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Abstract

We present a simple unified analysis of adaptive Mirror Descent (MD) and Follow-
the-Regularized-Leader (FTRL) algorithms for online and stochastic optimization
in (possibly infinite-dimensional) Hilbert spaces. The analysis is modular in
the sense that it completely decouples the effect of possible assumptions on the
loss functions (such as smoothness, strong convexity, and non-convexity) and
on the optimization regularizers (such as strong convexity, non-smooth penalties
in composite-objective learning, and non-monotone step-size sequences). We
demonstrate the power of this decoupling by obtaining generalized algorithms and
improved regret bounds for the so-called “adaptive optimistic online learning” set-
ting. In addition, we simplify and extend a large body of previous work, including
several various AdaGrad formulations, composite-objective and implicit-update
algorithms. In all cases, the results follow as simple corollaries within few lines
of algebra. Finally, the decomposition enables us to obtain preliminary global
guarantees for limited classes of non-convex problems.

1 Introduction

Online and stochastic optimization algorithms are state-of-the-art techniques for optimization in
machine learning, analyzed under specific assumptions on the loss functions and the regularizers
used by the algorithm. Previous work [10, 13] have attempted to obtain a unified understanding of
these analyses. Nevertheless, a complete view that decouples the effect of these various assumptions
is missing. The present paper provides this unified view. Our analysis captures, generalizes and
considerably simplifies the scattered analysis techniques used under different assumptions, such as
smoothness or strong convexity of losses (e.g., Agarwal and Duchi [1], Dekel et al. [5], [4]; see also
Bubeck [3]), adaptive and composite-objective regularization (Duchi et al. [6, 7], McMahan and
Streeter [11]), non-monotone regularization [14], and optimistic online learning [12]. 1

The main idea is to decompose the regret into two parts: the first part only depends on the performance
of the algorithm based on the first-order information that it receives, while the second part connects
the assumptions about the losses to their first-order approximation given to the algorithm. Lemma 1
in Section 2.1 provides such a decomposition, which can be viewed as a refined version of the
so-called “be-the-leader” style of analysis. Then, in Theorem 1, we bound the linear (first) part, using
a careful analysis of the linear regret of generalized adaptive Follow-The-Regularized-Leader (FTRL)
and Mirror Descent (MD) algorithms. The analysis applies to inifinite-dimensional Hilber spaces,
and completely decouples the effect of assumptions about the problem setting, the losses, and the
algorithm, allowing us to recover, improve, and considerably extend previous results.

1Due to space constraints, we have only provided the main parts of the framework in detail. An overview of
the applications is given in Section 4, with further details provided in the extended version of the paper [9].
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We use {c
t

}j
t=i

to denote the sequence c

i

, c

i+1, . . . , cj , and c

i:j to denote the sum
P

j

t=i

c

t

, with
c

i:j := 0 for i > j. We will work with a (possibly infinite-dimensional) Hilbert space H over the
reals. We denote the extended real line by R := R [ {�1,+1}, and work with functions of the
form f : H ! R. Let f : H ! R be proper. Let x 2 dom(f), and z 2 H. The directional derivative
of f at x in the direction of z is defined as f 0(x; z) := lim

↵#0
f(x+↵z)�f(x)

↵

, provided that the limit
exists in [�1,+1]. The function f is locally sub-differentiable at x if there exists g

x

2 H such
that hg

x

, zi  f

0(x; z) for all z 2 H. The function f is called directionally differentiable if f 0(x; z)
exists in [�1,+1] for all z 2 H at every x 2 dom(f). Given a directionally differentiable f , we
define a generalized2 notion of Bregman divergence:
Definition 1 (Bregman divergence). Let f be directionally differentiable and x 2 dom(f). The
f -induced Bregman divergence from x is a function from H ! R, given by

B
f

(y, x) :=

⇢

f(y)� f(x)� f

0(x; y � x) . if y 2 dom(f) ,
+1 if y 62 dom(f) .

(1)

2 Problem setting: online optimization

We study a general first-order iterative optimization setting that encompasses several common
optimization scenarios, including online, stochastic, and full-gradient optimization. Consider a
convex set X ⇢ H, a sequence of locally sub-differentiable functions f1, f2, . . . , fT from H to R
with X ⇢ dom(f

t

) for all t = 1, 2, . . . , T , and a first-order iterative optimization algorithm. The
algorithm starts with an initial point x1. Then, in each iteration t = 1, 2, . . . , T , the algorithm suffers
a loss f

t

(x
t

) from the latest point x
t

, receives a local sub-gradient g
t

of f
t

at x
t

, and comes up with
the next point x

t+1. Unlike Online Convex Optimization (OCO), at this stage we do not assume
that f

t

are convex. Our goal is to minimize the regret R
T

(x⇤) against any x

⇤ 2 X , defined as
R

T

(x⇤) =
P

T

t=1 ft(xt

)� f

t

(x⇤) . We will also discuss the special case of stochastic optimization
setting, in which f

t

(·) = F (·, ⇠
t

) for i.i.d. ⇠
t

⇠ D. Defining f(·) := E
⇠⇠D

F (·, ⇠), our goal is to
minimize the expected stochastic regret, R̄

T

(x⇤) = E
n

P

T

t=1 f(xt

)� f(x⇤)
o

.

2.1 Regret decomposition

Below, we provide a decomposition of R
T

(x⇤), in terms of the forward linear regret of the algorithm.
Lemma 1 (regret decomposition). Let x1, x2, . . . , xT+1 be any sequence of points in X . For
t = 1, 2, . . . , T , let f

t

: H ! R be locally sub-differentiable with X ⇢ dom(f
t

), and let g
t

be a
local-subgradient of f

t

at x
t

. Let R̃+
T

(x⇤) =
P

T

t=1hgt, xt+1 � x

⇤i. Then,

R
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T

X
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In particular, if f
t

, t = 1, 2, . . . , T are differentiable, then g

t

= rf

t

(x
t

), and

R
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T
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Proof. Expand both sides and use the definition of B
ft(x

⇤
, x

t

), and the fact that �f

0(x
t

;x⇤ � x

t

) 
�hg

t

, x

⇤ � x

t

i.

3 The algorithms: ADA-FTRL and ADA-MD

The ADA-FTRL algorithm works with two sequences of regularizers, p1, p2, . . . , pT and
q0, q1, q2, . . . , qT , where each p

t

and q

t

is a function from H to R, and can be built by the al-
gorithm in an online manner using the information received up to time step t. We use p

t

to distinguish

2If f is differentiable at x, then (1) matches the traditional definition of Bregman divergence.
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the “proximal” part of ADA-FTRL’s regularization: for all t = 1, 2, . . . , T , p
t

(but not necessarily
q

t

) is minimized over X at x
t

, that is, p
t

(x
t

) = inf
x2X p

t

(x) , where x

t

is the action taken by
ADA-FTRL at time t. We define r0 := q0 and r

t

:= p

t

+ q

t

for t = 1, 2, . . . , T . Similarly, the
ADA-MD algorithm uses a sequence of regularizers r0, r1, r2, . . . , rT , each a function from H to R.
With the definitions above, the first choice x1 of ADA-FTRL and ADA-MD is given by

x1 2 argmin
x2X r0(x) . (4)

Then, at t = 1, 2, . . . , T , ADA-FTRL receives g
t

2 H and selects the next point x
t+1 such that

x

t+1 2 argmin
x2X hg1:t, xi+ r0:t(x) = argmin

x2X hg1:t, xi+ p1:t(x) + q0:t(x) , (5)

whereas ADA-MD receives g
t

2 H and selects

x

t+1 2 argmin
x2X hg

t

, xi+ B
r0:t(x, xt

) . (6)

For ADA-FTRL and ADA-MD, respectively, we only make the following assumption:
Assumption 1. In ADA-FTRL, q0 and p

t

, q

t

, t = 1, 2, . . . , T, are proper, and for all t = 1, 2, . . . , T,
the function p

t

+ r0:t�1 is directionally differentiable. In addition, for all t = 0, 1, . . . , T , X \
dom(r0:t) 6= ;, and the argmin sets that define x

t+1 in (4) and (5) are non-empty.
Assumption 2. In ADA-MD, for all t = 0, 1, . . . , T , r

t

is proper, S
t

:= dom(r0:t) is convex,
x

t

2 dom(r
t

), r0:t is directionally differentiable, and the argmin sets that define x

t+1 in (4) and (6)
are non-empty. In addition, for all t = 0, 1, . . . , T , for all y 2 S

t

, the directional derivative r

0
0:t(y; ·)

is real-valued and concave on S

t

� {y}, i.e., for all x1, x2 2 S

t

and all ↵ 2 [0, 1],

+1 > r

0
0:t(y;↵x1 + (1� ↵)x2 � y) � ↵r

0
0:t(y;x1 � y) + (1� ↵)r00:t(y;x2 � y) > �1 .

Theorem 1 (forward regret of ADA-FTRL and ADA-MD). For any x⇤ 2 X , against any sequence of
linear losses hg

t

, ·i, t = 1, 2, . . . , T , the forward regret of ADA-FTRL under Assumption 1 satisfies

R̃

+
T

(x⇤) 
T

X

t=0

(q
t

(x⇤)� q

t

(x
t+1)) +

T

X

t=1

(p
t

(x⇤)� p

t

(x
t

))�
T

X

t=1

B
p1:t+q0:t�1(xt+1, xt

) (7)

whereas the forward regret of ADA-MD under Assumption 2 satisfies

R̃

+
T

(x⇤)  B
r0(x

⇤
, x1) +

T

X

t=1

B
rt(x

⇤
, x

t

)�
T

X

t=1

B
r0:t(xt+1, xt

) . (8)

4 Applications

Assumption 3. For all t = 1, 2, . . . , T , B
ft(x

⇤
, x

t

) � 0 (e.g., when f

t

is convex).
Assumption 4. In stochastic optimization, for all x 2 X , B

f

(x⇤
, x) � 0 (e.g., when f is convex).

Assumption 5. In stochastic optimization, f is differentiable and 1-smooth w.r.t. some norm k · k.
Furthermore, E

⇥k�
t

k2⇤
�

�

x

t

⇤  �

2 for all t, where �

t

= rf(x
t

)� g

t

.
Assumption 6. In ADA-FTRL, p

t

, t = 1, 2, . . . , T and q

t

, t = 0, 1, . . . , T are non-negative.
Assumption 7. In ADA-FTRL (respectively, ADA-MD), for all t = 0, 1, . . . , T , p1:t + q0:t�1

(respectively, r0:t) is 1-strongly convex w.r.t. some norm k · k(t).
Assumption 8. In ADA-MD, the losses are 1-strongly convex w.r.t. the regularizers, that is,
B
f1(x

⇤
, x1) � B

r0:1(x
⇤
, x1), and B

ft(x
⇤
, x

t

) � B
rt(x

⇤
, x

t

) for t = 2, . . . , T .
Assumption 9. In stochastic optimization with ADA-MD, the objective f is 1-strongly convex w.r.t.
the regularizers, that is, B

f

(x⇤
, x1) � B

r0:1(x
⇤
, x1), and B

f

(x⇤
, x

t

) � B
rt(x

⇤
, x

t

) for t = 2, . . . , T .

Table 1 provides a summary of the standard results that are recovered and generalized using our
framework (in particular, we obtain generalized ADAGRAD [6] for p

t

⌘ 0, and FTRL-PROX [11]
for r

t

⌘ 0). Detailed derivations, typically a few lines of algebra, are provided in the full paper
[9]. Compared to previous work (e.g., [10, 13]), our analysis recovers all previous results, applies
to infinite-dimensional Hilbert spaces, relaxes several assumptions on the regularizers and losses,
extends ADAGRAD-style algorithms to stochastic optimization with smooth losses, and obtains the
best known constants in the regret bound. Furthermore, the complete decomposition of assumptions
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Setting / Algorithms Assumptions Regret / Expected Stochastic Regret Bound

Online / Stochastic Optimization
ADA-FTRL

1, 3/4, 6, 7
(Theorem 2)

q0:T�1(x⇤) + p1:T (x⇤) +
P

T

t=1
1
2kgtk2(t),⇤

Online / Stochastic Optimization
ADA-MD

2, 3/4, 7
(Theorem 2)

B
r0(x

⇤
, x1) +

P

T

t=1 Brt(x
⇤
, x

t

) + 1
2kgtk2(t),⇤

Strongly-convex
Online / Stochastic Optimization
ADA-MD

2, (3/4), 7,
8/9
(Theorem 3)

P

T

t=1
1
2kgtk2(t),⇤

Smooth Stochastic Optimization
ADA-FTRL

1, 4, 5, 6, 7
(Theorem 4)

1
2kx⇤k2 + q0:T�1(x⇤) + p1:T�1(x⇤)

+
P

T�1
t=1

1
2k�t

k2(t),⇤ + f(x1)� f(x⇤)

Smooth Stochastic Optimization
ADA-MD

2, 4, 5, 7
(Theorem 4)

1
2kx⇤ � x1k2 + B

r0(x
⇤
, x1) +

P

T�1
t=1 B

rt(x
⇤
, x

t

)

+
P

T�1
t=1

1
2k�t

k2(t),⇤ + f(x1)� f(x⇤)

Table 1: Recovered and generalized standard results. A number in parentheses indicates that the
assumption is not directly required, but is implied by the other assumptions.

makes the analysis modular, and thus simpler to extend, as we show in the following sections. Finally,
note that for ADA-FTRL, composite-objective bounds simply follow by adding the non-smooth
penalty to q

t

. The case of ADA-MD is more detailed, and is provided in the full paper [9].

Implicit-update online convex optimization and Follow-The-Leader: Suppose that f
t

is convex,
and add B

ft(·, xt

) to p

t

(·) in ADA-FTRL (respectively, add f

t

to r

t

in ADA-MD). Then, the
optimization problems (5) and (6) will be equivalent to implicit-update ADA-FTRL and ADA-MD
(which use the whole loss f

t

rather than the lienarized loss hg
t

, xi in the optimization). For r
t

⌘ 0,
this gives the Follow-The-Leader algorithm. Canceling the resulting p

t

terms with the negative
Bregman divergences in (2) extends the bounds in Table 1 to implicit-update online learning, but
under relaxed assumptions. See the extended version of the paper [9] for details.

Working with non-convex functions: Note that in stochastic optimization, we do not need each f

t

to be convex; it suffices for f to be convex. As such, all of our bounds for stochastic optimization
work for stochastic minimization of convex sums of non-convex functions, which are useful in certain
applications [8]. In addition, in fact Assumptions 3 and 4 are more general than convexity, and hold,
in particular, for certain classes of quasi-convex functions. We provide examples of such functions,
as well as other possible routes for non-convex optimization, in the extended version of the paper [9].

Adaptive optimistic online learning: Let g̃
t

, t = 1, 2, . . . , T + 1, be any sequence of vectors in
H. Suppose that we run ADA-FTRL, with regularizers satisfying the corresponding assumptions
(Assumption 1 or 2), on a sequence of convex losses f1, f2, . . . , fT , producing the sequence of
points x

t+1, t = 0, 1, 2, . . . , T given by x

t+1 2 argmin
x2X hg1:t + g̃

t+1, xi + p1:t(x) + q0:t(x),
where g

t

2 �f

t

(x
t

), t = 1, 2, . . . , T . That is, we run ADA-FTRL, but we also incorporate g̃

t+1

as a “guess” of the future loss g

t+1 that the algorithm will suffer. It is easy to see that this is
exactly equivalent to running ADA-FTRL on the sequence g

t

� g̃

t

with regularizers q̃

t

= q

t

+
hg̃

t+1, ·i, i.e., x
t+1 2 argmin

x2X hg1:t � g̃1:t, xi+ p1:t(x) + q̃0:t(x). Then, Theorem 1 will upper-
bound the linear cheating regret

P

T

t=1hgt � g̃

t

, x

t+1 � x

⇤i. Rearranging and combining with
Lemma 1, the exact same manipulations as for Table 1 give R

T

(x⇤)  P

T�1
t=0 (q

t

(x⇤)� q

t

(x
t+1))+

P

T

t=1 (pt(x
⇤)� p

t

(x
t

)) +
P

T

t=1
1
2kgt � g̃

t

k2(t),⇤. This bound recovers all the regret bounds in
Theorems 1-7 of Mohri and Yang [12] (and hence their corollaries). In particular, the modular
analysis makes the modifications discussed in the previous section, e.g., stochastic optimization and
embedding composite-objective regularizers in q

t

, naturally extend to the bound above. Instead of
analyzing each case from scratch, our framework enables us to considerably simplify the analysis
of this new setting, relax the assumptions and generalize the results, and improve the sub-optimal
constants in the regret bounds to the best-known constant (1/2).

It should also be noted that the decomposition of assumptions has also helped us avoid certain proof
artifacts. For example, in their Theorem 3, Mohri and Yang [12] obtained a sub-optimal bound
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for proximal regularizers, because the effects of proximal and non-proximal regularizers were not
separated. Our corresponding bound, however, retains the best bound for proximal regularizers, since
the analysis separates the effect of these two types of regularizers early on.

5 Conclusion and future work

We provided a generalized, unified and modular framework for analyzing online and stochastic
optimization algorithms, and demonstrated its flexibility on several examples. Our framework is also
applicable to other problem settings, such as adaptive algorithms like AdaDelay [14]. Exploring these
and other applications of this framework is left for future work.
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