sequences {wt, yt}, which is inspired by Nesterov’s acceleration
technique nesterov2003introductory and its recent SVRG variant nitanda2014stochastic. The main theoretical
advantage over minibatch SVRG without momentum konevcny2016mini is that such an acceleration allows us
to use a much larger minibatch size (up to a size of O(

√
n)) without slowing down the convergence.

Since it is often expensive to find the exact minimizer of (2), we consider an approximate minimizer with
objective suboptimality ε. When we choose the appropriate λ̃ for f̃t(w) to obtain enough strong convexity, the
subproblems can be efficiently solved to high accuracy efficiently. For example, using SVRG-type algorithms
johnson2013accelerating to solve (2) allows us to find an approximate solution with a small suboptimality ε
with a constant number of passes over the data in the minibatch B̄ ∪Bt, if λ̃ is set appropriately.

3 Theoretical Results

Besides the strong convexity and smoothness, we also need the following Hessian Lipschitz condition, and the
notion of effective dimension and statistical leverage.

Condition 1. For each component function fi(w),∀i ∈ [n], its Hessian matrix is M -Lipschitz, i.e.∥∥∇2fi(w)−∇2fi(w
′)
∥∥ ≤M ‖w − w′‖ , ∀w,w′ ∈ Rd,∀i ∈ [n].

Definition 1. (Effective dimension) Let the λ1, ..., λd be the top-d eigenvalues of
H0(w∗) = (1/n)

∑n
i=1 `

′′
(w∗>xi; bi)xix

>
i , define the effective dimension dλ̃ (for some λ̃ ≥ 0) of H0(w∗)

being dλ̃ =
∑d
j=1

λj

λj+λ̃
.
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Table 1: Comparison of iteration complexity of various finite-sum quadratic optimization algorithms when
effective dimension and statistical leverage are bounded, where we compare the different relative scale of
condition number κ = L/λ and sample size n, ignoring logarithmic factors.

κ ≤ n κ = n4/3 κ = n3/2 κ = n2 κ = n3

SVRG n n4/3 n3/2 n2 n3

MB-SVRP n ρ2
λ̃
dλ̃ · n ρ2

λ̃
dλ̃ · n ρ2

λ̃
dλ̃ · n

3/2 ρ2
λ̃
dλ̃ · n

5/2

Acc-SVRG n n7/6 n5/4 n3/2 n2

Acc-MB-SVRP n
(
ρ2
λ̃
dλ̃

)1/2

· n
(
ρ2
λ̃
dλ̃

)1/2

· n
(
ρ2
λ̃
dλ̃

)1/2

· n5/4
(
ρ2
λ̃
dλ̃

)1/2

· n7/4

Definition 2. (Statistical leverage at λ̃) Let Hλ̃(w∗) = 1
n

∑n
i=1 `

′′
(w∗>xi; bi)xix

>
i +

λ̃I , we say the statistical leverage of data matrix X is bounded by ρλ̃ at λ̃ if

maxi∈[n]

∥∥∥∥Hλ̃−1/2(w∗)`
′′

(w∗>xi;bi)
1/2

xi

∥∥∥∥√
(1/n)

∑n
j=1

∥∥∥Hλ̃−1/2(w∗)`′′ (w∗>xj ;bj)
1/2

xj

∥∥∥2 ≤ ρλ̃.
Theorem 3. Consider Algorithm 1 on problems with L-smooth and λ-strongly convex functions that satisfied
Condition 1 with Hessian Lipschitz parameter M . Suppose we sample minibatch B̄ uniformly from 1, ..., n,
and set the tuning parameters as

λ̃ = max

{
λ,
L

b

}
, b � min

{
n, ρ2

λ̃
dλ̃

(
L

λ

)1/3
}
, η � min

{
b3λ

(ρ2
λ̃
dλ̃)2L

,
1

ρ2
λ̃
dλ̃

}
,

and suppose we start from the initialization point that is sufficiently close to the optimum: ‖w0 − w∗‖ ≤ R =

O
(

λ4

L2M

)
. Given ε > 0, and let ε ≤ 1

105 ·
(
λ
L

)7
ε. Then for the MP-SVRP algorithm to find the approximate

solution w̃s of (1) that reaches the expected ε-objective suboptimality Ef(w̃s)−minw f(w) ≤ ε, the total
number of oracle calls to solve (2) is no more than

O

(
max

{(
L

λ

)1/3

,
ρ2
λ̃
dλ̃L

λn2

}
· log

(
1

ε

))
.

Note that in Algorithm 1, we can use SVRG to solve each subproblem in (2). This leads to the following result.
Corollary 4. Assume that the conditions of Theorem 3 hold. Moreover, if we use SVRG to solve each
subproblem in (2) up to the suboptimality ε, then the total number of gradient evaluations used in the whole
MP-SVRP algorithm can be upper bounded by

O

(
max

{
ρ2
λ̃
dλ̃

(
L

λ

)2/3

,
ρ2
λ̃
dλ̃L

λn

}
· log

(
L

λ

)
· log2

(
1

ε

)
+ n · log

(
1

ε

))
.

Acceleration Corollary 4 stated that if the condition number is not too large: L
λ ≤ n5/4, then MB-SVRP

only requires logarithmic passes over data to find a solution with high accuracy. When the condition num-
ber is large, MP-SVRP can still be slow. By using the accelerated proximal point framework proposed
in shalev2016accelerated, frostig2015regularizing,lin2015universal, it is possible to obtain an accelerated
convergence rate which has milder dependence on condition number, Table 1 summarized the main results.
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