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Abstract

Pairwise learning usually refers to a learning task which involves a loss function
depending on pairs of examples, among which most notable ones are bipartite
ranking, metric learning and AUC maximization. In this paper, we focus on online
learning algorithms for pairwise learning problems without strong convexity, for
which all previously known algorithms achieve a convergence rate of O(1/

√
T )

after T iterations. In particular, we study an online learning algorithm for pairwise
learning with a least-square loss function in an unconstrained setting. We prove
that the convergence of its last iterate can converge to the desired minimizer at a
rate arbitrarily close to O(1/T ). The rates for this algorithm are established in
high probability under the assumptions of polynomially decaying step sizes.

1 Introduction

This paper is concerned with an important family of learning problems that, for simplicity, we refer
to as pairwise learning. In contrast to regression and classification, such learning problems involve
pairwise loss functions, i.e. the loss function depends on a pair of examples which can be expressed
by `(f, (x, y), (x′, y′)) for a hypothesis function f : X × X → R. Many machine learning tasks
can be formulated as pairwise learning problems. For instance, bipartite ranking [1, 6, 14] is to
correctly predict the ordering of pairs of binary labeled samples, which can be formulated as a
pairwise learning problem. It generally involves the use of a misranking loss `(f, (x, y), (x′, y′)) =
I{(y−y′)f(x,x′)<0} or its surrogate loss `(f, (x, y), (x′, y′)) = (1 − (y − y′)f(x, x′))2, where I(·)
is the indicator function. Apart from bipartite ranking, many other learning tasks fit this pairwise
learning framework well, such as metric learning [5, 19, 20, 21] and AUC maximization [24].

In practice, pairwise learning usually involves pairs of training samples that are not independently
and identically distributed (i.i.d.). Consequently, standard generalization analysis techniques do not
apply to these algorithms. Generalization analysis for pairwise learning algorithms in the batch
learning setting has been conducted relying on U-statistics [3, 6, 14] and algorithmic stability [1].
The algorithmic challenge in pairwise learning is the big volume of data in the sense that the number
of pairs of examples grows quadratically in the number of examples. Specifically, if we have n
examples, then we have n2 possible pairs of examples. Online learning algorithms are scalable to
large scale datasets and have been well studied theoretically in classification and regression, see
e.g. [2, 4, 8, 13, 15, 16, 17, 22, 25]. However, there is relatively little work on generalization
analysis for online learning algorithms for pairwise learning, in spite of their capability of dealing
with large scale datasets. Wang et al. [18] established the first generalization analysis of online
learning methods for pairwise learning. In particular, they proved online-to-batch conversion bounds
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for online learning methods, which are combined with regret bounds to obtain generalization error
bounds. This is in the same spirit as the results in [4] for online learning algorithms in classification
and regression. Kar et al. [9] derived tighter bounds than those in [18] using an extension of
Rademacher complexities instead of covering numbers. Such results are based on the assumption of
a uniformly bounded loss function with a rate O(1/

√
T ) in the general convex case and O(1/T ) if,

moreover, the loss function is strongly convex.

In this paper we focus on online learning algorithms for pairwise learning without strong convexity.
In particular, we study an online pairwise learning algorithm with a least-square loss function in an
unconstrained setting. We prove that the convergence of its last iterate can converge to the desired
minimizer at a rate arbitrarily close to O(1/T ). The rates for this algorithm are established in high
probability under the assumptions of polynomially decaying step sizes. In contrast with previous
work [9, 18], the algorithm does not require the loss function to be strongly convex nor the the loss
function is uniformly bounded.

The paper is organized as follows. Section 2 illustrates the main result and discusses the related
work. Section 3 proves the main result and Section 4 concludes the paper.

2 Main results

Let samples z = {(xi, yi), i = 1, . . . , T} be drawn i.i.d. from an unknown distribution ρ on
Z = X × Y where is X is compact domain of Rd and Y ⊆ [−M,M ] with a constant M > 0.

For any w ∈ Rd, given the pairwise least-square loss `(w, (x, y), (x′, y′)) = (w>(x−x′)−y+y′)2,
we are interested in solving the expected risk minimization problem, i.e.

inf
w∈Rd

E(w), where E(w) =

∫∫
Z×Z

(w>(x− x′)− y + y′)2dρ(x, y)dρ(x′, y′).

This paper considers the following online learning algorithm: w1 = w2 = 0 and, for 2 ≤ t ≤ T ,

wt+1 = wt − γt
[ 1

t− 1

t−1∑
j=1

(w>t (xt − xj)− yt + yj)(xt − xj)
]
, (1)

where {γt : t ∈ N} is a sequence of step sizes. The above algorithm is an online learning algorithm
as it only needs a sequential access to the training data. Specifically, at each time step t + 1, the
above algorithm presumes a hypothesis wt upon which a new data zt = (xt, yt) is revealed. The
quality of wt is then estimated on the local empirical error 1

2(t−1)
∑t−1
j=1(yt − yj −w>t (xt − xj))2.

The next iterate wt+1 given by equation (1) is exactly obtained by performing a gradient descent
step from the current iterate wt based on the local empirical error. A similar form of algorithm (1)
has been studied in [9, 18, 23]. For instance, a variant of the stochastic gradient descent algorithm
was studied in [9, 18] which, at each iteration, requires an additional projection of wt to a prescribed
bounded ball.

Before stating our main result, consider a minimizer w∗ = arg infw∈Rd E(w). The existence of a
minimizer itself follows from the calculus of variations’ direct method, as E(w) is lower bounded
by zero, coercive, and weakly sequentially lower semi-continuous by its convexity. However, the
minimizer w∗ may not be unique. To see this, denote the covariance matrix

Cρ =

∫∫
X×X

(x− x′)(x− x′)>dρX (x)dρX (x),

where ρX is the marginal distribution of ρ on X . Denote by V0 the eigenspace of Cρ associated with
the zero eigenvalue. Then, any w∗ + v0 with v0 ∈ V0 is also a minimizer. Let w∗ be the minimizer
with zero component in the space V0, denote by λρ the smallest positive eigenvalue of matrix Cρ and
by κ the quantity supx,x′∈X ‖x− x′‖.

Theorem 1. Let γt = t−θ

µ for any t ∈ N with some θ ∈ ( 1
2 , 1) and µ ≥ λρ + κ2, and {wt : t =

1, . . . , T + 1} be given by algorithm (1). Let w∗ be the minimizer with zero component in the space
V0. Then, with probability 1− δ,

‖wT+1 −w∗‖2 ≤ C̄θ,ρ,µ T−(2θ−1) log2
(4T

δ

)
, (2)
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where C̄θ,ρ,µ > 0 is a constant depending on θ, µ and λρ of matrix Cρ but independent of T (see its
explicit form in the proof of the theorem).

In [23], an online learning algorithm for pairwise learning similar to (1) was studied in the setting of
a reproducing kernel Hilbert space (RKHS). Specifically, in order to translate the results there in the
linear case, for each vector w ∈ Rd we associate the function fw(x, x′) = w>(x − x′). Theorem
2 from [23] proved that the convergence rate for ‖fwT+1

− fw∗‖2ρ :=
∫∫
X×X |fwT+1

(x, x′) −
fw∗(x, x

′)|2dρX (x)dρX (x′) is of O(T−1/3). Notice that ‖fwT+1
− fw∗‖ρ ≤ κ‖wT+1 − w∗‖.

Consequently, in the linear case, our rate arbitrarily close to O(1/T ) is a sharp improvement over
the rate of O(T−1/3) in [23].

2.1 Related work

We now review existing work related to our work. Firstly, we discuss most recent work on online
learning algorithms for pairwise learning. Generalization analysis were first done in [18] which
provided online-to-batch conversion bounds for online pairwise learning algorithms. In [9], tighter
bounds were established using Rademacher complexities. Algorithm (1) is closely related to the
algorithm proposed in [18] which, however, needs a projection at each iteration to a bounded do-
main after the gradient descent step. This, in practice, leads to the difficult problem of selecting a
bounded domain beforehand. On the contrary, the update step in Algorithm (1) is performed in the
unconstrained setting and theoretically guaranteed to converge when the step sizes are in the form of
O(t−θ) with θ ∈ (1/2, 1). In particular, the rate can be arbitrarily close to O(1/T ) when θ is close
1. To the best of our knowledge, this is the first result on the fast convergence of online pairwise
learning algorithms without assuming strong convexity for the loss function.

Secondly, we review online learning algorithms in the univariate case. Online learning and stochastic
approximation for the univariate loss [2, 4, 8, 11, 13, 15, 16, 22, 23] is well studied. For strongly
convex loss, the optimal rate is O(1/T ) [13]. For general convex loss, the convergence rate of
the last iterate areO(log(T )/

√
T ) andO(log(T )/T ) for strongly convex loss [15]. Recently, it was

proved in [2] that online learning with the least-square loss, although being non-strongly convex, still
achieves the optimal rateO(1/T ) through an averaging scheme with constant step sizes. In infinite-
dimensional RKHSs, convergence of the last iterate of stochastic gradient descent was established
for strongly-convex losses [16] and non-strongly convex least-square loss [22]. .

Lastly, we discuss existing pairwise learning frameworks related to our work. In [1], the pair-
wise discrete ranking loss I[(yt−yj)(f(xt)−f(xj))<0] + 1

2 I[f(xt)=f(xj)] is considered, resulting in a
batch learning algorithm minimizing the empirical risk 2

T (T−1)
∑T
t=2

∑t−1
j=1 max(0, |yt − yj | −

(f(xt) − f(xj))sgn(yt − yj)), where the indicator function was replaced by the hinge loss as a
convex surrogate. For AUC maximization, [9] provided an online algorithm aimed at minimizing

1
T−1

∑T
t=2

1
t−1

∑t−1
j=1 max(0, 1− (yt− yj)w>(xt−xj)), and where AUC, the underlying quantity

being optimized is simply the loss I[w>(xt−xj)<0] when yt < yj and 0 otherwise. In [7], the online

learning algorithm optimizes the quantity 1/(T − 1)
∑T
t=2

∑t−1
j=1

I[yt 6=yj ](1−ytw
>(xt−xj))2

2|{1:yjyt=−1}| , which
directly corresponds to the empirical AUC risk when the least square loss is used as a convex upper
bound of the indicator function. Those frameworks slightly differ in the loss functions used. We
note that algorithm (1) relies on a least square loss formulation based on a similar empirical error

1
T−1

∑T
t=2

1
t−1

∑t−1
j=1(w>(xt−xj)−yt+yj)2. In the particular case of the bipartite ranking setting

with Y = {0, 1}, we remark that (1− (yt − yj)w>(xt − xj))2 = (w>(xt − xj)− yt + yj)
2 when

yt 6= yj , which can also be seen as an upper bound of the AUC loss.

3 Proof of main results

We now turn our attention to the proof of Theorem 1 by introducing some notations. Let

Ĉt =
1

t− 1

t−1∑
`=1

(xt − x`)(xt − x`)>, C̃t =
1

t− 1

t−1∑
`=1

∫
X

(x− x`)(x− x`)>dρX (x),
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and
Cρ =

∫∫
X×X

(x− x′)(x− x′)>dρX (x)dρX (x).

Likewise, let

Ŝt =
1

t− 1

t−1∑
`=1

(yt − y`)(xt − x`), S̃t =
1

t− 1

t−1∑
`=1

∫
X

(fρ(x)− y`)(x− x`)dρX (x),

and Sρ =
∫∫
X×X f̃ρ(x, x

′)(x − x′)dρX (x)dρX (x′). Here f̃ρ(x, x′) = fρ(x) − fρ(x
′) with the

regression function fρ being defined by fρ(x) =
∫
Y ydρ(y|x), where ρ(·|x) is the conditional dis-

tribution of ρ on Y.
Notice that, for any minimizer w∗ = arg infw∈Rd E(w), there holds∫∫

Z×Z
((x− x′)>w∗ − y + y′)(x− x′)dρ(x, y)dρ(x′, y′) = 0,

which implies that Cρw∗ = Sρ. We additionally define

Ât = (C̃t − Cρ)wt − (S̃t − Sρ), and B̂t = (Ĉt − C̃t)wt − (Ŝt − S̃t).
Using the above notations, algorithm (1) can be written as

wt+1 −w∗ = (I − γtCρ)(wt −w∗) + γt(Cρ − Ĉt)wt + γt(Ŝt − Sρ)
= (I − γtCρ)(wt −w∗)− γtÂt − γtB̂t.

(3)

Let ωtj(Cρ) =
∏t
`=j(I−γ`Cρ) for any j ≤ t, and introduce the conventional notations

∑t
`=t+1 γ` =

0 and ωtt+1(Cρ) = I. Then, we can derive from the equality (3), for any 2 ≤ t ≤ T , that

wt+1 −w∗ = −ωt2(Cρ)w∗ −
t∑

j=2

γjω
t
j+1(Cρ)Âj −

t∑
j=2

γjω
t
j+1(Cρ)B̂j . (4)

The strong convergence of ‖wt+1−w∗‖ stated in Theorem 1 will be proved by estimating the terms
on the righthand of (4). To this end, we needs some lemmas. The first lemma states that wt are
almost surely orthogonal to the eigenspace V0. This observation is inspired by the recent study on
the randomized Kaczmarz algorithm [10] for regression.
Lemma 1. Let the learning sequence {wt : t = 1, 2, . . . , T + 1} be produced by (1). Then, for any
t, wt is almost surely orthogonal to the eigenspace V0.

Proof. We prove the lemma by induction. The result holds true for t ≤ 2 since w1 = w2 = 0.
Assume, for some t ≥ 3, that wt is almost surely orthogonal to the eigenspace V0. We are going to
prove a similar result for wt+1 from (3). To see this, for any v ∈ V0 and t, j ∈ N, observe that∫∫

X 2

|v>(xt − xj)|2dρX (xt)dρX (xj) = v>Cρv = 0.

Similarly,

|v>Sρ|2 ≤
(∫∫

X×X
|f̃ρ(x, x′)||v>(x− x′)|dρX (x)dρX (x′)

)2
≤
(∫∫

X×X
|f̃ρ(x, x′)|2dρX (x)dρX (x′)

)2(∫∫
X×X

|v>(x− x′)|2dρX (x)dρX (x′)
)2

=
(∫∫

X×X
|f̃ρ(x, x′)|2dρX (x)dρX (x′)

)2(
v>Cρv

)
= 0.

In addition, for any ` ≤ t− 1, there holds∫
X

∣∣ ∫
X
v>(x− x`)(x− x`)>dρX (x)wt

∣∣dρX (x`)

≤
(∫
X

∫
X
|v>(x− x`)|2dρX (x)dρX (x`)

)1/2(∫
X

∫
X
|w>t (x− x`)|2dρX (x)dρX (x`)

)1/2
= (v>Cρv)1/2

(∫
X

∫
X
|w>t (x− x`)|2dρX (x)dρX (x`)

)1/2
= 0,

4



and ∫
Z

∣∣ ∫
X
v>(fρ(x)− y`)(x− x`)dρX (x)

∣∣dρ(z`)

≤
(∫
Z

(fρ(x)− y`)2dρ(x, y`)
)1/2(∫

X

∫
X
|v>(x− x`)|2dρX (x)dρX (x`)

)1/2
=
(∫
Z

(fρ(x)− y`)2dρ(x, y`)
)1/2

(v>Cρv)1/2 = 0.

In summary, the above inequalities imply that xt−xj ⊥ V0,
∫
X (x−x`)(x−x`)>dρX (x)wt ⊥ V0,∫

X (fρ(x) − y`)(x − x`)dρX (x) ⊥ V0, and Sρ ⊥ V0 almost surely, which by the definition of Ât

and B̂t, leads to Ât ⊥ V0 and B̂t ⊥ V0 almost surely. Consequently, from (3), wt+1 is orthogonal
to V0. This completes the proof of the lemma.

The above lemma indicates that the error decomposition equality (4) holds true in V ⊥0 , the orthogo-
nal complement of V0 in Rd. Denote by ωtj+1(λρ) =

∏t
`=j+1(1 − γ`λρ) for any j ≤ t. Then, we

have the following result.

Lemma 2. Assume that γ`κ2 ≤ 1 for any ` ∈ N. Then, for any j ≤ t, there holds ‖ωtj+1(Cρ)Âj‖ ≤
ωtj+1(λρ)‖Âj‖ and ‖ωtj+1(Cρ)B̂j‖ ≤ ωtj+1(λρ)‖B̂j‖, where ‖ · ‖ denotes the Euclidean norm.

Proof. Let us prove the first inequality. To this end, recall from the proof of Lemma 1 that Âj ⊥ V0.
For any v ∈ V0, observe that v>ωtj+1(Cρ)Âj = v>Âj = 0. Hence, ωtj+1(Cρ)Âj ⊥ V0. Moreover,
we can write Âj =

∑
k:λk>0(v>k Âj)vk, where {vk} and {λk} are the eigenvectors and eigenvalues

of Cρ. Consequently,

‖ωtj+1(Cρ)Âj‖ = ‖
∑
k:λk>0(v>k Âj)ωtj+1(Cρ)vk‖ = ‖

∑
k:λk>0(v>k Âj)ωtj+1(λk)vk‖

=
(∑

k:λk>0 |(v>k Âj)ωtj+1(λk)|2
)1/2

≤ ωtj+1(λρ)
(∑

k:λk>0 |v>k Âj |2
)1/2

= ωtj+1(λρ)‖Âj‖,

where the second to the last inequality used the fact that λk ≤ ‖Cρ‖ ≤ supx,x′∈X ‖x − x′‖2 = κ2

and γ`λk ≤ γ`κ
2 ≤ 1 for any ` ∈ N. The proof for the second inequality can be done similarly.

This completes the proof of the lemma.

The following lemma gives an upper-bound of the norms of the learning sequence {wt : t ∈ N}.
Lemma 3. Let the learning sequence {wt : t ∈ N} be given by (1) and assume, for any t ∈ N, that

γtκ
2 ≤ 1. Then, for any t ∈ N we have ‖wt‖ ≤ 2M

(∑t−1
j=2 γj

) 1
2 .

Proof. For t = 1 or t = 2, by definition w1 = w2 = 0 which trivially satisfy the desired inequality.
It suffices to prove the case of t ≥ 2 by induction. By recalling the recursive equality (1), we have

‖wt+1‖2 ≤ ‖wt‖2 +
γ2
t κ

2

t−1
∑t−1
j (w>t (xt, xj)− yt + yj)

2

− 2γt
t−1

∑t−1
j=1(w>t (xt − xj)− yt + yj)w

>
t (xt − xj).

Define a univariate function Fj by Fj(s) = κ2γt(s− yt + yj)
2 − 2(s− yt + yj)s. It is easy to see

that sups∈R Fj(s) =
(yt−yj)2
2−κ2γt

≤ (2M)2 since γtκ2 ≤ 1 and |yj |+ |yt| ≤ 2M. Therefore, from the
above estimation we can get, for t ≥ 2, that

‖wt+1‖2 ≤ ‖wt‖2 + γt
t−1

∑t−1
j=1 supj Fj(s) ≤ ‖wt‖2 + (2M)2γt.

Combining the above inequality with the induction assumption that ‖wt‖ ≤ 2M
√∑t−1

j=2 γj implies
the desired result. This completes the proof of the lemma.

We also need the following probabilistic inequalities in a Hilbert space. The first one is the Bennett’s
inequality for random variables in Hilbert spaces, which can be derived from [16, Theorem B4].
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Lemma 4. Let {ξi : i = 1, 2, . . . , t} be independent random variables in a Hilbert space H with
norm ‖ · ‖. Suppose that almost surely ‖ξi‖ ≤ B and E‖ξi‖2 ≤ σ2 <∞. Then, for any 0 < δ < 1,
there holds, with probability at least 1− δ,

∥∥∥1

t

t∑
i=1

[ξi − Eξi]
∥∥∥ ≤ 2B log 2

δ

t
+ σ

√
log 2

δ

t
.

The second probabilistic inequality is the Pinelis-Bernstein inequality for martingale difference se-
quence in a Hilbert space, which is derived from [12, Theorem 3.4].

Lemma 5. Let {Sk : k ∈ N} be a martingale difference sequence in a Hilbert space. Suppose that
almost surely ‖Sk‖ ≤ B and

∑t
k=1 E[‖Sk‖2|S1, . . . , Sk−1] ≤ σ2

t . Then, for any 0 < δ < 1, there
holds, with probability at least 1− δ,

sup
1≤j≤t

∥∥∥∥∥
j∑

k=1

Sk

∥∥∥∥∥ ≤ 2

(
B

3
+ σt

)
log

2

δ
.

After the above preparations, we can now present the following bounds for the terms on the righthand
side of the error decomposition (4).

Theorem 2. Assume that γ`(κ2 + λρ) ≤ 1 for any ` ∈ N. Then, for any 0 < δ < 1, the following
estimations hold true.

(a) With probability 1− δ, there holds

‖
t∑

j=2

γjω
t
j+1(Cρ)Âj‖ ≤ 6

√
2(1 + κ)κM log

(2t

δ

) t∑
j=2

γjω
t
j+1(λρ)√
j

(
1 + (

j−1∑
`=2

γ`
)1/2

).

(b) With probability 1− δ, we have

‖
t∑

j=2

γjω
t
j+1(Cρ)B̂j‖ ≤

32
√

2

3
(1 + κ)κM log

(2

δ

)( t∑
j=2

γ2j (ωtj+1(λρ))
2(1 +

j−1∑
`=2

γ`)
)1/2

.

Proof. We start with the proof of part (a). From Lemma 2 and Lemma 3, we have

‖
t∑

j=2

γjω
t
j+1(Cρ)Âj‖ ≤

t∑
j=2

γjω
t
j+1(λρ)‖Âj‖ ≤

t∑
j=2

γjω
t
j+1(λρ)(‖Cρ − C̃j‖‖wj‖+ ‖S̃j − Sρ‖)

≤
∑t
j=2 γjω

t
j+1(λρ)

(
2M‖Cρ − C̃j‖(

∑j−1
`=2 γ`)

1/2 + ‖S̃j − Sρ‖
)
,

where, for any 2 ≤ j ≤ t, ‖Cρ−C̃j‖ denotes the Frobenius norm of matrix Cρ−C̃j .Applying Lemma

4 with B = σ = κ2, with probability 1 − δ
t there holds ‖Cρ − C̃j‖ ≤

2κ2 log 2t
δ

j−1 + κ2
√

log 2t
δ

j−1 ≤
3
√

2κ2 log( 2t
δ )/
√
j. Similarly, applying Lemma 4 with B = σ = 2κM implies, with probability

1− δ
t , that

‖S̃j − Sρ‖ ≤
4Mκ log 2t

δ

j − 1
+ 2κM

√
log

2t

δ
/(j − 1) ≤ 6

√
2κM log(

2t

δ
)/
√
j.

Putting these estimation into (3) implies part (a).

For part (b), observe that {ξj := γjω
t
j+1(Cρ)B̂j : j = 2, . . . , t} is a martingale difference sequence.

we will apply Lemma 5 to prove part (b). To this end, it needs to estimate B and σ. Indeed, by
Lemma 3, we get that

‖B̂j‖ ≤ ‖Ĉj −C̃j‖‖wj‖+‖Ŝj − S̃j‖ ≤ 4κ2M
(j−1∑
`=2

γ`
) 1

2 + 2κM ≤ 4
√

2κ(1 +κ)M
(
1 +

j−1∑
`=2

γ`
) 1

2 .
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From Lemma 2 and the above estimation, we have that

σ2
t =

t∑
j=2

γ2jE(‖ωtj+1(Cρ)B̂j‖2|z1, . . . , zj−1) ≤
t∑

j=2

γ2j (ωtj+1(λρ))
2E(‖B̂j‖2|z1, . . . , zj−1)

≤ 32κ2(1 + κ)2M2
∑t
j=2 γ

2
j (ωtj+1(λρ))

2(1 +

j−1∑
`=2

γ`),

(5)

and
B = sup2≤j≤t

[
γjω

t
j+1(λρ)‖B̂j‖

]
≤ (
∑t
j=2

[
γjω

t
j+1(λρ)‖B̂j‖

]2
)1/2

≤ 4
√

2κ(1 + κ)M
(∑t

j=2 γ
2
j (ωtj+1(λρ))

2(1 +

j−1∑
`=2

γ`)
)1/2

.
(6)

Applying Lemma 5 with the estimation of B and σt being given by (5) and (6) implies the desired
result in part (b). This completes the proof of the theorem.

Theorem 1 can be derived from Theorem 2 by using the following technical lemma.

Lemma 6. Let γj = j−θ

µ for any j ∈ N with some θ ∈ (1/2, 1). Then, there holds∑t
j=2

γjω
t
j+1(λρ)√
j

(
1 +

(∑j−1
`=2 γ`

)1/2
)

≤ 2max(1,(µ(1−θ))−1/2)
µ

(
1+
(
µ2

5θ
2

λρ
+
(

µ(2+3θ)
2λρ(1−2θ−1)e

) 2+3θ
2(1−θ)

))
t−

θ
2 ,

(7)

and (∑t
j=2 γ

2
j (ωtj+1(λρ))

2(1 +
∑j−1
`=2 γ`)

)1/2
≤ max(1,(µ(1−θ))−1/2)

µ

(
1+
(
µ24θ−1

2λρ
+
(

3µθ
2λρ(1−2θ−1)e

) 3θ
1−θ
))1/2

t−(θ−
1
2 ).

(8)

Proof. The proof needs the elementary inequality (see e.g. [17, Lemma 2]): for any ν > 0, a >
0, 0 < q1 < 1, and q2 ≥ 0, then, for any t ∈ N,

t−1∑
j=1

j−q2 exp
(
−ν

t∑
`=j+1

`−q1
)
≤
(2q1+q2

ν
+
( 1 + q2
ν(1− 2q1−1)e

) 1+q2
1−q1

)
tq1−q2 . (9)

To this end, denote the lefthand term of (7) by I =
∑t
j=2

γj√
j

[∏t
`=j+1(1 − λργ`)

]
(1 +

(
∑j−1
`=2 γ`)

1/2). Indeed, we have

I ≤ t−θ−
1
2

µ

(
1 + ( 1

µ(1−θ) ((t− 1)1−θ − 1))1/2
)

+

t−1∑
j=2

j−θ−
1
2

µ
exp
(
−λρ
µ

t∑
`=j+1

`−θ
)[

1 + (
1

µ(1− θ)
((j − 1)1−θ − 1))1/2

]
≤ 2max(1,(µ(1−θ))−1/2)

µ

(
t−

3θ
2 +

t−1∑
j=2

j−
3θ
2 exp

(
−λρ
µ

t∑
`=j+1

`−θ
))

≤ 2max(1,(µ(1−θ))−1/2)
µ

(
t−

3θ
2 +
(
µ2

5θ
2

λρ
+
(

µ(2+3θ)
2λρ(1−2θ−1)e

) 2+3θ
2(1−θ)

)
t−θ/2

)
≤ 2max(1,(µ(1−θ))−1/2)

µ

(
1+
(
µ2

5θ
2

λρ
+
(

µ(2+3θ)
2λρ(1−2θ−1)e

) 2+3θ
2(1−θ)

))
t−

θ
2 ,

(10)

where the third to last inequality used inequality 9 with q1 = θ, q2 = 3θ
2 , and ν =

λρ
µ . This

completes the estimation of (7).

Now we turn to the estimation of (8) where the term on the lefthand side is denoted by J . Similarly
we have

(J )2 ≤ 1
µ2 t
−2θ(1 + (t−1)1−θ−1

µ(1−θ)
)

+
∑t−1
j=2

j−2θ

µ2 exp
(
− 2λρ

µ

∑t
`=j+1 `

−θ)(1 + (j−1)1−θ−1
µ(1−θ)

)
≤ 2max(1,(µ(1−θ))−1)

µ2

[
t1−3θ +

∑t−1
j=2 j

−(3θ−1) exp
(
− 2λρ

µ

∑t
`=j+1 `

−θ)]
≤ 2max(1,(µ(1−θ))−1)

µ2

(
1+
(
µ24θ−1

2λρ
+
(

3µθ
2λρ(1−2θ−1)e

) 3θ
1−θ
))
t−(2θ−1),

7



where, in the last inequality, we used 9 with q1 = θ, q2 = 3θ − 1, and ν =
2λρ
µ . Hence,

J ≤
√

2 max(1, (µ(1− θ))−1/2)

µ

(
1+
(µ24θ−1

2λρ
+
( 3µθ

2λρ(1− 2θ−1)e

) 3θ
1−θ
))1/2

t−(θ−
1
2 ).

This completes the proof of the lemma.

We are finally ready to prove Theorem 1 by using Theorem 2 and Lemma 6.

Proof of Theorem 1. By (4), there holds

‖wT+1 −w∗‖ ≤ ‖ωT2 (Cρ)w∗‖+ ‖
T∑
j=2

γjω
T
j+1(Cρ)Âj‖+ ‖

T∑
j=2

γjω
T
j+1(Cρ)B̂j‖. (11)

In addition, recall that w∗ ⊥ V0. Then, there holds

‖ωt2(Cρ)w∗‖ ≤
t∏

j=2

(1− λργj)‖w∗‖. (12)

we have

‖ωT2 (Cρ)w∗‖ ≤ exp(−λρµ
∑T
j=2 `

−θ)‖w∗‖ ≤ 2κM
λρ

exp
(
− λρ
µ(1−θ) (T

1−θ − 2)
)

≤ 2κM
λρ

exp(
2λρ

µ(1−θ) ) exp(− λρ
µ(1−θ)T

1−θ)

≤ 2κM
λρ

exp(
2λρ

µ(1−θ) )
(
µ(2θ−1)
2λρe

) 2θ−1
2(1−θ)

T−(θ−
1
2 ).

(13)

The second inequality in the above estimation relies on the fact (from the proof of from Lemma 1)
that Cρw∗, Sρ ⊥ V0. This implies that ‖w∗‖ = ‖C−1ρ Sρ‖ holds true in the eigenspace corresponding
to non-zero eigenvalues of Cρ for which C−1ρ is well defined (i.e. it equals to the pseudo inverse of
Cρ). The last inequality of the above estimation used the elementary inequality (see e.g. [17, Lemma
2]): for any x > 0, exp(−νx) ≤ ( aνe )ax−a.

Combining (7), (8), and (13) with Theorem 2, we obtain from inequality (11), with probability 1−δ,
that ‖wT+1 −w∗‖2 ≤ C̄2

θ,ρ,µ T
−(2θ−1) log2

(
4T
δ

)
, where

C̄θ,ρ,µ = (12
√

2 + 128
3 )(1 + κ)κM max(1,(µ(1−θ))−1)

µ

[
2 + µ2

5θ
2

λρ
+
(

µ(2+3θ)
2λρ(1−2θ−1)e

) 2+3θ
2(1−θ)

+
(
µ24θ−1

2λρ
+
(

3µθ
2λρ(1−2θ−1)e

) 3θ
1−θ
))1/2]

+ 2κM
λρ

exp(
2λρ

µ(1−θ) )
(
µ(2θ−1)
2λρe

) 2θ−1
2(1−θ)

.

This completes the proof of the theorem. �

4 Conclusion

In this paper, we proved the fast convergence rate for an online pairwise learning algorithm with a
non-strongly-convex loss in an unconstrained setting. Specifically, under the assumption of poly-
nomially decaying step sizes, we established that the convergence rate of the last iterate to the
minimizer of the true risk is arbitrarily close to O(1/T ). We are currently exploring ideas to im-
prove the scalability of algorithm (1). From a practical point of view, algorithm (1) is not a fully
online learning algorithm since it needs to store previous samples. One possibility is to work with
a truly stochastic update consisting of only a pair of examples at each iteration, or to rely only on
a buffering set of past training samples, as used in [9, 18], when computing the gradient estima-
tor. Finally, we notice that our rate O(1/T ) depends on the smallest positive eigenvalue of Cρ. It
would be interesting to exploit strategies such as an averaging scheme of the iterates to relax such a
dependency.
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