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Abstract
While stochastic gradient descent (SGD) is still the most popular optimization algorithm in deep
learning, adaptive algorithms such as Adam have established empirical advantages over SGD in
some deep learning applications such as training transformers. However, it remains a question
why Adam converges significantly faster than SGD in these scenarios. In this paper, we explore
one explanation of why Adam converges faster than SGD using a new concept directional sharp-
ness. We argue that the performance of optimization algorithms is closely related to the directional
sharpness of the update steps, and show SGD has much worse directional sharpness compared to
adaptive algorithms. We further observe that only a small fraction of the coordinates causes the bad
sharpness and slow convergence of SGD, and propose to use coordinate-wise clipping as a solution
to SGD and other optimization algorithms. We demonstrate the effect of coordinate-wise clipping
in sharpness reduction and speeding up the convergence of optimization algorithms under various
settings, and conclude that the sharpness reduction effect of adaptive coordinate-wise scaling is the
reason for Adam’s success in practice.

1. Introduction

Stochastic gradient descent (SGD) [3, 26] is one of the most popular optimization algorithms for
deep learning. Although SGD is efficient on various large-scale neural networks, in many tasks,
such as traning transformers [10, 31], people seek to use the adaptive variants of stochastic gradient
methods. Adaptive algorithms, such as Adagrad [11], Adam [18], and AMSGrad [25], can find a
“better coordinate-wise scaling” of the gradient, so the size of the update step is adaptive to the local
geometry of the function. While adaptive algorithms can converge much faster than SGD in many
applications [12, 16, 34], the understanding of the superior performance of Adam-type optimizers
in these tasks is limited [7, 34].

In this paper, we explore one explanation of why Adam converges faster than SGD in practice,
especially for transformers. We decompose the goal of minimizing an objective function into two
parts: gradient correlation and directional sharpness. We argue that the directional sharpness of
the update direction is a useful indicator of the performance of optimization algorithms, that high
sharpness usually implies low performance, and is more important than the gradient correlation
in optimization. We observe through experiments that the update directions of SGD have much
higher directional sharpness compared to adaptive algorithms, which explains why SGD converges
so slowly. Furthermore, we propose that the imbalanced distribution of gradient across coordi-
nates is the key contributor to SGD’s high directional sharpness. We observe that only a small
fraction of the parameters contribute to most of SGD’s directional sharpness. Hence, we propose
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to use coordinate-wise clipping as a solution to the problem of slow convergence and bad direc-
tional sharpness. We show that clipping can improve the directional sharpness and convergence rate
of various non-coordinate-wise-scaling optimization algorithms, and propose that coordinate-wise
clipping can be used as a generic component in optimization algorithms. We demonstrate our find-
ings through two experiments under various settings and show that our observations are consistent
across different tasks, models, and iterations. We conclude that the adaptive coordinate-wise scal-
ing of Adam can effectively find a balance between optimizing gradient correlation and directional
sharpness, and such ability is the key to Adam’s fast convergence in deep learning training.

2. Related Work

General Convergence Rates of Adaptive Algorithms. Adaptive algorithms have long been stud-
ied and applied in deep learning [1, 11, 18, 23, 25, 30]. Several previous work has proved convex
and non-convex convergence rates for Adagrad [9, 11, 20, 32] and Adam or AMSGrad [4, 8, 13,
22, 25, 35, 36]. The best known non-convex convergence rate for Adagrad is O( log T√

T
) [9, 20] and

O( 1√
T
) for AMSGrad [35]. While the result by Zhou et al. [35] matches the non-convex conver-

gence rateO( 1√
T
) of SGD [15], there is no theoretical proof that Adam can converge asymptotically

faster than SGD for general functions [7]. Therefore, there is still a significant gap of work between
the theoretical understanding of Adam and its empirical fast performance.

Faster Convergence Rates Under Certain Settings. Another line of work focused on specific
settings that Adam might work better than SGD. Adaptive algorithms can work asymptotically bet-
ter when the stochastic gradients are sparse [11, 35] or when there is a sparse set of noise [2]. Zhang
et al. [34] proved that global clipping methods outperforms SGD when the stochastic gradients have
heavy-tail noise, argued that Adam can also deal with heavy-tail noise effectively, and designed
a new algorithm based on coordinate-wise clipping. The effect of global clipping and normaliza-
tion methods were also studied in [17, 19]. Our work is inspired by the use of coordinate-wise
clipping in algorithm design in [34], but we propose different explanations of the effectiveness of
coordinate-wise clipping with new empirical evidence.

3. Directional Sharpness of Adaptive Algorithms

In this section, we introduce a new measurement directional sharpness that indicates the perfor-
mance of optimization algorithms. We show that minimizing the term is extremely important to fast
convergence of optimization algorithms and argue that it is closely related to the slow convergence
of SGD.

In convex and non-convex optimization, a typical proof strategy is to consider the quadratic
Taylor expansion of the objective function

f(xt+1) ≈ f(xt) +∇f(xt)>(xt − xt+1)︸ ︷︷ ︸
gradient correlation

+(xt − xt+1)
>∇2f(xt)(xt − xt+1)︸ ︷︷ ︸

directional sharpness

(1)

where η is the step size. In order for f(xt+1) to decrease monotonically, the optimization algorithm
should minimize the two terms that depends on the update step. To bound the second-order term, a
standard strategy is to use the property of the spectral norm of the Hessian

(xt − xt+1)
>∇2f(xt)(xt − xt+1) ≤ ‖∇2f(xt)‖2‖xt − xt+1‖22. (2)
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The local Hessian spectral norm is often called the sharpness of the function in deep learning [5]. If
the function is L-smooth, such that ‖∇2f(xt)‖2 ≤ L for some constant L, the second-order term is
upper bounded by L‖xt−xt+1‖22, so the loss can decrease when ‖xt−xt+1‖2 is sufficiently small.
However, there are disadvantages of the smoothness assumption in theoretical proofs. The Hessian
can adapt to the geometry of the trajectory and can vary significantly for different algorithms [5, 6].
Furthermore, even if the local geometry and Hessian are fixed, the update direction xt+1−xt is also
extremely important to minimizing the second-order term.

Motivated by the definition of sharpness and the above observations, we define the directional
sharpness of a function f at x in the direction v ∈ Rd, ‖v‖2 = 1 as v>∇2f(x)v. Although our
definition is motivated by the sharpness definition in deep learning, there are important differences
between directional sharpness and the general sharpness in deep learning optimization. The general
sharpness definition describes the worst-case sharpness and is the supremum of directional sharp-
ness over all directions. However, directional sharpness consider the sharpness in the specific update
direction of an optimization algorithm, and can be much lower than the sharpness. Furthermore, the
concept of sharpness is typically associated with the landscape and generalization of neural net-
works as in various works such as Sharpness-Aware Minimization [14] and Edge of Stability [5, 6].
However, we are only interested in optimizing the objective function, or the loss on the training set.

The directional sharpness at xt in the update direction is extremely important to minimizing
f(xt+1). When the gradient correlation is similar, the loss f(xt+1) directly depends on the direc-
tional sharpness at xt. Furthermore, since directional sharpness is quadratic in the step size η and
gradient correlation is linear, if we consider Equation (1) as a quadratic function of η, a lower di-
rectional sharpness implies the potential to take a larger step size and possibly lead to a larger local
decrement of the objective function. This implies that having a low directional sharpness is a more
desirable property for update directions than having a high gradient correlation.

Empirically, we observe that there can be a significant gap between the directional sharpness
of different optimization algorithms. In particular, the directional sharpness is much lower for
adaptive algorithms than for SGD. We argue that minimizing the directional sharpness is more
important for fast convergence of optimization algorithms as compared to minimizing the gradient
correlation. We study the update step of different optimization algorithms under the same trajectory
and local geometry using pseudo-update steps described in Appendix A, in order to rule out the
impact of trajectory. We compute the directional sharpness of different optimization algorithms and
visualize the optimization landscape in the update direction of a variety of optimization algorithms
in Figure 3. The observation is consistent with our analysis. The directional sharpness of different
optimization algorithms varies significantly. For example, the directional sharpness of SGD can be
more than 107 times the directional sharpness of Adafactor as shown in Figure 2. The update step
of SGD has the best correlation with the actual gradient, so the loss decrease faster when the step
size is very small, since in this case the linear term dominates the quadratic term in Equation (1).
However, because of the large directional sharpness, when the step size increases the quadratic term
grows faster than the linear term, so the loss reaches the local minima in the direction after a very
small step size. For adaptive algorithms, the directional sharpness is much lower than SGD, so they
have the potential to use a much larger step size and the optimal step could give a much lower loss
compared to SGD.

In order to explain the sharpness reduction effect of adaptive algorithms, since the strategy for
adaptive algorithms is to find a coordinate-wise scaling of the gradient, we investigate the distribu-
tion of gradient norm across different coordinates. We visualize a histogram of the absolute value
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Absolute Value of Gradient Coordinates

Count

Figure 1: Histogram of momentum distribu-
tion for stochastic gradient descent on machine
translation.

Algorithm Sharpness
Adam 0.16190993

SGD 31.04433435

SGD Clipping 1.77876506

Normalized SGD 0.77112307

Normalized SGD Clipping 0.38075357

Adafactor 3.1928× 10−6

Adafactor Clipping 2.5258× 10−6

Figure 2: The average sharpness of different op-
timization algorithms when trained on machine
translation, in the same experiment and epoch
as Figure 3.
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Figure 3: The loss landscape in different update directions on machine translation. The step size is
the learning rate normalized by the update step `2 norm.

of SGD momentum coordinates in Figure 1. We observe that the gradients are distributed unevenly
across the coordinates, with half of the coordinates have absolute value ranging from 10−12 to 10−6,
but also exists an innegligible portion of coordinates that can be as high as 10−4 to 10−2, contribut-
ing to most of the gradient norm. The histogram suggests that the gradients are concentrated on a
small fraction of the coordinates, and this small fraction of coordinates can contribute to a large por-
tion of sharpness, making optimization hard. For adaptive algorithms and normalized optimization
algorithms, since they already used some forms of scaling, the imbalanced gradient distribution will
not be as severe as SGD, but normalizing the large coordinates might still be beneficial.

4. Coordinate-wise Clipping

In this section, we propose to use coordinate-wise clipping as a solution to the aforementioned im-
balanced distribution of gradient based on our experimental findings. We observe that the sharpness
is also concentrated in the large coordinates in the gradient, and clipping those coordinates can sig-
nificantly decrease directional sharpness. Although clipping can decrease the correlation between
the update step and the true gradient, since the dependence on the clipped entry is quadratic for the
second-order term and linear for the first-order term, it might not be beneficial to use these coor-
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dinates. The use of clipping in optimization algorithms is a trade-off between improving gradient
correlation and reducing directional sharpness. By clipping the top coordinates in the gradient, al-
though gradient correlation decreases, the directional sharpness can decrease even more to make up
the loss.

We consider using clipping on a variety of non-coordinate-wise-scaling algorithms, including
SGD, normalized SGD, and Adafactor [28]. We demonstrate that coordinate-wise clipping sig-
nificantly reduces the sharpness of adaptive algorithms and speeds up the optimization process.
Specifically, we compute the threshold τ for the top k% gradients in terms of the absolute value,
and clip the gradient coordinates gi to g̃i = sgn(gi)min{|gi|, τ} based on their sign. In practice, it
is possible to simplify the procedure by setting a fixed threshold. From Figure 2, we can see that by
clipping the top 1% coordinates, the directional sharpness decrease significantly. Since we normal-
ize the update step when we compute the directional sharpness, the sharpness reduction effect of
coordinate-wise clipping is not due to significant reduction of the norm of the update step, but the
improved flatness of the direction. Figure 3 gives a coherent message, that clipped algorithms can
find a direction that has larger maximal decrement of the loss in the local geometry.

Finally we demonstrate that clipping algorithms can converge faster than the original coun-
terpart by directly training transformers with the clipping algorithms, with the loss curve shown
in Figure 4. According to the result, clipping algorithms can speedup training significantly. Our
result suggests that clipping can be used as an generic building block in any non-coordinate-wise-
scaling algorithms and speed up training. The new finding can provide insight into designing new
optimization algorithms.

Based on our experimental findings, we conjecture that there is a positive correlation between
the magnitude of Hessian coordinates and gradient coordinates. The positive correlations is also
mentioned in [33], but their proposed correlation is between the norm of Hessian and norm of gra-
dient. We further suggest that there is a positive correlation between the coordinates of gradient and
Hessian, and the success of Adam is due to the ability to scale down the bad coordinates and reduce
the sharpness through coordinate-wise scaling of the gradient. Understanding of this phenomenon
could be essential in proving convergence rates for Adam that are faster than SGD.
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Figure 4: Clipped optimization algorithms generally converge faster than the original algorithms.
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5. Experiments

In Appendices A and B, we demonstrate our findings with two types of experiments. We explore
several different tasks and settings and show our results hold in various setting, including training
t5 [24] architecture on machine translation datasets and DistilRoBERTa [27] on masked language
modeling datasets. We compute the directional sharpness of a variety of optimization algorithms,
including SGD, normalized SGD, and Adafactor [28], and visualize the corresponding loss land-
scape direction, under different local geometry. We show that SGD has bad sharpness under all of
the settings, regardless of the task, model, or local geometry. In addition, we demonstrate clipping
can always improve the directional sharpness of optimization algorithms, and often result in better
local decrement of loss function. We also implement clipping algorithms and use them to train
different models, and demonstrate that clipping algorithms converge faster in practice.

6. Conclusion

In summary, our work provides a new insight of why Adam converges faster than SGD in practice.
In contrast to assumptions on properties of the gradient, we propose to study directional sharpness
as an important indicator for the performance of optimization algorithms in deep learning. We show
that adaptive algorithms and clipped optimization algorithms can generally achieve significantly
better directional sharpness compared to SGD. We argue that the slow convergence of SGD is related
to the high directional sharpness, caused by a positive coordinate-wise gradient-Hessian correlation.
We propose to use coordinate-wise clipping as a solution to the problem of high sharpness. We
demonstrate the sharpness reduction effect of coordinate-wise clipping and show that it is possible
to step into a lower loss in the update direction of clipping algorithms compared to the original
algorithms. We further demonstrate the effectiveness of coordinate-wise clipping in a wide range
of optimization algorithms without coordinate-wise scaling, including SGD, normalized SGD, and
Adafactor. We suggest the use of coordinate-wise clipping as a generic building block in non-
convex optimization algorithms. Our work provide useful explanations and conjectures about the
superior performance of Adam and further understanding of the results could be useful in theoretical
understanding of the empirical advantage of Adam over SGD.
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Appendix A. Experimental Details

A.1. Tasks, Datasets, and Models

We run our experiments on two tasks, including machine translation and masked language modeling.
The details of the dataset, training set size, and model we use are in Table 1. For each dataset, we
select the first 10240 data as our training set. Since we’re mainly interested in minimizing the
training loss, we do not use any test or validation sets, nor any evaluation metrics other than the
cross-entropy loss. For machine translation, we use the English to French opus books dataset [29]
and t5 model [24]. For masked language modeling, we use the imdb dataset [21] and DistilRoBERTa
model [27]. In order to evaluate the function in a offline setting, we generate fixed masks with
probability 0.15 at the beginning of the training and does not generate new masks whenever we
collate the data.

Task Dataset Size Model
Machine Translation opus books [29] 10240 t5-small [24]
Masked Language Modeling imdb [21] 10240 DistilRoBERTa-base [27]

Table 1: Details of the tasks, datasets, training set sizes, and models we use for the two different
experiments.

A.2. Optimization Algorithms and Clipping Methods

We use 4 optimization algorithms, including Adam, SGD, normalized SGD, and Adafactor [28]. We
use momentum for all of the optimization algorithms to rule out any potential effect of momentum.
The clipped optimization algorithms are described in Algorithms 1 to 4. Notice that for Adafactor,
we only clip the gradient in the nominator of the final update step, since otherwise the scaling effect
could cancel out or even increase the norm. Adafactor is originally used with the relative step sizes
αt, but in certain cases we use a fixed learning rate in place of αt. In the algorithms, we assume
Clip(g) calculates the clipping threshold τ for the top k% coordinates and returns g̃ where g̃i =
sgn(gi)min{|gi|, τ}. We use a large value k = 1 in all of our experiments to better demonstrate the
effectiveness of clipping. However, significant but weaker effects can also be observed by setting a
very small value such as k = 0.1. We will include more experiments on the clipping threshold in
future versions of the paper.

Algorithm 1: SGD with momentum
Data: initial point x0, learning rate η, momentum term β
for t← 1, . . . , T do

gt ← ∇f(xt)
ĝt ← Clip(gt)
mt ← βmt−1 + (1− β)ĝt
xt ← xt−1 − ηmt

end
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Algorithm 2: Normalized SGD with momentum for weight matrices and vectors
Data: initial point x0 ∈ Rm×n, learning rate η, momentum term β
for t← 1, . . . , T do

gt ← ∇f(xt)
ĝt ← Clip(gt)
mt ← βmt−1 + (1− β)ĝt
vt ← mt

‖mt‖2 ·
√
mn

xt ← xt−1 − ηvt
end

Algorithm 3: Adafactor for weight matrices [28]

Data: initial point x0 ∈ Rm×n, relative step sizes ρt = min{10−2, 1√
t
}, second moment decay

β̂2t = 1− t−0.8, regularization constants ε1 = 10−30 and ε2 = 10−3, clipping threshold
d = 1, RMS(x) := ‖x‖F√

mn

for t← 1, . . . , T do
αt ← max{ε2,RMS(xt−1)}ρt
Gt ← ∇f(xt−1)
Ĝt ← Clip(Gt)
Rt ← β̂2tRt−1 + (1− β̂2t)(G2

t + ε1)1m
Ct ← β̂2tCt−1 + (1− β̂2t)1>n (G2

t + ε1)
V̂t ← RtCt/1

>
nRt

Ut ← Ĝt/
√
V̂t

Ût ← Ut/max{1,RMS(Ut)/d}
xt ← xt−1 − αtÛt

end

Algorithm 4: Adafactor for weight vectors [28]

Data: initial point x0 ∈ Rn, relative step sizes ρt = min{10−2, 1√
t
}, second moment decay

β̂2t = 1− t−0.8, regularization constants ε1 = 10−30 and ε2 = 10−3, clipping threshold
d = 1, RMS(x) := ‖x‖2√

n

for t← 1, . . . , T do
αt ← max{ε2,RMS(xt−1)}ρt
Gt ← ∇f(xt−1)
Ĝt ← Clip(Gt)
V̂t ← β̂2tV̂t−1 + (1− β̂2t)(G2

t + ε1)

Ut = Ĝt/
√
V̂t

Ût ← Ut/max{1,RMS(Ut)/d}
xt ← xt−1 − αtÛt

end
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A.3. Experiment for Directional Sharpness of Optimization Algorithms

Pseudo-Update Step. Since all algorithms we use has momentum part, we need to compute the
momentum term in a different trajectory using “pseudo-update step.” Specifically, we compute the
momentum term for all the optimization algorithms at time t using the past values of x1, . . . , xt−1,
regardless of the optimization algorithm we use to perform the actual update step. The values we
computed for the algorithms were only used to visualize the landscape and compare the sharpness,
but not used for training. The momentum parameters are set to the default values [18, 28].

Training Optimizer. We use different training optimizers to compare our results across differ-
ent local geometry and optimization trajectory. We use SGD momentum with learning rate 10−3

and Adam with learning rate 10−4 as training optimizers. The momentum parameters are set to the
default values [18].

Test Batch. Since computation on the full-batch objective function is very computationally
expensive, we sample a fixed random subset of size 1024 as the test dataset at the beginning of the
training, and fix it during all epochs and batches, in order to speed up the landscape visualization
process. The losses in all the plots are the losses on the test batch.

Landscape Visualization. To visualize the landscape, we update the weight with the desired
update step and compute the loss. Afterwards, we reset the weight back to the original value before
the update, and repeat the above step with a new step size.

Directional Sharpness. We utilize PyTorch’s Hessian-vector product to efficiently compute
directional sharpness. We sample 5 batches from the 10 batches in the epoch. To show the effect
of clipping and adaptive update steps on the sharpness compared to SGD, we calculate the mean of
the ratio of sharpness versus SGD sharpness for the sampled batches in these epochs.

A.4. Experiment for Convergence of Clipped Optimization Algorithms

We demonstrate the convergence of clipped optimization algorithms using a 1% clipping threshold.
We manually tune the learning rate to find the best learning rate for the experiments. The learning
rate configuration of our experiment is shown in Table 2.
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Task Algorithm Learning Rate

Machine Translation

Adam 2× 10−3

Adafactor, 1% Clipping Relative
Adafactor Relative
Normalized SGD, 1% Clipping 5× 10−4

Normalized SGD 5× 10−4

SGD, 1% Clipping 8× 10−1

SGD 1× 10−3

Masked Language Modeling

Adam 2× 10−3

Adafactor, 1% Clipping 1× 10−2

Adafactor 1× 10−2

Normalized SGD, 1% Clipping 5× 10−5

Normalized SGD 5× 10−5

SGD, 1% Clipping 8× 10−1

SGD 1× 10−2

Table 2: Learning rate configuration of our experiments. The relative learning rate for Adafactor is
defined in Algorithms 3 and 4 and [28].
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Appendix B. Directional Sharpness Results

In this section we show our experimental result for the directional sharpness of optimization al-
gorithms. For each of the landscape visualization, we show two plots, where one of them has
Adafactor and the other does not. The rest of the plots are the same with different scales. We repeat
each experiment with 3 different random seeds.

B.1. SGD Trajectory

Task Epoch Algorithm Sharpness Ratio

Machine Translation

2

Adam 0.0033224481
SGD 1.0000000000
SGD, 1% Clipping 0.0290167637
Normalized SGD 0.0105240090
Normalized SGD, 1% Clipping 0.0059459802
Adafactor 0.0000022583
Adafactor, 1% Clipping 0.0000016335

5

Adam 0.0040285159
SGD 1.0000000000
SGD, 1% Clipping 0.0408742142
Normalized SGD 0.0171114082
Normalized SGD, 1% Clipping 0.0073663930
Adafactor 0.0000003899
Adafactor, 1% Clipping 0.0000002193

10

Adam 0.0058940997
SGD 1.0000000000
SGD, 1% Clipping 0.0739500316
Normalized SGD 0.0404778099
Normalized SGD, 1% Clipping 0.0170601111
Adafactor 0.0000016636
Adafactor, 1% Clipping 0.0000012989

20

Adam 0.0116556393
SGD 1.0000000000
SGD, 1% Clipping 0.1343988454
Normalized SGD 0.0765858411
Normalized SGD, 1% Clipping 0.0320773869
Adafactor 0.0000067047
Adafactor, 1% Clipping 0.0000053747

Table 3: Average ratio of directional sharpness of optimization algorithms with respect to SGD on
the machine translation task in SGD trajectory.
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Figure 5: Landscape visualization of machine translation in SGD trajectory at Epoch 2.
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(c) Experiment 3

Figure 6: Landscape visualization of machine translation in SGD trajectory at Epoch 5.
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Figure 7: Landscape visualization of machine translation in SGD trajectory at Epoch 10.
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(c) Experiment 3

Figure 8: Landscape visualization of machine translation in SGD trajectory at Epoch 20.
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Task Epoch Algorithm Sharpness Ratio

Masked Language Modeling

2

Adam 0.0326442945
SGD 1.0000000000
SGD, 1% Clipping 0.1026522666
Normalized SGD 0.2829808263
Normalized SGD, 1% Clipping 0.0494325193
Adafactor 0.0026639386
Adafactor, 1% Clipping 0.0018618562

5

Adam 0.0210801368
SGD 1.0000000000
SGD, 1% Clipping 0.1070835966
Normalized SGD 0.2701119184
Normalized SGD, 1% Clipping 0.0500896616
Adafactor 0.0018551471
Adafactor, 1% Clipping 0.0011664041

10

Adam 0.0118272613
SGD 1.0000000000
SGD, 1% Clipping 0.0998883003
Normalized SGD 0.2986719498
Normalized SGD, 1% Clipping 0.0473530160
Adafactor 0.0032185243
Adafactor, 1% Clipping 0.0020526722

20

Adam 0.0085812985
SGD 1.0000000000
SGD, 1% Clipping 0.0695261436
Normalized SGD 0.2720821873
Normalized SGD, 1% Clipping 0.0340152932
Adafactor 0.0062594142
Adafactor, 1% Clipping 0.0037904315

Table 4: Average ratio of directional sharpness of optimization algorithms with respect to SGD on
the masked language modeling task in SGD trajectory.
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Figure 9: Landscape visualization of machine translation in SGD trajectory at Epoch 2.
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Figure 10: Landscape visualization of machine translation in SGD trajectory at Epoch 5.
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Figure 11: Landscape visualization of machine translation in SGD trajectory at Epoch 10.
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Figure 12: Landscape visualization of machine translation in SGD trajectory at Epoch 20.
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B.2. Adam Trajectory

Task Epoch Algorithm Sharpness Ratio

Machine Translation

2

Adam −0.0020924184
SGD 1.0000000000
SGD, 1% Clipping 0.0082061978
Normalized SGD −0.0007742774
Normalized SGD, 1% Clipping 0.0009812440
Adafactor 0.0000011169
Adafactor, 1% Clipping 0.0000002866

5

Adam 0.0000473345
SGD 1.0000000000
SGD, 1% Clipping 0.0003763665
Normalized SGD 0.0017194651
Normalized SGD, 1% Clipping 0.0003852057
Adafactor 0.0000001931
Adafactor, 1% Clipping 0.0000001583

10

Adam 0.0001294576
SGD 1.0000000000
SGD, 1% Clipping 0.0022812745
Normalized SGD 0.0023490605
Normalized SGD, 1% Clipping 0.0007795924
Adafactor 0.0000003584
Adafactor, 1% Clipping 0.0000002897

20

Adam 0.0001363408
SGD 1.0000000000
SGD, 1% Clipping 0.0018917628
Normalized SGD 0.0020970826
Normalized SGD, 1% Clipping 0.0006429824
Adafactor 0.0000005021
Adafactor, 1% Clipping 0.0000004034

Table 5: Average ratio of directional sharpness of optimization algorithms with respect to SGD on
the machine translation task in Adam trajectory.
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Figure 13: Landscape visualization of machine translation in Adam trajectory at Epoch 2.
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Figure 14: Landscape visualization of machine translation in Adam trajectory at Epoch 5.
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Figure 15: Landscape visualization of machine translation in Adam trajectory at Epoch 10.
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Figure 16: Landscape visualization of machine translation in Adam trajectory at Epoch 20.
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Task Epoch Algorithm Sharpness Ratio

Masked Language Modeling

2

Adam 0.0026182668
SGD 1.0000000000
SGD, 1% Clipping 0.0620023869
Normalized SGD 0.2729090348
Normalized SGD, 1% Clipping 0.0298001689
Adafactor 0.0025936360
Adafactor, 1% Clipping 0.0015477958

5

Adam 0.0014779775
SGD 1.0000000000
SGD, 1% Clipping 0.0263968925
Normalized SGD 0.2155425640
Normalized SGD, 1% Clipping 0.0122737985
Adafactor 0.0027598900
Adafactor, 1% Clipping 0.0015772839

10

Adam 0.0034328710
SGD 1.0000000000
SGD, 1% Clipping 0.0297756218
Normalized SGD 0.1949167394
Normalized SGD, 1% Clipping 0.0139795561
Adafactor 0.0092244251
Adafactor, 1% Clipping 0.0051509819

20

Adam 0.0040885673
SGD 1.0000000000
SGD, 1% Clipping 0.0339636744
Normalized SGD 0.2222520762
Normalized SGD, 1% Clipping 0.0170976330
Adafactor 0.0093870774
Adafactor, 1% Clipping 0.0055506315

Table 6: Average ratio of directional sharpness of optimization algorithms with respect to SGD on
the masked language modeling task in Adam trajectory.
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Figure 17: Landscape visualization of masked language modeling in Adam trajectory at Epoch 2.
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Figure 18: Landscape visualization of masked language modeling in Adam trajectory at Epoch 5.
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Figure 19: Landscape visualization of masked language modeling in Adam trajectory at Epoch 10.
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(c) Experiment 3

Figure 20: Landscape visualization of masked language modeling in Adam trajectory at Epoch 20.
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B.3. Discussion

As we can observe, our observation is very coherent across different tasks, model architectures,
iterations, and local geometry. The directional sharpness is relatively stable for the same task across
iterations, and coordinate-wise clipping always improve the sharpness of the direction and find a
better direction to optimize.

Trade-off Between Directional Sharpness and Gradient Correlation. While we want the
directional sharpness of our optimization algorithm to be small in order to decrease loss faster,
having as small sharpness as possible does not necessarily lead to fast loss decrement. Adafactor
almost always has the lowest directional sharpness across all tasks, iterations, and local geometry,
but Adafactor does not always find a good direction to optimize. In many cases, the loss does not
decrease significantly even for the optimal step size, and the direction can be even worse than SGD.
This shows that merely minimizing the directional sharpness is not enough for an optimization
algorithm to work well. As discussed in Section 4, gradient correlation is also important in the
convergence of optimization algorithms. However, we can conclude that high sharpness will lead
to bad performance, as demonstrated by the performance of SGD, even if SGD has good gradient
correlation.

Effect of Trajectory. It is well known that different optimization algorithms can follow different
trajectory and converge to different in deep learning. Landscape visualizations show that Adafactor
performs well in SGD trajectory but not Adam trajectory on the machine translation task. This
shows that different optimization algorithms has local geometry with different properties. The effect
of trajectory is therefore an interesting problem to study. However, we point out that almost in
all cases, Adam has good performance and significantly outperforms SGD, so trajectory is not
necessarily related to the explanation for Adam’s excellent performance in practice.
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