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Abstract
The strong Lottery Ticket Hypothesis (LTH) [18, 25] claims that there exists a subnetwork in a suf-
ficiently large, randomly initialized neural network that approximates some target neural network
without the need of training. This work extends the theoretical guarantee of the strong LTH litera-
ture to a scenario more similar to the original LTH, by generalizing the weight change achieved in
the pre-training step to some perturbation around the initialization. In particular, we focus on the
following open questions: By allowing an ε-scale perturbation on the random initial weights, can
we reduce the over-parameterization requirement for the candidate network in the strong LTH?
Furthermore, does the weight change by SGD coincide with a good set of such perturbation?

We answer the first question by first extending the theoretical result on subset sum [14] to a
scenario that allows perturbation on the candidates, and forms the conjecture of the perturbed strong
LTH by applying our generalized theoretical result to a neural network formulation. To answer the
second question, we show via experiments that, when a larger perturbation is allowed, the required
over-parameterization of the strong LTH decreases, and the final accuracy after pruning increases.

1. Introduction

Pruning techniques for over-parameterized neural networks have drawn growing attention in recent
years [1, 10–13, 19–21, 26]. Amongst them, the Lottery Ticket Hypothesis (LTH) [8, 9] claims the
existence of a small (sparse) subnetwork within a large (dense) neural network such that, when
trained in isolation, achieves comparable or even better performance than the original dense net-
work. Such subnetworks can be identified by pre-training the dense network and pruning it based
on the magnitude of the learned weights [8]. Currently, to the best of our knowledge, the LTH
lacks of any rigorous theoretical guarantees that justify superior performance of the subnetwork,
especially under the pretraining-based pruning; yet, it has been proven to be effective in practice.

The Strong Lottery Ticket Hypothesis [18, 25] leverages a different pruning scheme: given a
target dense neural network, and a randomly initialized, sufficiently over-parameterized candidate
network, there exists a subnetwork in the latter that approximates the former arbitrarily well without
the need of training. While we require a significant over-parameterization in the randomly initialized
network, the strong LTH enjoys extensive theoretical guarantees [15–17]. Yet, the same theory
hardly applies to the LTH, as strong LTH assumes that the candidate weights pruned are fixed
at initialization. That LTH pruning is based on weights modified by pre-training motivates us to
analyze the approximation behavior that emerges beyond the randomness in the candidate weights.
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Further study on the pre-training process of LTH shows that the lottery ticket emerges in the
early stage of training [23]. This implies that converging to a small training loss is not necessarily the
intent of pre-training in the LTH procedure; in other words, achieving small loss does not necessarily
explain how and why pre-training helps pruning in LTH. Instead, one could hypothesize that the
pre-training –based on loss minimization– could guide the weight perturbation to a direction that
facilitate the pruning. Based on this hypothesis, our work extends the theoretical guarantee of strong
LTH to a scenario more similar to the original LTH, by generalizing the weight change in the pre-
training step to some perturbation around the initialization. Our central question is as follows:

“By allowing an ε-scale perturbation on the random initial weights, can we reduce the over-
parameterization requirement for the candidate network in the strong LTH? Furthermore,
does the weight change by SGD coincide with a good set of such perturbation?”

To be more specific, let fθ be a neural network with a set of parameters θ ∈ Rd. Formally, an ε-
perturbation is a mapping P : Rd → Rd such that the maximum entrywise perturbation is bounded
in absolute value by ε, i.e., ∥P(θ) − θ∥∞ ≤ ε. We point out that this definition of perturbation
generalizes to two existing scenarios: when ε = 0 –i.e., we allow no weight perturbation– the
question above reduces to the original strong LTH. When ε = ∞ –i.e., we allow arbitrarily large
weight perturbation– the required over-parameterization for the candidate network is at most the
size of the target network. In this case, one would use gradient based optimizers such as SGD to
find such weight perturbation, but often without the need of pruning. Yet, both cases cover only one
aspect in pruning and perturbation.

In this paper, we study the inter-dependence of the two aspects above by treating ε as a variable.
In particular, we show that a larger perturbation scale ε, which corresponds to a larger amount of
training, would alleviate the over-parameterization requirement, while keeping the accuracy of the
pruned neural network the same. Our contributions can be summarized as below:

• We consider a generalized version of the subset sum problem where each candidate in the sum-
mation is allowed perturbation bounded by a fixed scale ε. We extend the analysis of the subset
sum [14] to our generalized version, and show that when a larger perturbation is allowed, the
required size of the candidate set can be reduced. We empirically validate our theoretical result
on the perturbed subset sum problem.

• Applying the theoretical result above to neural networks, we conjecture that, when an ε-scale
perturbation is allowed, the strong LTH on randomly initialized neural network requires less over-
parameterization to achieve a specific approximation error.

• On neural networks, we empirically show that i) the perturbation that alleviates the overparam-
eterization requirement of the strong LTH can be obtained by projected SGD on the initialized
weights; and, ii)under fixed overparameterization, neural networks with a larger freedom over
the level of perturbation achieves a higher accuracy after pruning. This result establish the con-
nection between the amount of pre-training and the accuracy of the pruned network.

2. Related Works

Lottery Ticket Hypothesis. Several works attempt to explain the LTH theoretically. [7] empir-
ically study the behavior of gradient flow in the pruned network. [24] assumes that the optimal
mask is given, and proves that the pruned network achieves faster convergence and better gener-
alization when trained from initialization. [22] provides a theoretical guarantee of the loss in a
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pruning-after-training fashion. However, these works differ from ours in the following: i) they
usually consider neuron pruning on small neural network archictures (e.g., [22] focuses on a two-
layer neural network with smooth activations), while our work considers weight pruning of a deep
ReLU neural network; ii) they consider minimizing the loss on a specific dataset, and require an
over-parameterization that scales quadratically with the number of samples, while we approximate
a target network with a fixed architecture in terms of the function norm, and require an over-
parameterization that scales with the width of the target network.

Strong Lottery Ticket Hypothesis. The strong LTH originates from the empirical observation
that, by fixing the weights at initialization and learning the mask the weights, one can identify
subnetworks that achieve comparable accuracy to the dense one with learned weights [25]. [18]
improved this idea by proposing the edge-popup algorithm to efficiently learn the mask. [15]
first proved such hypothesis under the assumption that the dense network’s size scales polynomially
with the target network’s width and depth. Leveraging the advantage of weight decomposition and
theoretical results on the subset sum problem [14], [16] and [17] improved the over-parameterization
requirement to a logarithm factor times the size of the target network. Later work explores different
variations of the strong LTH: [6] and [2] show that the strong LTH holds in the case of convolutional
neural networks. [3] extends the strong LTH proof to a universial family of functions. Finally, [4]
further reduces the over-parameterization requirement by employing the iterative randomization.

3. Notations and Setup

Notation. For a vector a, we use ∥a∥2 to denote its ℓ2 (Euclidean) norm, and ∥a∥∞ to denote its ℓ∞
norm. For a matrix A, we use ∥A∥max = maxij |Aij | to denote its max norm. Moreover, Unif (I)
denotes the uniform distribution on the interval I , and Geom (·) and Bin (·, ·) denotes the geometric
and binomial distributions, respectively. We use σ (a) = max{0, a} to denote the ReLU activation.
We use min{·} refers to the entrywise minimum and abs(·) refers to the entrywise absolute value.
Setup. Similar to [17], our focus is to approximate an L-layer, ReLU activated target multi-layer
perceptron (MLP) f(x) by pruning a 2L-layer, ReLU activated candidate MLP gθ(x). For a input
vector x ∈ Rd0 , we assume f(x) and gθ(x) are represented by:

f(x) = WLσ
(
WL−1 . . . σ

(
W1x

))
g(x) = U2Lσ

(
U2L−1 . . . σ

(
U1x

))
We consider the pruning of gθ(x) with masks for the weightsM = {Mℓ}2Lℓ=1, denoted as gM,θ(x):

gM,θ(x) =
(
M2L ⊙U2L

)
σ
((
M2L−1 ⊙U2L−1

)
. . . σ

((
M1 ⊙U1

)
x
))

For a set of weights θ, we consider its ε-perturbation P(θ) = {P
(
Uℓ
)
}2Lℓ=1, with P applied to each

Uℓ such that ∥P(Uℓ) −Uℓ∥max = maxij |P(Uℓ)ij −Uℓ
ij | ≤ ε. Our focus in this paper is on the

approximation error defined as:

L(f, g) = min
M,P

sup
x∈B

∥∥f(x)− gM,P(θ) (x)
∥∥
2
. (1)

4. Subset Sum with ε-Perturbation

For each layer in the target network, [17] constructed a two-layer subnetwork with block structure,
such that each block approximates a single entry in the weight matrix of the target network. In
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particular, they obtain a logarithmic-scale over-parameterization by formulating the approximation
as a subset sum problem [5, 14] Given a candidate set of values {xi}ni=1 of size n and a target value
z, the solution to the subset sum problem finds the best approximation of z using the sum of a subset
of {xi}ni=1. From an optimization perspective, the optimal approximation error η⋆ is the solution to
the following problem η⋆ = minδ∈{0,1}n |

∑n
i=1 δixi − z|where δi ∈ {0, 1} is the indicator variable

on whether xi is selected in the sum to approximate z.
From the perspective of strong LTH, we can treat z as the weight entry in the target network that

we wish to approximate, and {xi}ni=1 as the weights in the candidate network we will prune. Here,
δi = 1 means that the i-th weight is kept, while δi = 0 means that the i-th weight is pruned. [14]
shows that, with high probability over the randomness of xi ∼ Unif ([−1, 1]), a candidate set with
size of the order n = Ω

(
log η−1

)
is enough to guarantee that η∗ ≤ η for all z ∈ [−1/2, 1/2].

As an extension to the strong LTH, our setup incorporates an ε-perturbation on the weights of
the random neural network. This calls for the attention of extending the subset sum problem to a
version with ε-perturbation. In particular, we consider the following joint minimization problem:

η⋆ = min
δ∈{0,1}n,y∈[−ε,ε]n

∣∣∣∣∣
n∑

i=1

δi (xi + yi)− z

∣∣∣∣∣ . (2)

We denote the values that lead to the optimal approximation error as δ⋆ and y⋆, respectively. In
words, the above problem aims to select values from the set {xi}ni=1 such that, after potential en-
trywise perturbation by some tunable yi ∈ [−ε, ε], the summation of the selected and perturbed∑n

i=1 δi (xi + yi) will approximate z.
A central technical difficulty in our work is to extend the result of [14] to incorporate ε-

perturbation. Intuitively, as the perturbation scale ε becomes larger, each candidate is susceptible
to a larger change in order to better approximate the objective z. Intuitively, this implies that we
should require a smaller size for the candidate size. We formally show this in the theorem below.

Theorem 1 Given a candidate set {xi}ni=1 with xi ∼ Unif ([−1, 1]) for all i ∈ [n]. Consider the
ε-perturbed subset sum problem in Equation 2. Let the number of candidates be n = K1+K2 with

K1 = O

(
log η−1

log
(
5
4 + ε

2

)) ;K2 = O

(
1 +

log η−1

(1 + ε)

)

Then with probability at least 1−exp
(
−K2(1+ε)2

8(3−ε)2

)
−exp

(
−K1

18

)
−exp (−max{ε, η}K1) we have

that all z ∈ [−1/2, 1/2] has a 2η-approximation.

Sketch of proof: The proof of Theorem (1) is provided in Appendix (1). Compared with the
proof of [14], we included the ε-perturbation when constructing the recurrence of the size of the
target range that can be approximated. We sketch the proof below:

1. We start by defining an indicator function fk,η(z) corresponding to the event that z has an η-
approximation by the first k candidates. However, this recursively defined sequence is hard to
control as it involves the fk,η+ε(z). We further study the behavior of the set where fk,η+ε(z) =
1, and, by introducing the notion of ε-extensionm, we construct another sequence of indicator
functions {f̂k}nk=1 that lower bound fk,η yet shows the advantage of large ε.
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2. As in [14], we define pk to be the fraction of z on the interval [−1/2, 1/2] such that f̂k = 1.
Differently, we show that the expectation of pk+1− pk is lower bounded by 1/2(1− pk)(pk + ε).
This demonstrates the expected growth pk+1 enjoys from pk. Noticeably, this growth is larger
when ε is larger. Note that this property implies a lower bound on the expectation of pn.

3. We first show the lower bound on K1 such that pK1 ≥ 1/4 with a high probability. We do this by
partitioning the interval [0, 1/4] into sub-intervals that represents geometric grown. We then show
that the sum of the number of steps of growth that escapes these intervals can be represented as
a binomial random variable, which can be bounded by applying Hoeffding’s inequality. Next,
starting from pk ≥ 1/4, we lower-bound the summation of Zk+1 =

pk+1−pk
pk(1−pk)

using Azuma’s
inequality. To relate the summation of Zk+1 to the growth of pk, we define a function ψ(p) such
that ψ(pk+1)−ψ(pk) ≥ Zk+1. In this way, we arrive at a lower bound on ψ(pK1+K2)−ψ(1/4).
Enforcing a lower bound on pK1+K2 gives a lower bound on K2.

Remark. Notice that the lower bound on the candidate set n depends on K1 and K2, where K1

scales inversely with log(5 + ε) and K2 scales inversely with 1 + 2ε. This implies that n decreases
monotonically as ε increases. We utilize this result to analyze the approximation error in Equation 1.

5. Strong Lottery Ticket Hypothesis with ε Perturbation

Next, we extend this idea to the approximation of a deep neural network. The idea is to approximate
each layer in the target network using a two-layer ReLU MLP . Each entry in the weight matrix of
the target network is approximated by a subnetwork of the MLP as in Lemma (8). Therefore, a
concatenation of these MLPs gives an approximation of the target network.

Theorem 2 Consider approximating f with g as defined above. Assume that assumption (2) holds.
Also, assume that for 1 ≤ ℓ ≤ L,

K1 = C1dℓ−1

(
log

(
dℓ−1dℓL

η

)
/log (5/4 + ε/2)

)
; K2 = C2dℓ−1

(
log

(
dℓ−1dℓL

η

)
/1 + ε

)
dim(U2ℓ) = dℓ × (K1 +K2) , dim(U2ℓ−1) = (K1 +K2)× dℓ−1.

Then with probability at least 1−d1d2L
(
exp

(
−K2(1+ε)2

8(3−ε)2

)
+ exp

(
−K1

18

)
+ exp (−max{ε, η}K1)

)
,

we have L(f, g) < η, where L(f, g) is defined in equation (1).

6. Experiments

6.1. Approximating Neural Nets with SubsetSum and ε Perturbation

We study the effect of weight perturbation on the required overparametrization by approximating a
two-layer, 500 hidden node target. Each weight was approximated using a subset sum of n randomly
initialized candidates where each candidate was allowed to perturbed by at most ε. In particular, for
some given ε, η, we say n satisfies the over-parametrization requirement if η∗ in Equation 2 satisfies
η∗ ≤ η. We randomly generate 10 sets of xi’s, and e record the minimum n such that 8 of such
sets make n satisfying the over-parametrization requirement. We vary η from 1e− 2 to 1e− 4 and
choose ε such that ε/η varies between 0 and 10. We are interested how such n changes as η and ε/η
change. From Figure 1(a)subfigure, we can observe that for fixed η, n decreases as ε/η increases.
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(a) (b) (c)

Figure 1: (a). Change of the required size of the candidate set (n) v.s. relative perturbation scale
(ε⁄η); (b). change of accuracy on the pruned network v.s. the perturbation scale; (c). change of the
optimal sparsity in pruning v.s. the perturbation scale.

More specifically, as ε increases, more changes in ε are required to make a decrease in the minimum
over-parameterization requirement n, which coincides with Theorem 1.

6.2. Perturbation Using SGD

We hypothesize that weight perturbation using SGD coincide with the desirable perturbation δ∗ in
equation (2). We propose a two-stage algorithm to validate this hypothesis. With a given pertur-
bation scale ε, we first train an over-parameterized neural network using projected SGD to conver-
gence. Note that by applying the projected SGD we guarantee that each value of the neural network
weight stays in an ε-neighborhood of initialization. Then, we run edge-popup for a range of
pruning (sparsity) levels. We then consider the best accuracy amongst all pruning levels to be the
optimal approximation scale. Details referred to Algorithm 1.

We train a four-layer MLP with width 500 on MNIST. We use Algorithm 1 to train the network:
we use a learning rate of 0.03 for projected SGD epochs; for pruning we use edge-popup with a
learning rate of 0.1. All weights in the network are initialized from Unif ([−1/2, 1/2]), and ε ranges
from 0 to 0.4. The results are shown in Table 1 and Figure 1(c)subfigure,1(b)subfigure. Note that
as the perturbation scale ϵ increase, the optimal approximation error decreases. Also, as ϵ increase,
the pruning level that achieves the best approximation error decreases.

Sparsity
s

Perturbation Scale ε

0 10−3 5 · 10−3 10−2 2 · 10−2 3 · 10−2 4 · 10−2 5 · 10−2 10−1 2 · 10−1

0 0.12 0.14 0.25 0.42 0.68 0.84 0.90 0.93 0.96 0.97
0.1 0.49 0.48 0.65 0.70 0.78 0.82 0.87 0.87 0.94 0.97
0.2 0.75 0.76 0.77 0.79 0.84 0.86 0.88 0.87 0.93 0.96
0.3 0.83 0.82 0.82 0.82 0.88 0.88 0.86 0.90 0.92 0.94
0.4 0.82 0.86 0.88 0.89 0.90 0.89 0.90 0.90 0.88 0.91
0.5 0.85 0.88 0.86 0.89 0.87 0.88 0.89 0.89 0.90 0.89
0.6 0.83 0.87 0.87 0.83 0.86 0.88 0.87 0.88 0.87 0.85
0.7 0.81 0.85 0.84 0.83 0.86 0.82 0.81 0.81 0.79 0.74
0.8 0.73 0.71 0.71 0.75 0.77 0.75 0.73 0.68 0.77 0.55

Table 1: Test accuracy for different pruning level s and perturbation scale ε. For each different
perturbation scale (each column), the highest accuracy is marked bold.
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Appendix A. Using Projected Gradient Descent to Find ε-Perturbation

Algorithm 1: PGD+StrongLTH

Data: Perturbation scale ε, neural network loss L, initial weight W0, learning rate {αt}T−1
t=0

Result: Optimal loss ℓ∗, mask M∗ and sparsity level s

∆W← 0;
foreach t ∈ {0, . . . , T − 1} do

∆W← sign(∆W − αt∇L(Wt)) ·min{abs(∆W − αt∇L(Wt)), ε};
Wt+1 ←W0 +∆W;

end
ℓ∗ ←∞ ,M∗ ← None;
foreach pruning level s ∈ {0.1, 0.2, . . . , 0.9} do

ℓ,M← Edge-Popup(L,WT , s);
if ℓ ≤ ℓ∗ then

ℓ∗ ← ℓ,M∗ ←M
end

end
return ℓ∗, M∗, s

Appendix B. Proof of Theorem 1

The subset sum problem considers finding s ∈ {0, 1}n that minimizes ℓ(z, s) = |z −
∑n

i=1 sixi|
for a given z and given xi’s. Previous work finds that, with n = Ω(log 1/η), it holds with high
probability that there exists s ∈ {0, 1}n such that ℓ(z, s) ≤ η. Alternatively, this problem can be
started as finding the smallest n such that η∗ ≤ η with

η∗ = min
s∈{0,1}n

ℓ(z, s)

In our case, we would like to give the freedom of each xi to be perturbed for a small degree ε. In
particular, we extend the definition of ℓ to

ℓ(z, s,y) =

∣∣∣∣∣z −
n∑

i=1

si(xi + yi)

∣∣∣∣∣
and seeks condition of n such that η∗ ≤ η with

η∗ = min
s∈{0,1}n,y∈[−ε,ε]n

ℓ(z, s,y) (3)

If this condition is met for a fixed z, we say that such z has an η approximation.

Assumption 1 Let the candidate values xi ∼ Unif ([−1, 1]) for all i ∈ [n], and the target value
z ∈ [−1/2, 1/2]. Let 0 ≤ ε ≤ η ≤ 1 be given.

10
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Notice that if ε > 1, then by Hoeffding’s inequality,

P

(∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≥ nε

2

)
≤ exp

(
−nε

2

2

)
When |

∑n
i=1 xi| ≤

nε
2 holds, we have that |

∑n
i=1(xi + yi)| can be anything in [−nε/2, nε/2] by

varing yi. Therefore, as long as n = 1
ε2

log s−1, it holds with probability at least 1− s that η∗ = 0
for all z ∈ [−1/2, 1/2]. Thus, our focus is on the case of ε ≤ 1. Under this assumption, we attempts
to prove the following theorem

Theorem 1 Let the number of candidates satisfy n = K1 +K2 with

K1 = O

(
log η−1

log
(
5
4 + ε

2

)) ;K2 = O

(
1 +

log η−1

(1 + ε)

)

Then with probability at least 1−exp
(
−K2(1+ε)2

8(3−ε)2

)
−exp

(
−K1

18

)
−exp (−max{ε, η}K1) we have

that all z ∈ [−1/2, 1/2] has a 2η-approximation.

We define the indicator function for the existence of η̂-approximation within the first k candidate.

fk,η̂(z) = I

{
∃s ∈ {0, 1}k, y ∈ [−ε, ε]k s.t.

∣∣∣∣∣
k∑

i=1

si(xi + yi)− z

∣∣∣∣∣ ≤ η̂
}

This indicator function has the following recurrence

f0,η = I {|z| ≤ η} ; fk+1,η = fk,η(z) + (1− fk,η(z)) fk,η+ε(z − xk+1)

Define the following random variable (depending on {xk}ki=1)

pk =

∫ 1/2

−1/2
fk,η(z)dz

This random variable denotes the portion of z ∈ [−1/2, 1/2] that can be approximated within η error.

Definition 1 For a candidate set {xi}ni=1, and some k ∈ {0} ∪ [n], define its (k, η)-feasible set as

Fk,η =

{
z ∈ [−1/2, 1/2] : ∃s ∈ {0, 1}k s.t.

∣∣∣∣∣
k∑

i=1

sixi − z

∣∣∣∣∣ ≤ η̂
}

By definition, Fk,η is the union of finitely many mutually disjoint closed intervals on [−1/2, 1/2]. Let
µ denote the Lebesgue measure on R. Consider the following definition of ε-extension of a set

Definition 2 Let I ⊂ [−1/2, 1/2] be a closed interval. A set S is called an ε-extension of I, denoted
S ∈ Ξε(I) if

1. S ⊆ [−1/2, 1/2] \ I

2. for all s ∈ S, we have that mina∈I |s− a| ≤ ε

11
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3. µ(S) = min {ε, 1− µ(I)}

By definition, for each I ⊂ [−1/2, 1/2], there is at least one ε-extension of I , since we can choose

S = [−1/2, 1/2] ∪

{
[−1/2, inf I) ∪ (sup I, sup I − inf I + ε− 1/2] if inf I ≤ ε− 1

2

[inf I − ε, inf I) otherwise

Let F = ∪mj=1Ij be a finite union of closed intervals. A set S is called an ε-extension of F , denoted
by S ∈ Ξε(F) if

1. S ⊆ ∪mj=1 ∪ξj∈Ξε(Ij) ξj \ F

2. µ(S) = min{ε, 1− µ(F)}

By lemma 2, there is at least one ε-extension of F .

Lemma 2 There is at least one ε-extension for each F of the form F = ∪mj=1Ij .
Proof Suppose there is no ε-extension of some F = ∪mj=1Ij . Consider two cases:

Case 1: µ (F) ≥ 1− ε. Since F has no ε-extension, there must be a subset A of [−1/2, 1/2] with
nonzero Lebesgue measure such that every element in A is at least ε away from F . This is, however,
a contradiction, since by µ(F) ≥ 1− ε, every point in [−1/2, 1/2] must be within ε distance of F .

Case 2: µ (F) ≤ 1− ε. Let S = ∪mj=1 ∪ξj∈Ξε(Ij) ξj . Since F has no ε-extension, we must have
µ(S) < 1. This implies that there exist a ∈ [−1/2, 1/2] such that a /∈ S. Thus infa′∈F |a− a′| ≥ f .
Let such a′ be given, then if a > a′, (a′, a′ + ε] is an ε-extension, and if a < a′, [a′ − ε, a′) is an
ε-extension. This is a contradiction.

Let {Sk}nk=0 be given such that Sk ∈ Ξε (Fk,η). Moreover, let gk(z) = I {z ∈ Sk}. We define
another recurrence of indicator function

f̂k+1(z) = f̂k(z) +
(
1− f̂k(z)

)(
f̂k(z − xk+1) + gk(z − xk+1)

)
; f̂0(z) = f0,η(z)

Lemma 3 The sequence
{
f̂k

}n

k=0
satisfies f̂k(z) ≤ fk,η(z) for all z ∈ [−1/2, 1/2].

Proof We show this by induction. For k = 0, we have f̂0(z) = f0,η(z) by definition. Assume
f̂k(z) ≤ fk,η(z), we would like to show f̂k+1(z) ≤ fk+1,η(z). To do this, we first notice that, by
definition of gk

fk,η+ε (z) = fk,η (z) + (1− fk,η (z))I
{
z ∈ ∪ξk∈Ξε(Fk,η)

}
≥ fk,η (z) + (1− fk,η (z))gk(z)

Moreover, if gk(z) = 1, we must have fk,η(z) = 0. Therefore (1 − fk,η (z))gk(z) = gk(z). This
implies that

1 ≥ fk,η+ε (z) ≥ fk,η (z) + gk(z) ≥ f̂k(z) + gk(z)

12
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Using this, we have

fk+1,η(z) = fk,η(z) + (1− fk,η(z))fk,η+ε(z − xk+1)

≥ fk,η(z) + (1− fk,η(z))
(
f̂k(z − xk+1) + gk(z − xk+1)

)
=
(
f̂k(z − xk+1) + gk(z − xk+1)

)
+
(
1− f̂k(z − xk+1)− gk(z − xk+1)

)
fk,η(z)

≥
(
f̂k(z − xk+1) + gk(z − xk+1)

)
+
(
1− f̂k(z − xk+1)− gk(z − xk+1)

)
f̂k(z)

= f̂k(z) +
(
1− f̂k(z)

)(
f̂k(z − xk+1) + gk(z − xk+1)

)
= f̂k+1(z)

This completes the proof.

Based on the definition of
{
f̂k

}n

k=0
, we define {p̃k}nk=0 as

p̃k =

∫ 1/2

−1/2
f̂k(z)dz

Then by definition we have p̃k ≤ pk, with p̃0 = p0. Moreover, we have

p̃k+1 =

∫ 1/2

−1/2

(
f̂k(z) +

(
1− f̂k(z)

)(
f̂k(z − xk+1) + gk(z − xk+1)

))
dz

≤ p̃k +
∫ 1/2

−1/2

(
f̂k(z − xk+1) + gk(z − xk+1)

)
dz

≤ p̃k +
∫ 1/2

−1/2

(
f̂k(u) + gk(u)

)
du

= 2p̃k + µ(Sk)

≤ 2p̃k + ε

Furthermore, by definition of p̃k+1, we have p̃k+1 ≤ 1. For p̃k, we can compute its expectation with
respect to {xi}ki=1 as

E [p̃k+1] = p̃k +
1

2

∫ 1

−1

∫ 1/2

−1/2

(
1− f̂k(z)

)(
f̂k(z − x) + gk(z − x)

)
dzdx

= p̃k +
1

2

∫ 1/2

−1/2

(
1− f̂k(z)

)
dz

∫ 1

−1

(
f̂k(u) + gk(u)

)
du

= p̃k +
1

2
(1− p̃k)(p̃k + µ(Sk))

= p̃k +
1

2
(1− p̃k)min {1, p̃k + ε}

13
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B.1. Growth up to 1⁄4

We define K1 as below

K1 =

{
min

{
k ≥ 0 : pk >

1
4

}
if 1

4 ≤ 1− ε
0 otherwise

To upper bound K1, we consider 1
4 ≤ 1− ε.

Lemma 4 For all 0 ≤ k ≤ K, it holds that

P
(
p̃k+1 ≥

5

4
p̃k +

1

8
ε | {xi}ki=1

)
≥ 1

6

Proof Given that p̃k ≤ 1
4 , we can show that

E [p̃k+1] = p̃k +
1

2
(1− p̃k)(p̃k + ε) ≥ 11

8
p̃k +

3

8
ε

Moreover, recall that we have that p̃k+1 ≤ 2p̃k + ε. Thus, we can apply the reverse Markov’s
inequality

P
(
pk+1 ≥

5

4
p̃k +

1

8
ε | {xi}ki=1

)
≥

E [p̃k+1]− 5
4 p̃k −

1
8ε

p̃k+1 − 5
4 p̃k −

1
8ε

≥
11
8 p̃k +

3
8ε−

5
4 p̃k −

1
8ε

2p̃k + ε− 5
4 p̃k −

1
8ε

=
1
8 p̃k +

1
4ε

3
4 p̃k +

7
8ε

≥ 1

6

Lemma 5 With probability at least 1− exp
(
− 1

18K1

)
we have that

K ≤ O

(
log η−1

log
(
5
4 + ε

2

))

Proof By using p̃k ≤ 1
4 , it thus follows from lemma (4) that

P
(
p̃k+1 ≥ p̃k

(
5

4
+
ε

2

))
≥ P

(
p̃k+1 ≥

5

4
p̃k +

1

8
ε | {xi}ki=1

)
≥ 1

6

Denote β =
(
5
4 + ε

2

)
. As in previous work, we define the following partition of the interval (0, 1/4).

I1 = (0, η]

Ii =
(
βi−1η, βiη

]
Ii∗ =

(
βi

∗−1η,
1

4

]

14
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where i∗ is the smallest integer such that βi
∗
η ≥ 1

4 , that is

i∗ =

⌈
log 1/4η

log β

⌉
For i > 1, let k̂i be given such that p̃k̂i ≥ βi−1η, let Ŷi be the smallest number of steps such that

p̃k̂i+Ŷi
> βiη. Then we have that Ŷi ≤ Yi ∼ Geom (1/6), since, according to lemma (4), we have

P
(
p̃k+1 ≥ βp̃k | {xi}ki=1

)
≥ 1

6

Therefore, for all K∗, we have that

P (K ≥ K∗) ≤ P

(
i∗∑
i=1

Yi ≥ K∗

)
= P (BK∗ ≤ i∗)

where BK∗ ∼ Bin (K∗, 4/7). Given that E[BK∗ ] = 1
6K

∗, we can apply the Hoeffding’s inequality
for binomial distribution

P
(
BK∗ ≤ 1

6
K∗ − t

)
≤ exp

(
−2t2

K∗

)
choose K∗ = 12i∗ and t = 1

6K
∗ gives that

P (K ≤ K∗) ≥ P (BK∗ ≥ i∗) ≥ 1− exp

(
− 1

18
K∗
)

B.2. Growth from 1/4 to 1−max {ε, η}

Recall the recurrence

E [p̃k+1] ≥ p̃k +
1

2
(1− p̃k)(p̃k + ε)

We define

Zk+1 =
p̃k+1 − p̃k(z)

(1− p̃k)(p̃k + ε)

Then we have E[Zk+1] ≥ 1/2. Let Yk = −k/2 +
∑K1+k+1

i=K1+1 Zi, then Yk is a submartingale. We
bound Zk+1 as follows

Lemma 6

0 ≤ Zk+1 ≤
2

1 + ε

Proof We notice that p̃k ≤ p̃k+1 ≤ min {2p̃k + ε, 1}. Consider two cases of pk:

15
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Case 1: p̃k ≤ 1−ε
2 . In this case, we have 1− p̃k ≥ 1+ε

2

Zk+1 ≤
2p̃k + ε− p̃k

(1− p̃k)(p̃k + ε)
=

1

1− p̃k
≤ 2

1 + ε

Case 2: p̃k ≥ 1−ε
2 . In this case, we use p̃k+1 ≤ 1. Moreover, we have p̃k + ε ≥ 1+ε

2 :

Zk+1 ≤
1− p̃k

(p̃k + ε)(1− p̃k)
=

1

p̃k + ε
≤ 2

1 + ε

Thus,

|Yk+1 − Yk| =
∣∣∣∣−1

2
+ ZK1+k+2

∣∣∣∣ ≤ |3− ε|2 + 2ε

Let n = K1 +K2 + 1. Therefore, we can apply Azuma’s inequality to get that

P

 n∑
i=K1+1

Zi ≥
K2

2
− t

 = P

−K2

2
+

n∑
i=K1+1

Zi ≥ −t


= P (Yn − Y0 ≥ −t)

≥ 1− exp

(
− 2 (1 + ε) t2

K2 (3− ε)2

)
Let t = K2

4 gives that

P

(
n∑

i=1

Zi ≥
K2

4

)
≥ 1− exp

(
−K2(1 + ε)2

8(3− ε)2

)
We use the following function to track the growth of pk, but starting from 1/4.

ψ(p) =
1

1 + ε
(log (p+ ε)− log(1− p)) + 16

3
p

Lemma 7 For all pk ≥ 1
4 , we have that

ψ(p̃k+1) ≥ ψ(p̃k) + Zk+1

Proof We first notice that

ψ(p̃k+1)− ψ(p̃k) =
∫ p̃k+1

p̃k

ψ′(p)dp ≥ min
p∈[p̃k,p̃k+1]

ψ′(p)(p̃k+1 − p̃k)

It suffice to show that

min
p∈[p̃k,p̃k+1]

≥ 1

(p̃k + ε)(1− p̃k)

16
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The first- and second-order derivative of ψ are

ψ′(p) =
1

1 + ε

(
1

p+ ε
+

1

1− p

)
+

16

3

ψ′′(p) =
1

1 + ε

(
1

(1− p)2
− 1

(p+ ε)2

)
Therefore, ψ′ attains its minimum at p∗ = min

{
1, 1−ε

2

}
, and ψ′ decreases monotonically on

(1/4, p∗] and increases monotonically on [p∗, 1]. Notice that the function 1
(p̃k+ε)(1−p̃k)

also decreases
monotonically on (1/4, p∗] and increases monotonically on [p∗, 1]. We consider two cases of pk:

Case 1: p̃k ∈ (1/4, p∗]. In this range the function 1
(p̃k+ε)(1−p̃k)

decreases monotonically. Thus it

achieves its maximum at p̃k = 1/4 with a value of 16
3+12ε . However, since 0 ≤ p ≤ 1, we have

min
p∈[pk,pk+1]

ψ′(p) ≥ ψ′(p∗) ≥ 16

3

Thus

min
p∈[pk,pk+1]

ψ′(p) ≥ 1

(p̃k + ε)(1− p̃k)

Case 2: p̃k ∈ (p∗, 1]. Notice that ψ increases monotonically on (p∗, 1]. Thus

min
p∈[pk,pk+1]

ψ′(p) = ψ′(pk) ≥
1

1 + ε

(
1

pk + ε
+

1

1− pk

)
=

1

(pk + ε) (1− pk)

Therefore, we have

ψ(p̃n) ≥ ψ(p̃K1) +
n∑

i=K1+1

Zi

Plugging in the value of ψ(p̃n) and ψ(p̃K1), and notice that ψ increases monotonically with p

− log(1− p̃n)
1 + ε

= ψ(p̃n)−
log p̃n
1 + ε

− 16

3
p̃n

≥ ψ(p̃K1) +

n∑
i=K1+1

Zi −
16

3

≥ ψ
(
1

4

)
+

n∑
i=K1+1

Zi −
16

3

= − 1

1 + ε

(
log 4 + log

3

4

)
− 4 +

n∑
i=K1+1

Zi

≥
n∑

i=K1+1

Zi − 4

17
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Since
∑n

i=K1+1 Zi ≥ K2
4 with probability at least 1−exp

(
−K2(1+ε)2

8(3−ε)2

)
, as long asK2 ≥ 2 log η−1

1+ε +

4 = O( log η
−1

1+ε + 1), we have that with high probability
∑n

i=K1+1 Zi ≥ log η−1

1+ε + 4, which implies
that

− log(1− p̃n) ≥ logmax {ε, η}−1 = − log(max {η, ε})

which implies that p̃n ≥ 1−max {η, ε}. This shows that, with high probability, for K1,K2 defined
above, n = K1 + K2 + 1 candidates guarantess that each point z ∈ [−1/2, 1/2] either has an η
approximation or is max{η, ε} away from an η approximation. In the case of η ≥ ε, we have that
each z has a 2η approximation. Otherwise, if ε > η, we need an additional set of candidates to
grown from 1− ε to 1− η.

B.3. Growth from 1− ε to 1− η under ε > η

Consider another set of candidates {x̂i}K3
i=1. By Hoeffding’s inequality, we have that

P

(∣∣∣∣∣
K3∑
i=1

x̂i

∣∣∣∣∣ ≥ (K3 − 1)ε+ η

)
≤ exp

(
−((K3 − 1)ε+ η)2

2K3

)

This implies that with probability at least 1 − exp
(
− ((K3−1)ε+η)2

2K3

)
, for each ŷ ∈ [η − ε, ε − η],

there exists y ∈ [−ε, ε]K3 such that ŷ =
∑K′

i=1 (xi + yi). This implies that with probability at

least 1 − exp
(
− ((K3−1)ε+η)2

2K3

)
, for all z ∈ [−1/2, 1/2] we have that z has an η approximation.

For convenience we can choose K3 = K1 + 1, which results in a success probability at least
1− exp (−max{ε, η}K1) Thus, as long as n = 2K1 +K2 + 1 with

K1 = O

(
log η−1

log
(
5
4 + ε

2

)) ;K2 = O

(
1 +

log η−1

(1 + ε)

)

we have that with probability at least 1−exp
(
−K2(1+ε)2

8(3−ε)2

)
−exp

(
−K1

18

)
−exp (−max{ε, η}K1),

each point in [−1/2, 1/2] either has η approximation or lies with η distance to a point with η approx-
imation. Therefore, each point in [−1/2, 1/2] has an 2η approximation.

18
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Appendix C. Proof of Theorem 2

Lemma 8 Let g : R → R be a randomly initialized network of the form g(x) = v⊤σ(ux), where
v,u ∈ R2n, n = K1 +K2,

K1 ≥ C1

(
log((η−1))

log(54 + ε
2)

)
,

K2 ≥ C2

(
log((η−1)))

1 + ε

)
,

where ui = 1 for i ≤ n, ui = −1 for i ≥ n+ 1, and v′is are drawn from Unif[−1, 1]. Then, with
probability at least 1− δ, there exist s ∈ {0, 1}2n,y ∈ [−ε,+ε]2n such that

sup
x:|x|≤1

∣∣∣wx− (v + y)⊤σ((u⊙ s)x)
∣∣∣ < η,

for all w ∈ [−1
2 ,

1
2 ] with

δ = exp
(
−K2(1+ε)2

8(3−ε)2

)
+ exp

(
−K1

18

)
+ exp (−max{ε, η}K1)

Proof Note that wx = σ(wx) − σ(−wx) and without loss of generality we assume w ≥ 0. The
case of w < 0 can be handled by changing x to −x. Furthermore, we decompose u,v,y, s by

u =

(
u1

u2

)
,v =

(
v1

v2

)
, s =

(
s1
s2

)
,y =

(
y1

y2

)
,

where u1 = 1n,u2 = −1n,v1,v2 ∈ Rn, s1, s2 ∈ {0, 1}n, and y1,y2 ∈ [−ε, ε]n. Then we have

(v + y)⊤σ((u⊙ s)x) = (v1 + y1)
⊤σ((u1 ⊙ s1)x) + (v2 + y2)

⊤σ((u2 ⊙ s2)x)

We use the first half of the RHS to approximate σ(wx) and use the second half of the RHS to
approximate −σ(−wx).

Approximating σ(wx). Note that since w ≥ 0, then for x ≤ 0, (v1 + y1)
⊤σ((u1 ⊙ s1)x) =

σ(wx) = 0. Consider x > 0. By definition of u1, we have

v⊤
1 σ (u1x) = v⊤

1 x =

(
n∑

i=1

v1,i

)
x.

Now consider (
∑n

i=1 v1,i), Theorem 1 states that with probability at least 1− δ
4 ,

∀w ∈
[
0,

1

2

]
,∃s1 ∈ {0, 1}n,y1 ∈ [−ε, ε]n s.t.

∣∣∣∣∣w −
n∑

i=1

s1,i(v1,i + y1,i)

∣∣∣∣∣ < η

2
.

Since

(v1 + y1)
⊤(s1 ⊙ u1) =

n∑
i=1

s1,i(v1,i + y1,i),
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with probability at least 1− δ
4 , we have

∀w ∈
[
0,

1

2

]
,∃s1 ∈ {0, 1}n,y1 ∈ [−ε, ε]n s.t.

∣∣∣w − (v1 + y1)
⊤(s1 ⊙ u1)

∣∣∣ < η

2
.

Since |x| ≤ 1, with probability at least 1− δ
4 , we have

∀w ∈
[
0,

1

2

]
,∃s1 ∈ {0, 1}n,y1 ∈ [−ε, ε]n s.t.

∣∣∣wx− (v1 + y1)
⊤(s1 ⊙ u1)x

∣∣∣ < η

2
.

Recall that (v1 + y1)
⊤σ((u1 ⊙ s1)x) = σ(wx) = 0 for x ≤ 0. Also, for x > 0, σ(wx) = wx and

(v1 + y1)
⊤σ((u1 ⊙ s1)x) = (v1 + y1)

⊤(s1 ⊙ u1)x. Therefore, with probability at least 1− δ
4 , we

have

∀w ∈
[
0,

1

2

]
, ∃s1 ∈ {0, 1}n,y1 ∈ [−ε, ε]n s.t.

∣∣∣σ(wx)− (v1 + y1)
⊤σ((u1 ⊙ s1)x)

∣∣∣ < η

2
.

Approximating −σ(−wx). For x ≥ 0, (v2 + y2)
⊤σ((u2 ⊙ s2)x) = −σ(−wx) = 0. Now,

consider x < 0. By definition of u2, it holds that

v⊤
2 σ(u2x) =

(
n∑

i=1

v2,i

)
x.

Therefore, similarly we have that with probability at least 1− δ
4 ,

∀w ∈
[
0,

1

2

]
, ∃s2 ∈ {0, 1}n,y2 ∈ [−ε, ε]n :

∣∣∣−σ(−wx)− (v2 + y2)
⊤σ((u2 ⊙ s2)x)

∣∣∣ < η

2
.

Hence by a union bound, with probability at least 1− δ
2 ,

min
s,y

sup
x:|x|≤1

∣∣∣wx− (v + y)⊤σ((u⊙ s)x)
∣∣∣

= min
s1,y1,s2,y2

sup
x:|x|≤1

∣∣∣wx− ((v1 + y1)
⊤σ((u1 ⊙ s1)x) + (v2 + y2)

⊤σ((u2 ⊙ s2)x)
)∣∣∣

≤min
s1,y1

sup
x:|x|≤1

∣∣∣σ(wx)− (v1 + y1)
⊤σ((u1 ⊙ s1)x)

∣∣∣+
min
s2,y2

sup
x:|x|≤1

∣∣∣−σ(−wx)− (v2 + y2)
⊤σ((u2 ⊙ s2)x)

∣∣∣
<η.

Note that for the case w ≤ 0, the result has the same probability and the approximation error, so by
a union bound, the lemma hold with probability at least 1− δ.
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Lemma 9 Let g : Rd1 → Rd2 be a randomly initialized network of the form g(x) = Vσ(Ux),
where V ∈ Rd2×2n,U ∈ R2n×d1 , n = K1 +K2,

K1 ≥ C1d1

 log
(
d1d2
η

)
log
(
5
4 + ε

2

)
 ,

K2 ≥ C2d1

 log
(
d1d2
η

)
1 + ε

 ,

where weights in V are drawn i.i.d. from Unif[−1, 1], U =

(
U+

U−

)
, with U+ being a ma-

trix of all 1s and U− being a matrix of all −1s . Let ĝ(x) = (S ⊙ (V + Y))σ((B ⊙ U)x)
be the pruned network for masks S ∈ {0, 1}d2×2n, B ∈ {0, 1}2n×d1 and perturbation ma-
trix Y ∈ [−ε, ε]2n×d1 . Let the target network be fW(x) = Wx, then with probability at least
1−d1d2

(
exp

(
−K2(1+ε)2

8(3−ε)2

)
− exp

(
−K1

18

)
− exp (−max{ε, η}K1)

)
, there exist S,B,Y such that

sup
x:∥x∥∞≤1

∥fW(x)− ĝ(x)∥ < η,

for all W such that ∥W∥∞ ≤ 1
2 .

Proof Since U can be written as
(
U+

U−

)
, with U+ being a matrix of all 1s and U− being a matrix

of all −1s, we choose B̂ such that B̂⊙U is of the form

B̂⊙U =



u+
1 0 . . . 0
0 u+

2 . . . 0
...

...
. . .

...
0 0 . . . u+

d1
u−
1 0 . . . 0
0 u−

2 . . . 0
...

...
. . .

...
0 0 . . . u−

d1
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where u+
j = 1 and u−

j = −1. Moreover, we decompose S⊙ (V +Y) as

S =

s+⊤
1,1 · · · s+⊤

1,d1
s−⊤
1,1 · · · s−⊤

1,d1
...

...
...

...
s+⊤
d2,1

· · · s+⊤
d2,d1

s−⊤
d2,1

· · · s−⊤
d2,d1



V =

v+⊤
1,1 · · · v+⊤

1,d1
v−⊤
1,1 · · · v−⊤

1,d1
...

...
...

...
v+⊤
d2,1

· · · v+⊤
d2,d1

v−⊤
d2,1

· · · v−⊤
d2,d1



Y =

y+⊤
1,1 · · · y+⊤

1,d1
y−⊤
1,1 · · · y−⊤

1,d1
...

...
...

...
y+⊤
d2,1

· · · y+⊤
d2,d1

y−⊤
d2,1

· · · y−⊤
d2,d1


where each s±i,j ,v

±
i,j ,y

±
i,j ∈ Rn/d1 . Then we have

[
(S⊙ (V +Y))σ((B̂⊙U)x)

]
i
=

d1∑
j=1

((v+
i,j + y+

i,j)⊙ s+i,j)
⊤σ(u+

j xj)+

d1∑
j=1

((v−
i,j + y+

i,j)⊙ s+i,j)
⊤σ(u−

j xj)

Letting vij =

(
v+
ij

v−
ij

)
, sij =

(
s+ij
s−ij

)
,yij =

(
y+
ij

y−
ij

)
and yij =

(
y+
ij

y−
ij

)
, we then have

[
(S⊙ (V +Y))σ((B̂⊙U)x)

]
i
=

d1∑
j=1

((vi,j + yi,j)⊙ si,j)
⊤σ(ujxj)

Now define the event

Fi,j,η :=

 sup
w:|w|≤ 1

2

inf
si∈{0,1}2n/d1 ,

yi,j∈[−ε,ε]2n/d1

sup
x:|x|≤1

∣∣∣wx− ((vi,j + yi,j)⊙ si,j)
⊤σ(ujx)

∣∣∣ < η

 .

Define Fη :=
⋂d2

i=1

⋂d1
j=1 Fi,j,η, then

P
(
F η

d1d2

)
≥ 1− d1d2

(
exp

(
−K2(1 + ε)2

8(3− ε)2

)
− exp

(
−K1

18

)
− exp (−max{ε, η}K1)

)
.
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On event F η
d1d2

, we have

sup
∥W∥∞≤ 1

2

inf
S,B,Y

sup
∥x∥∞≤1

∥Wx− (S⊙ (V +Y))σ((B⊙U)x)∥

≤ sup
∥W∥∞≤ 1

2

inf
S,Y

sup
∥x∥∞≤1

∥∥∥Wx− (S⊙ (V +Y))σ((B̂⊙U)x)
∥∥∥

≤ sup
∥W∥∞≤ 1

2

inf
S,Y

sup
∥x∥∞≤1

d2∑
i=1

∣∣∣∣∣∣
d1∑
j=1

wi,jxj −
d1∑
j=1

((vi,j + yi,j)⊙ si,j)
⊤σ(ujxj)

∣∣∣∣∣∣
≤ sup

∥W∥∞≤ 1
2

inf
S,Y

sup
∥x∥∞≤1

d2∑
i=1

d1∑
j=1

∣∣∣wi,jxj − ((vi,j + yi,j)⊙ si,j)
⊤σ(ujxj)

∣∣∣
<d1d2

η

d1d2
=η.

With the help of this lemma, we are ready to prove theorem 2. Recall that our goal is to approx-
imate an L-layer, ReLU activated target multi-layer perceptron (MLP) f(x) by pruning a 2L-layer,
ReLU activated candidate MLP g(x). For some input vector x ∈ Rd0 , we assume f(x) = fL(x)
has a fixed set of parameters {Wℓ}Lℓ=1, represented by:

f ℓ(x) =


WLfL−1(x), if ℓ = L,

σ
(
Wℓf ℓ−1(x)

)
, if ℓ ∈ [L− 1],

x, if ℓ = 0,

where Wℓ ∈ Rdℓ×dℓ−1 . Similarly, let g(x) = g2L(x) with parameters {Uℓ}2Lℓ=1, represented by:

gℓ(x) =


U2Lg2L−1(x), if ℓ = 2L,

σ
(
Uℓgℓ−1(x)

)
, if ℓ ∈ [2L− 1],

x, if ℓ = 0,

where Uℓ ∈ Rd̂ℓ×d̂ℓ−1 . In particular, g is a neural network with twice the depth of f . We consider
the pruning and ε-perturbation of g(x) with a set of masks for the weights S = {Sℓ}2Lℓ=1 and
perturbation matrices Y = {Yi}Li=1, denoted as gS,Y(x) = g2LS,Y(x):

gℓS,Y(x) =


(S2L ⊙ (U2L +Y2L))g2L−1

S,Y (x), if ℓ = 2L,

σ
(
(Sℓ ⊙ (Uℓ +Yℓ))gℓ−1

S,Y (x)
)
, if i ∈ [L− 1],

x, if ℓ = 0.

Let FY denote the feasible set of the perturbation Y . Also recall our assumptions for the setup

Assumption 2 We assume the following condition for f, g and FY :
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1. For all ℓ ∈ {0}∪[L], the weight matrix Wℓ of the target neural network f satisfies ∥Wℓ∥ ≤ 1
and

∥∥Wℓ
∥∥
∞ ≤

1
2 .

2. The initialization of g satisfies U2ℓ
ij ∼ Unif[−1, 1], and U2ℓ−1

ij = 1 if i ≤ d̂2(ℓ−1)/2 and
U2ℓ−1

ij = −1 if i > d̂2(ℓ−1)/2 for all ℓ ∈ [L] and j ∈ [d̂2ℓ−3].

3. The feasible set of Y is defined as

FY =
{
Y : ∀ℓ ∈ [L],

∥∥∥Y2ℓ−1
∥∥∥
max

= 0 and
∥∥∥Y2ℓ

∥∥∥
max
≤ ε
}
.

We focus on the approximation error defined as:

min
Y∈FY ,S

sup
x:∥x∥≤1

∥f(x)− gS,Y (x)∥ . (4)

We state the theorem here for convenience.

Theorem 10 Consider approximating f with g as defined above. Assume that assumption (2) holds.
Also, assume that for 1 ≤ ℓ ≤ L,

K1 = C1dℓ−1

 log
(
dℓ−1dℓL

η

)
log
(
5
4 + ε

2

)
 ; K2 = C2dℓ−1

 log
(
dℓ−1dℓL

η

)
1 + ε


dim(U2ℓ) = dℓ × (K1 +K2) ; dim(U2ℓ−1) = (K1 +K2)× dℓ−1.

Then with probability at least 1−2d1d2L
(
exp

(
−K2(1+ε)2

8(3−ε)2

)
− exp

(
−K1

18

)
− exp (−max{ε, η}K1)

)
,

min
S,Y

sup
x:∥x∥∞≤1

∥f(x)− gS,Y (x) ∥ < η,

where gS,Y is a pruning & ε-perturbation of g.

Proof By Lemma 9, for ℓ-th layer, with probability 1− d1d2δ with

δ = exp

(
−K2(1 + ε)2

8(3− ε)2

)
+ exp

(
−K1

18

)
+ exp (−max{ε, η}K1)

we have

sup
Wℓ∈F

Wℓ

min
S2ℓ,S2ℓ−1,Yℓ

sup
x:∥x∥≤1

∥Wℓx− (S2ℓ ⊙U2ℓ)σ((S2ℓ−1 ⊙ (U2ℓ−1 +Yℓ))x)∥ < η

2L
. (5)

where FWℓ = {W ∈ Rdℓ×dℓ−1: : ∥W∥ ≤ 1, ∥W∥∞ ≤ 1
2}. Since ReLU is 1-Lipschitz, with same

probability, we have

sup
Wℓ∈F

Wℓ

min
S2ℓ,S2ℓ−1,Yℓ

sup
x:∥x∥≤1

∥σ(Wℓx)− σ((S2ℓ ⊙U2ℓ)σ((S2ℓ−1 ⊙ (U2ℓ−1 +Yℓ))x))∥ < η

2L
. (6)

Then with probability at least 1−2d1d2Lδ, (5) and (6) hold simultaneously for every layer 1 ≤ ℓ ≤
L. Equation (6) implies for 1 ≤ ℓ ≤ L− 1,∥∥∥σ (Wℓ+1g2ℓS,Y(x)

)
− g2(ℓ+1)

S,Y (x)
∥∥∥ ≤ η

2L

∥∥∥g2ℓS,Y(x)∥∥∥
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Since
∥∥Wℓ

∥∥ ≤ 1 for all ℓ ∈ [L], we have that∥∥∥g2(ℓ+1)
S,Y (x)

∥∥∥ ≤ η

2L

∥∥∥g2ℓS,Y(x)∥∥∥+ ∥∥∥σ (Wℓ+1g2ℓS,Y(x)
)∥∥∥ ≤ (1 + η

2L

)∥∥∥g2ℓS,Y(x)∥∥∥
This implies that, for all x such that ∥x∥ ≤ 1,∥∥∥g2ℓS,Y(x)∥∥∥ ≤ (1 + η

2L

)ℓ−1
∥x∥ ≤

(
1 +

η

2L

)ℓ−1

Thus, we have that for all x such that ∥x∥ ≤ 1∥∥∥f ℓ+1(x)− g2(ℓ+1)
S,Y (x)

∥∥∥ =
∥∥∥σ (Wℓ+1f ℓ(x)

)
− g2(ℓ+1)

S,Y (x)
∥∥∥

≤
∥∥∥σ (Wℓ+1f ℓ(x)

)
− σ

(
Wℓ+1g2ℓS,Y(x)

)∥∥∥+∥∥∥σ (Wℓ+1g2ℓS,Y(x)
)
− g2(ℓ+1)

S,Y (x)
∥∥∥

≤
∥∥∥f ℓ(x)− g2ℓS,Y(x)∥∥∥+ η

2L

∥∥∥g2ℓS,Y(x)∥∥∥
≤
∥∥∥f ℓ(x)− g2ℓS,Y(x)∥∥∥+ (1 + η

2L

)ℓ−1 η

2L

Solving the recurrence thus gives

∥f(x)− gS,Y(x)∥ =
∥∥fL(x)− g2LS,Y(x)∥∥

≤
L−1∑
i=1

(
1 +

η

2L

)i−1 η

2L

=
η

2L

2L

η

((
1 +

η

2L

)L
− 1

)
< eη/2 − 1

< η.
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