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Abstract

Deep neural networks (DNNs) have had an enormous impact on image analysis.
State-of-the-art training methods, based on weight decay and DropOut, result in
impressive performance when a very large training set is available. However, they
tend to have large problems overfitting to small data sets. Indeed, the available
regularization methods deal with the complexity of the network function only
indirectly. In this paper, we study the feasibility of directly using L2 function
norms for regularization. Two methods to integrate this new regularization in a
stochastic backpropagation framework are proposed. Moreover, the convergence
of these new algorithms is studied. We finally show that they outperform the state-
of-the-art methods in the low sample regime on benchmark datasets (MNIST and
CIFAR10). The obtained results demonstrate very clear improvement, especially in
the context of small sample regimes with data laying in a low dimensional manifold.
Source code of the method is made available at https://github.com/AmalRT/
DNN_Reg.

1 Introduction

Deep Neural Networks (DNNs) have been shown to be a powerful tool in learning from large
datasets in many domains. However, they require a large number of training samples in order to have
reasonable generalization power. Indeed, this fact tends to limit their application to the type of images
where it is easy to construct a large labeled database, such as natural images where collection can be
done from image sharing websites and labels obtained at low cost via crowdsourcing. When only few
labeled samples are available, such as in medical imaging, DNNs tend to overfit to the data and may
not be competitive with methods for which known tractable methods for stronger regularization are
available, e.g. kernel methods.

Generally in learning theory, one wants to minimize the statistical risk R(W ) =∫
`(fW (x), y)dP (x, y), where ` is a loss a function and P (x, y) is the data distribution of in-

puts and outputs, respectively. However, as P is generally unknown, only the empirical risk
RN (W ) = 1

N

∑N
i=1 `(fW (xi), yi) is accessible. This approximation is accurate when a large

database is used, but when only few samples are available, an appropriate regularization is required.
Training a DNN with regularization is solving arg minW RN (W ) + λΩ(fW ). Much research has
approached the idea of regularized DNN training. However, until now, this regularization tends to
be poor compared, for example, to regularization in kernel methods [11]. Two categories of regular-
ization can be distinguished in the existing literature: (i) regularizing by controlling the magnitude
of the weights W (`1 and `2 regularization [4, 8]); and (ii) regularizing by controlling the network
architecture (DropOut [6] and DropConnect [13]). In order to make the regularization stronger, we
study the feasibility of using L2 function norms directly. The canonical L2 function norm is:

Ω(fW ) = ‖fW ‖22 =

∫
〈fW (x), fW (x)〉dx. (1)
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As the exact value of this norm, and more importantly of its gradient, are not accessible, we study two
closely-related weighted norms. For both cases, we reweight the norm using a probability distribution
(we suppose for simplicity that all the distributions admit density functions).

2 Methods and algorithms : Function norm regularization

Data distribution: The first idea is to consider the function norm with respect to the data distribution :

Ω(fW ) =

∫
〈fW (x), fW (x)〉dP (x), (2)

where P is the marginal data distribution P (x) :=
∫
P (x, y)dy.

One can easily see that this is a valid function norm [3], and furthermore is just a weighted canonical
function norm such that the regularization has a higher effect on the data that has the higher probability
to be observed.

For this first method, our regularization term, written another way is Ex∼P (x) [〈fW (x), fW (x)〉]. For
some set {x1, . . . , xm} drawn i.i.d. from P (x)

1

m

m∑
i=1

〈fW (xi), fW (xi)〉 (3)

is an unbiased estimate. For samples outside the training set, this is a U -statistic of order 1, and has
an asymptotic Gaussian distribution for which finite sample estimates converge quickly [7]. Only the
images of these samples under fW are needed for regularization and not their labels, which is
particularly interesting for applications such as medical imaging where labeling the samples
require expert intervention and is usually highly expensive.

Slice sampling: The second idea is to use a probability density proportional to the integrand for the
weighted norm. The regularization term is then:

Ω(fW ) =

∫
〈fW (x), fW (x)〉dP̃ (x), (4)

where P̃ (x) ∝ ‖fW (x)‖22.

This idea is inspired by stochastic integration methods. A simple way to apply these methods is to
draw samples in the domain of the function and to approximate the integral by the average value of
the function in these points in a Quasi-Monte-Carlo fashion [1].

However, as we are working in a very high dimension, this type of numerical integration is not
appropriate because it suffers from the curse of dimensionality and results in a sample concentration
independent of the characteristics of the function we want to integrate, i.e. ‖fW (x)‖22. As this
function is real and non-negative, we can consider sampling from a distribution for which the
density is proportional to the function itself, using Markov-chain methods such as Gibbs [2] and
Metropolis–Hastings [5] sampling. As Gibbs sampling requires the approximation of the marginal
distribution (which is not easily accessible in our case and most importantly non-standard), and
Metropolis-Hastings sampling is depending on the choice of the proposal distribution, we generate
our samples using slice sampling [9].

This method draws samples uniformly from the hypervolume under the n-dimensional graph of the
function by iterating the following steps (to sample from a function f ): (i) Choose an initial sample
x0; (ii) Draw a uniformly distributed sample y ∈ (0, f(x0)); (iii) Find an hyperrectangle, around
x0, that is contained in the slice S = {x : f(x) > f(x0)}; (iv) Draw the new samples x1 uniformly
from this hyperrectangle; (v) Go back to the second step and iterate until collecting the desired
number of samples. In [9], many methods to define the hyperrectangle in the third step are proposed.
Here we used the method called "stepping-out and shrinking-in". This method consists of finding a
neighborhood of x0, increasing it progressively until being outside the slice, and drawing samples
from this increased neighborhood. If the drawn sample is outside the slice, it is used to shrink the
neighborhood.

The samples that are drawn using this procedure will have a concentration that depends on the
variation of ‖fW (x)‖22. They will be concentrated around the regions where its values are high. The
effect of the curse of dimensionality is then limited. Moreover, this means that the regularization
will have a higher effect on the regions where the samples are more concentrated, i.e. the regions
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where the values of the function are high, resulting in a less complex function. This method does
not require new images, which is interesting when we have access to only a small number of
samples (labeled or unlabeled).

An extended version of this paper is available on arXiv, in which we prove the convergence of
stochastic gradient descent when applied to the regularized objectives, and provide an algorithm to
integrate the regularization in a classical training procedure [10].

3 Experiments and results

To test the proposed methods, two series of experiments using two different databases are considered:
MNIST and CIFAR10. The experiments are conducted using MatConvNet [12]. For both of the
databases, the convolutional neural network LeNet is used. For each we compare our regularization
methods to (i) training with only weight decay and (ii) training with DropOut (with different rates) +
weight decay.

MNIST: We report the results of the tests conducted with our algorithms on MNIST (60,000 samples
for training and 10,000 samples for test). These experiments where conducted using only a 2.4 GHz
Intel Core 2 Duo processor.

In a first set of experiments, we test our first idea and the two reference methods listed above using a
decreasing number of samples of MNIST in the training data set. The remaining training samples
are used for regularization using data distribution. For slice sampling, we generate 6000 samples
in the case of 600 training samples, and 4000 samples in the case of 100 samples. Figure 1 shows
the evolution of the test top-1-error during training (the x-axis represents the number of epochs) for
weight decay, weight decay+DropOut with the rate 50%, weight decay+DropOut with the rate 25%
and approximate function norm regularization using the data distribution and slice sampling.

Weight decay + DropOut (25%)-Weight decay- -Weight decay + DropOut (50%)

-Function norm (Data distribution) -Function norm (Slice sampling)
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Figure 1: MNIST - Left: 12,000 samples - Center: 600 samples - Right: 100 samples

In Figure 3-left, we display the test Top-1 error evolution as a function of the training time using 100
samples for training. The number (1:N) indicates the ratio (Training samples:Regularization samples).
Table 1 shows the accuracy obtained on the test set at the end of the training. As a reference, note
that the best accuracy obtained when all the training data is used is 99.06%.

Training Regularization Weight WD WD Function norm Function norm
decay + DO(25%) + DO(50%) (data dist.) (slice sampling)

12,000 48,000 98.26 97.65 95.82 97.99 97.99 (1:4)
1,200 58,800 92.60 89.93 85.52 95.15 92.70 (1:4)
600 59,400 88 83.12 73.97 92.84 90.47 (1:10)
100 59,900 30.27 18.75 13.36 80.53 79.74 (1:40)

Table 1: MNIST - Correct classification rate (%) for different methods

CIFAR: In this paragraph, we report the results of our algorithms when applied to CIFAR 10. The
database is composed of 50,000 samples for training and 10,000 samples for test. These experiments
where conducted on a machine equipped with a 4 core CPU (4.00 GHz) and a GPU GeForce GTX
750 Ti. In this set of experiments, we test our two algorithms, weight decay and weight decay +
DropOut (10% and 50%) with a decreasing number of samples of CIFAR in the training data set. The
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remaining training samples are used for regularization using data distribution. For the slice sampling
method, we generate 5000 samples in the case of 500 training samples, and 4000 samples in the case
of 100 samples. Figure 2 shows the Top-1 error for the test set as a function of the number of epochs
using respectively 10,000, 500, and 100 training samples. Figure 3-right shows the evolution of the
test Top-1 error while using 500 samples for training. Table 2 shows the accuracy obtained on the
test set at the end of the training. As a reference, note that the best accuracy obtained when all the
training data is used is 80.38%.
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Figure 2: CIFAR - Left: 10,000 samples - Center: 500 samples - Right: 100 samples

Training Regularization Weight WD WD Function norm Function norm
decay + DO(10%) + DO(50%) (data dist.) (slice sampling)

10,000 40,000 71.53 69.35 40.79 71.90 72.02 (1:4)
5,000 45,000 67.27 64.59 28.08 68.26 68.21 (1:4)
1,000 49,000 52.57 47.99 12.03 50.75 54.38 (1:10)
500 49,500 43.64 37.16 11.57 39.96 48.47 (1:10)

Table 2: CIFAR- Correct classification rate (%) for different methods

4 Conclusion

In this work, two methods to introduce function norm regularization in neural network training have
been developed, one of which does not require any additional training data. We have demonstrated
both theoretically and empirically that their integration into stochastic backpropagation converges.
Their efficiency have been shown on the MNIST and CIFAR10 data sets. Our experiments suggest that
the developed methods are of high quality on small databases that lie in low dimensional manifolds.
For more complicated data with a small number of samples, the results of our methods outperform
the state-of-the-art regularization methods available in the literature. Moreover, we have shown
that both of the sampling methods yield similar results, which suggests that they are equally good
approximations of the function norm.
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Figure 3: Sampling method comparison - Test Top1-error evolution in time - Left : MNIST, 100
samples/ Right: CIFAR, 500 samples
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