
Black Box Optimization via a Bayesian-Optimized Genetic
Algorithm

John Karro karro@google.com
Greg Kochanski gpk@google.com
Daniel Golovin dgg@google.com
Google Research, Pittsburgh, PA 15206

Abstract

We present a simple and robust optimization algorithm, related to genetic algorithms and
with analogies to the popular CMA–ES search algorithm, that serves as a cheap alternative
to Bayesian Optimization. The algorithm is robust against both monotonic transforms of the
objective function value and affine transformations of the feasible region. It is fast and easy
to implement, and has performance comparable to CMA–ES on a suite of benchmarks while
spending less CPU in the optimization algorithm, and can exhibit better overall performance
than Bayesian Optimization when the objective function is cheap.

1 Introduction

The goal of black box optimization is to locate the optimum (throughout this paper, the minimum) of an
objective function f(x) with as little total computation as possible. When evaluations of f(x) are expensive,
Bayesian optimization (BO) is typically preferred because it gives good accuracy with few evaluations (c.f.,
[16, 12, 18, 6, 1]). However the cost of each new suggestion increases as O(N2) or O(N3) in the number of
trials, and eventually dominates the cost of calculating f(x).

When evaluations of f(x) are cheap relative to the BO suggestion cost (e.g., when N is sufficiently large), it
can be more effective to employ a faster suggestion method, even though it may make smaller improvements
per evaluation of f(x). One option is to use Bayesian neural networks to model f(x) within BO (e.g., Snoek
et al. [13]), however that approach seems to require problem-specific tuning [15] and is thus not ideal for black
box optimization. Another set of algorithms use search strategies such as the popular CMA–ES [3, 7, 4],
which maintains a estimate of where unusually small values of f(x) are likely to be found, expressed as a
multivariate normal distribution. At each step, it generates λ samples from that distribution, and finds the best
K ≤ λ samples, which are then used to update the parameters of the distribution.

Here we describe the Linear Combination Swarm approach that the Vizier black-box optimization tool [2],
uses when N ≥ 1000. It is a variant of a Contractive Mapping Genetic Algorithm ([9], [11] and references
therein), with analogies to CMA–ES and Estimation of distribution algorithms [8], though the probability
distribution is maintained implicitly.

This Linear Combination Swarm algorithm relaxes CMA–ES’s implicit assumption of a multivariate normal
distribution [3], while preserving its robustness against affine transformations of x, and its dependence only
on the ranking of f(x). The former matters because it makes the algorithm less sensitive to the condition
number of the optimization problem; the latter matters because it makes the algorithm less sensitive to the
nonlinearities of the objective function.

2 Algorithm Design and Properties

The algorithm maintains the set S of the Kbest best trials seen so far, as well as the entire history of trials. At
each iteration, it randomly selects among three different sampling strategies — uniform random search, ball
sampling, and linear combination sampling.

Uniform random sampling is non-adaptive and thus robust to pathological objective functions. Ball sampling
randomly picks uniformly from the surface of a sphere centered on the best point of S whose radius is chosen

OPTML 2017: 10th NIPS Workshop on Optimization for Machine Learning (NIPS 2017).

from an power law 1/r distribution (e.g., [10]).1. Linear combination sampling takes two random points
{xa, xb} from the entire history (with heavier weight given to the Kbest best points), and samples a linear
combination of them, with weight α drawn from a normal distribution.2

We motivate these sampling strategies by considering sufficient conditions for rapid convergence to the global
optimum under some weak assumptions. Let St denote the value of S at the end of the tth iteration of the main
loop in Algorithm 1. Let L−(S) denote the feasible points where f(x) ≤ maxx∈S f(x), and let µ (S) denote
the volume of L−(S). Then a sufficient condition for convergence to an ε-approximate global optimum (i.e., a
point with optimality gap f(x)−minx′ {f(x′)} ≤ ε) is that for all t there exists δ, η > 0 such that either St

already contains such an approximate global optimum, or else:

Pr[µ (St+1) ≤ (1− η)µ (St)] ≥ δ. (1)

If this condition holds, we may apply Azuma’s inequality to the potential function Φ(t) = log(µ (St)) to
derive high probability bounds on the shrinkage of µ (St), until it reaches the volume of the sublevel set of an
ε-approximate global optimum.

Under what conditions will the above convergence criteria hold? Suppose the level sets Lv := {x : f(x) = v}
have zero volume for all v.3 If f(x) is Lipschitz continuous, the union of the regions of attraction around the
global optima cannot have arbitrarily small volume. Random sampling guarantees that we will eventually
select a trial within that region of attraction. If L−(St) contains a convex region around the best point in
St with moderate condition number, then ball–sampling with sufficiently small radius is likely to shrink
t 7→ L−(St).

If the condition number is very large, linear combination sampling allows the algorithm to meet the convergence
condition if the expected overlap between L−(S) and lines constructed between pairs of points chosen from S
is a positive constant and the sampling distribution for α in Algorithm 1 is chosen appropriately. Note the
convergence condition can be almost guaranteed for the linear combination branch alone if |S′| is large and
diverse enough that {x− x′ : x, x′ ∈ S′} spans the feasible space, and σ is chosen to be large enough so that
the linear combination branch is an expansive mapping.

It is also worth noting that the linear combination sampling part of the algorithm behaves well if a low-
dimensional objective function is lifted into a high-dimensional space, a là [17]; the irrelevant dimensions are
ignored and the algorithm converges as if it was operating in the low-dimensional space of important features.

2.1 Additional Properties of the Algorithm

The algorithm is asymptotically robust to affine transformations of the x-coordinates since the linear com-
bination branch is unaffected by affine transformations, and since it operates a fraction pl > 0 of the time.
Therefore, one would expect that an optimization with a high condition number would proceed about pl times
as fast as a low-condition number problem (plus any progress made by the ball sampler). Therefore, this
algorithm should not slow down dramatically when L−(S) is approximately ellipsoidal, even if the condition
number is large.

By construction, the algorithm only depends on greater/less than comparisons on f(x). Therefore, it only
depends on the ranks of f , and is robust against any monotonic transform of the range of f(x).

3 Empirical Testing

3.1 Methodology

We tested our implementation on six benchmark functions from the Black-Box Optimization Benchmarking
(BBOB) competition [5] (see Supplemental Materials for details). The success of each variant of the algorithm
on a given function is defined by its optimality gap: g(f, S) = minx∈S(f(x))−minx(f(x)), the difference
between the best score found by the algorithm and the ideal score. We plot the best optimality gap seen so far
relative to the average of random search runs with the same number of trials. Formally, let At be the first t

1 Note that the 1/r distribution implies that the ball sampler can pick anywhere in the feasible region, therefore it is
technically a global search method in the sense of the “convergence theorem” in [14] and will thus eventually find the
global optimum, although that route to convergence may take a long time.

2 Note the sample may lie outside the line segment joining xa and xb if α /∈ [0, 1].
3 This condition can be removed by adding an arbitrary but consistent tie-breaking rule to the comparator on objective

values when deciding whether to update S.

2

Algorithm 1 Linear Combination Swarm Algorithm
1: pb, pl, µ, σ, βbest, βh are hyperparameters; d is the dimension of x.
2: H ← ∅, S ← ∅ . H is the set of all selected trials, S is the best Kbest = bβbestdc trials.
3: for t = 0, 1, 2, . . . ,∞ do
4: if rand() < pl and |H| ≥ 2 then . Genetic Crossover / Linear Combination Sampling
5: S′ ← S ∪ {random sample of bβhdc trials from H}.
6: {xa, xb} ← Uniform random sample from S′ where f(xa) ≤ f(xb).
7: α← N (µ, σ).
8: c← αxa + (1− α)xb
9: else if rand() < pb/(1− pl) and |H| ≥ 1 then . Genetic Mutation / Ball sampling.

10: r ← Sample random radius R with Pr[R = r] ∝ 1/r.
11: c← Sample uniformly from a sphere centered at arg minS f(x) with random radius r.
12: else . Uniform sampling.
13: c← Choose a point uniformly over the feasible space X .
14: end if
15: if c is infeasible then continue
16: H ← H ∪ {c} . Accumulate history.
17: if f(c) < maxx∈S f(x) then
18: Insert c into S, and if |S| > Kbest then remove the worst trial from S.
19: end if
20: end for

trials selected by the algorithm, and let U (r)
t be a set of t trials selected uniformly at random, independently

for each run r. We plot

ĝ(f, t) =
g(f,At)

Mean
({
g(f, U

(r)
t) : runs r

}) ,
versus t, so ĝ < 1 implies better performance than an average random search.

Figure 1 shows results for three benchmarks functions and a point-wise geometric mean of the six most
difficult benchmarks. The x-axis represents the trial number, where the trial t is the tth point suggested by the
algorithm. (That is, the best point seen after sampling t points.) For the first three columns of the figure, the
y-axis represents the normalized optimality gap, averaged over 100 runs of the algorithm.4 The last column
represent the aggregation of all six benchmarks, calculated by taking the geometric mean at each trial number.

Note the trial values returned by any algorithm are monotonically non-increasing with the number of trials (as
it always returns the best seen so far). However, we sometimes see positive slopes in these plots because the
value is normalized by Random Search– any time random sampling improves more than the algorithm, the
normalized value will increase.

Each algorithm has a number of adjustable parameters, which we optimized using the Vizier hyperparameter
optimization tool employing BO methods to guide the search. Specifically, for each algorithm we attempted to
optimize the objective function

F (h) = GeometricMean

({
Mean ({g(fk, Ar,k,t(h)) : runs r}) : benchmarks k, budgets t

})
,

where Ar,k,t(h) is the set of the first t trials selected by the algorithm during run r of the optimization with
hyperparameters h on benchmark function fk (k = 1 . . . 9)5. Here, the budgets t range over

{
1, 2, . . . , 105

}
except for Gaussian Process Bandits, where they range over

{
1, 2, . . . , 103

}
.

3.2 Results

In Figure 1 we plot the normalized optimality gap (w.r.t. a random search) for our algorithmic variants for
three representative benchmarks, and then the aggregate result over the six nontrivial benchmarks (Beale,
Branin, Rastrigin, Rosenbrock, Styblinki, SixHumpCamel), showing these in both 4 and 16 dimensions. Each

4 The runs differ in random seeds and x− and y− shifts of the benchmark function.
5 Note that because of the average over t, in the common case where the optimality gap does not make it all the way to

zero, F (h) rewards the h that become small early, rather than late.

3

1 0 2 1 0 3 1 0 4 1 0 50.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
d
u
ct

io
n
 i
n
 o

p
ti

m
za

lit
y

g
a
p
 r

e
la

ti
v
e
 t

o
R

a
n
d
o
m

 S
e
ra

ch

Beale (dim=4)

1 0 2 1 0 3 1 0 4 1 0 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rastrigin (dim=4)

1 0 2 1 0 3 1 0 4 1 0 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rosenbrock (dim=4)

1 0 2 1 0 3 1 0 4 1 0 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Aggregate (dim=4)

BSRS+LCS BS+LCS LCS RS+BS+LCS CMA-ES Gaussian Process

102 103 104 105

Trial Number (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
d
u
ct

io
n
 i
n
 o

p
ti

m
za

lit
y

g
a
p
 r

e
la

ti
v
e
 t

o
R

a
n
d
o
m

 S
e
ra

ch

Beale (dim=16)

BS

RS+LCS

BS+LCS

LCS

RS+BS+LCS

CMA-ES

Gaussian Process

102 103 104 105

Trial Number (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rastrigin (dim=16)

102 103 104 105

Trial Number (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rosenbrock (dim=16)

102 103 104 105

Trial Number (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Aggregate (dim=16)

BSRS+LCS BS+LCS LCS RS+BS+LCS CMA-ES Gaussian Process

Figure 1: Results for three selected benchmarks and (right) the aggregate over six. LCS= Linear Combination
Search, BS= Ball Search, RS= Random Search. The y-axis represent the optimality gap relative to random
search; areas in which curves increase indicate that the random sampler is “catching up” on the algorithm.
Note that the GP algorithm is run to only 1000 trials due to its computational cost.

curve represents some combination of linear combination search (LCS), ball sampling search (BS), and/or
Random Search (RS), with the CMA–ES curve included for reference [3] (see the supplementary material for
more details).

The first three columns of Figure 1 represent specific benchmarks, while the fourth column represents
the aggregate over the six used benchmarks. Individual plots for all the benchmarks are included in the
supplementary materials. A quick examination of those individual benchmark results reveals that there can
be considerable variation in algorithm results (both in absolute terms and in terms of their relative ordering):
a given algorithm may do quite well in the aggregate while being terrible on certain individual benchmarks.
Success on a single function does not mean too much, and even aggregations may not accurately represent
black box optimization practice.

If we consider each algorithm in terms of both speed of convergence and final result, we find that the pure
linear combination search does consistently well in the second category, finding values as good as almost
all competitors with every benchmark, apparently robust to conditions that create pathological behavior for
other algorithms. But its rate of convergence can be slow. In contrast, for all its simplicity, the ball sampling
technique in isolation does quite well in both aggregates – but it is unreliable on some benchmarks functions.
For example we see poor performance on the Rastrigin benchmark, which has many local minima that the
algorithm presumably gets stuck in.

In these experiments, combining the techniques provides little gain over Ball Search alone. Our self-tuning
suggests that the optimal mixture heavily favors the ball search (using it 60% - 80% of the time), and we have
confirmed this with manual experiments. However, if we chose a F (h) that included more functions with
multiple local minima, we suspect that the ball sampler would not dominate to the same extent.

CMA–ES has mixed results as well, though it usually does well in the long run. We also compared against a
Gaussian Process modeling technique [2], which is based on Srinivas et al. [16]. With its cubic runtime in the
number of trials already generated, the GP-based search could not be practically run out to 100,000 trials. It
converges rapidly, reaching in 1000 trials values close to those reach by the simpler algorithms in 100,000
trials. However, running those 1000 trials is considerably more time consuming. (Running our full set of
experiments on the six simple algorithms and six benchmarks, to 100,000 trials in 16 dimensions, required
approximately 24 hours; running the GP experiment to 1000 trials takes approximately a week.)

References
[1] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In

Advances in Neural Information Processing Systems, pages 2546–2554, 2011.

[2] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley. Google vizier: A service
for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, pages 1487–1495, New York, NY, USA, 2017.
ACM. ISBN 978-1-4503-4887-4. doi: 10.1145/3097983.3098043. URL http://doi.acm.org/
10.1145/3097983.3098043.

4

http://doi.acm.org/10.1145/3097983.3098043
http://doi.acm.org/10.1145/3097983.3098043

[3] N. Hansen. The CMA evolution strategy: A tutorial. CoRR, abs/1604.00772, 2016. URL http:
//arxiv.org/abs/1604.00772.

[4] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolu-
tionary computation, 9(2):159–195, 2001.

[5] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-Parameter Black-Box Optimization Benchmarking
2009: Noiseless Functions Definitions. Research Report RR-6829, INRIA, 2009.

[6] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In International Conference on Learning and Intelligent Optimization, pages 507–523.
Springer, 2011.

[7] C. Igel, T. Suttorp, and N. Hansen. A computational efficent covariance matrix update and a (1+1)-cma
for evolution strategies. In GECCO’06, July 8–12 2006, Seattle, Washington, USA, pages 453–460, 2006.

[8] P. Larranaga. A review on Estimation of Distribution Algorithms. In Estimation of distribution algorithms,
pages 57–100. Springer, 2002.

[9] Z. Michaelwicz. Genetic algorithms + data structures = evolution programs. Springer-Verlag, Berlin,
1996. ISBN 3-540-60676-9. Third edition. QZ78.618.M53 1996.

[10] I. Pavlyukevich. Lévy flights, non-local search and simulated annealing. Journal of Com-
putational Physics, 226(2):1830 – 1844, 2007. ISSN 0021-9991. doi: https://doi.org/10.
1016/j.jcp.2007.06.008. URL http://www.sciencedirect.com/science/article/pii/
S002199910700263X.

[11] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: a review of algorithms and comparison of
software implementations. Journal of Global Optimization, 56(3):1247–1293, 2013.

[12] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning algorithms.
In Advances in neural information processing systems, pages 2951–2959, 2012.

[13] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A. Patwary, Prabhat, and
R. P. Adams. Scalable bayesian optimization using deep neural networks. In Proceedings of the 32nd
International Conference on Machine Learning, pages 2171–2180, 2015.

[14] F. J. Solis and R. J.-B. Wets. Minimization by random search techniques. Mathematics of Operations
Research, 6(1):19–30, 1981. doi: 10.1287/moor.6.1.19. URL https://doi.org/10.1287/moor.
6.1.19.

[15] J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with ro-
bust bayesian neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
4134–4142. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6117-bayesian-optimization-with-robust-bayesian-neural-networks.pdf.

[16] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting:
No regret and experimental design. ICML, 2010.

[17] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. de Freitas. Bayesian optimization in a billion
dimensions via random embeddings. ArXiv e-prints, Jan. 2013.

[18] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep kernel learning. In Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, pages 370–378, 2016.

5

http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772
http://www.sciencedirect.com/science/article/pii/S002199910700263X
http://www.sciencedirect.com/science/article/pii/S002199910700263X
https://doi.org/10.1287/moor.6.1.19
https://doi.org/10.1287/moor.6.1.19
http://papers.nips.cc/paper/6117-bayesian-optimization-with-robust-bayesian-neural-networks.pdf
http://papers.nips.cc/paper/6117-bayesian-optimization-with-robust-bayesian-neural-networks.pdf

	Introduction
	Algorithm Design and Properties
	Additional Properties of the Algorithm

	Empirical Testing
	Methodology
	Results

