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Abstract

The alternating direction method of multipliers (ADMM) is now widely used in
many fields, and its convergence was proved when two blocks of variables are
alternately updated. It is computationally beneficial to extend the ADMM direct-
ly to the case of a multi-block (multiple variable blocks) convex minimization
problem. Unfortunately, such an extension fails to converge even when solving a
simple square system of linear equations. In this paper, however, we prove that, if
in each step one randomly and independently permutes the updating order of any
given number of blocks followed by the regular multiplier update, the method will
converge in expectation for solving the square system of linear equations. Our
analysis of random permutation will also be of independent interest.

1 Introduction

Consider a convex minimization problem with a separable objective function and linear constraints:
min f1(x1) + · · ·+ fn(xn),

s.t. A1x1 + · · ·+Anxn = b,

xi ∈ Xi, i = 1, . . . , n,

(1)

where Ai ∈ RN×di , b ∈ RN×1,Xi ⊆ Rdi is a closed convex set, and fi : Rdi → R is a closed
convex function, i = 1, . . . , n. Many machine learning and engineering problems can be cast
into linearly-constrained optimization problems with two blocks (see [3] for many examples) or
more than two blocks (e.g. linear programming, robust principal component analysis, composite
regularizers for structured sparsity; see [5, 24] for more examples).

ADMM (Alternating Direction Method of Multipliers) was first proposed in [10] (see also [4, 8]) to
solve problem (1) when there are only two blocks (i.e. n = 2). In this 2-block case, the augmented
Lagrangian function of (1) is

L(x1, x2;µ) = f1(x1) + f2(x2)− µT (A1x1 +A2x2 − b) +
β

2
‖A1x1 +A2x2 − b‖2, (2)

where µ is the Lagrangian multiplier and β > 0 is the penalty parameter. Each iteration of ADMM
consists of a cyclic update (i.e. Gauss-Seidal type update) of primal variables x1, x2 and a dual
ascent type update of µ: 

xk+1
1 = arg minx1∈X1 L(x1, x

k
2 ;µk),

xk+1
2 = arg minx2∈X2

L(xk+1
1 , x2;µk),

µk+1 = µk − β(A1x
k+1
1 +A2x

k+1
2 − b).

(3)
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Due to the separable structure of the objective function, each subproblem only involves one
fi, i ∈ {1, 2}, thus may be easier to solve. This feature enables the wide application of ADMM
in signal processing and statistical learning where the objective function of the problem can usu-
ally be decomposed as the sum of the loss function and the regularizer; see [3] for a review. The
convergence of 2-block ADMM has been well studied; see [7, 9] for some recent reviews.

It is natural and computationally beneficial to extend the original 2-block ADMM directly to solve
the general n-block problem (1):

xk+1
1 = arg minx1∈X1 L(x1, x

k
2 , . . . , x

k
n;µk),

...
xk+1
n = arg minxn∈Xn L(xk+1

1 , . . . , xk+1
n−1, xn;µk),

µk+1 = µk − β(A1x
k+1
1 + · · ·+Anx

k+1
n − b),

(4)

where the augmented Lagrangian function

L(x1, . . . , xn;µ) =

n∑
i=1

fi(xi)− µT (
∑
i

Aixi − b) +
β

2
‖
∑
i

Aixi − b‖2. (5)

The convergence of the direct extension of ADMM to multi-block case had been a long standing
open question, until a counter-example was recently given in [5]. More specifically, [5] showed
that even for the simplest scenario where the objective function is 0 and the number of blocks is
3, ADMM can be divergent for a certain choice of A = [A1, A2, A3] (in fact, there is a positive
measure of A such that ADMM can be divergent). There are several proposals to overcome the
drawback (see, e.g., [6,11–15,17,22]), but they either need to restrict the range of original problems
being solved, add additional cost in each step of computation, or limit the stepsize in updating the
Lagrangian multipliers. These solutions typically slow down the performance of ADMM for solving
most practical problems. One may ask whether a “minimal” modification of cyclic multi-block
ADMM (4) can lead to convergence.

One of the simplest modifications of (4) is to add randomness to the update order. Randomness in the
update order has been very useful in the analysis of block coordinate gradient descent (BCGD) and
stochastic gradient descent (SGD). In particular, the known iteration complexity bounds of random-
ized BCGD [18] and SAG (Stochastic Average Gradient, a variant of SGD) [20] are much better than
the known iteration complexity bounds of their cyclic counterparts BCGD [1] and IAG (Incremental
Aggregated Gradient) [2], respectively. 1 The iteration complexity bounds for randomized algo-
rithms are usually established for independent randomization (sampling with replacement), while
in practice, random permutation (sampling without replacement) has been reported to exhibit faster
convergence (e.g. [19, 21, 23]). However, the theoretical analysis for random permutation seems to
be very difficult since the picked blocks/components are not independent across iterations. We have
tested both randomly permuted and independently randomized versions of ADMM. Interestingly, in-
dependently randomized versions can still be divergent, even for solving linear system of equations,
while random permutation can make ADMM converge in all experiments we have conducted.

The main result of this paper is to support the above observation: when the objective function is
zero and the constraint is a non-singular square linear system of equations, the expected output of
randomly permuted ADMM (RP-ADMM) converges to the unique primal-dual optimal solution.
Our contributions are two-fold. First, our result shows that RP-ADMM may serve as a simple
solution to resolve the divergence issue of cyclic multi-block ADMM. Since multi-block ADMM is
one promising candidate of fast algorithms for large-scale linearly constrained problems, we expect
RP-ADMM to be one of the major solvers in big data optimization. Second, our result is one
of the first direct analysis of random permutation (sampling without replacement) in optimization
algorithms. Our proof framework and techniques will be of independent interest and can be used to
analyze random permutation in other optimization algorithms.

We restrict to the simple category of solving linear system of equations, instead of the general convex
optimization problems, since the counter-example in [5] belongs to this category and this category
seems already difficult to handle for ADMM. The difficulty lies in how to proving the spectral

1 Rigourously speaking, these two bounds are not directly comparable since the result for the randomized
version only holds with high probability, while the result for the cyclic version always holds.
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radius of the expected update matrix M is less than one. There are two issues: first, there are few
mathematical tools to deal with the spectral radius of non-symmetric matrices; second, the entries
of M are complicated functions of the entries of ATA (in fact, n-th order polynomials). To resolve
the first issue, we build a relation between the eigenvalues of M ∈ R2N×2N and the eigenvalues of
a symmetric matrix AQAT ∈ RN×N (see Lemma 1), where Q is the expectation of the inverse of
a random matrix. To resolve the second issue, we use mathematical induction to implicitly utilize
the relation of the entries of AQAT and A. The induction analysis requires several techniques,
including a three-level symmetrization technique to construct an induction formula that relates Q to
its lower dimensional analogs.

Organization. In Section 2, we present RP-ADMM. Two other versions of randomized ADMM are
presented in Section 3. In Section 4, we present our main results Theorem 1, Theorem 2 and their
proofs. The proofs of the two technical results Lemma 1 and Lemma 2, which are used in the proof
of Theorem 2, are provided in the supplement.

Notations. For a matrix X , we denote X(i, j) as the (i, j)-th entry of X , eig(X) as the set of
eigenvalues of X , ρ(X) as the spectral radius of X (i.e. the maximum modulus of the eigenvalues
of X), ‖X‖ as the spectral norm of X , and XT as the transpose of X . When X is block partitioned,
we use X[i, j] to denote the (i, j)-th block of X . When X is a real symmetric matrix, let λmax(X)
and λmin(X) denote the maximum and minimum eigenvalue of X respectively.

2 Randomly Permuted ADMM

In this section, we first present RP-ADMM (Randomly Permuted ADMM) for solving the optimiza-
tion problem (1), then we specialize RP-ADMM for solving a linear system of equations.

Define Γ as
Γ , {σ | σ is a permutation of {1, . . . , n}}. (6)

At each round, we draw a permutation σ of {1, . . . , n} uniformly at random from Γ, and update
the primal variables in the order of the permutation, followed by updating the dual variables in a
usual way. Obviously, all primal and dual variables are updated exactly once at each round. See
Algorithm 1 for the details of RP-ADMM. Note that with a little abuse of notation, the function
L(xσ(1), xσ(2), . . . , xσ(n);µ) in this algorithm should be understood as L(x1, x2, . . . , xn;µ). For
example, when n = 3 and σ = (231), L(xσ(1), xσ(2), xσ(3);µ) = L(x2, x3, x1;µ) should be
understood as L(x1, x2, x3;µ).

Algorithm 1 n-block Randomly Permuted ADMM (RP-ADMM)

Initialization: x0
i ∈ Rdi×1, i = 1, . . . , n; µ0 ∈ RN×1.

Round k (k = 0, 1, 2, . . . ):
1) Primal update.

Pick a permutation σ of {1, . . . , n} uniformly at random.
For i = 1, . . . , n, compute xk+1

σ(i) by

xk+1
σ(i) = arg min

xσ(i)∈Xσ(i)
L(xk+1

σ(1), . . . , x
k+1
σ(i−1), xσ(i), x

k
σ(i+1), . . . , x

k
σ(n);µ

k) (7)

2) Dual update. Update the dual variable by

µk+1 = µk − β(

n∑
i=1

Aix
k+1
i − b). (8)

In this paper, we will only consider using Algorithm 1 to solve a square linear system of equations.
Consider a special case of (1) where fi = 0, Xi = Rdi ,∀i and N =

∑
i di (i.e. the constraint is a

square system of equations). Then problem (1) becomes

min
x∈RN

0,

s.t. A1x1 + · · ·+Anxn = b,
(9)
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where Ai ∈ RN×di , xi ∈ Rdi×1, b ∈ RN×1. Solving this feasibility problem (with 0 being the
objective function) is equivalent to solving a linear system of equations

Ax = b, (10)

where A = [A1, . . . , An] ∈ RN×N , x = [xT1 , . . . , x
T
n ]T ∈ RN×1, b ∈ RN×1. Throughout this

paper, we assume A is non-singular. Then the unique solution to (10) is x = A−1b, and problem (9)
has a unique primal-dual optimal solution (x, µ) = (A−1b, 0). The augmented Lagrangian function
(5) for the optimization problem (9) becomes

L(x, µ) = −µT (Ax− b) +
β

2
‖Ax− b‖2.

Throughout this paper, we assume β = 1; note that our algorithms and results can be extended to
any β > 0 by simply scaling µ.

2.1 Example: 3-block ADMM

Before presenting the update equation for general RP-ADMM, we consider a simple case N = n =
3, di = 1,∀i and σ = (123), and let ai = Ai ∈ R3×1. The update equations (7) and (8) can be
rewritten as

−aT1 λk + aT1 (a1x
k+1
1 + a2x

k
2 + a3x

k
3 − b) = 0,

−aT2 λk + aT2 (a1x
k+1
1 + a2x

k+1
2 + a3x

k
3 − b) = 0,

−aT3 λk + aT3 (a1x
k+1
1 + a2x

k+1
2 + a3x

k+1
3 − b) = 0,

(a1x
k+1
1 + a2x

k+1
2 + a3x

k+1
3 − b) + λk+1 − λk = 0.

Denote yk = [xk1 ;xk2 ;xk3 ; (λk)T ] ∈ R6×1, then the above update equation becomesa
T
1 a1 0 0 0
aT2 a1 aT2 a2 0 0
aT3 a1 aT3 a2 aT3 a3 0
a1 a2 a3 I3×3

 yk+1 =

0 −aT1 a2 −aT1 a3 aT1
0 0 −aT2 a3 aT2
0 0 0 aT3
0 0 0 I3×3

 yk +

[
AT b
b

]
. (11)

Define

L ,

aT1 a1 0 0
aT2 a1 aT2 a2 0
aT3 a1 aT3 a2 aT3 a3

 , R ,

0 −aT1 a2 −aT1 a3

0 0 −aT2 a3

0 0 0

 . (12)

The relation between L and R is
L−R = ATA.

Define

L̄ ,

[
L 0
A I3×3

]
, R̄ ,

[
R AT

0 I3×3

]
, b̄ =

[
AT b
b

]
(13)

then the update equation (11) becomes L̄yk+1 = R̄yk, i.e.

yk+1 = (L̄)−1R̄yk + L̄−1b̄. (14)

As a side remark, reference [5] provides a specific example of A ∈ R3×3 so that ρ((L̄)−1R̄) > 1,
which implies the divergence of the above iteration if the update order σ = (123) is used all the
time. This counterexample disproves the convergence of cyclic 3-block ADMM.

2.2 General Update Equation of RP-ADMM

In this case, the optimization problem is (9), and the primal update (7) becomes

−ATσ(i)µ
k +ATσ(i)(

i∑
j=1

Aσ(j)x
k+1
σ(j) +

n∑
l=i+1

Aσ(l)x
k
σ(l) − b) = 0, i = 1, . . . , n. (15)

Denote the output of Algorithm 1 after round (k − 1) as

yk ,
[
xk1 ; . . . ;xkn;µk

]
∈ R2N×1.
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Similar to the previous subsection, the update equations of Algorithm 1 for solving (9), i.e. (15) and
(8), can be written in the matrix form as (when the permutation is σ and β = 1)

yk+1 = L̄−1
σ R̄σy

k + L̄−1
σ b̄, (16)

where L̄σ, R̄σ, Lσ, Rσ, b̄ are defined by

L̄σ ,

[
Lσ 0
A IN×N

]
, R̄σ ,

[
Rσ AT

0 IN×N

]
, b̄ =

[
AT b
b

]
, (17)

in which Lσ ∈ RN×N has n× n blocks and the (i, j)-th block is defined as

Lσ[σ(i), σ(j)] ,

{
ATσ(i)Aσ(j) j ≤ i,
0 j > i,

(18)

and Rσ is defined as
Rσ , Lσ −ATA.

When n = 3, di = 1,∀i and σ = (123), Lσ defined above is the same as L defined in (12).

3 Other Randomized ADMM

In this section, we present two other versions of randomized ADMM which can be divergent ac-
cording to simulations. The failure of these versions makes us focus on analyzing RP-ADMM in
this paper.

In the first algorithm, called primal-dual randomized ADMM (PD-RADMM), the whole dual vari-
able is viewed as the (n+ 1)-th block. In particular, at each iteration, the algorithm draws one index
i from {1, . . . , n, n+ 1}, then performs the following update: if i ≤ n, update the i-th block of the
primal variable; if i = n + 1, update the whole dual variable. The details are given in Algorithm
2. We have tested PD-RADMM for the counter-example given in [5], and found that PD-RADMM
always diverges (for random initial points).

Algorithm 2 Primal-Dual Randomized ADMM (PD-RADMM)

Iteration t (t = 0, 1, 2, . . . ):
Pick i ∈ {1, . . . , n, n+ 1} uniformly at random;

If 1 ≤ i ≤ n:
xt+1
i = arg minxi∈Xi L(xt1, . . . , x

t
i−1, xi, x

t
i+1, . . . , x

t
n;µt),

xt+1
j = xtj , ∀ j ∈ {1, . . . , n}\{i},
µt+1 = µt.

Else If i = n+ 1:
µt+1 = µt − β(

∑n
i=1Aix

t+1
i − b),

xt+1
j = xtj , ∀ j ∈ {1, . . . , n}.

End

In the second algorithm, called primal randomized ADMM (P-RADMM), we only perform random-
ization for the primal variables. In particular, at each round, we first draw n independent random
variables j1, . . . , jn from the uniform distribution of {1, . . . , n} and update xj1 , . . . , xjn sequen-
tially, then update the dual variable in the usual way. The details are given in Algorithm 3. This
algorithm looks quite similar to RP-ADMM as they both update n primal blocks at each round; the
difference is that RP-ADMM samples without replacement while this algorithm P-RADMM sam-
ples with replacement. In other words, RP-ADMM updates each block exactly once at each round,
while P-RADMM may update one block more than one times or does not update one block at each
round. We have tested P-RADMM in various settings. For the counter-example given in [5], we
found that P-RADMM does converge. However, if n ≥ 30 and A is a Gaussian random matrix
(each entry is drawn i.i.d. from N (0, 1)), then P-RADMM diverges in almost all cases we have
tested. This phenomenon is rather strange since for random Gaussian matrices A the cyclic ADMM
actually converges (according to simulations). An implication is that randomized versions do not
always outperform their deterministic counterparts in terms of convergence.

Since both Algorithm 2 and Algorithm 3 can diverge in certain cases, we will not further study them
in this paper. In the rest of the paper, we will focus on RP-ADMM (i.e. Algorithm 1).
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Algorithm 3 Primal Randomized ADMM (P-RADMM)

Round k (k = 0, 1, 2, . . . ):
1) Primal update.

Pick l1, . . . , ln independently from the uniform distribution of {1, . . . , n}.
For i = 1, . . . , n:

t = kn+ i− 1,
xt+1
li

= arg minxli∈Xli L(xt1, . . . , x
t
li−1, xli , x

t
li+1, . . . , x

t
n;µt),

xt+1
j = xtj , ∀ j ∈ {1, . . . , n}\{li},
µt+1 = µt.

End.
2) Dual update.

µ(k+1)n = µkn − β(
∑n
i=1Aix

(k+1)n
i − b).

4 Main Results

Let σi denote the permutation used in round i of Algorithm 1, which is a uniform random variable
drawn from the set of permutations Γ. After round k, Algorithm 1 generates a random output yk+1,
which depends on the observed draw of the random variable

ξk = (σ0, σ1, . . . , σk). (19)

We will show that the expected output

φk = Eξk−1
(yk) (20)

converges to the primal-dual solution of the problem (9). Note that the expected iterate convergence
does not necessarily implies that the iterates converge. However, it strongly indicates that random
permutation make a dramatic difference in multi-block ADMM (i.e. ADMM with more than two
blocks).

Theorem 1 Assume the coefficient matrix A = [A1, . . . , An] of the constraint in (9) is a non-
singular square matrix. Suppose Algorithm 1 is used to solve problem (9), then the expected output
converges to the unique primal-dual optimal solution to (9), i.e.

{φk}k→∞ −→
[
A−1b

0

]
. (21)

Since the update matrix does not depend on previous iterates, we claim (and prove in Section 4.1)
that Theorem 1 holds if the expected update matrix has a spectral radius less than 1, i.e. if the
following Theorem 2 holds.

Theorem 2 Suppose A = [A1, . . . , An] ∈ RN×N is non-singular, and L̄−1
σ , R̄σ are defined by (17)

for any permutation σ. Define

M , Eσ(L̄−1
σ R̄σ) =

1

n!

∑
σ∈Γ

(L̄−1
σ R̄σ), (22)

where the expectation is taken over the uniform random distribution over Γ, the set of permutations
of {1, 2, . . . , n}. Then the spectral radius of M is smaller than 1, i.e.

ρ(M) < 1. (23)

Remark 4.1 For the counterexample in [5] where A = [1, 1, 1; 1, 1, 2; 1, 2, 2], we have ρ(Mσ) >
1.02 for any permutation of (1, 2, 3). Theorem 2 shows that even if each Mσ is “bad”, the average
of them is always “good”.

Theorem 2 is just a linear algebra result, and can be understood even without knowing the details of
the algorithm. However, the proof of Theorem 2 is rather non-trivial and forms the main body of the
paper. This proof will be provided in Section 4.2, and the technical results used in this proof will be
provided in the supplement.
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4.1 Proof of Theorem 1

Denote σk as the permutation used in round k, and define ξk as in (19). Rewrite the update equation
(16) below (replacing σ by σk):

yk+1 = L̄−1
σk
R̄σky

k + L̄−1
σk
b̄. (24)

We first prove (21) for the case b = 0. By (17) we have b̄ = 0, then (24) is simplified to yk+1 =
L̄−1
σk
R̄σky

k. Taking the expectation of both sides of this equation in ξk (see its definition in (19)),
and note that yk is independent of σk, we get

φk+1 = Eξk(L̄−1
σk
R̄σky

k) = Eσk
(
Eξk−1

(L̄−1
σk
R̄σky

k)
)

= Eσk(L̄−1
σk
R̄σkφ

k) = Mφk.

Since the spectral radius of M is less than 1 by Theorem 2, we have that {φk} → 0, i.e. (21).

We then prove (21) for general b. Let y∗ = [A−1b; 0] denote the optimal solution. Then it is easy to
verify that

y∗ = L̄−1
σk
R̄σky

∗ + L̄−1
σk
b̄

for all σk ∈ Γ (i.e. the optimal solution is the fixed point of the update equation for any order).
Compute the difference between this equation and (24) and letting ŷk = yk − y∗ , we get ŷk+1 =
L̄−1
σk
R̄σk ŷ

k. According to the proof for the case b = 0, we have E(ŷk) −→ 0, which implies
E(yk) −→ y∗. 2

4.2 Proof of Theorem 2

The difficulty of proving Theorem 2 (bounding the spectral radius of M ) is two-fold. First, M is a
non-symmetric matrix, and there are very few tools to bound the spectral radius of a non-symmetric
matrix. In fact, spectral radius is neither subadditive nor submultiplicative (see, e.g. [16]). Note
that the spectral norm of M can be much larger than 1 (there are examples that ‖M‖ > 2), thus
we cannot bound the spectral radius simply by the spectral norm. Second, although it is possible
to explicitly write each entry of M as a function of the entries of ATA, these functions are very
complicated (n-th order polynomials).

The proof outline of Theorem 2 and the main techniques are described below. In Step 0, we provide
an expression of the expected update matrix M . In Step 1, we establish the relationship between
the eigenvalues of M and the eigenvalues of a simple symmetric matrix AQAT . As a consequence,
the spectral radius of M is smaller than one iff the eigenvalues of AQAT lie in the region (0, 4/3).
This step partially resolves the first difficulty, i.e. how to deal with the spectral radius of a non-
symmetric matrix. In Step 2, we show that the eigenvalues of AQAT do lie in (0, 4/3) using
mathematical induction. The induction analysis circumvents the second difficulty, i.e. how to utilize
the relation between M and A. Note that we will perform induction analysis for QATA (with the
same eigenvalues as AQAT ) which is non-symmetric, and we will use several techniques in Step 1
again to transform non-symmetric matrices to symmetric matrices.

Step 0: compute the expression of the expected update matrix M . Define

Q , Eσ(L−1
σ ) =

1

n!

∑
σ∈Γ

L−1
σ . (25)

It is easy to prove that Q defined by (25) is symmetric. In fact, note that LTσ = Lσ̄,∀σ ∈ Γ,
where σ̄ is a reverse permutation of σ satisfying σ̄(i) = σ(n + 1 − i),∀ i, thus Q = 1

n!

∑
σ Qσ =

( 1
n!

∑
σ Qσ̄)T = QT , where the last step is because the sum of all Qσ̄ is the same as the sum of all

Qσ . Denote

Mσ , L̄−1
σ R̄σ = L̄−1

σ

[
Rσ AT

0 I

]
. (26)

Substituting the expression of L̄−1
σ into the above relation, and replacing Rσ by Lσ − ATA, we

obtain

Mσ =

[
L−1
σ 0

−AL−1
σ I

] [
Lσ −ATA AT

0 I

]
=

[
I − L−1

σ ATA L−1
σ AT

−A+AL−1
σ ATA I −AL−1

σ AT

]
. (27)
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Since Mσ is linear in L−1
σ , we have

M = Eσ(Mσ) =

[
I − Eσ(L−1

σ )ATA Eσ(L−1
σ )AT

−A+AEσ(L−1
σ )ATA I −AEσ(L−1

σ )AT

]
=

[
I −QATA QAT

−A+AQATA I −AQAT
]
.

(28)

Step 1: relate M to a simple symmetric matrix. The main result of Step 1 is given below, and the
proof of this result is given in the supplement.

Lemma 1 Suppose A ∈ RN×N is non-singular and Q ∈ RN×N is an arbitrary matrix. Define
M ∈ R2N×2N as

M =

[
I −QATA QAT

−A+AQATA I −AQAT
]
. (29)

Then

λ ∈ eig(M)⇐⇒ (1− λ)2

1− 2λ
∈ eig(QATA). (30)

Furthermore, when Q is symmetric, we have

ρ(M) < 1⇐⇒ eig(QATA) ⊆ (0,
4

3
). (31)

Remark: For our problem, the matrix Q as defined by (25) is symmetric (see the argument after
equation (25)). Lemma 1 implies (31) holds. Note that the first conclusion (30) holds even if Q is
non-symmetric.

Step 2: Bound the eigenvalues of QATA. The main result of Step 2 is summarized in the following
Lemma 2. The proof of Lemma 2 is based on an induction formula that relates Q to its lower
dimensional analogs, and several techniques used in the proof of Lemma 1; see the supplement for
the details of the proof.

Lemma 2 Suppose A = [A1, . . . , An] ∈ RN×N is non-singular. Define Q as

Q , Eσ(L−1
σ ) =

1

n!

∑
σ∈Γ

L−1
σ , (32)

in which Lσ is defined by (18) and Γ is defined by (6). Then all eigenvalues ofQATA lie in (0, 4/3),
i.e.

eig(QATA) ⊆ (0,
4

3
). (33)

Theorem 2 follows immediately from Lemma 1 and Lemma 2.

5 Conclusion

In this paper, we propose randomly permuted ADMM (RP-ADMM) and prove the expected conver-
gence of RP-ADMM for solving a non-singular square system of equations. Multi-block ADMM
is one promising candidate for solving large-scale linearly constrained problems in big data appli-
cations, but its cyclic version is known to be possibly divergent. Our result shows that RP-ADMM
may serve as a simple solution to resolve the divergence issue of cyclic multi-block ADMM. One
interesting aspect is that while it is possible that every single permutation leads to a “bad” update
matrix, averaging these permutations always leads to a “good” update matrix. Our result is also one
of the first direct analysis of random permutation (sampling without replacement) in optimization
algorithms, though independent randomization (sampling with replacement) has been extensively
studied for BCD and SGD. It is not hard to extend our result to non-square (including tall and wide)
system of equations. Future directions include extending our result to general convex problems and
proving the convergence of RP-ADMM with high probability.
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Supplemental Materials

6 Proof of Lemma 1

The proof of Lemma 1 relies on two simple techniques. The first technique, as elaborated in the Step 1 below, is
to factorize M and rearrange the factors. The second technique, as elaborated in the Step 2 below, is to reduce
the dimension by eliminating a variable from the eigenvalue equation.

Step 1: Factorizing M and rearranging the order of multiplication. The following observation is crucial: the
matrix M defined by (29) can be factorized as

M =

[
I 0
−A I

] [
QAT I
I A

] [
−A I
I 0

]
.

Switching the order of the products by moving the first component to the last, we get a new matrix

M ′ ,

[
QAT I
I A

] [
−A I
I 0

] [
I 0
−A I

]
=

[
QAT I
I A

] [
−2A I
I 0

]
=

[
I − 2QATA QAT

−A I

]
. (34)

Note that eig(XY ) = eig(Y X) for any two square matrices, thus

eig(M) = eig(M ′).

To prove (30), we only need to prove

λ ∈ eig(M ′)⇐⇒ (1− λ)2

1− 2λ
∈ eig(QATA). (35)

Step 2: Relate the eigenvalues of M ′ to the eigenvalues of QATA, i.e. prove (35). This step is simple as
we only use the definition of eigenvalues. However, note that, without Step 1, just applying the definition of
eigenvalues of the original matrix M may not lead to a simple relationship as (35).

We first prove one direction of (30):

λ ∈ eig(M ′) =⇒ (1− λ)2

1− 2λ
∈ eig(QATA). (36)

Suppose v ∈ C2N×1\{0} is an eigenvector of M ′ corresponding to the eigenvalue λ, i.e.

M ′v = λv.

Partition v as v =

[
v1

v0

]
, where v1, v0 ∈ CN×1. Using the expression of M ′ in (34), we can write the above

equation as [
I − 2QATA QAT

−A I

] [
v1

v0

]
= λ

[
v1

v0

]
,

which implies

(I − 2QATA)v1 +QAT v0 = λv1, (37a)
−Av1 + v0 = λv0. (37b)

We claim that (36) holds when v1 = 0. In fact, in this case we must have v0 6= 0 (otherwise v = 0 cannot be
an eigenvector). By (37b) we have λv0 = v0, thus λ = 1. By (37a) we have 0 = QAT v0 = QATA(A−1v0),
which implies (1−λ)2

1−2λ
= 0 ∈ eig(QATA), therefore (36) holds in this case.

We then prove (36) for the case
v1 6= 0. (38)

The equation (37b) implies (1 − λ)v0 = Av1. Multiplying both sides of (37a) by (1 − λ) and invoking this
equation, we get

(1− λ)(I − 2QATA)v1 +QATAv1 = (1− λ)λv1.

This relation can be simplified to

(1− 2λ)QATAv1 = (1− λ)2v1. (39)

We must have λ 6= 1
2

; otherwise, the above relation implies v1 = 0, which contradicts (38). Then (39) becomes

QATAv1 =
(1− λ)2

1− 2λ
v1. (40)

10



Therefore, (1−λ)2

1−2λ
is an eigenvalue of QATA, with the corresponding eigenvector v1 6= 0, which finishes the

proof of (36).

The other direction 2

λ ∈ eig(M)⇐=
(1− λ)2

1− 2λ
∈ eig(QATA) (41)

is easy to prove. Suppose (1−λ)2

1−2λ
∈ eig(QATA). We consider two cases.

Case 1: (1−λ)2

1−2λ
= 0. In this case λ = 1. Since 0 = (1−λ)2

1−2λ
∈ eig(QATA), there exists v0 ∈ CN\{0}

such that QATAv0 = 0 and Let v1 = (0, . . . , 0)T ∈ CN×1, then v0, v1 and λ = 1 satisfy (37). Thus

v =

[
v1

v0

]
∈ C2N\{0} satisfies Mv = λv, which implies λ = 1 ∈ eig(M).

Case 2: (1−λ)2

1−2λ
6= 0, then λ 6= 1. Let v1 be the eigenvector corresponding to (1−λ)2

1−2λ
(i.e. pick v1 that satisfies

(40)), and define v0 = v1/(1 − λ). It is easy to verify that v =

[
v1

v0

]
satisfies Mv = λv, which implies

λ ∈ eig(M).

Step 3: When Q is symmetric, prove (31) by simple algebraic computation.

Since Q is symmetric, we know that eig(QATA) = eig(AQAT ) ⊆ R. Suppose τ ∈ R is an eigenvalue of
QATA, then any λ satisfying (1−λ)2

1−2λ
= τ is an eigenvalue of M . This relation can be rewritten as λ2 + 2(τ −

1)λ+ (1− τ) = 0, which, as a real-coefficient quadratic equation in λ, has two roots

λ1 = 1− τ +
√
τ(τ − 1), λ2 = 1− τ −

√
τ(τ − 1). (42)

Note that when τ(τ − 1) < 0, the expression
√
τ(τ − 1) denotes a complex number i

√
τ(1− τ), where i is

the imaginary unit. To prove (31), we only need to prove

max{|λ1|, |λ2|} < 1⇐⇒ 0 < τ <
4

3
. (43)

Consider three cases.

Case 1: τ < 0. Then τ(τ − 1) = |τ |(|τ |+ 1) > 0. In this case, λ1 = 1 + |τ |+
√
|τ |(|τ |+ 1) > 1.

Case 2: 0 < τ < 1. Then τ(τ − 1) < 0, and (42) can be rewritten as

λ1,2 = 1− τ ± i
√
τ(1− τ),

which implies |λ1| = |λ2| =
√

(1− τ)2 + τ(1− τ) =
√

1− τ < 1.

Case 3: τ > 1. Then τ(τ − 1) > 0. According to (42), it is easy to verify λ1 > 0 > λ2 and

|λ2| = τ − 1 +
√
τ(τ − 1) > 1− τ +

√
τ(τ − 1) = |λ1|.

Then we have

max{|λ1|, |λ2|} < 1⇐⇒ |λ2| = τ − 1 +
√
τ(τ − 1) < 1⇐⇒ 1 < τ <

4

3
.

Combining the conclusions of the three cases immediately leads to (43).

7 Proof of Lemma 2 for the case di = 1,∀i

In this section, we prove Lemma 2 for the case di = 1,∀i. The proof for general di’s is quite similar (but not
exactly the same), and will be given in Section 8.

7.1 Proof Overview

We will use mathematical induction to prove Lemma 2, and the reason of doing so is the following. A major
difficulty of proving Lemma 2 is that each entry of Q is a complicated function (in fact, n-th order polynomial)
of the entries ofATA. To circumvent this difficulty, we will implicitly exploit the property ofQ by an induction
analysis on n, the number of blocks.

2For the purpose of proving Theorem 2, we do not need to prove this direction. Here we present the proof
since it is quite straightforward and makes the result more comprehensive.
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The difficulty of using induction to prove Lemma 2 is two-fold. First, it is not obvious how Q is related to an
analogous matrix in a lower dimension. Second, the simulations show that ‖QATA‖ < 4

3
� ‖Q‖‖ATA‖,

thus we have to bound the eigenvalues of the product QATA, instead of the eigenvalues of Q. Even if we
know the relationship between Q and a lower-dimensional matrix Q̂, it is not obvious how eig(QATA) and
eig(Q̂ÂT Â) are related, where Â is a lower-dimensional analog of A.

The proof outline of Lemma 2 and the main techniques are described below. In Step 1, we prove an induction
formula in Proposition 1, which states that Q can be decomposed as the sum of n symmetric matrices, where
each symmetric matrix contains an (n − 1) × (n − 1) sub-matrix Q̂k that is analogous to Q. In other words,
we relate Q to n analogous matrices Q̂k, k = 1, . . . , n in a lower dimension. To prove the induction formula,
we use a three-level symmetrization technique. This induction formula resolves the first difficulty. In Step 2,
we prove the induction step, i.e. under the induction hypothesis that eig(Q̂kÂ

T
k Âk) ⊆ (0, 4

3
), k = 1, . . . , n,

where Âk is a certain sub-matrix of A, the desired result eig(QATA) ⊆ (0, 4
3
) holds. To build the relation

between eig(QATA) and eig(Q̂kÂ
T
k Âk), we will apply the two simple techniques used in the proof of Lemma

1: factorize and rearrange, and reduce the dimension by eliminating a variable from the eigenvalue equation.
Nevertheless, the subsequent analysis is more complicated than the proof of Lemma 1.

7.2 Proof of Lemma 2 for di = 1,∀i and Two Propositions

Without loss of generality, we can assume ‖ai‖2 = 1, ∀i (see the first paragraph of Section 8 for an explana-
tion).

We use mathematical induction to prove Lemma 2 for the n-coordinate case. For the basis of the induction
(n = 1), Lemma 2 holds since QATA = 1. Assume Lemma 2 holds for n− 1, we will prove Lemma 2 for n.

7.2.1 Step 1: Induction formula for general n

Since di = 1, ∀ i, we have N =
∑
i di = n. Denote ai , Ai ∈ Rn×1(i = 1, . . . , n). Denote [n] ,

{1, . . . , n}. For any k ∈ [n], define

Γk , {σ′ | σ′ is a permutation of [n]\{k}}. (44)

For any σ′ ∈ Γk, similar to (??), we can define Lσ′ , Qk ∈ R(n−1)×(n−1) as

Lσ′(σ
′(i), σ′(j)) ,

{
aTσ′(i)aσ′(j) i ≥ j,
0 i < j,

(45)

Q̂k ,
1

|Γk|
∑
σ′∈Γk

L−1
σ′ , k = 1, . . . , n. (46)

Note that Lσ′ and Q̂k are lower-dimensional analogs of Lσ and Q respectively.

Define wk as the k-th column of ATA excluding the entry aTk ak, i.e.

wk , [a1, . . . , ak−1, ak+1, . . . , an]T ak ∈ R(n−1)×1. (47)

Define permutation matrices S1, . . . , Sn ∈ Rn×n as follows:

Sk(i, i) = 1, i = 1, . . . , k − 1; Sk(k + 1, k) = · · · = Sk(n, n− 1) = 1; Sk(k, n) = 1, (48)

and all other entries of Sk are zero. Sk is called a permutation matrix since it corresponds to a permutation
(1, . . . , k−1, k+1, . . . , n, k); in fact, (1, 2, . . . , n)Sk = (1, . . . , k−1, k+1, . . . , n, k). Replacing 1, 2, . . . , n
by column vectors b1, . . . , bn, we get (b1, b2, . . . , bn)Sk = (b1, . . . , bk−1, bk+1, . . . , bn, bk). This relation can
be interpreted as the following column-moving property of Sk: right-multiply a matrix by Sk will move the
k-th column to the end (i.e. in the new matrix it becomes the last column). Similarly, STk has the following
row-moving property: left-multiply a matrix by STk will move the k-th row to the end. Note that Sn is the
identity matrix. Another property is

STk = S−1
k . (49)

We give an example to illustrate the expressions of Sk. When n = 3, S1, S2, S3 ∈ R3×3 defined in (48) can
be explicitly written as

S1 ,

0 0 1
1 0 0
0 1 0

 , S2 ,

1 0 0
0 0 1
0 1 0

 , S3 = I3×3.
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The column-moving property means [b1, b2, b3]S1 = [b2, b3, b1], and [b1, b2, b3]S2 = [b1, b3, b2]. Similarly,

the row-moving property means ST1

bT1bT2
bT3

 =

bT2bT3
bT1

 and ST2

bT1bT2
bT3

 =

bT1bT3
bT2

.

With these definitions, we are ready to present the induction formula, which builds a relation between Q and
its lower-dimensional analogs Q̂k, k = 1, . . . , n.

Proposition 1 The matrix Q = 1
|Γ|
∑
σ∈Γ L

−1
σ , where Lσ,Γ are defined by (??) and (6) respectively, can be

decomposed as follows:

Q =
1

n

n∑
k=1

SkQkS
T
k , (50)

where

Qk ,

[
Q̂k − 1

2
Q̂kwk

− 1
2
wTk Q̂k 1

]
, (51)

in which Q̂k is defined by (46).

The proof of Proposition 1 for the case n = 3 will be given in Section 7.3. We relegate the proof of Proposition
1 for general n to Appendix 9.

7.2.2 Step 2: bounding eigenvalues of each Qk

According to (50), we have

AQAT =
1

n

n∑
k=1

ASkQkS
T
k A

T .

Note that Q̂k defined by (46) is symmetric, thus Qk defined by (51) is symmetric, which implies that each
ASkQkS

T
k A

T is a symmetric matrix. From the above relation, we have

1

n

n∑
k=1

λmin(ASkQkS
T
k A

T ) ≤ λmin(AQAT ) ≤ λmax(AQAT ) ≤ 1

n

n∑
k=1

λmax(ASkQkS
T
k A

T ). (52)

Therefore, to prove eig(AQAT ) ⊆ (0, 4/3), we only need to prove for any k = 1, . . . , n,

eig(ASkQkS
T
k A

T ) = eig(QkS
T
k A

TASk) ⊆ (0, 4/3). (53)

By the column moving property of Sk, we have

Āk , ASk = [Âk, ak], (54)

where Âk , [a1, . . . , ak−1, ak+1, . . . , an]. Note that Q̂k only depends on the entries of ÂTk Âk ∈
R(n−1)×(n−1), thus by the induction hypothesis, we have

eig(Q̂kÂ
T
k Âk) ⊆ (0, 4/3). (55)

We claim that (53) follows from the induction hypothesis (55) and the expressions (54) and (51). In fact, the fol-
lowing Proposition 2 directly proves (53) for k = n. If we replace A, Ân, an, Q̂n, Qn by Āk, Âk, ak, Q̂k, Qk
respectively in Proposition 2, we will obtain (53) for any k. As mentioned earlier, the desired result
eig(AQAT ) ⊆ (0, 4/3) follows immediately from (53) and (52).

Proposition 2 Suppose A = [Ân, an] ∈ Rn×n is non-singular, where Ân ∈ Rn×(n−1) and an ∈ R(n−1)×1

satisfies ‖an‖ = 1. Suppose Q̂n ∈ R(n−1)×(n−1) is a symmetric matrix which satisfies eig(Q̂nÂ
T
n Ân) ⊆

(0, 4
3
). Define

wn , ÂTnan, Qn ,

[
Q̂n − 1

2
Q̂nwn

− 1
2
wTn Q̂n 1

]
. (56)

Then eig(QnA
TA) ⊆ (0, 4

3
).

The proof of Proposition 2 is given in Section 7.4.
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7.3 Proof of Proposition 1 for n = 3

In this subsection, we prove the induction formula for n = 3. Before the formal proof, we briefly describe the
ideas of contructing this induction formula. The key idea is symmetrization: we start from an obvious relation
between L−1

σ and its lower-dimensional analog, and by three levels of symmetrization we can obtain a relation
between Q and its lower-dimensional analogs.

Define

wij =aTi aj , ∀i, j,

w1 = [w12, w13]T , w2 =[w21, w23]T , w3 = [w31, w32]T .
(57)

For σ = (123), the expressions of Lσ and L−1
σ are

L(123) =

 1 0 0
w21 1 0
w31 w32 1

 , L−1
(123) =

 1 0 0
−w21 1 0

−w31 + w21w32 −w32 1

 . (58)

Note, however, that the following expressions of Lσ and L−1
σ are more useful:

L(123) =

[
L(12) 0
wT3 1

]
,

and

L−1
(123) =

[
L−1

(12) 0

−wT3 L−1
(12) 1

]
. (59)

The above equation provides a relation between L−1
(123) and an analogous matrix L−1

12 in a lower dimension.
Such a kind of relation also exists between any L−1

σ and L−1
σ′ where σ′ is a sub-permutation of σ. Here, we

say σ′ ∈ Γk is a sub-permutation of σ ∈ Γ if σ′(j) = σ(j), ∀j ∈ Γk. For example, (134) and (123) are both
sub-permutations of (1234).

A natural question is: given the relation between Lσ and its lower dimensional analogs, how to build a relation
between Q and its lower dimensional counterparts? To answer this question, the following intuition is crucial:
since Q = Eσ(L−1

σ ) is a symmetrization of L−1
σ , we should symmetrize RHS (Right-Hand-Side) of (59).

There are three levels of “asymmetry” in the RHS of (59): i) L−1
(12) is non-symmetric; ii) the off-diagonal

blocks are not transpose to each other; iii) in this block partition ofLσ the 1st and 2nd row/columns are grouped
together, so this expression is not symmetric with respect to the permutation of {1, 2, 3}. Let us briefly explain
below how to build the three levels of symmetry.

The first level of symmetry is built by the matrix Q̂k. For example,

Q̂3 =
1

2
(L−1

(12) + L−1
(21)) =

[
1 − 1

2
w12

− 1
2
w12 1

]
(60)

is a symmetrization of L−1
(12) and forms the first-level symmetrization of the RHS of (59) (more details are given

later). The second level of symmetry is built by the matrix Qk. For example, Q3 =

[
Q̂3 − 1

2
Q̂3w3

− 1
2
wT3 Q̂3 1

]
is the symmetrization of

[
Q̂3 0

−wT3 Q̂3 1

]
, thus forming the second level of symmetrization for the RHS of

(59). The third level of symmetry is built by averaging the three matrices Q1, Q2, Q3 (up to permutation of
rows/columns), as shown by the induction formula (50)

Q =
1

3
(S1Q1S

T
1 + S2Q2S

T
2 +Q3). (61)

Below, we prove the induction formula (61) in a rigous way.

Proof of (61): As the first level symmetrization, we prove

1

2
(L−1

(123) + L−1
(213)) =

[
Q̂3 0

−wT3 Q̂3 1

]
. (62)

Recall that L(123) =

[
L(12) 0
wT3 1

]
implies L−1

(123) =

[
L−1

(12) 0

−wT3 L−1
(12) 1

]
. Similarly, L(213) =

[
L(21) 0
wT3 1

]
implies L−1

(213) =

[
L−1

(21) 0

−wT3 L−1
(21) 1

]
. Summing up these two relations and invoking the definition of Q̂3 in

(60), we obtain (62).
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As the second level symmetrization, we prove

Q3 =
1

4

(
L−1

(123) + L−1
(213) + L−1

(321) + L−1
(312)

)
. (63)

Note that the common feature of the four permutations (123), (213), (321), (312) is: 1 and 2 are adjacent
in these permutations. By the definition of Lσ in (??), we have L(321) = LT(123), L(312) = LT(213), thus
L−1

(321) = L−T(123), L
−1
(312) = L−T(213). Taking the transpose over both sides of (62), we obtain

1

2
(L−1

(321) + L−1
(312)) =

[
Q̂3 −Q̂3w3

0 1

]
. (64)

Combining (62) and (64), and using the definition of Q3 in (51), we obtain (63).

Using a similar argument, we can prove

S1Q1S
T
1 =

1

4

(
L−1

(123) + L−1
(132) + L−1

(231) + L−1
(321)

)
. (65)

Again, the common feature of the four permutations (123), (132), (231), (321) is: 2 and 3 are adjacent in these
permutations. The proof of (65) is almost the same as the proof of (63), except the extra step to move rows and
columns. Similarly, we can prove

S2Q2S
T
2 =

1

4

(
L−1

(132) + L−1
(312) + L−1

(231) + L−1
(213)

)
. (66)

As the third level symmetrization, combining (63),(65) and (66), and invoking the definition of Q in (25), we
obtain (61).

7.4 Proof of Proposition 2

For simplicity, throughout this proof, we denote

w , wn, Q̂ , Q̂n, Â , Ân.

We claim that
0 ≤ θ , wT Q̂w <

4

3
. (67)

In fact, by the definition w = ÂT an we have θ = aTn ÂQ̂Â
T an ≤ ρ(ÂQ̂ÂT )‖an‖2 = ρ(ÂQ̂ÂT ) < 4

3
,

which proves the last inequality of (67). According to the assumption, eig(Q̂ÂT Â) ⊆ (0, 4/3) ⊆ (0,∞) and
Â is non-singular, thus Q̂ � 0. Then we have θ = wT Q̂w ≥ 0, which proves the first inequality of (67).

We apply a trick that we have previously used: factorize Qn and change the order of multiplication. To be
specific, Qn defined in (56) can be factorized as

Qn =

[
I 0

− 1
2
wT 1

] [
Q̂ 0

0 1− 1
4
wT Q̂w

] [
I − 1

2
w

0 1

]
= J

[
Q̂ 0
0 c

]
JT , (68)

where J ,

[
I 0

− 1
2
wT 1

]
, I denotes the (n− 1)-dim identity matrix and

c , 1− 1

4
wT Q̂w. (69)

It is easy to prove
eig(AQnA

T ) ⊆ (0,∞). (70)

In fact, since A is non-singular, we only need to prove Qn � 0. According to (68), we only need to prove[
Q̂ 0
0 c

]
� 0. This follows from Q̂ � 0, and the fact c = 1− 1

4
wT Q̂w

(67)
> 1− 1

3
> 0. Thus (70) is proved.

It remains to prove

ρ(AQnA
T ) <

4

3
. (71)

Denote B̂ , ÂT Â, then we can write ATA as

ATA =

[
B̂ w
wT 1

]
.
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We simplify the expression of ρ(AQnA
T ) = ρ(QnA

TA) as follows:

ρ(AQnA
T )

(68)
= ρ

(
J

[
Q̂ 0
0 c

]
JTATA

)
= ρ

([
Q̂ 0
0 c

]
JTATAJ

)
. (72)

By algebraic computation, we have

JTATAJ =

[
I − 1

2
w

0 1

] [
B̂ w
wT 1

] [
I 0

− 1
2
wT 1

]
=

[
I − 1

2
w

0 1

] [
B̂ − 1

2
wwT w

1
2
wT 1

]
=

[
B̂ − 3

4
wwT 1

2
w

1
2
wT 1

]
,

thus

Z ,

[
Q̂ 0
0 c

]
JTATAJ =

[
Q̂ 0
0 c

] [
B̂ − 3

4
wwT 1

2
w

1
2
wT 1

]
=

[
Q̂B̂ − 3

4
Q̂wwT 1

2
Q̂w

1
2
cwT c

]
. (73)

According to (72), eig(AQnA
T ) = eig(Z), thus to prove (71), we only need to prove ρ(Z) < 4

3
. Since we

have proved that eig(Z) = eig(AQnA
T ) ⊆ (0,∞), we only need to prove λmax(Z) < 4/3. In the rest, we

will prove that for any eigenvalue of Z, denoted as λ, we have

λ <
4

3
. (74)

Suppose v ∈ Rn\{0} is the eigenvector corresponding to λ, i.e. Zv = λv. Partition v into v =

[
v1

v0

]
, where

v1 ∈ Rn−1, v0 ∈ R. According to the expression of Z in (73), Zv = λv implies

(Q̂B̂ − 3

4
Q̂wwT )v1 +

1

2
Q̂wv0 = λv1, (75a)

1

2
cwT v1 + cv0 = λv0. (75b)

If λ = c, then (74) holds since c = 1 − 1
4
θ ≤ 1. In the following, we assume λ 6= c. An immediate

consequence is
v1 6= 0.

Otherwise, assume v1 = 0; then (75b) implies cv0 = λv0, which leads to v0 = 0 and thus v = 0, a
contradiction.

By (75b) we get
v0 =

c

2(λ− c)w
T v1.

Plugging into (75a), we obtain

λv1 = (Q̂B̂ − 3

4
Q̂wwT )v1 +

1

2
Q̂w

c

2(λ− c)w
T v1 = (Q̂B̂ + φQ̂wwT )v1, (76)

where
φ = −3

4
+

c

4(λ− c) =
λ

4(λ− c) − 1 =
λ

4λ− 4 + θ
− 1. (77)

Here we have used the definition c = 1− 1
4
wT Q̂w = 1− 1

4
θ.

Denote λ̂ , ρ(Q̂B̂), then by the assumption λ̂ = ρ(Q̂ÂT Â) ∈ (0, 4/3). We prove that

λ ≤

{
λ̂+ φθ, φ > 0,

λ̂, φ ≤ 0.
(78)

Since Q̂ ∈ R(n−1)×(n−1) is a (symmetric) positive definite matrix, there exists U ∈ R(n−1)×(n−1) such that

Q̂ = UTU.

Pick a positive number g = |φ|θ. By (76) we have (g + λ)v1 = (Q̂B̂ + φQ̂wwT + gI)v1, here I denotes the
identity matrix with dimension n− 1. Consequently,

g + λ ∈ eig(Q̂B̂ + φQ̂wwT + gI) = eig(UB̂UT + φUwwTUT + gI). (79)

Note that φUwwTUT is a rank-one symmetric matrix with a (possibly) non-zero eigenvalue φwTUTUw =

φwT Q̂w = φθ. By our definition g = |φ|θ ≥ φθ, which implies that gI + φwTUTUw � 0 and

ρ(gI + φwTUTUw) =

{
g + φθ, φ > 0,

g, φ ≤ 0.
(80)
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Since both UB̂UT = UÂT ÂUT and φUwwTUT +gI are symmetric PSD (Positive Semi-Definite) matrices,
(79) implies

g + λ ≤ ρ(UB̂UT + φUwwTUT + gI)

≤ ρ(UB̂UT ) + ρ(φUwwTUT + gI)

=

{
λ̂+ g + φθ, φ > 0,

λ̂+ g, φ ≤ 0,
(81)

which immediately leads to (78).

We claim that (74) follows from (78). In fact, if φ ≤ 0, then by (78) we have λ ≤ λ̂ < 4
3

, which proves (74).
Next we assume φ > 0, which, by the definition of φ in (77), means

1 <
λ

4λ− 4 + θ
. (82)

If λ ≤ 1, then (74) already holds; thus we can assume λ > 1, which implies 4λ− 4 > 0. Combining with the
fact θ ≥ 0, we have

1 <
λ

4λ− 4 + θ
<

λ

4λ− 4
,

which leads to λ < 4
3

. This finishes the proof of (74).

8 Proof of Lemma 2 for the general case

Without loss of generality, we can assume

ATi Ai = Idi×di , i = 1, . . . , n.

To show this, let us write Mσ,M as Mσ(A1, . . . , An) and M(A1, . . . , An) respectively, i.e. functions of the
coefficient matrix (A1, . . . , An). Define Ãi = Ai(A

T
i Ai)

− 1
2 and

D , Diag((AT1 A1)−
1
2 , . . . , (ATnAn)−

1
2 , IN×N ).

It is easy to verify that Mσ(A1, . . . , An) = D−1Mσ(Ã1, . . . , Ãn)D, which implies

M(A1, . . . , An) = D−1M(Ã1, . . . , Ãn)D.

Thus ρ(M(A1, . . . , An)) = ρ(M(Ã1, . . . , Ãn)). In other words, normalizing Ai to Ãi, which satisfies
ÃTi Ãi = Idi×di , does not change the spectral radius of M .

8.1 Proof Outline of Lemma 2 and Two Propositions

We use mathematical induction to prove Lemma 2 for the n-block case. For the basis of the induction (n = 1),
Lemma 2 holds since QATA = Id1×d1 . Assume Lemma 2 holds for n− 1, we will prove Lemma 2 for n.

Similar to the n-coordinate case, we will first derive the induction formula, and then use this formula to prove
the induction step.

8.1.1 Step 2.1: Induction formula for the n-block case

For any matrix Z ∈ RN×N with n × n blocks, denote Z[i, j] as the (i, j)-th block of Z, 1 ≤ i, j ≤ n. We
use the term “the i-th block-row” to describe the collection of blocks Z[i, 1], . . . , Z[i, n], and “the i-th block-
column” to describe the collection of blocks Z[1, i], . . . , Z[n, i]. We say the row pattern of Z is (r1, . . . , rn)
and the column pattern of Z is (c1, . . . , cn) if Z[i, j] ∈ Rri×cj , ∀ 1 ≤ i, j ≤ n. The multiplication of two
block partitioned matrices Z1, Z2 ∈ RN×N can be expressed using only the blocks if the column pattern of Z1

is the same as the row pattern of Z2.

For k = 1, . . . , n, we define block-permutation matrix Sk ∈ RN×N with n× n blocks as follows:

Sk[i, i] , Idi×di , i = 1, . . . , k− 1; Sk[j, j − 1] , Idj×dj , j = k+ 1, . . . , n; Sk[k, n] , Idk×dk , (83)

and all other entries of Sk are set to zero. Note that the row pattern of Sk is (d1, . . . , dn) and the colum
pattern of Sk is (d1, . . . , dk−1, dk+1, . . . , dn, dk). When di = 1, ∀i, this definition reduces to the def-
inition (48) in the n-coordinate case. Similar to the n-coordinate case, this matrix Sk has the follow-
ing block-column moving property: right multiplying a matrix with n block-columns and column pattern
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(d1, . . . , dn) by Sk will move the k-th block-column to the end, resulting in a new matrix with column pattern
(d1, . . . , dk−1, dk+1, . . . , dn, dk). Consequently, STk has the following block-row moving property: left mul-
tiplying a matrix with n block-rows by STk will move the k-th block-row to the end. Note that Sn is the identity
matrix. Another property is

STk = S−1
k . (84)

For any k ∈ [n], define Γk as in (44). For any σ′ ∈ Γk, Lσ′ ∈ R(N−dk)×(N−dk) is partitioned into (n− 1)×
(n− 1) blocks and the (σ′(i), σ′(j))-th block is defined by

Lσ′ [σ
′(i), σ′(j)] ,

{
ATσ′(i)Aσ′(j) i ≥ j,
0 i < j,

(85)

We then define Q̂k ∈ R(N−dk)×(N−dk) by

Q̂k ,
1

|Γk|
∑
σ′∈Γk

L−1
σ′ , k = 1, . . . , n. (86)

Define Wk as the k-th block-column of ATA excluding the block ATkAk, i.e.

Wk = [ATkA1, . . . , A
T
kAk−1, A

T
kAk+1, . . . , A

T
kAn]T , ∀k ∈ [n]. (87)

With these definitions, we are ready to present the induction formula.

Proposition 3 The matrix Q = 1
|Γ|
∑
σ∈Γ L

−1
σ , where Lσ and Γ are defined by (18) and (6) respectively, can

be decomposed as follows:

Q =
1

n

n∑
k=1

SkQkS
T
k , (88)

where

Qk ,

[
Q̂k − 1

2
Q̂kWk

− 1
2
WT
k Q̂k Idk×dk

]
, (89)

in which Q̂k is defined by (86).

Proposition 3 is a generalization of Proposition 1 from the n-coordinate case to the n-block case, and its proof
is similar to the proof of Proposition 1 (with a slight difference due to the block partition). We relegate this
proof to Appendix 10.

8.1.2 Step 2.2: Bounding eigenvalues of each Qk

According to (88), we have

AQAT =
1

n

n∑
k=1

ASkQkS
T
k A

T .

Consequently,

1

n

n∑
k=1

λmin(ASkQkS
T
k A

T ) ≤ λmin(AQAT ) ≤ λmax(AQAT ) ≤ 1

n

n∑
k=1

λmax(ASkQkS
T
k A

T ). (90)

To prove eig(AQAT ) ⊆ (0, 4/3), we only need to prove for any k = 1, . . . , n,

eig(ASkQkS
T
k A

T ) = eig(QkS
T
k A

TASk) ⊆ (0, 4/3). (91)

By the block-column moving property of Sk, we have

Āk , ASk = [Âk, Ak], (92)

where Âk , [A1, . . . , Ak−1, Ak+1, . . . , An]. Note that Q̂k only depends on the entries of ÂTk Âk ∈
R(N−dk)×(N−dk) which has (n− 1)× (n− 1) blocks, thus by the induction hypothesis, we have

eig(Q̂kÂ
T
k Âk) ⊆ (0, 4/3). (93)

We claim that (91) follows from the induction hypothesis (93) and the expressions (92) and (89). In fact, the fol-
lowing proposition directly proves (91) for k = n. If we replace A, Ân, An, Q̂n, Qn by Āk, Âk, Ak, Q̂k, Qk
respectively in the following proposition, we will obtain (91) for any k. As mentioned earlier, the desired result
eig(AQAT ) ⊆ (0, 4/3) follows immediately from (91) and (90).
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Proposition 4 Suppose A = [Ân, An] ∈ RN×N is a non-singular matrix, where Ân ∈ RN×(N−dn), and
An ∈ RN×dn satisfies ATnAn = Idn×dn . Suppose Q̂n ∈ R(N−dn)×(N−dn) is symmetric and

eig(Q̂nÂ
T
n Ân) ⊆ (0, 4/3). (94)

Define

Wn , ÂTnAn ∈ R(N−dn)×dn , Qn ,

[
Q̂n − 1

2
Q̂nWn

− 1
2
WT
n Q̂n Idn×dn

]
. (95)

Then eig(AQnA
T ) ⊆ (0, 4

3
).

Proposition 4 is a generalization of Proposition 2 from the n-coordinate case to the n-block case, and its proof
is similar to the proof of Proposition 2 (with a few minor differences). The proof of Proposition 4 is given in
Section 8.2.

8.2 Proof of Proposition 4

This proof is similar to the proof of Proposition 2 for the n-coordinate case, with a few minor differences due
to the fact dn > 1.

For simplicity, throughout this proof, we denote

W ,Wn, Q̂ , Q̂n, Â , Ân.

We first prove

0 � Θ ,WT Q̂W ≺ 4

3
I. (96)

Since eig(Q̂ÂT Â) ⊆ (0,∞) and Â is non-singular, thus Q̂ � 0. Then we have Θ = WT Q̂W � 0, which
proves the first relation of (96). By the definition W = ÂTAn we have

ρ(Θ) = ρ(ATn ÂQ̂Â
TAn) = max

v∈Rdn×1,‖v‖=1
vTATn ÂQ̂Â

TAnv

≤ ρ(ÂQ̂ÂT ) max
v∈Rdn×1,‖v‖=1

‖Anv‖2 = ρ(ÂQ̂ÂT )‖An‖2 = ρ(ÂQ̂ÂT ) <
4

3
,

(97)

where the last equality is due to the assumption ATnAn = I , and the last inequality is due to the assumption
(94). By (97) we have Θ ≺ 4

3
I , thus (96) is proved.

We apply a trick that we have previously used: factorize Qn and change the order of multiplication. To be
specific, Qn defined in (95) can be factorized as

Qn =

[
I 0

− 1
2
WT I

] [
Q̂ 0

0 I − 1
4
WT Q̂W

] [
I − 1

2
W

0 I

]
= J

[
Q̂ 0
0 C

]
JT , (98)

where J ,

[
I 0

− 1
2
WT I

]
, I in the upper left block denotes the (N − dn)-dimensional identity matrix, I in

the lower right block denotes the dn-dim identity matrix, and

C , I − 1

4
WT Q̂W ∈ Rdn×dn . (99)

It is easy to prove
eig(AQnA

T ) ⊆ (0,∞). (100)

In fact, we only need to prove Qn � 0. According to (98), we only need to prove
[
Q̂ 0
0 C

]
� 0. This follows

from Q̂ � 0 and the fact C = I − 1
4
WT Q̂W

(96)
� I − 1

3
I � 0. Thus (100) is proved.

It remains to prove

ρ(AQnA
T ) <

4

3
. (101)

Denote B̂ , ÂT Â ∈ R(N−dn)×(N−dn), then we can write ATA as

ATA =

[
B̂ W
WT I

]
. (102)
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We simplify the expression of ρ(AQnA
T ) as follows:

ρ(AQnA
T ) = ρ

(
AJ

[
Q̂ 0
0 C

]
JTAT

)
= ρ

([
Q̂ 0
0 C

]
JTATAJ

)
. (103)

By algebraic computation, we have

JTATAJ =

[
I − 1

2
W

0 I

] [
B̂ W
WT I

] [
I 0

− 1
2
WT I

]
=

[
I − 1

2
W

0 I

] [
B̂ − 1

2
WWT W

1
2
WT I

]
=

[
B̂ − 3

4
WWT 1

2
W

1
2
WT I

]
,

(104)

thus

Z ,

[
Q̂ 0
0 C

]
JTATAJ =

[
Q̂ 0
0 C

] [
B̂ − 3

4
WWT 1

2
W

1
2
WT I

]
=

[
Q̂B̂ − 3

4
Q̂WWT 1

2
Q̂W

1
2
CWT C

]
. (105)

According to (103), ρ(AQnA
T ) = ρ(Z), thus to prove (101) we only need to prove

ρ(Z) <
4

3
.

Suppose λ > 0 is an arbitrary eigenvalue of Z. In the rest, we will prove

λ <
4

3
. (106)

Suppose v ∈ RN×1\{0} is the eigenvector corresponding to λ, i.e. Zv = λv. Partition v into v =

[
v1

v0

]
,

where v1 ∈ RN−dn , v0 ∈ Rdn . According to the expression of Z in (105), Zv = λv implies

(Q̂B̂ − 3

4
Q̂WWT )v1 +

1

2
Q̂Wv0 = λv1, (107a)

1

2
CWT v1 + Cv0 = λv0. (107b)

If λI−C is singular, i.e. λ is an eigenvalue of C, then by (96) we have 2
3
I ≺ C = 1− 1

4
Θ � I , which implies

λ ≤ 1, thus (106) holds. In the following, we assume

λI − C is non-singular. (108)

An immediate consequence is
v1 6= 0,

since otherwise (107b) implies Cv0 = λv0, which combined with (108) leads to v0 = 0 and thus v = 0, a
contradiction.

By (107b) we get

v0 =
1

2
(λI − C)−1CWT v1.

Plugging into (107a), we obtain

λv1 = (Q̂B̂ − 3

4
Q̂WWT )v1 +

1

2
Q̂W

1

2
(λI − C)−1CWT v1 = (Q̂B̂ + Q̂WΦWT )v1, (109)

where

Φ , −3

4
I +

1

4
(λI − C)−1C = −I +

1

4
[I + (λI − C)−1C]

= −I +
λ

4
(λI − C)−1 = −I + λ[(4λ− 4)I + Θ]−1.

(110)

Here we have used the definition C = I − 1
4
WT Q̂W = I − 1

4
Θ. Since Θ is a symmetric matrix, Φ is also a

symmetric matrix.

To prove (106), we consider two cases.

Case 1: λmax(Φ) > 0.

According to (110), we have

θ ∈ eig(Θ)⇐⇒ −1 +
λ

(4λ− 4) + θ
∈ eig(Φ).
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By the assumption λmax(Φ) > 0 and the above relation, there exists θ ∈ eig(Θ) such that

−1 +
λ

(4λ− 4) + θ
> 0. (111)

If λ < 1, then (106) already holds; so we can assume λ > 1. By Θ � 0 we have θ ≥ 0, thus (111) implies
1 < λ

(4λ−4)+θ
≤ λ

4λ−4
, which leads to λ < 4

3
. Thus in Case 1 we have proved (106).

Case 2: λmax(Φ) ≤ 0, i.e. Φ � 0.

By the assumption (94) we have

λ̂ , ρ(Q̂B̂) = ρ(Q̂ÂT Â) ∈ (0, 4/3). (112)

Since Q̂ ∈ R(N−dn)×(N−dn) is a (symmetric) positive definite matrix, there exists a non-singular matrix
U ∈ R(N−dn)×(N−dn) such that

Q̂ = UTU. (113)

Pick a positive number g that is large enough (will specify how large later). By (109) we have (g + λ)v1 =

(Q̂B̂ + Q̂WΦWT + gI)v1. Consequently,

g + λ ∈ eig(Q̂B̂ + Q̂WΦWT + gI)
(113)
= eig(UTUB̂ + UTUWΦWT + gI)

=eig(UB̂UT + UWΦWTUT + gI).
(114)

Define Γ , UWΦWTUT ∈ R(N−dn)×(N−dn), then the above relation implies

g + λ ≤ ρ(UB̂UT + Γ + gI)

≤ ρ(UB̂UT ) + ρ(Γ + gI)

= λ̂+ ρ(Γ + gI),

(115)

where the last equality is due to ρ(UB̂UT ) = ρ(ÂT ÂUTU) = ρ(ÂT ÂQ̂)
(112)
= λ̂.

For any vector v ∈ R(N−dn)×(N−dn) we have

vTΓv = vTUWΦWTUT v = (WTUT v)TΦ(WTUT v) ≤ 0,

where the last inequality follows from our assumption Φ � 0, thus Γ � 0. Pick a large g so that g > ρ(Γ),
then ρ(gI + Γ) ≤ g. Plugging into (115), we get

g + λ ≤ λ̂+ g,

which implies λ ≤ λ̂ < 4
3

. Thus in Case 2 we have also proved (106). 2

Remark: The following generalization of (78) is also true:

λ ≤

{
λ̂+ λmax(Φ)‖Θ‖, λmax(Φ) > 0,

λ̂, Φ � 0.
(116)

The proof of (116) is a bit longer than the proof for the scalar case, and we will omit it in this paper. Note that
(116) is not necessary for the proof of Proposition 4. In particular, when λmax(Φ) > 0, we do not need to use
λ ≤ λ̂+λmax(Φ)‖Θ‖ to bound λ; instead, it is enough to just use λmax(Φ) > 0 to bound λ, as shown in Case
1 of the above proof.

9 Proof of Proposition 1, the induction formula for the n-coordinate case

In the n-coordinate case, the ambient dimension N = n, and the i-th block of A is ai ∈ Rn×1. Denote
(σ′, k) and (k, σ′) as permutations of [n] that are formed by combining a permutation σ′ and k. For example,
if σ′ = (124), then (σ′, 3) = (1243) and (3, σ′) = (3124).

We divide the proof into two parts. First, we present a simple formula related to the permutation matrices.
Second, we apply the three levels of symmetrization.
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9.1 Step 1. Deal with Permutation Matrices Sk

We first prove

STk L(σ′,k)Sk =

[
Lσ′ wk
0 1

]
. (117)

We write Lσ′ as a 2× 2 block matrix

Lσ′ =

[
Z11 Z12

Z21 Z22

]
, (118)

where Z11 ∈ R(k−1)×(k−1), Z12 ∈ R(k−1)×(n−k), Z21 ∈ R(n−k)×(k−1), Z22 ∈ R(n−k)×(n−k), and denote

Uk = (a1, . . . , ak−1) ∈ Rn×(k−1), Vk = (ak+1, . . . , an) ∈ Rn×(n−k),

which implies

wk
(47)
= [a1, . . . , ak−1, ak+1, . . . , an]T ak

=[Uk, Vk]T ak

=

[
UTk ak
V Tk ak

]
.

(119)

It is easy to verify that

L(σ′,k) =

Z11 UTk ak Z12

0 1 0
Z21 V Tk ak Z22

 .
Note that in the above expression,

UTk ak1
V Tk ak

 is the k’th column and [0, . . . , 0, 1, 0, . . . 0] ∈ R1×n with the

entry 1 in the k’th position is the k’th row. By moving the k’th column to the end and then moving the k’th
row to the end, we get

STk

Z11 UTk ak Z12

0 1 0
Z21 V Tk ak Z22

Sk = STk

Z11 Z12 UTk ak
0 0 1
Z21 Z22 V Tk ak

 =

Z11 Z12 UTk ak
Z21 Z22 V Tk ak
0 0 1

 =

[
Lσ′ wk
0 1

]
,

where the last equality follows from (118) and (119). Thus we have proved (117).

9.2 Step 2: Three Levels of Symmetrization

Taking the inverse of both sides of (117) and using S−1
k = STk , we obtain

STk L
−1
(σ′,k)Sk =

[
L−1
σ′ −L−1

σ′ wk
0 1

]
. (120)

As the first level symmetrization, summing up (120) for all σ′ ∈ Γk and dividing by |Γk|, we get

1

|Γk|
∑
σ′∈Γk

STk L
−1
(σ′,k)Sk =

[
1
|Γk|

∑
σ′∈Γk

L−1
σ′ − 1

|Γk|
∑
σ′∈Γk

L−1
σ′ wk

0 1

]
(46)
=

[
Q̂k −Q̂kwk
0 1

]
. (121)

As the second level symmetrization, we can prove

1

2|Γk|
STk

 ∑
σ′∈Γk

L−1
(σ′,k) +

∑
σ′∈Γk

L−1
(k,σ′)

Sk =

[
Q̂k − 1

2
Q̂kwk

1
2
wTk Q̂k 1

]
= Qk. (122)

In fact, by the definition of Lσ in (18), it is easy to see that

LTσ = Lσ̄,

where σ̄ is a “reverse permutation” of σ that satisfies σ̄(i) = σ(n+1− i), ∀i. Thus we have LT(σ′,k) = LT
(k,σ̄′),

where σ̄′ is a reverse permutation of σ′. Summing over all σ′, we get
∑
σ′∈Γk

L−1
(σ′,k) =

∑
σ′∈Γk

L−T
(k,σ̄′)

=∑
σ′∈Γk

L−T(k,σ′), where the last equality is because summing over σ̄′ is the same as summing over σ′. Thus,
we have

1

|Γk|
∑
σ′∈Γk

STk L
−1
(k,σ′)Sk =

 1

|Γk|
∑
σ′∈Γk

STk L
−1
(σ′,k)Sk

T

(121)
=

[
Q̂k 0

−wTk Q̂k 1

]
.
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Here we have used the fact that Q̂k is symmetric. Combining the above relation and (121) and invoking the
definition of Qk in (51) yields (122).

According to (84) and the fact |Γk| = (n− 1)!, we can rewrite (122) as

SkQkS
T
k =

1

2(n− 1)!

 ∑
σ′∈Γk

L−1
(σ′,k) +

∑
σ′∈Γk

L−1
(k,σ′)

 .

As the third level symmetrization, summing up the above relation for k = 1, . . . , n and then dividing by n, we
get

1

n

n∑
k=1

SkQkS
T
k =

1

n

1

2(n− 1)!

n∑
k=1

 ∑
σ′∈Γk

L−1
(σ′,k) +

∑
σ′∈Γk

L−1
(k,σ′)

 =
1

2n!
2
∑
σ∈Γ

L−1
σ = Q,

which proves (50). Q.E.D.

10 Proof of Proposition 3, the induction formula for the general n-block case

This proof is a direct extension of the proof of Proposition 1, i.e. the induction formula for the n-coordinate
case. The major difference is Step 1 (the proof of (123)), since the permutation matrix Sk here is a block-
partitioned matrix. Step 2 is the same as the n-coordinate case.

10.1 Step 1. Deal with Permutation Matrices Sk

We will prove

STk L(σ′,k)Sk =

[
Lσ′ Wk

0 I

]
, (123)

where I denotes Idk×dk .

Note that Lσ′ ∈ R(N−dk)×(N−dk) can be viewed as a block partitioned matrix with (n− 1)× (n− 1) blocks,
and both the row pattern and column pattern of Lσ′ are (d1, . . . , dk−1, dk+1, . . . , dn). By grouping the first
(k− 1) block-rows and the last (n− k) block-rows respectively, and grouping the first (k− 1) block-columns
and the last (n− k) block-columns respectively, Lσ′ can be written as a 2× 2 block matrix

Lσ′ =

[
Z11 Z12

Z21 Z22

]
, (124)

where Z11 ∈ R(d1+···+dk−1)×(d1+···+dk−1), Z22 ∈ R(dk+1+···+dn)×(dk+1+···+dn), and the size of Z12 and
Z22 can be determined accordingly. We denote

Uk = (A1, . . . , Ak−1) ∈ RN×(d1+···+dk−1), Vk = (Ak+1, . . . , An) ∈ RN×(dk+1+···+dn),

which implies

Wk
(87)
= [ATkA1, . . . , A

T
kAk−1, A

T
kAk+1, . . . , A

T
kAn]T

=[A1, . . . , Ak−1, Ak+1, . . . , An]TAk

=[Uk, Vk]TAk

=

[
UTk Ak
V Tk Ak

]
.

(125)

It is easy to verify that

L(σ′,k) =

Z11 UTk Ak Z12

0 Idk×dk 0
Z21 V Tk Ak Z22

 .
Note that in the above expression,

UTk AkIdk×dk
V Tk Ak

 is the k’th block-column of L(σ′,k) and

[0, Idk×dk , 0] = [0dk×d1 , . . . , 0dk×dk−1 , Idk×dk , 0dk×dk+1 , . . . 0dk×dn ] ∈ Rdk×N

with Idk×dk being the k’th block is the k’th block-row of L(σ′,k). By moving the k’th block-column to the end
and then moving the k’th block-row to the end, we get

STk

Z11 UTk ak Z12

0 Idk×dk 0
Z21 V Tk ak Z22

Sk = STk

Z11 Z12 UTk ak
0 0 Idk×dk
Z21 Z22 V Tk ak

 =

Z11 Z12 UTk ak
Z21 Z22 V Tk ak
0 0 Idk×dk

 =

[
Lσ′ Wk

0 Idk×dk

]
,

where the last equality follows from (124) and (125). Thus we have proved (123).
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10.2 Step 2: Three Levels of Symmetrization

The rest of the proof of Proposition 3 is the same as the proof of Proposition 1, except a minor difference that
wk is replaced by Wk. For completeness, we still present the proof of Step 2 in detail.

Taking the inverse of both sides of (123) and using S−1
k = STk , we obtain

STk L
−1
(σ′,k)Sk =

[
L−1
σ′ −L−1

σ′ Wk

0 I

]
. (126)

As the first level symmetrization, summing up (126) for all σ′ ∈ Γk and dividing by |Γk|, we get

1

|Γk|
∑
σ′∈Γk

STk L
−1
(σ′,k)Sk =

[
1
|Γk|

∑
σ′∈Γk

L−1
σ′ − 1

|Γk|
∑
σ′∈Γk

L−1
σ′ Wk

0 I

]
(86)
=

[
Q̂k −Q̂kWk

0 I

]
. (127)

As the second level symmetrization, we will prove

1

2|Γk|
STk

 ∑
σ′∈Γk

L−1
(σ′,k) +

∑
σ′∈Γk

L−1
(k,σ′)

Sk =

[
Q̂k − 1

2
Q̂kWk

− 1
2
WT
k Q̂k Idk×dk

]
= Qk. (128)

By the definition of Lσ in (18), it is easy to see that

LTσ = Lσ̄,

where σ̄ is a “reverse permutation” of σ that satisfies σ̄(i) = σ(n+1− i), ∀i. Thus we have L(σ′,k) = LT
(k,σ̄′),

where σ̄′ is a reverse permutation of σ′. Summing over all σ′, we get
∑
σ′∈Γk

L−1
(σ′,k) =

∑
σ′∈Γk

L−T
(k,σ̄′)

=∑
σ′∈Γk

L−T(k,σ′), where the last equality is because summing over σ̄′ is the same as summing over σ′. Thus,
we have

1

|Γk|
∑
σ′∈Γk

STk L
−1
(k,σ′)Sk =

 1

|Γk|
∑
σ′∈Γk

STk L
−1
(σ′,k)Sk

T

(127)
=

[
Q̂k 0

−WT
k Q̂k 1

]
.

Here we have used the fact that Q̂k is symmetric. Combining the above relation and (127) and invoking the
definition of Qk in (89) yields (128).

According to (84) and the fact |Γk| = (n− 1)!, we can rewrite (128) as

SkQkS
T
k =

1

2(n− 1)!

 ∑
σ′∈Γk

L−1
(σ′,k) +

∑
σ′∈Γk

L−1
(k,σ′)

 .

As the third level symmetrization, summing up the above relation for k = 1, . . . , n and then dividing by n, we
get

1

n

n∑
k=1

SkQkS
T
k =

1

n

1

2(n− 1)!

n∑
k=1

 ∑
σ′∈Γk

L−1
(σ′,k) +

∑
σ′∈Γk

L−1
(k,σ′)

 =
1

2n!
2
∑
σ∈Γ

L−1
σ = Q,

which proves (88). Q.E.D.
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