
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

Neural Networks Efficiently Learn Low-Dimensional
Representations with SGD

Alireza Mousavi-Hosseini MOUSAVI@CS.TORONTO.EDU

University of Toronto & Vector Institute
Sejun Park SEJUN.PARK000@GMAIL.COM

Korea University
Manuela Girotti MANUELA.GIROTTI@SMU.CA

Saint Mary’s University
Ioannis Mitliagkas IOANNIS@IRO.UMONTREAL.CA

Université de Montréal & Mila Institute
Murat A. Erdogdu ERDOGDU@CS.TORONTO.EDU

University of Toronto & Vector Institute

Abstract
We study the problem of training a two-layer neural network (NN) of arbitrary width using stochas-
tic gradient descent (SGD) where the input x ∈ Rd is Gaussian and the target y ∈ R follows a
multiple-index model, i.e., y = g(⟨u1,x⟩, . . . , ⟨uk,x⟩) with a noisy link function g. We prove
that the first-layer weights of the NN converge to the k-dimensional principal subspace spanned by
the vectors u1, . . . ,uk of the true model, when online SGD with weight decay is used for training.
This phenomenon has several important consequences when k ≪ d. First, by employing uniform
convergence on this smaller subspace, we establish a generalization error bound of O(

√
kd/T )

after T iterations of SGD, which is independent of the width of the NN. We further demonstrate
that, SGD-trained ReLU NNs can learn a single-index target of the form y = f(⟨u,x⟩) + ϵ by
recovering the principal direction, with a sample complexity linear in d (up to log factors), where
f is a monotonic function with at most polynomial growth, and ϵ is the noise. This is in contrast to
the known dΩ(p) sample requirement to learn any degree p polynomial in the kernel regime, and it
shows that NNs trained with SGD can outperform the neural tangent kernel at initialization.

1. Introduction

The task of learning an unknown statistical (teacher) model using data is fundamental in many
areas of learning theory. There has been a considerable amount of research dedicated to this task,
especially when the trained (student) model is a neural network (NN), providing precise and non-
asymptotic guarantees in various settings [1, 2, 7, 8, 23, 34, 62, 66, 74, 75]. As evident from
these works, explaining the remarkable learning capabilities of NNs requires arguments beyond the
classical learning theory [72].

The connection among NNs and kernel methods has been particularly useful towards this ex-
pedition [22, 38]. In particular, a two-layer NN with randomly initialized and untrained weights is
an example of a random features model [58], and regression on the second layer captures several
interesting phenomena that NNs exhibit in practice [45, 47], e.g. cusp in the learning curve. How-
ever, NNs also inherit favorable characteristics from the optimization procedure [3, 31, 44, 59, 69],

© A. Mousavi-Hosseini, S. Park, M. Girotti, I. Mitliagkas & M.A. Erdogdu.



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

which cannot be captured by associating NNs with regression on random features. Indeed, recent
works have established a separation between NNs and kernel methods, relying on the emergence
of representation learning as a consequence of gradient-based training [1, 8, 9, 23], which often
exhibits a natural bias towards low-complexity models.

A theme that has emerged repeatedly in modern learning theory is the implicit regularization
effect provided by the training dynamics [51]. Specifically, [64] has inspired an abundance of re-
cent works focusing on the implicit bias of gradient descent favoring, in some sense, low-complexity
models, e.g. by achieving min-norm and/or max-margin solutions despite the lack of any explicit
regularization [21, 33, 36, 39, 43, 56]. However, these works mainly consider linear models or
unrealistically wide NNs, and the notion of reduced complexity as well as its implications on gen-
eralization varies. A concrete example in this domain is compressiblity and its connection to gen-
eralization [5, 65]. Indeed, when a trained NN can be compressed into a smaller NN with similar
prediction behavior, the resulting models exhibit similar generalization performance, while the latter
is classically linked to better generalization.

Figure 1: Two-layer ReLU network with
m=1000, d=2 is trained to recover a tanh
single-index model via SGD with weight
decay. Initial neurons (red) converge to the
principal subspace. 10% of student neurons
are visualized.

In this paper, we demonstrate the emergence of
low-complexity structures during the training procedure.
More specifically, we consider training a two-layer stu-
dent NN with arbitrary width m where the input x ∈ Rd

is Gaussian and the target y ∈ R follows a multiple-index
teacher model, i.e. y = g(⟨u1,x⟩, . . . , ⟨uk,x⟩; ϵ) with
a link function g and a noise ϵ independent of the in-
put. In this setting, we prove that the first-layer weights
trained by online stochastic gradient descent (SGD) with
weight decay converge to the k-dimensional subspace
span(u1, , . . . ,uk), which we refer to as the principal
subspace. Our primary focus is the case where the target
values depend only on a few important directions along
the input, i.e. k ≪ d, which induces a low-dimensional
structure on the SGD-trained first-layer weights, whose
impact on generalization is profound. We summarize our contributions as follows.

• We show in Theorem 2 that NNs learn low-dimensional representations by proving that the
iterates of online SGD on the first layer of a two-layer NN with width m converge to

√
mε

neighborhood of the principal subspace after O(d/ε2) iterations, with high probability. The
error tolerance of

√
mε is sufficient to guarantee that the risk of SGD iterates and that of its

orthogonal projection to the principal subspace are within O(ε) distance.

• We demonstrate the impact of learning low-dimensional representations with two applications.

– For a single-index target y = f(⟨u,x⟩) + ϵ with certain link functions f , we prove in The-
orem 4 that ReLU networks of width m can learn this target with an SGD-based procedure
(Algorithm 1) with number of samples T and an excess risk estimate of Õ(

√
d/T + 1/m),

with high probability (see the illustration in Figure 1). In particular, the sample complexity is
(almost) linear in d, even when f is a monotonic polynomial of any (fixed) odd degree p.

– Based on a uniform convergence argument on the principal subspace, we prove in Theorem 5
that T iterations of SGD will produce a model with generalization error of O(

√
kd/T ), with

2



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

high probability. Remarkably, this rate is independent of the width m of the NN, even in the
case k ≍ d where the target is any function of the input, and not necessarily low-dimensional.

The rest of the paper is organized as follows. We discuss the notation and the related work in the
remainder of this section. We describe the problem formulation and preliminaries in Section 2. Our
main result on SGD is presented in Section 3. We discuss two implications of our main theorem in
Section 4, where we provide results on learnability and generalization gap in Sections 4.1 and 4.2
respectively. We finally conclude with a brief discussion in Section 5.

Notation. For a loss function ℓ : R2 → R, let ∂iℓ and ∂2
ijℓ denote its partial derivatives with

respect to ith and jth inputs for i, j ∈ {1, 2}. For quantities a and b, a ≲ b implies a ≤ Cb for an
absolute constant C, and a ≍ b implies both a ≳ b and a ≲ b. Finally, Unif(A) denotes the uniform
distribution over a set A and N (0, Id) denotes the d-dimensional isotropic Gaussian distribution.

1.1. Related work

Training dynamics of NNs. Several works have demonstrated learnability in a special case of
teacher-student setting where the teacher model is similar to the student NN being trained [16, 42,
73–75]. This setting has also been studied through the lens of loss landscape [61] and optimization
over measures [2]. We stress that our results work under misspecification and hold for generic
teacher models that are not necessarily NNs with similar architecture to the student. Additional
related works on different scaling regimes of wide networks is provided in Appendix A.

Feature learning with multiple-index teacher models. The task of learning a target of an un-
known low-dimensional function of the input is fundamental in statistics [41]. Several recent works
in learning theory literature have also focused on this problem, with an aim to demonstrate NNs
can learn useful feature representations, outperforming kernel methods [12, 32]. In particular, [1]
studies the necessary and sufficient conditions for learning with sample complexity linear in d with
inputs on the hypercube, in the mean-field limit. Closer to our setting are the recent works [8, 9, 23]
which demonstrate a clear separation between NNs and kernel methods, leveraging the effect of rep-
resentation learning. However, their analysis considers a single (full) gradient step on the first-layer
weights followed by training the second-layer parameters. In contrast, in our learnability result, we
consider training both layers with SGD, which induces essentially different learning dynamics.

Generalization bounds for SGD. A popular algorithm-dependent approach for studying gen-
eralization is through algorithmic stability [14, 15, 28], which has been used to study the general-
ization behavior of gradient-based methods in various settings [11, 27, 37, 40]. Other approaches
include studying the low-dimensional structure of the trajectory [55, 63] or the invariant measure
of continuous-time approximations of SGD [17], and employing information-theoretic tools [50].
Among these, [10] also shows that SGD yields compressible networks; however, they assume the
mean-field approximation holds and the SGD iterates converge to a heavy-tailed distribution.

2. Preliminaries: Neural Networks and the Principal Subspace

For an input x ∈ Rd, we consider training a two-layer neural network (NN) with m neurons

ŷ(x;W ,a, b) =

m∑
i=1

aiσ(⟨wi,x⟩+ bi), (2.1)

3



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

where σ is the activation function, {wi}1≤i≤m are the first-layer weights collected in the rows of
the matrix W ∈ Rm×d, b ∈ Rm is the bias, and a ∈ Rm is the second-layer weights. We assume
x ∼ N (0, Id) and the target is generated from a multiple-index (teacher) model given by

y = g(⟨u1,x⟩, . . . , ⟨uk,x⟩; ϵ), (2.2)

for a weakly differentiable link function g : Rk+1 → R and a noise ϵ independent of x. The Gaus-
sian input is a rather standard assumption in the literature, especially in recent works that consider
the student-teacher setup; see e.g. [23, 61, 75]. The multiple-index teacher model (2.2) can encode
a broad class of input-output relations through the non-linear link function, including a multi-layer
fully-connected NN with arbitrary depth and width and weakly differentiable activations. While
our results remain valid regardless of how k and d compare, they are most insightful when k ≪ d;
thus, we specifically consider this regime when interpreting the results. We also collect the teacher
weights {ui}1≤i≤k in the rows of the matrix U ∈ Rk×d and use y = g(Ux; ϵ) for simplicity.

For a given loss function ℓ(ŷ, y), we consider the population and the empirical risks

R(W,a, b) = E[ℓ(ŷ(x;W,a, b), y)] and R̂(W,a, b) =
1

T

T−1∑
t=0

ℓ(ŷ(x(t);W,a, b), y(t)),

where the expectation is over the data distribution. Similarly, for some τ ≥ 1, the truncated loss
is defined as ℓτ (ŷ, y) := ℓ(ŷ, y) ∧ τ with the corresponding risks Rτ and R̂τ . We define the L2-
regularized population risk with a penalty parameter λ ≥ 0 as

Rλ(W ,a, b) := R(W ,a, b) +
λ

2
∥W ∥2F. (2.3)

To minimize (2.3), we use stochastic gradient descent (SGD) over the first-layer weights, where we
are interested in the convergence of iterates to the principal subspace defined by the teacher weights

S(U) := span(u1, . . . ,uk)
m = {CU : C ∈ Rm×k}.

Notice that the principal subspace satisfies S(U) ⊆ Rm×d, and its dimension is mk as opposed to
the ambient dimension of md, with any matrix in this subspace having rank at most k. For any vector
v ∈ Rd, we let v∥ denote the orthogonal projection of v onto span(u1, . . . ,uk) and v⊥ := v− v∥.
Similarly, for a matrix W ∈ Rm×d, we define W ∥ and W⊥ by applying the projection to each row.

The smoothness properties of the activation σ play an important role in our analysis. As such,
we consider two scenarios, with different requirements on the loss function.

Assumption 1.A (Smooth activation) The activation function σ satisfies |σ(z)|, |σ′(z)|, |σ′′(z)| ≤
1 for all z ∈ R, the loss is ℓ(ŷ, y) = 1

2(ŷ− y)2 for simplicity, and y satisfies |y| ≤ K almost surely.

Assumption 1.B (ReLU activation) The activation function σ is σ(z) = max(z, 0) for z ∈ R.
The loss satisfies 0 ≤ ∂2

1ℓ(ŷ, y) ≤ 1, |∂1ℓ(ŷ, y)| ≤ 1, and |∂2
12ℓ(ŷ, y)| ≤ 1.

Commonly used activations such as sigmoid and tanh satisfy Assumption 1.A. For ReLU acti-
vation in Assumption 1.B, we choose σ′(z) = 1(z ≥ 0) as its weak derivative. We highlight that
Assumption 1.B is satisfied by common Lipschitz and convex loss functions such as the Huber loss

ℓH(ŷ − y) :=

{
1
2(ŷ − y)2 if |ŷ − y| ≤ 1

|ŷ − y| − 1
2 if |ŷ − y| > 1,

(2.4)

as well as the logistic loss ℓL(ŷ, y) := log(1 + e−ŷy), up to appropriate scaling constants.

4



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

3. Convergence of Stochastic Gradient Descent

We now consider stochastic gradient descent (SGD) in the online setting where at each iteration t,
we have access to a new data point (x(t), y(t)) drawn independently of the previous samples from
the same distribution. We update the first-layer weights W t with a time varying step size ηt and
weight decay, according to the update rule

W t+1 = (1− ηtλ)W
t − ηt∇W ℓ(ŷ(x(t);W t,a, b), y(t)). (3.1)

The above algorithm can be used to minimize the population risk (2.3) in practice [57], even in
certain non-convex landscapes [70]. We will use the following initialization for SGD

Assumption 2 (Initialization) For all 1 ≤ i, j ≤ m, we initialize the NN weights and biases with√
dW 0

ij
iid∼ N (0, 1), ma0j

iid∼ Unif([−1, 1]), and b0j
iid∼ Unif({−1, 1}).

This initialization is standard in the mean-field regime as it allows feature learning. However, we
only use it to simplify the exposition. Indeed, we can initialize W and a with any scheme that
guarantees ∥W ∥F ≲

√
m and ∥a∥∞ ≲ m−1 with high probability. Further, initialization of b

mostly matters in the analysis of ReLU activation.
Next, we show that the population gradient admits a certain decomposition which plays a central

role in our analysis. For smooth activations, the below result is a remarkable consequence of Stein’s
lemma, which provides a certain alignment between the true statistical model (teacher) and the
model being trained (student), which has profound impact on the learning dynamics. We generalize
this result for ReLU through a sequence of smooth approximations (see Appendix C.1 for details).

Lemma 1 Under Assumption 1.A or 1.B, the gradient of the population risk can be written as

∇WRλ(W ) = (H(W ) + λIm)W +D(W )U , (3.2)

for some H(W ) ∈ Rm×d and D(W ) ∈ Rk×d (with explicit forms provided in Appendix C.1).

The following result, proved in Appendix D via a recursion on the moment generating function
of ∥W t

⊥∥F, demonstrates the algorithmic implications of Lemma 1, and shows that the iterates
converges to the principal subspace.

Theorem 2 Consider running T SGD iterations (3.1) when the activation and loss either satisfy
Assumption 1.A or Assumption 1.B, and the initialization satisfies Assumption 2. Let ζ := E[|y|]+1
under Assumption 1.A and ζ := 2

√
2/eπ under Assumption 1.B. Choose the decreasing step size

ηt = m 2(t+t∗)+1
γ(t+t∗+1)2

, λ̃ ≥ γ + ζ, and t∗ ≍ λ̃
γ for any γ > 0. Then, for λ = λ̃

m , with probability at
least 1− δ,

∥W T
⊥∥F√
m

≲

√
d+ log(1/δ)

γ2T
, (3.3)

whenever m ≳ log(1/δ) and T ≳ λ̃2

d+log(1/δ) .

Remark 3 The above result provides a convergence rate of O(
√
d/T ) for the normalized quantity

∥W T
⊥∥F/

√
m. We justify this exposition by noting that since the risk is locally Lipschitz with a

constant O(1/
√
m), the condition ∥W T

⊥∥F ≲
√
mε is sufficient to guarantee that the risk of W T

and that of its orthogonal projection to the principal subspace W T
∥ are within O(ε) distance.

5



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

The above result states that, with a number of samples linear in the input dimension d, SGD
is able to learn (approximately) low-dimensional weights, exhibiting an implicit bias towards low-
complexity models. The interplay between two forces is in effect here. The most important one
is the linear relationship between the first-layer weights and the input in both student and teacher
models together with the input distribution. The alignment described in Lemma 1 yields sparsified
weights in a basis defined by the teacher network, effectively reducing the input dimension from
d to k. The second force is the explicit L2-regularization. We emphasize that L2-regularization
does not play the main role in this sparsification; even though it may provide shrinkage to zero, L2

penalty will in general produce non-sparse solutions. However, it is still required as the explicit L2

regularization ensures that SGD avoids critical points outside of the principal subspace. We refer to
Section 5 for further discussion.

Notice that while Theorem 2 does not have any implications on the convergence behavior of the
orthogonal projection W ∥, in the next section, we show that the implied low-dimensional structure
is sufficient to provide guarantees on the generalization error and learnability of SGD. Moreover,
we showcase by a non-convex example in Appendix F that the regularization in this Theorem does
not in general imply (strong) convexity in the population landscape.

4. Implications of Low-Dimensionality

4.1. Learning Single-Index Targets

An essential characteristic of NNs is their ability to learn useful representations, which allows them
to adapt to the underlying misspecified statistical model. Although this fundamental property has
been the guiding principle in all empirical studies, it was mathematically proven only recently for
gradient-based training [1, 8, 9, 23, 29]; see also a survey of prior works in [46]. Our results in the
previous section are in the same spirit, establishing the convergence of SGD to the principal sub-
space which is indeed a span of useful directions associated with the target function being learned.
As such, we leverage the learned low-dimensional representations to demonstrate that SGD is ca-
pable of learning a target function of the form y = f(⟨u,x⟩) + ϵ with a number of samples linear
in d (up to logarithmic factors). For simplicity, we work with the Huber loss below; however, our
analysis can accommodate any Lipschitz and convex loss at the expense of a more detailed analysis.

Algorithm 1 Training a two-layer ReLU network with SGD.

Input: a0, b0 ∈ Rm, W 0 ∈ Rm×d, {(x(t), y(t))}0≤t≤T−1, (ηt)t≥0, (η′t)t≥0, λ, λ′, ∆.
1: for t = 0, ..., T − 1 do
2: W t+1 = (1− ηtλ)W

t − ηt∇W ℓ(ŷ(x(t);W t,a0, b0), y(t)).
3: end for
4: Let bj ∼ Unif(−∆,∆) for 1 ≤ j ≤ m.
5: for t = 0, ..., T ′ − 1 do
6: Sample it ∼ Unif{0, ..., T − 1}.
7: at+1 = (1− η′tλ

′)at − η′t∇aℓ(ŷ(x
(it);W T ,at, b), y(it))

8: end for
9: return (W T ,aT ′

, b).

6



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

The following Theorem states the learning guarantee of Algorithm 1, and is proved in Ap-
pendix E.2 via recovering the principal direction according to Theorem 2, along with the general-
ization gap of Theorem 5, and a universal approximation argument similar to [23]. We highlight
that the recent works [8, 9, 23] perform only one gradient step on the first layer weights, whereas in
Algorithm 1, we train the entire NN with SGD.

Theorem 4 Suppose that the data is from a single-index model y = f(⟨u,x⟩)+ϵ with a monotone
differentiable f and 1-sub-Gaussian noise ϵ, and Assumption 1.B holds. Further, let ∥u∥2 = 1,
|f(0)| < 1, and consider the Huber loss (2.4) for simplicity. Consider running Algorithm 1 with
the initialization 0 < a0j = a ≲ 1/m, 0 < b0j = b ≲ 1, and w0

j = w0 ∼ N (0, 1dId) for all j with

the hyper-parameters λ = λ̃
m = γ

m + 2a
b

√
2
eπ for any γ ≍ 1, ηt = m 2(t∗+t)+1

γ(t∗+t+1)2
with t∗ ≍ γ−1,

η′t =
2t+1

λ′(t+1)2
, and ∆ ≍

√
log(T/δ). Then, for T ≳ (d+ log(1δ )) ∨ ( λ̃

γd log(
m
δ )), some λ′ > 0 (see

(E.7)), and sufficiently large T ′ (see (E.8)), with probability at least 1− δ,

Rτ (W
T ,aT ′

, b)− E[ℓH(ϵ)] ≲ ∆2
∗

{√
log(1/δ)

m
+

√
d+ log(1/δ)

T

}
, (4.1)

where ∆∗ := ∆ sup|z|≲∆|f ′′(z)| which is poly(log(T/δ)) when f ′′ has at most polynomial growth.

Notice that T determines the sample complexity of running Algorithm 1 as it only requires T data
samples. As such, the above result implies that a ReLU NN trained with SGD can learn any mono-
tone polynomial with a sample complexity linear in the input dimension d, up to logarithmic factors.
In comparison, [23] considers training the first-layer weights with one gradient descent step with a
carefully chosen weight decay, and obtains a sample complexity of d2 to learn any unknown degree
p polynomial multiple-index target. Note that learning any degree p polynomial using rotationally
invariant kernels requires dΩ(p) samples for a variety of input distributions including isotropic Gaus-
sian [24]; thus, our result shows that SGD is able to efficiently learn a target function where kernel
methods cannot. It is worth emphasizing that in Theorem 4, the width of the network m grows with
poly log(T/δ), which is in contrast to the neural tangent kernel (NTK) regime where m is required
to grow with poly(T ).

On a separate note, [18] proposes a method that can train NNs to learn a polynomial of a few
directions with a number of samples linear in the input dimension d; yet, the proposed algorithm is
not a simple variant of SGD and requires a non-trivial warm-start initialization. We refer to [26]
for a review of classical literature on learning single and multiple-index models. Specifically, they
provide a procedure with sample complexity at least linear in d to recover the principal direction of
the single-index model with Gaussian inputs.

4.2. Generalization Gap

For a given learning algorithm, the gap between its empirical and population risks is termed as the
generalization gap (not to be confused with excess risk), and establishing convergence estimates
for this quantity is a fundamental problem in learning theory. Classical results rely on uniform
convergence over the feasible domain containing the weights; thus, they apply to any learning algo-
rithm including SGD [52]. However, these bounds often diverge with the width of the NN, yielding
vacuous estimates in the overparameterized regime [72]. To alleviate this, recent works considered
establishing estimates for a specific learning algorithm; see e.g. [37, 55, 64, 71].

7



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Here, we are interested in deriving an estimate for the generalization gap over the SGD-trained
first-layer weights, which holds uniformly over the second layer weights and biases. More specifi-
cally, we study, after T iterations of SGD (3.1) initialized with (W 0,a0, b0), the following quantity

E(W T ) := supSRτ (W
T,a, b)−R̂τ (W

T,a, b) with S := {a, b ∈ Rm : ∥a∥2 ≤ ra√
m
, ∥b∥∞≤ rb},

where the scaling ensures ŷ = O(1) when ∥wj∥2 ≍ 1, which is the setting considered in
Theorem 4. We state the following bound on E(W T ); the proof is provided in Appendix E.1,
and it is based on a covering argument over the smaller dimensional principal subspace implied by
Theorem 2.

Theorem 5 Consider the setting of Theorem 2. For any δ > 0, if T ≳ (d + log(1/δ)) ∨
( λ̃
γd log(m/δ)), then with probability at least 1− δ,

E(W T ) ≲ τra

{√
d+ log(1/δ)

γ2T
+ (rb + λ̃−1)

√
dk

T

}
, (4.2)

The above bound is independent of the width m of the NN, and only grows with the dimension
of the input space d and that of the principal subspace k; thus, producing non-vacuous estimates in
the overparametrized regime where m is large. Further, the bound is stable in the number of SGD
iterations T , that is, it converges to zero as T → ∞. We remark that generalization bounds that rely
on algorithmic stability are optimal for strongly convex objectives [37]; yet, they lead to unstable
diverging bounds in non-convex settings as T → ∞. As such, these techniques often require early
stopping, which is clearly not needed in our result.

5. Conclusion

Figure 2: Neurons fail to converge to the
principal subspace without weight decay, in
the same experimental setup of Figure 1.

We studied the dynamics of SGD with weight decay on
two-layer NNs, and proved that under a multiple-index
teacher model, the first-layer weights converge to the
principal subspace, i.e. the span of the weights of the
teacher. This phenomenon is of particular interest when
the target depends on the input along a few important di-
rections. In this setting, we proved novel generalization
bounds for SGD via uniform convergence on the low-
dimensional principal subspace. Further, we proved that
two-layer ReLU networks can learn a single-index target
with a monotone link that has at most polynomial growth,
using online SGD, with a number of samples almost lin-
ear in d. Thus, as an implication of low-dimensionality, we established a separation between kernel
methods and trained NNs where the former suffers from the curse of dimensionality.

Two principal forces are responsible for the emergence of the low-dimensional structure. The
main one is the linear interaction between the Gaussian input and the first-layer weights in both
student and teacher models. The secondary one is the weight decay which allows SGD to avoid
critical points outside of principal subspace. Figure 2 shows the convergence behavior in absence
of weight decay. Understanding more precisely the range of λ that implies convergence to the
principal subspace, as well as investigating the possibility of learning multiple-index models using
this convergence, are left as important directions for future studies.

8



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

References

[1] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase prop-
erty: a necessary and nearly sufficient condition for sgd learning of sparse functions on two-
layer neural networks. In Conference on Learning Theory, 2022.

[2] Shunta Akiyama and Taiji Suzuki. On Learnability via Gradient Method for Two-Layer ReLU
Neural Networks in Teacher-Student Setting. In International Conference on Machine Learn-
ing, 2021.

[3] Zeyuan Allen-Zhu and Yuanzhi Li. What Can ResNet Learn Efficiently, Going Beyond Ker-
nels? In Advances in Neural Information Processing Systems, 2019.

[4] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A Convergence Theory for Deep Learning
via Over-Parameterization. In International Conference on Machine Learning, 2019.

[5] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger Generalization Bounds
for Deep Nets via a Compression Approach. In International Conference on Machine Learn-
ing, 2018.

[6] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-Grained Analysis
of Optimization and Generalization for Overparameterized Two-Layer Neural Networks. In
International Conference on Machine Learning, 2019.

[7] Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of
two-layer neural networks: An asymptotic viewpoint. In International Conference on Machine
Learning, 2019.

[8] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Repre-
sentation. arXiv preprint arXiv:2205.01445, 2022.

[9] Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. arXiv
preprint arXiv:2207.08799, 2022.

[10] Melih Barsbey, Milad Sefidgaran, Murat A Erdogdu, Gael Richard, and Umut Simsekli. Heavy
tails in SGD and compressibility of overparametrized neural networks. In Advances in Neural
Information Processing Systems, 2021.

[11] Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic
gradient descent on nonsmooth convex losses. In Advances in Neural Information Processing
Systems, 2020.

[12] Benedikt Bauer and Michael Kohler. On deep learning as a remedy for the curse of dimen-
sionality in nonparametric regression. The Annals of Statistics, 2019.

[13] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent
on non-convex losses from high-dimensional inference. J. Mach. Learn. Res., 22:106–1, 2021.

9



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

[14] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine Learn-
ing Research, 2002.

[15] Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy. Sharper bounds for uniformly
stable algorithms. In Conference on Learning Theory, 2020.

[16] Alon Brutzkus and Amir Globerson. Globally Optimal Gradient Descent for a ConvNet with
Gaussian Inputs. In International Conference on Machine Learning, 2017.

[17] Alexander Camuto, George Deligiannidis, Murat A Erdogdu, Mert Gurbuzbalaban, Umut
Simsekli, and Lingjiong Zhu. Fractal structure and generalization properties of stochastic
optimization algorithms. In Advances in Neural Information Processing Systems, 2021.

[18] Sitan Chen and Raghu Meka. Learning polynomials in few relevant dimensions. In Conference
on Learning Theory, 2020.

[19] Lénaı̈c Chizat. Mean-field langevin dynamics: Exponential convergence and annealing. arXiv
preprint arXiv:2202.01009, 2022.

[20] Lenaic Chizat and Francis Bach. On the Global Convergence of Gradient Descent for Over-
parameterized Models using Optimal Transport. In Advances in Neural Information Process-
ing Systems, 2018.

[21] Lénaı̈c Chizat and Francis Bach. Implicit Bias of Gradient Descent for Wide Two-layer Neural
Networks Trained with the Logistic Loss. In Conference on Learning Theory, 2020.

[22] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On Lazy Training in Differentiable Pro-
gramming. In Advances in Neural Information Processing Systems, 2019.

[23] Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural Networks can Learn Repre-
sentations with Gradient Descent. In Conference on Learning Theory, 2022.

[24] Konstantin Donhauser, Mingqi Wu, and Fanny Yang. How rotational invariance of common
kernels prevents generalization in high dimensions. In International Conference on Machine
Learning, 2021.

[25] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient Descent Provably
Optimizes Over-parameterized Neural Networks. In International Conference on Learning
Representations, 2019.

[26] Rishabh Dudeja and Daniel Hsu. Learning single-index models in gaussian space. In Confer-
ence On Learning Theory, 2018.

[27] Tyler Farghly and Patrick Rebeschini. Time-independent generalization bounds for SGLD in
non-convex settings. In Advances in Neural Information Processing Systems, 2021.

[28] Vitaly Feldman and Jan Vondrak. Generalization bounds for uniformly stable algorithms.
Advances in Neural Information Processing Systems, 31, 2018.

[29] Spencer Frei, Niladri S Chatterji, and Peter L Bartlett. Random feature amplification: Feature
learning and generalization in neural networks. arXiv preprint arXiv:2202.07626, 2022.

10



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

[30] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and
lazy learning in deep neural networks: an empirical study. arXiv preprint arXiv:1906.08034,
2020.

[31] B. Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Limitations of Lazy
Training of Two-layers Neural Networks. In Advances in Neural Information Processing Sys-
tems, 2019.

[32] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When Do Neu-
ral Networks Outperform Kernel Methods? In Advances in Neural Information Processing
Systems, 2020.

[33] Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete
gradient dynamics in linear neural networks. Advances in Neural Information Processing
Systems, 32, 2019.

[34] Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová.
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student
setup. In Advances in Neural Information Processing Systems, 2019.

[35] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and
Peter Richtárik. SGD: General analysis and improved rates. In International Conference on
Machine Learning, 2019.

[36] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit Bias of Gradient
Descent on Linear Convolutional Networks. In Advances in Neural Information Processing
Systems, 2018.

[37] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International Conference on Machine Learning, 2016.

[38] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks. In Advances in Neural Information Processing Systems,
2018.

[39] Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on Learning Theory, 2019.

[40] Leo Kozachkov, Patrick M Wensing, and Jean-Jacques Slotine. Generalization in supervised
learning through riemannian contraction. arXiv preprint arXiv:2201.06656, 2022.

[41] Ker-Chau Li and Naihua Duan. Regression Analysis Under Link Violation. The Annals of
Statistics, 1989.

[42] Yuanzhi Li and Yang Yuan. Convergence Analysis of Two-layer Neural Networks with ReLU
Activation. In Advances in Neural Information Processing Systems, 2017.

[43] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic Regularization in Over-
parameterized Matrix Sensing and Neural Networks with Quadratic Activations. In Confer-
ence on Learning Theory, 2018.

11



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

[44] Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer neural
networks beyond NTK. In Conference on Learning Theory, 2020.

[45] Cosme Louart, Zhenyu Liao, and Romain Couillet. A random matrix approach to neural
networks. The Annals of Applied Probability, 2018.

[46] Eran Malach, Pritish Kamath, Emmanuel Abbe, and Nathan Srebro. Quantifying the benefit
of using differentiable learning over tangent kernels. In International Conference on Machine
Learning, 2021.

[47] Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and the double descent curve. Communications on Pure and Applied
Mathematics, 2022.

[48] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers
neural networks: dimension-free bounds and kernel limit. In Conference on Learning Theory,
2019.

[49] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learn-
ing. MIT press, 2018.

[50] Gergely Neu, Gintare Karolina Dziugaite, Mahdi Haghifam, and Daniel M. Roy. Information-
theoretic generalization bounds for stochastic gradient descent. In Conference on Learning
Theory, 2021.

[51] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:
On the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

[52] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. The
role of over-parametrization in generalization of neural networks. In International Conference
on Learning Representations, 2019.

[53] Atsushi Nitanda, Denny Wu, and Taiji Suzuki. Convex analysis of the mean field langevin
dynamics. In International Conference on Artificial Intelligence and Statistics, pages 9741–
9757. PMLR, 2022.

[54] Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global
convergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas
in Information Theory, 2020.

[55] Sejun Park, Umut Simsekli, and Murat A. Erdogdu. Generalization Bounds for Stochastic
Gradient Descent via Localized ε-Covers. arXiv preprint arXiv:2209.08951, 2022.

[56] Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit Bias of SGD for Diag-
onal Linear Networks: a Provable Benefit of Stochasticity. In Advances in Neural Information
Processing Systems, 2021.

[57] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992.

12



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

[58] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Ad-
vances in Neural Information Processing Systems, 2007.

[59] Maria Refinetti, Sebastian Goldt, Florent Krzakala, and Lenka Zdeborová. Classifying high-
dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed. In
International Conference on Machine Learning, 2021.

[60] Grant M Rotskoff and Eric Vanden-Eijnden. Neural networks as Interacting Particle Systems:
Asymptotic convexity of the Loss Landscape and Universal Scaling of the Approximation
Error. arXiv preprint arXiv:1805.00915, 2018.

[61] Itay M Safran, Gilad Yehudai, and Ohad Shamir. The Effects of Mild Over-parameterization
on the Optimization Landscape of Shallow ReLU Neural Networks. In Conference on Learn-
ing Theory, 2021.

[62] Stefano Sarao Mannelli, Eric Vanden-Eijnden, and Lenka Zdeborová. Optimization and gen-
eralization of shallow neural networks with quadratic activation functions. In Advances in
Neural Information Processing Systems, 2020.

[63] Umut Simsekli, Ozan Sener, George Deligiannidis, and Murat A Erdogdu. Hausdorff dimen-
sion, heavy tails, and generalization in neural networks. In Advances in Neural Information
Processing Systems, 2020.

[64] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
Implicit Bias of Gradient Descent on Separable Data. Journal of Machine Learning Research,
2018.

[65] Taiji Suzuki, Hiroshi Abe, and Tomoaki Nishimura. Compression based bound for non-
compressed network: unified generalization error analysis of large compressible deep neural
network. In International Conference on Learning Representations, 2020.

[66] Rodrigo Veiga, Ludovic Stephan, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová.
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks.
arXiv preprint arXiv:2202.00293, 2022.

[67] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge University Press, 2018.

[68] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
University Press, 2019.

[69] Gilad Yehudai and Ohad Shamir. On the Power and Limitations of Random Features for
Understanding Neural Networks. In Advances in Neural Information Processing Systems,
2019.

[70] Lu Yu, Krishna Balasubramanian, Stanislav Volgushev, and Murat A Erdogdu. An Analysis
of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias. In
Advances in Neural Information Processing Systems, 2021.

13



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

[71] Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A Unifying View on Implicit Bias in
Training Linear Neural Networks. In International Conference on Learning Representations,
2021.

[72] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning (still) requires rethinking generalization. Communications of the ACM,
2021.

[73] Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning One-hidden-layer
ReLU Networks via Gradient Descent. In International Conference on Artificial Intelligence
and Statistics, 2019.

[74] Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, and Inderjit S. Dhillon. Recovery
Guarantees for One-hidden-layer Neural Networks. In International Conference on Machine
Learning, 2017.

[75] Mo Zhou, Rong Ge, and Chi Jin. A Local Convergence Theory for Mildly Over-Parameterized
Two-Layer Neural Network. In Conference on Learning Theory, 2021.

14



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Appendix A. Further Related Work

Two scaling regimes of neural networks have seen a surge of recent interest. In the regime of
lazy training [22], the parameters hardly move from initialization and the NN does not learn use-
ful features, behaving like a kernel method [4, 6, 25, 38, 54]. However, many works have shown
that deep learning is more powerful than kernel models [30, 32, 69], establishing a clear separa-
tion between them; thus, several important characteristics of NNs cannot be captured in the lazy
training regime [31]. In the other scaling regime, gradient descent on infinitely wide NNs reduces
to Wasserstein gradient flow, which is known as the mean-field regime where feature learning is
possible [19, 20, 48, 53, 60]. However, these results mostly hold for infinite or very wide NNs, and
quantitative guarantees are difficult to obtain in this regime. The setting we consider in the current
paper is different from both of these regimes, e.g. we may allow for NNs of arbitrary width which
are not necessarily excessively overparameterized; yet, we still use the mean-field scaling when
initializing the weights of the student NN.

On a separate note, we point out that our learnability result of Thoerem 4 is consistent with
[13]; they establish a sharp sample complexity of Õ(d1∨(I−2)) to learn a target with online SGD
using the same activation f in the student network, where I is the information exponent (I = 1 in
the above case due to the monotonocity of f ). Despite assuming the link function f is known, we
highlight that their setting covers I ≥ 1, whereas Theorem 4 is a proof concept to demonstrate the
learnability implications of convergence to the principal subspace, even when f is unknown.

Appendix B. Additional Notations

For vectors v and u, we use ⟨v,u⟩ and v ◦ u to denote their Euclidean inner product and the
element-wise product, and we use ∥v ∥p and diag(v) to denote the Lp-norm and the diagonal
matrix whose diagonal entries are v. For matrices V and W , we use ⟨V ,W ⟩F, ∥V ∥F, and ∥V ∥2
to denote the Frobenius inner product, Frobenius norm, and the operator norm, respectively. For an
activation function σ : R → R, σ′ and σ′′ denote its first and second (weak) derivatives, which are
applied element-wise for vector inputs. The symbol ∇· is reserved for the gradient operator, and we
frequently use ∇ℓ to denote ∇W ℓ when it is clear from the context.

In the appendix, we will prove the statements of the main text in a more general formulation.
In particular, for smooth activations, we assume sup|σ′| ≤ β1 and sup|σ′′| ≤ β2 for some β1, β2 ∈
R+, and we denote sup|σ| ≤ β0, β0 ∈ (0,∞]. We will consider the following general case for

the bias vector b ∈ Rm: bj
iid∼ Db, such that |bj | ≥ b∗ > 0, for some b∗ > 0. This setting clearly

covers the case of bj = ±1 from the initialization of Assumption 2. Throughout the appendix, C
will denote a generic positive absolute constant (e.g. 10), whose value may change from line to line.

We use the shorthand notation σa,b(Wx) to denote a◦σ(Wx+b), and similarly for σ′
a,b(Wx)

and σ′′
a,b(Wx). We use the notations vec(A) ∈ Rmn for the vectorized representation of a matrix

A ∈ Rm×n, and A⊗B for the Kronecker product of two matrices A ∈ Rm×n and B ∈ Rp×q; we
recall that the Kronecker product is an mp× nq block matrix comprised of m× n blocks of shape
p× q, where block (i, j) is given by AijB.

15



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Appendix C. Population Gradient Decomposition

C.1. Proof of Lemma 1

In what follows, ∇⊤ is the Jacobian matrix and ∇ is the transpose of Jacobian for vector valued
functions, which is the same as gradient for real-valued functions.

When σ is twice differentiable (Assumption 1.A), standard matrix calculations yield

∇W E[R(W )]
(a)
= E[∇W ℓ(ŷ(x;W ), y)]

= E[∂1ℓ(ŷ(x;W ), y)∇W ŷ(x;W )]

= E
[
∂1ℓ(ŷ(x;W ), y)σ′

a,b(Wx)x⊤
]

= E
[
E
[
∂1ℓ(ŷ(x;W ), y)σ′

a,b(Wx)x⊤ | ϵ
]]

(b)
= E

[
E
[
∇⊤

x

{
∂1ℓ(ŷ(x;W ), gϵ(Ux))σ′

a,b(Wx)
}
| ϵ
]]

= E
[
∂2
1ℓ σ

′
a,b(Wx)∇⊤

x ŷ(x;W ) + ∂1ℓ∇⊤
xσ

′
a,b(Wx) + ∂2

12ℓ σ
′
a,b(Wx)∇⊤

xgϵ(Ux)
]

= E
[{

∂2
1ℓ σ

′
a,b(Wx)σ′

a,b(Wx)⊤ + ∂1ℓ diag(σ′′
a,b(Wx))

}
W
]
+

+ E
[
∂2
12ℓ σ

′
a,b(Wx)∇gϵ(Ux)⊤U

]
= H(W )W +D(W )U , (C.1)

where (a) follows from the dominated convergence theorem and (b) follows from the Stein’s lemma,
and ∇gϵ is the weak derivative of gϵ w.r.t. its inputs. Recall that Stein’s lemma (Gaussian integration
by parts) states that for x ∼ N (0, Id) and weakly differentiable f : Rd → R, we have E[∇f(x)] =
E[xf(x)]. Combining the above calculations with the gradient of the regularization term, with

D(W ) = E
[
∂2
12ℓ(ŷ, y)

(
a ◦ σ′(Wx+ b)

)
∇g⊤ϵ

]
, (C.2)

where ∇gϵ is the weak derivative of gϵ w.r.t. its inputs, and

H(W ) =E
[(
a ◦ σ′(Wx+ b)

)(
a ◦ σ′(Wx+ b)

)⊤]
+ E

[
(ŷ − y) diag

(
(a ◦ σ′′(Wx+ b))

)]
,

(C.3)

the proof is complete for smooth activations.
For ReLU activations and ℓ satisfying Assumption 1.B, we introduce the following smooth

approximation

σι(z) =
1

ι
log(1 + eιz) , ι > 0 .

Then we have

Hι(W ) = E
[
∂2
1ℓ (a ◦ σ′

ι(Wx+ b))(a ◦ σ′
ι(Wx+ b))⊤

]
+ E

[
∂1ℓ diag

(
a ◦ σ′′

ι (Wx+ b)
)]

⪰ −∥a∥∞ max
1≤j≤m

E
[
|σ′′

ι (⟨wj ,x⟩+ bj)|
]
Im.

16



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

As σ′′
τ ≥ 0, the critical step is to show limι→∞ E[σ′′

ι (⟨w,x⟩+ b)] < ∞, uniformly for all w. Let
z = ⟨w,x⟩+ b. Then z ∼ N (b, ∥w∥22), and

∫ ∞

0
σ′′
ι (z)

e
− (z−b)2

2∥w∥22
√
2π∥w∥2

dz ≤ ι

∫ ∞

0

e
−ιz− (z−b)2

2∥w∥22
√
2π∥w∥2

dz

= ιe
− b2

2∥w∥22
+

(ι∥w∥2−
b

∥w∥2 )2

2

∫ ∞

0

e
− 1

2
(

z
∥w∥2+ι∥w∥2− b

∥w∥2 )
2

√
2π∥w∥2

dz.

= ιe
− b2

2∥w∥22
+

(ι∥w∥2−
b

∥w∥2 )2

2
(1− Φ(ι∥w∥2 −

b

∥w∥2
)).

(a)
≤ ιe

− b2

2∥w∥22
√
2π∥w∥2(ι− b

∥w∥22
)

(b)
≤
√

2

π

e
−b2

2∥w∥22

∥w∥2
(c)
≤ 1

|b|

√
2

eπ
,

where (a) follows from the Gaussian tail bound 1−Φ(x) ≤ e−x2/2
√
2πx

, where Φ is the standard Gaussian
CDF; (b) holds for large enough ι; and (c) holds by considering supremum over ∥w∥2. Thus

E[σ′′
ι (⟨wj ,x⟩+ bj)] ≤ 2

|bj |

√
2
eπ and consequently,

−2∥a∥∞
b∗

√
2

eπ
Im ⪯ Hι(W ) ⪯

(
∥a∥22 +

2∥a∥∞
b∗

√
2

eπ

)
Im

where b∗ = min1≤j≤m|bj |. Moreover, as σ′
ι(Wx + b) converges a.s. (i.e. except when ⟨wj ,x⟩ +

bj = 0 for some j) to σ′(Wx+ b), by the dominated convergence theorem,

∇R(W ) = lim
ι→∞

Hι(W )W + lim
ι→∞

Dι(W )U

We can immediately observe from the dominated convergence theorem that Dι(W ) → D(W )
as ι → ∞ with D(W ) given in (C.2). Moreover, we let H(W ) = limι→∞Hι(W ), and observe
that

−2∥a∥∞
b∗

√
2

eπ
Im ⪯ H(W ) ⪯

(
∥a∥22 +

2∥a∥∞
b∗

√
2

eπ

)
Im. (C.4)

This finishes the proof of Lemma 1.

In the case of smooth activations (Assumption 1.A), the following bounds will be useful.

Lemma 6 Let R(W ) := E[ℓ(ŷ(x;W ,a, b), y)] be the unregularized population risk. Under
Assumption 1.A we have

−β2∥a∥∞
√
2R(W )Im ⪯ H(W ) ⪯

{
β2
1∥a∥22 + β2∥a∥∞

√
2R(W )

}
Im. (C.5)

17



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Proof Assumption 1.A requires ℓ(ŷ, y) = 1
2(ŷ − y)2. Hence by definition of H,

H(W ) = E
[
σ′
a,b(Wx)σ′

a,b(Wx)⊤
]
+ E

[
(ŷ(x;W )− y) diag(σ′′

a,b(Wx))
]
.

The first term is positive semi-definite and it can be easily bounded:

0 ≤ v⊤ E
[
σ′
a,b(Wx)σ′

a,b(Wx)⊤
]
v ≤ E

[
∥σ′

a,b(Wx)2∥2
]
∥v∥22 ≤ β2

1∥a∥22∥v∥22

for an arbitrary vector v ∈ Rm. For the second term, we have

−β2∥a∥∞ E[|ŷ − y|]Im ⪯ E
[
(ŷ(x;W )− y) diag(σ′′

a,b(Wx))
]
⪯ β2∥a∥∞ E[|ŷ − y|]Im

and E[|ŷ(x;W )− y|] ≤
√
2R(W ) by Jensen’s inequality.

Appendix D. Proofs of Section 3

We begin by characterizing the tail behavior of the stochastic gradient noise in the SGD updates
(3.1) through the following lemma.

Lemma 7 For any fixed W ∈ Rm×k, let

Γ := ∇ℓ(ŷ(x;W ), y)− E[∇ℓ(ŷ(x;W ), y)]

denote the zero-mean stochastic noise in the gradient of the loss function ℓ when (x, y) ∼ P , and
recall that

∇ℓ(ŷ(x;W ), y) = ∂1ℓ(ŷ(x;W ), y)σ′
a,b(Wx)x⊤.

Suppose supŷ,y|∂1ℓ(ŷ, y)| ≤ κ. Then for any V ∈ Rm×d, the zero-mean random variable ⟨V ,Γ⟩F
is Cβ1κ∥a∥2∥V ∥F-sub-Gaussian.

Proof We use the shorthand notation ∇ℓ := ∇W ℓ(Wx, y) and ∇R := ∇WR(W ). We compute
the following

E[|⟨V ,∇ℓ−∇R⟩F|
p]

1
p

(a)
≤ E[|⟨V ,∇ℓ⟩F|

p]
1
p + E[|⟨V ,∇R⟩F|

p]
1
p

(b)
≤ 2E[|⟨V ,∇ℓ⟩F|

p]
1
p

≤ 2κ E
[
|
〈
V , σ′

a,b(Wx)x⊤
〉

F
|2p
] 1

2p
.

where (a) and (b) follow from the Minkowski and Jensen inequalities respectively. Furthermore, we
have

E
[
|
〈
V , σ′

a,b(Wx)x⊤
〉

F
|2p
] 1

2p
= E

[
|
〈
V x, σ′

a,b(Wx)
〉
|2p
] 1
2p

≤ β1∥a∥2 E
[
∥V x∥2p2

] 1
2p

≤ β1∥a∥2(∥V ∥F + C∥V ∥2
√
p),

18



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

where the last inequality follows from Gaussianity of V x and Lemma 25. Hence

E[|⟨V ,∇ℓ−∇R⟩F|
p]

1
p ≤ Cβ1κ∥a∥2∥V ∥F

√
p.

Invoking Lemma 21 implies sub-Gaussianity of ⟨V ,∇ℓ−∇R⟩F and completes the proof.

We proceed by presenting a lemma which constitutes the main part of the proof of Theorem 2
via establishing a recursive bound on the moment generating function (MGF) of ∥W t

⊥∥2F, which
will in turn be used to prove high probability statements for ∥W t

⊥∥2F.

Lemma 8 Consider running the iterates of SGD (3.1), under either Assumption 1.A or 1.B, with
step size sequence {ηt}t≥0 that is either constant ηt = η or decreasing ηt = m 2(t∗+t)+1

γ(t∗+t+1)2
(cf.

[35, Theorem 3.2]). Let κ := sup|∂1ℓ(ŷ, y)|, κ := β1∥a∥2κ, ζ := β2(E[|y|] + β0∥a∥1) under
Assumption 1.A and ζ := 2

√
2/(eπ) under Assumption 1.B, and finally ϱ̃ := λ+β1∥a∥22+ ζ∥a∥∞.

Suppose η0 ≲ ϱ̃−1. Let Ft denote the sigma algebra generated by {W j}tj=0, and let {At}t≥0

be a sequence of decreasing events (i.e. At+1 ⊆ At), such that At ∈ Ft and on At we have
H(W t) + λIm ⪰ γ

mIm. Then, for every t ≥ 0, with probability at least P(At)− δ,

∥W t
⊥∥2F ≲

t−1∏
j=0

(1− ηjγ
m )∥W 0

⊥∥2F +
mηtκ

2(d+ log(1/δ))

γ
. (D.1)

Proof Let Ft denote the sigma algebra generated by {W j}tj=0. Recall from Lemma 7 that we
define

Γt = ∇ℓ(ŷ(x(t);W t), y(t))− E
[
∇ℓ(ŷ(x(t);W t), y(t))

]
with

∇ℓ(ŷ(x(t);W t), y(t)) = ∂1ℓ(ŷ(x
(t);W t), y(t))σ′

a,b(W
tx(t))(x(t))⊤.

Then for the SGD updates we have

W t+1 = W t − ηt∇Rλ(W
t)− ηtΓt.

By projecting the iterates onto the orthogonal complement of the principal subspace,

W t+1
⊥ =

(
Im − ηt(H(W t) + λIm)

)
W t

⊥ − ηtΓ
t
⊥.

Let M t := Im−ηt(H(W t)+λIm). Then, by observing that 1At+1 ≤ 1At , for any 0 ≤ s ≲ γ
mηtκ2

we have

E
[
1At+1e

s∥W t+1
⊥ ∥2F | F0

]
≤ E

[
1Ate

s∥M tW
t
⊥∥2F+sη2t ∥Γt

⊥∥2F+⟨−2sηtM tW
t
⊥,Γt

⊥⟩F | F0

]
= E

[
1Ate

s∥M tW
t
⊥∥2F E

[
esη

2
t ∥Γt

⊥∥2Fe⟨−2sηtM tW
t
⊥,Γt

⊥⟩F | Ft

]
| F0

]
≤ E

[
1Ate

s∥M tW
t
⊥∥2F E

[
e2sη

2
t ∥Γt

⊥∥2F | Ft

] 1
2 E
[
e⟨−4sηtM tW

t
⊥,Γt

⊥⟩F | Ft

] 1
2 | F0

]
,

(D.2)

where the last inequality follows from the Cauchy-Schwartz inequality for conditional expectation.

19



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Moreover, it is straightforward to observe that ∥∇ℓ(ŷ(x(t);W t), y(t))∥2F ≤ κ2∥x∥22, hence

E
[
∥∇ℓ(ŷ(x(t);W t), y(t))∥2F

]
≤ κ2d.

Note that by Jensen’s inequality

∥Γt
⊥∥2F ≤ 2∥∇ℓ(W tx(t), y(t))∥2F + 2E

[
∥∇ℓ(W tx(t), y(t))∥2F

]
.

Consequently

E
[
exp
(
2sη2t ∥Γt

⊥∥2F
)

| Ft

]
≤ exp

(
4sη2t κ

2d
)
E
[
exp
(
4sη2t κ

2∥x∥22
)

| Ft

]
≤ exp

(
4sη2t κ

2d
)
exp
(
8sη2t κ

2d
)
,

where the second inequality follows from Lemma 26 for 4sη2t κ
2 ≤ 1/4. Since s ≲ γ

mηtκ2 , in order
to satisfy the condition of Lemma 26 we need to ensure ηtγ/m ≲, which is guaranteed by our
ηtϱ̃ ≲ 1 assumption for a suitably small absolute constant, as γ/m ≤ λ ≤ ϱ̃.

Next, we bound the last term in (D.2). Let V := −4sηtM tW
t
⊥. Then by Lemma 7 we have

E
[
exp
(〈
V ,Γt

⊥
〉

F

)
| Ft

]
≤ exp

(
Cs2η2t κ

2∥M tW
t
⊥∥2F

)
Putting things back together in (D.2) and using the tower property of expectation, we have

E
[
1At+1e

s∥W t+1
⊥ ∥2F | F0

]
≤ E

[
1Ate

s(1+Csη2t κ
2)∥M tW

t
⊥∥2F+Csη2t κ

2d | F0

]
. (D.3)

Next, we bound ∥M t∥2. By definition of At, we can already ensure H(W t) ⪰ γ
mIm in (D.3).

Recall the definition of H(W t)

H(W t) = E
[
∂2
1ℓ(ŷ(x;W

t), y)σ′
a,b(W

tx)σ′
a,b(W

tx)⊤ + ∂1ℓ(ŷ(x;W
t), y) diag(σ′′

a,b(W
tx))

]
.

Notice that 0 ≤ ∂2
1ℓ(ŷ(x;W ), y) ≤ 1 under either Assumption 1.A or Assumption 1.B. Moreover

we have, |∂1ℓ(ŷ, y)| ≤ κ. Thus,

H(W t) + λIm ⪯
(
λ+ β2

1∥a∥22 + ζ∥a∥∞
)
Im = ϱ̃Im.

Therefore,
0 ⪯ Im − ηt(H(W t) + λIm) ⪯ (1− ηtγ

m )Im.

As a result ∥M t∥2 ≤ 1− ηtγ
m . Combined with (D.3) we have

E
[
1At+1 exp

(
s∥W t+1

⊥ ∥2F
)
| F0

]
≤ E

[
1At exp

(
s(1 + Csη2t κ

2)(1− ηtγ
m )2∥W t

⊥∥2F + Csη2t dκ
2
)
| F0

]
≤ exp

(
Csη2t κ

2d
)
E
[
1At exp

(
s(1− ηtγ

m )∥W t
⊥∥2F

)
| F0

]
(D.4)

where the second inequality holds by the fact that Csη2t κ
2 ≤ ηtγ/m, which in turn holds when a

small enough absolute constant is chosen in 0 ≤ s ≲ γ
mηtκ2 . Also notice that for decreasing step

size,

1− γηt
m =

(t+ t∗)2

(t+ t∗ + 1)2
≤

1− (t+t∗)2

(t+t∗+1)2

1− (t+t∗−1)2

(t+t∗)2

=
ηt
ηt−1

, (D.5)

20



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

(and the above holds trivially for constant step size), thus when s ≤ C1γ
ηtκ2 for some absolute constant

C1, we have s(1− ηtγ) ≤ C1γ
ηt−1κ2 with the same absolute constant. Hence we are allowed to expand

the recursion (D.4), which implies

E
[
1At exp

(
s∥W t

⊥∥2F
)
| F0

]
≤ exp

s

t−1∏
j=0

(1− ηjγ
m )∥W 0

⊥∥2F + Csκ2d

t−1∑
i=0

η2i

t−1∏
j=i+1

(1− ηjγ
m )


for all 0 ≤ s ≲ γ

mηt−1κ2 . Moreover, direct calculation implies that with both constant and decreasing

step sizes of Lemma 8, we have
∑t−1

i=0 η
2
i

∏t−1
j=i+1(1−

ηjγ
m ) ≤ Cmηt

γ (with C = 1 for constant step
size). Thus, for all 0 ≤ s ≲ γ

mηt−1κ2

E
[
1At exp

(
s∥W t

⊥∥2F
)
| F0

]
≤ exp

s
t−1∏
j=0

(1− ηjγ
m )∥W 0

⊥∥2F + Csmηtκ2d
γ

.

Finally, we can apply a Chernoff bound to obtain

P
(
At ∩ {∥W t

⊥∥2F ≥ ε} | F0

)
≤ exp

s


t−1∏
j=0

(1− ηjγ)∥W 0
⊥∥2F + Cmηtκ2d

γ − ε




By choosing

ε =
t−1∏
j=0

(1− ηjγ
m )∥W 0

⊥∥2F +
Cmηtκ

2(d+ log(1/δ))

γ
.

and the largest possible s ≲ γ
mηtκ2 , we obtain

P
(
∥W t

⊥∥2F ≥ ε | F0

)
≤ P

(
At ∩ {∥W t

⊥∥F ≥ ε}
)
+ P

(
AC

t

)
≤ δ + P

(
AC

t

)
.

Taking another expectation to remove conditioning on initialization completes the proof.

The proof of Theorem 2 for decreasing step size follows by a direct computation of the quantities
in Lemma 8 and is presented below. We remark that proving the same result with a constant step
size is essentially similar.

D.1. Proof of Theorem 2

This part is directly implied by Lemma 8. The following argument holds on an event where
∥W ∥F ≲

√
m, which happens with probability at least 1 − O(δ). In order to see this connec-

tion, we will first present an improved statement over Lemma 6 for the case of smooth activations.
Recall the definition of H(W ) for the squared error loss ℓ(ŷ, y) = (ŷ−y)2

2 ,

H(W ) = E
[
σ′
a,b(Wx)σ′

a,b(Wx)⊤
]
+ E

[
(ŷ(x;W ,a, b)− y) diag(σ′′

a,b(Wx))
]
.

Notice that under Assumption 1.A we have |ŷ| ≤ β0∥a∥1. Then basic matrix algebra similar to that
of Lemma 6 along with the triangle inequality shows

−β2∥a∥∞(β0∥a∥1 + E[|y|])Im ≺ H(W ) ⪯
(
β2
1∥a∥22 + β2∥a∥∞(β0∥a∥1 + E[|y|])

)
Im.

21



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Therefore, with λ ≥ γ/m + β2∥a∥∞(∥a∥1β0 + E[|y|]), we have H(W ) + λIm ⪰ γ/mIm for
all W . In addition, |∂1ℓ(ŷ, y)| ≤ β0∥a∥1 + K by the triangle inequality. Thus we can invoke
Lemma 8 with ηt = m

γ

(
1− (t∗+t)2

(t∗+t+1)2

)
, κ = β0∥a∥1 + K, ζ = β2κ and 1At = 1. Recall that

in the statement of the theorem, β0 = β1 = β2 = 1, K ≲ 1, ∥a∥∞ ≤ 1/m, ∥a∥2 ≤ 1/
√
m, and

∥a∥1 ≤ 1, hence ϱ̃ ≍ λ, and with t∗ ≍ λ̃
γ we can guarantee ηtλ ≲ 1. As the step size condition of

Lemma 8 is satisfied, the desired result follows.
Similarly, for ReLU we have |∂1ℓ(ŷ, y)| ≤ 1 by Assumption 1.B, and for λ ≥ γ/m+2∥a∥∞

b∗

√
2
eπ ,

we have H(W ) + λIm ⪰ γ/mIm. Hence this time, we can invoke Lemma 8 with the same de-

creasing ηt and 1At = 1, κ = 1, and ζ = 2
b∗

√
2
eπ (recall b∗ = 1 in the statement of the theorem).

Appendix E. Proofs of Section 4

E.1. Proof of Theorem 5

As our arguments are based on the Rademacher complexity of a two-layer neural network, we
require the knowledge of the norm of W t. We prove a high probability bound for this norm in the
following lemma.

Lemma 9 Under Assumption 1.A or 1.B with either decreasing or constant step size as in Theorem
2, let κ = supŷ,y|∂1ℓ(ŷ, y)| < ∞ and κ∞ := β1∥a∥∞κ. Then for any t ≥ 1, with probability at

least 1−m exp
(
−γtd
2mλ

)
we have for all 1 ≤ j ≤ m

∥wt
j∥2 ≤

t−1∏
i=0

(1− ηiλ)∥w0
j∥2 +

3κ∞
√
d

λ
. (E.1)

Proof First, we prove that for any t ≥ 0 and 0 ≤ s ≤ 2
√
d

κ∞ηt
, we have

E
[
exp(s∥wt

j∥2) |W 0
]
≤ exp

(
s
t−1∏
i=0

(1− ηiλ)∥w0
j∥2 +

2sκ∞
√
d

λ

)
, (E.2)

The base case of t = 0 is trivial, and for the induction step we have

E
[
exp
(
s∥wt+1

j ∥2
)
|W 0

]
= E

[
exp
(
s∥(1− ηtλ)w

t
j − ηt∇wjℓ(ŷ(x;W

t), y)∥2
)
|W 0

]
≤ E

[
exp
(
s(1− ηtλ)∥wt

j∥2 + sηt∥∇wjℓ(ŷ(x;W
t), y)∥2

)
|W 0

]
= E

[
exp
(
s(1− ηtλ)∥wt

j∥2 + sηtκ∞∥x∥2
)
|W 0

]
= E

[
exp
(
s(1− ηtλ)∥wt

j∥2
)
E
[
exp(sηtκ∞∥x∥2) |W t,W 0

]
|W 0

]
(a)
≤ E

[
exp
(
s(1− ηtλ)∥wt

j∥2
)
exp

(
sηtκ∞

√
d+

s2κ2∞η2t
2

)
|W 0

]
(b)
≤ exp

(
s

t∏
i=0

(1− ηiλ)∥w0
j∥2 +

2sκ∞
√
d

λ

)

22



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

where (a) holds since ∥x∥2 is a 1-Lipschitz function of a standard Gaussian random vector, thus it
is sub-Gaussian with parameter 1 (Lemma 22) and additionally E[∥x∥2] ≤

√
d, and (b) holds by

the induction hypothesis (notice that for decreasing step size s(1− ηtλ) ≤ 2
√
d

κ∞ηt−1
by (D.5)). Next,

we apply the following Chernoff bound,

P

(
∥wt

j∥2 >
t−1∏
i=0

(1− ηiλ)∥w0
j∥2 +

3κ∞
√
d

λ
| W 0

)
≤ exp

(
−sκ∞

√
d

λ

)
,

which holds for any 0 ≤ s ≤ 2
√
d

κ∞ηt
. Choosing the largest s possible and noting that ηt ≤ 4m

γt yields

an exp
(
−γtd
2mλ

)
upper bound on the conditional probability, which followed by taking expectation

removes the randomness of conditioning on w0
j . Finally applying a union bound gives us the desired

bound.

In addition, we would like to approximate Rτ (W
T ) and R̂τ (W

T ) with Rτ (W
T
∥ ) and R̂τ (W

T
∥ )

respectively. As a result, we will investigate the Lipschitzness of the population and empirical risk
in the next lemma.

Lemma 10 Under either Assumption 1.A or 1.B, the truncated risk W 7→ Rτ (W ) is
√
2τβ1∥a∥2-

Lipschitz. Moreover, for T ≥ d + log(1/δ) with probability at least 1 − δ over the stochasticity
of {x(t)}0≤t≤T−1, the truncated empirical risk W 7→ R̂τ (W ) is Cτβ1∥a∥2-Lipschitz for some
absolute constant C.

Proof We begin by the simple observation that ŷ 7→ ℓ(ŷ, y) ∧ τ is
√
2τ -Lipschitz when ℓ(ŷ, y) =

1/2(ŷ−y)2 and 1-Lipschitz when |∂1ℓ(ŷ, y)| ≤ 1. As τ ≥ 1, we can consider both of them as
√
2τ

Lipschitz. Thus by Jensen’s inequality

|Rτ (W )−Rτ (W
′)| ≤

√
2τ E

[
|ŷ(x;W )− ŷ(x;W ′)|

]
≤

√
2τ E

 m∑
j=1

ajσ(⟨wj ,x⟩+ bj)−
m∑
j=1

ajσ(
〈
w′

j ,x
〉
+ bj)

2
1
2

(a)
≤

√
2τ∥a∥2

√√√√ m∑
j=1

E
[(

σ(⟨wj ,x⟩+ bj)− σ(
〈
w′

j ,x
〉
+ bj)

)2]

≤
√
2τβ1∥a∥2

√√√√ m∑
j=1

E
[〈

wj −w′
j ,x
〉2]

(E.3)

≤
√
2τβ1∥a∥2∥W −W ′∥F

where (a) follows from the Cauchy-Schwartz inequality. Note that Equation (E.3) also holds for
|R̂τ (W )− R̂τ (W

′)| when expectation is over the empirical distribution given by the training sam-
ples, meaning

|R̂τ (W )− R̂τ (W
′)| ≤

√
2τβ1∥a∥2

√√√√ m∑
j=1

(wj −w′
j)

⊤

(
1

T

T−1∑
t=0

x(t)x(t)⊤
)
(wj −w′

j). (E.4)

23



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

By Example 6.3 of [68], with probability at least 1− δ we have∥∥∥∥∥ 1T
T−1∑
t=0

x(t)x(t)⊤ − Id

∥∥∥∥∥
2

≤ C

(√
d

n
+

√
log(1/δ)

n
+

d+ log(1/δ)

n

)
,

which completes the proof.

Lemma 11 Suppose either Assumptions 1.A or 1.B hold. Denote the loss with ℓ(ŷ, y) = ℓ(ŷ− y),

S̃ =

{
W̃ ∈ Rm×k,a, b ∈ Rm : ∥a∥2 ≤

ra√
m

, ∥b∥∞ ≤ rb , ∥w̃j∥2 ≤ rw̃ , ∀ 1 ≤ j ≤ m

}
and

G =
{
(x̃, y) 7→ ℓ(ŷ(x̃; W̃ ,a, b), y) ∧ τ : (W̃ ,a, b) ∈ S̃

}
for x̃ ∈ Rk and y ∈ R. Let R(G) denote the Rademacher complexity of the function class G (see
Lemma 11 for definition). Then with x̃ ∼ N (0,U) we have

R(G) ≤ 2τβ1(rw̃∥U∥F + rb)ra

√
2

T
,

where T is the number of samples.

Proof Let F = {(x̃, y) 7→ fa,W̃ (x̃, y) : (W̃ ,a, b) ∈ S̃} for fa,W̃ (x̃, y) = ŷ(x̃; W̃ ,a, b) − y.
Define g(z) := ℓ(z) ∧ τ , and notice G = {(x̃, y) 7→ g(fa,W̃ (x̃, y)) : fa,W̃ ∈ F}, and that g is a√
2τ -Lipschitz (thus

√
2τ -Lipschitz as well, for τ > 1) function. Then by Talagrand’s contraction

principle we have R(G) ≤
√
2τR(F). Moreover, let {ξi}1≤i≤n be a sequence of i.i.d. Rademacher

24



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

random variables. Then similar to the Rademacher bound of [23]

R(F) = E

[
sup

(W̃ ,a,b)∈S̃

1

T

T−1∑
t=0

ξi

(
a⊤σ(W̃ x̃(t) + b)− y(i)

)]

= E

[
sup

(W̃ ,a,b)∈S̃

1

T

T−1∑
t=0

ξia
⊤σ(W̃ x̃(t) + b)

]
(a)
≤ ra

T
E

[
sup

(W̃ ,b)∈S̃
∥
T−1∑
t=0

ξiσ(W̃ x̃(t) + b)∥∞

]

≤ ra
T

E

[
sup

∥w̃∥2≤rw̃,|b̃|≤rb

|
T−1∑
t=0

ξiσ
(〈

w̃, x̃(t)
〉
+ b̃
)
|

]
(b)
≤ 2β1ra

n
E

[
sup

∥w̃∥2≤rw̃,|b|≤rb

|
T−1∑
t=0

ξi

(〈
w̃, x̃(t)

〉
+ b
)
|

]

≤ 2β1ra
T

E

[
sup

∥w̃∥2≤rw̃

|
T−1∑
t=0

ξi⟨w̃, x̃⟩|+ sup
|b̃|≤rb

|
T−1∑
t=0

ξib|

]

≤ 2β1ra
T

(
rw̃ E

[
∥
T−1∑
t=0

ξix̃
(t)∥2

]
+ rb

√
n

)

≤ 2β1(rw̃∥U∥F + rb)ra√
T

,

where (a) holds by Hölder’s inequality and the fact that ∥a∥1 ≤
√
m∥a∥2 ≤ ra, and (b) follows

from the fact that σ is β1 Lipschitz, thus another application of Talagrand’s contraction principle.

Proof [Proof of Theorem 5] Let E1 denote the event of Lemma 10. We begin with the following
decomposition for generalization error which holds on E1,

Rτ (W
T )− R̂τ (W

T ) = Rτ (W
T )−Rτ (W

T
∥ ) +Rτ (W

T
∥ )− R̂τ (W

T
∥ ) + R̂τ (W

T
∥ )− R̂τ (W

T )

≤ Cτβ1∥a∥2∥W T
⊥∥F +Rτ (W

T
∥ )− R̂τ (W

T
∥ ).

where the upper bound follows from Lemma 10. Consequently,

sup
a,b

Rτ (W
T ,a, b)− R̂τ (W

T ,a, b) ≤ Cτβ1ra√
m

∥W T
⊥∥F + sup

a,b
Rτ (W

T
∥ ,a, b)− R̂τ (W

T
∥ ,a, b).

(E.5)
We begin by upper bounding the first term. From Theorem 2, on an event E2 we have with

probability at least 1−O(δ)

∥W T
⊥∥F ≲ κ

√
d+ log(1/δ)

γ2T
.

Next, we bound the second term in (E.5). For each W , define W̃ := U †W ∥, where U † is the
Moore–Penrose pseudo-inverse of U . Then, since we have the representation W ∥ = MU for
some M ∈ Rm×k,

W̃U = W ∥U
†U = MUU †U = MU = W ∥.

25



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Thus, Wx = W̃ x̃ and ℓ(ŷ(x;W ,a, b), y) = ℓ(ŷ(x̃; W̃ ,a, b), y) for x̃ = Ux, when W is in the
principal subspace, i.e. W = W ∥. Let E3 denote the event of Lemma 9, on which

∥wT
j ∥2 ≤

T−1∏
i=0

(1− ηiγ
m )∥w0

j∥2 +
3κ∞

√
d

λ

and consequently

∥w̃T
j ∥2 ≤ ∥U †∥2

(
T−1∏
i=0

(1− ηiγ
m )∥w0

j∥2 +
3κ∞

√
d

λ

)
for any 1 ≤ j ≤ m. Define rw̃T as the RHS bound above. Then on E3

sup
a,b

Rτ (W
T
∥ )− R̂τ (W

T
∥ ) ≤ sup

(W̃ ,a,b)∈S̃
Rτ (W̃ ,a, b)− R̂τ (W̃ ,a, b),

where we recall

S̃ :=
{
W̃ ∈ Rm×k,a, b ∈ Rm : ∥a∥2 ≤ ra√

m
, ∥b∥∞ ≤ rb , ∥w̃j∥2 ≤ rw̃T ,∀ 1 ≤ j ≤ m

}
.

Additionally define

G = {(x̃, y) 7→ ℓ(ŷ(x̃; W̃ ,a, b) ∧ τ : (W̃ ,a, b) ∈ S̃}.

Then Lemma 24 and Lemma 11 yield

E

[
sup

(W̃ ,a,b)∈S̃
Rτ (W̃ )− R̂τ (W̃ )

]
≤ 2R(G) ≲ τβ1(rw̃T + rb)ra∥U∥F

√
1

T
.

Besides, as the loss is bounded by τ , by McDiarmid’s inequality, on an event E4 which happens
with probability at least 1−O(δ) we have

sup
(W̃ ,a,b)∈S̃

Rτ (W̃ )− R̂τ (W̃ ) ≤ E

[
sup

(W̃ ,a,b)∈S̃
R(W̃ )

]
+ Cτ

√
log(1/δ)

T
.

and consequently on ∩4
i=1Ei

sup
a,b

Rτ (W
T
∥ ,a, b)− R̂τ (W

T
∥ ,a, b) ≲ τβ1(rw̃T + rb)ra∥U∥F

√
1

T
+ τ

√
log(1/δ)

T
.

Finally, observe that ∥a∥1 ≤
√
m∥a∥2 ≤ ra and ∥U †∥2 = ∥U∥−1

2 ≤
√
k∥U∥−1

F , thus with
probability at least 1− o(δ),

sup
a,b

Rτ (W
T ,a, b)− R̂τ (W

T ,a, b) ≲τβ1raκ

√
d+ log(1/δ)

γ2T

+ τβ1ra

{(
t∗

t∗ + T

)2

rw +
κ∞
λ

+ rb

}√
dk

T

+ τ

√
log(1/δ)

T
. (E.6)

26



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

We remark that in the setting of Theorem 2 which is adapted in Theorem 5, ∥a∥∞ ≲ m−1, thus
κ∞ ≲ m−1. Finally, we observe that rw ≤

√
2m with probability at least 1−O(δ) over initializa-

tion, which completes the proof.

E.2. Proof of Theorem 4

Note that due to the special symmetry in the initialization of Algorithm 1, while training the first
layer, all neurons have an identical value, i.e. wt

j = wt for all j, and that the stochastic gradient
with respect to any neuron can be denote by ∇ℓ = a∂1ℓ(ŷ, y)σ

′(⟨w,x⟩ + b)x. Furthermore,
∇wjRλ(W ) will also be identical for all j, which due to the population gradient formula (3.2), we
denote by

∇Rλ(w) = (h(w) + λ)w + d(w)u,

where h(w) =
∑m

j=1Hij(W ) and d(w) = aE
[
∂2
12ℓ(ŷ, y)σ

′(⟨w,x⟩+ b)f ′(⟨u,x⟩)
]
. Addition-

ally, via the arguments in the proof of Lemma 1, it is not difficult to observe γ/m ≤ h(w) + λ ≲
m−1. Furthermore, similar to the arguments of Lemma 7, ⟨∇ℓ,v⟩ is Ca∥v∥2-sub-Gaussian for
any v ∈ Rd. Next, we will derive a lower bound for

〈
wt,u

〉
to argue that useful features are

learned, which first requires obtaining a sharper upper bound on ∥wt∥2 than that of Lemma 9. This
improvement is possible due to considering the special case of wt

j = wt here.

Lemma 12 Suppose t ≥ d. Then,

∥wt∥2 ≤
(

t∗

t∗ + t

)
∥w0∥2 +

Cma

γ

with probability at least 1− exp(−C(t∗ + t)). In particular, using the union bound, we have

sup
t≥t0

∥wt∥2 ≤ ∥w0∥2 +
Cma

γ
≲ 1

with probability at least 1− exp(−C(t∗ + t0))− exp(−Cd).

Proof Let et := ∇wℓ−∇wRλ. Then we have

wt+1 = wt − ηt∇wRλ − ηte
t.

Recall that
〈
et,v

〉
is Ca∥v∥2-sub-Gaussian, and Ft is the sigma algebra generated by {wj}0≤j≤t.

Let ωt := wt − ηt∇wRλ. Then, for any 0 ≤ s ≲ γ
ηta2

,

E
[
exp
(
s∥wt+1∥22

)
| F0

]
= E

[
exp
(
s∥ωt∥22 − 2sηt

〈
ωt, et

〉
+ sη2t ∥et∥22

)
| F0

]
≤ E

[
exp
(
s∥ωt∥22

)
E
[
exp
(
−4sηt

〈
ωt, et

〉)
| Ft

] 1
2 E
[
exp
(
2sη2t ∥et∥22

)
| Ft

] 1
2 | F0

]
.

By sub-Gaussianity of
〈
ωt, et

〉
we have E

[
exp(−4sηt

〈
ωt, et

〉
) | Ft

]
≤ exp(Cs2η2t a

2∥ωt∥22). More-
over, as ∥∇ℓ∥2 ≤ |a|∥x∥2, by Jensen’s inequality

∥et∥22 ≤ 2∥∇ℓ∥22 + 2E
[
∥∇ℓ∥22

]
≤ 2a2(∥x∥22 + d).

27



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Thus E
[
exp(2sη2t ∥et∥22) | Ft

]
≤ exp(Csη2t a

2d) for s ≲ 1
η2t a

2 (which holds by s ≲ γ
ηta2

, see the
proof of Lemma 8 for more details), i.e. we have

E
[
exp
(
s∥wt+1∥22

)
| F0

]
≤ E

[
exp
(
s(1 + Csη2t a

2)∥ωt∥22 + Csη2t a
2d
)
| F0

]
.

Recall that by our choice of ηt, 0 ≤ (1 − ηt(h(w
t) + λ)) ≤ 1 − ηtγ

m (cf. proof of Lemma 8), and
ωt = (1− ηt(h(w

t) + λ))wt − ηtd(w
t)u. As ∥u∥2 = 1 and |d(wt)| ≲ |a|, we have

∥ωt∥22 ≤ (1− ηtγ
m )2∥wt∥22 + Ca2η2t + 2ηtCa(1− ηtγ

m )∥wt∥2
(a)
≤ (1− ηtγ

m )2∥wt∥22 + ηt

(
2Cma2

γ
+

γ

2m
(1− ηtγ

m )2∥wt∥22
)
+ Ca2η2t

(b)
≤ (1− 3ηtγ

2m )∥wt∥22 +
Cmηta

2

γ
+ Ca2η2t .

where (a) holds by Young’s inequality and (b) holds for ηtγ ≲ 1 with a sufficiently small absolute
constant. Therefore, for s ≲ γ

mηta2
,

E
[
exp
(
s∥wt+1∥22

)
| F0

]
≤ E

[
exp

(
(1− ηtγ

m )∥wt∥22 +
Csmηta

2

γ
+ Csη2t a

2d

)
| F0

]
.

Expanding the recursion yields,

E
[
exp
(
s∥wt∥22

)
| F0

]
≤ exp

(
s

(
t∗

t∗ + t

)2

∥w0∥2F +
Csm2a2(t+ d)

γ2(t∗ + t)

)
.

Finally, we apply a Chernoff bound with the maximum choice of s ≲ γ
ηta2

, and combine it with the
fact that ∥w0∥2 ≲ 1 with probability at least 1− exp(−Cd).

Lemma 13 Suppose mab < 1 − |f(0)|. Then, we have |
〈
wt,u

〉
| ≳ 1 with probability at least

1− 2 exp(−Ct)− exp(−Cd).

Proof We will only prove for the case where f is increasing as the case for decreasing f is similar.
We begin by proving an upper bound for d(w) when ∥w∥2 ≲ 1. By the triangle inequality,

|ŷ − y| ≤ |ŷ|+ |f(0)|+ |f(⟨u,x⟩)− f(0)|+ |ϵ|.

Furthermore, |ŷ| ≤ ma(|⟨w,x⟩|+ b). Thus, for

|⟨w,x⟩| ≤
(
1− |f(0)| −mab

2ma

)
∧ b,

|⟨u,x⟩| ≲ 1 and |ϵ| ≲ 1 for sufficiently small absolute constants, we have |ŷ − y| ≤ 1 hence
∂2
12ℓ(ŷ, y) = −1. Then we have,

d(w) = aE
[
∂2
12ℓ(ŷ, y)σ

′(⟨w,x⟩+ β)f ′(⟨u,x⟩)
]

≲ aE
[
1(|ϵ| ≲ 1)1(|⟨w,x⟩| ≲ 1)1(|⟨u,x⟩| ≲ 1)f ′(⟨u,x⟩)

]
= aE[1(|ϵ| ≲ 1)]E

[
1(|⟨w,x⟩| ≲ 1)1(|⟨u,x⟩| ≲ 1)f ′(⟨u,x⟩)

]
≲ −a.

28



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

where the last line is obtained by considering supremum over ∥w∥2 ≲ 1.
Let At = {supt0≤t′≤t∥wt′∥2 ≲ 1}. Then,

E
[
exp
(
−s
〈
wt+1,u

〉)
1At+1

]
≤ E

[
exp
(
−s
〈
wt+1,u

〉)
1At

]
≤ E

[
exp
(
−s
〈
wt,u

〉
+ sηt

〈
∇ℓ+ λwt,u

〉)
1At

]
(a)
≤ E

[
exp
(
−s
〈
wt,u

〉
+ sηt⟨∇Rλ,u⟩+ Cs2η2t a

2
)
1At

]
(b)
= E

[
exp
(
−s(1− ηt(h(w

t) + λ))
〈
wt,u

〉
+ sηt(d(w

t) + Csηt)
)
1At

]
(c)
≤ exp(−Csηta)E

[
exp
(
−s(1− ηt(h(w

t) + λ))
〈
wt,u

〉)
1At

]
,

where (a) follows from the sub-Gausianity of the stochastic noise in the gradient, (b) follows since〈
∇Rλ(w

t),u
〉
= d(wt) by definition, and (c) holds for s ≲ ηt

−1 with a sufficiently small absolute
constant. Notice that by the condition on t∗ inherited from Theorem 2, 1 − ηt(h(w

t) + λ)) > 0,
and Since s(1− ηt(h(w

t) + λ)) ≤ s(1− ηtγ
m ), we can expand the recursion,

E
[
exp
(
−s
〈
wt,u

〉)
1At

]
≤ E

exp
−Csa

t−1∑
i=t0

ηj

t−1∏
j=t−i

(1− ηtγ
m ) + s

t−1∏
i=t0

(1− ηtγ
m )|

〈
wt0 ,u

〉
|

1At0


≤ E

[
exp

(
−Cs

(
1−

(
t∗ + t0
t∗ + t

)2
)

+ Cs

(
t∗ + t0
t∗ + t

)2
)]

.

where in the second inequality we used a ≍ m−1 and γ ≍ 1. Applying the Chernoff bound implies
that

〈
wt,u

〉
≳ 1 with probability at least 1 − P

(
AC

t

)
− exp(−Ct) ≤ 1 − exp(−C(t∗ + t0)) −

exp(−Cd)− exp(−Ct). Finally the result follows by letting t0 =
t
2 .

We have proven that |
〈
wt,u

〉
| ≳ 1 while ∥wt

⊥∥2 → 0. This fact shows that the features learned
in the first layer are useful. What remains to be shown is an approximation result, such that for a
carefully constructed second layer, the network can approximate polynomials of the desired type.
This type of approximation using random biases has been adopted from [23]. We first present an
approximation result using infinite neurons.

Lemma 14 Let 0 < |α| ≤ r and b ∼ Unif(−2r∆, 2r∆). For any smooth f : R → R, let f̃α : R →
R be a smooth function such that f̃α(z) = f(z) for |z| ≤ r∆

|α| and f̃α(−2r∆
α ) = f̃ ′

α(−2r∆
α ) = 0.

Then, for |z| ≤ ∆ we have

Eb

[
4r∆f̃ ′′

α

(
− b

α

)
σ(αz + b)

]
= f(z).

Proof Using integration by parts, we have

Eb

[
4r∆f̃ ′′

α

(
− b

α

)
σ(αz + b)

]
=

∫ 2r∆

−αz
f̃ ′′
α(−

b

α
)(αz + b)db

= −f̃ ′
α(−

2r∆

α
)(z +

2r∆

α
) +

∫ z

−2r∆
α

f̃ ′
α(b)db

= f̃α(z) = f(z).

29



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Now, by a concentration argument, we state an approximation result with finitely many neurons.

Lemma 15 Let r∗ ≤ |αj | ≤ r and bj ∼ Unif(−2r∆, 2r∆). Then there exists a(αj , bj) such that
for any fixed z ∈ [−∆,∆], with probability at least 1− δ over the choice of (bj), we have∣∣∣∣∣∣

m∑
j=1

a(αj , bj)σ(αjz + bj)− f(z)

∣∣∣∣∣∣ ≲ (r∆)2 sup

|z|≤ r∆
r∗

|f ′′(z)|
√

log(1/δ)

m
.

Moreover, ∥a∥2 ≲ r∆√
m
sup

|z|≤ r∆
r∗

|f ′′(z)|.

Proof Let f̃α(z) be a candidate in Lemma 14, which can be obtained by e.g. extending f with
suitable polynomials (notice that f̃α only needs to be twice differentiable on its domain). Now
choose aj = 4 r∆

m f̃ ′′
αj
(− bj

αj
). Then Lemma 14 ensures that

Eb[a(αj , bj)σ(αjz + bj)] = f(z).

As f̃α(z) = f(z) for all |z| ≤ r∆
|αj | , we have f̃ ′′

αj
(− bj

αj
) = f ′′

αj
(− bj

αj
). It immediately follows that

∥a∥2 ≤ Cr∆√
m

sup
|z|≤ r∆

r∗
|f ′′(z)| and |ajσ(αz + bj)| ≤ C(r∆)2

m sup
|z|≤ r∆

r∗
|f ′′(z)|. Applying the

Hoeffding’s inequality finishes the proof.

In the following lemma, we will briefly record useful properties of W T which will be of help
for invoking the above approximation results and providing guarantees when the second layer is op-
timized by SGD. Through the rest of the proof, we will add the mild assumption that d ≳ log(1/δ).
Otherwise, we need to add e−Cd to the probability of failure in Theorem 4.

Lemma 16 Suppose T ≳ d + log(1/δ). Then with probability at least 1 − δ over the choice of
(bj)1≤j≤m and {(x(t), y(t))}T−1

t=0 , the following statements hold:

1. ∥wT
j ∥2 ≍ |

〈
wT

j ,u
〉
| ≍ 1 for all 1 ≤ j ≤ m.

2. ∥ 1
T

∑T−1
t=0 x(t)(x(t))⊤∥2 ≲ 1.

3. ∥W T
⊥∥F ≲

√
m(d+log(1/δ))

T .

4. |
〈
u,x(t)

〉
| ≲ ∆ for all 1 ≤ j ≤ m and 0 ≤ t ≤ T − 1.

5. ∥W Tx(t)∥2 ≲
√
m(

√
d+∆) for all 0 ≤ t ≤ T − 1.

Proof We will show that each of the events hold with probability (w.p.) at least 1 − O(δ). Recall
from Lemma 12 that ∥wT

j ∥2 ≲ 1 for all j w.p. ≥ 1−O(δ), which implies the same for
〈
wT

j ,u
〉

. On

the other hand, from Lemma 13, |
〈
wT

j ,u
〉
| ≳ 1 for all j w.p. ≥ 1−O(δ). Combining these events

implies that |
〈
wT

j ,u
〉
| ≍ 1. The fact that ∥ 1

T

∑T−1
t=0 x(t)(x(t))⊤∥2 ≲ 1 w.p. ≥ 1 − O(δ) for T ≳

30



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

d + log(1/δ) follows from the statement of Lemma 23. Furthermore, ∥W T
⊥∥F ≲

√
m(d+log(1/δ))

T

w.p. 1 −O(δ) follows from Theorem 2. Note that as
〈
u,x(t)

〉
∼ N (0, 1), by the choice of ∆, we

have
〈
u,x(t)

〉
≳ 1 w.p. ≥ 1 −O(δ/T ), thus |

〈
u,x(t)

〉
| ≲ ∆ w.p. ≥ 1 −O(δ) by a union bound.

Finally, we have

∥W Tx(t)∥2 ≤ ∥W T
∥ x

(t)∥2 + ∥W T
⊥x

(t)∥2 ≲
√
m|
〈
u,x(t)

〉
|+
√

m(d+ log(1/δ))

T
∥x(t)∥2

≲
√
m|
〈
u,x(t)

〉
|+

√
m∥x(t)∥2

The first term is already bounded by
√
m∆ with probability at least 1−O(δ). Moreover, recall that

∥x(t)∥2−E
[
∥x(t)∥2

]
is 1-sub-Gaussian, thus by the union bound ∥x(t)∥2−

√
d ≲

√
log(T/δ) ≲ ∆

for all 0 ≤ t ≤ T−1. Thus w.p. ≥ 1−O(δ) we have ∥W Tx(t)∥2 ≲
√
m(

√
d+∆) which completes

the proof.

From this point onwards, we will denote the Huber loss with ℓH(ŷ, y) = ℓ(ŷ − y). Notice that
ℓH is 1-Lischitz.

Lemma 17 Recall

R̂(W T ,a, b) =
1

T

T−1∑
t=0

ℓH

 m∑
j=1

ajσ(
〈
wT

j ,x
(t)
〉
+ bj)− f(

〈
u,x(t)

〉
)− ϵ(t)

,

the empirical risk of W T given by Algorithm 1. Let ∆ ≍
√

log(Tδ ), ∆∗ := ∆ sup|z|≲∆|f ′′(z)|, and

bj
i.i.d.∼ Unif(−∆,∆). Then, with probability at least 1− δ (over the randomness of (bj)1≤j≤m and

{x(t), y(t)}T−1
t=0 hence W T ), for T ≳ d+ log(1/δ), there exists a∗ with ∥a∗∥2 ≲ ∆∗

√
m

such that

R̂(W T ,a∗, b)− E[ℓH(ϵ)] ≲ ∆∗

(
∆

√
log(1/δ)

m
+∆∗

√
d+ log(1/δ)

T

)
.

Proof We will condition the following discussion on the event of Lemma 16. Let αj =
〈
wT

j ,u
〉

,
and let a∗ be constructed according to Lemma 15. By the Lipschitzness of the Huber loss, for an
inividual sample (x, y) we have

ℓ(ŷ(x;W T ,a∗, b)− f(⟨u,x⟩)− ϵ) ≤ ℓH(ϵ) + |ŷ(x;W T ,a∗, b)− f(⟨u,x⟩)|
≤ ℓH(ϵ) + |ŷ(x;W T ,a∗, b)− ŷ(x;W T

∥ ,a
∗, b)|

+ |ŷ(x;W T
∥ ,a

∗, b)− f(⟨u,x⟩)|.

Moreover, by the Cauchy-Schwartz inequality

|ŷ(x;W T ,a∗, b)− ŷ(x;W T
∥ ,a

∗, b)| ≤ ∥a∗∥2

√√√√ m∑
j=1

(
σ(
〈
wT

j ,x
〉
+ bj)− σ(

〈
(wT

j )∥,x
〉
+ bj

)2

≤ ∥a∗∥2

√√√√ m∑
j=1

〈
(wT

j )⊥,x
〉2

.

31



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Additionally, since ∥ 1
T

∑T−1
t=0 x(t)(x(t))⊤∥2 ≲ 1, by Jensen’s inequality,

T−1∑
t=0

1

T
|ŷ(x;W T ,a∗, b)− ŷ(x;W T

∥ ,a
∗, b)| ≤ ∥a∗∥2

√√√√ 1

T

T−1∑
t=0

∥W T
⊥x

(t)∥2F

≲ ∥a∗∥2∥W T
⊥∥F

≲ ∆∗

√
d+ log(1/δ)

T

On the other hand, let z(t) :=
〈
u,x(t)

〉
≤ ∆. Then, we can apply Lemma 15, which states that with

probability 1−O(δ) over the choice of (bj)1≤j≤m,

1

T

T−1∑
t=0

|ŷ(x(t);W T
∥ ,a

∗, b)− f(
〈
u,x(t)

〉
)| ≤ 1

T

T−1∑
t=0

|
m∑
j=1

a∗jσ(αjz
(t) + bj)− f(z(t))|

≲ ∆∆∗

√
log(1/δ)

m
.

Combining the events above, we have with probability at least 1− δ,

R̂(W T ,a∗, b)− 1

T

T−1∑
t=0

ℓH(ϵ
(t)) ≲ ∆∗

(
∆

√
log(1/δ)

m
+

√
d+ log(1/δ)

T

)
.

The final step to apply a concentration for
∑T−1

t=0 ℓH(ϵ
(t)). Note that as ℓH(ϵ) ≤ |ϵ|, if |ϵ| is C-

sub-Gaussian, then ℓH(ϵ) − E[ℓH(ϵ)] is also sub-Gaussian with an absolute constant as parame-
ter (can be verified e.g. by Lemma 21). Then a sub-Gaussian concentration bound implies that
1
T

∑T−1
t=0 ℓH(ϵ

(t))− E[ℓH(ϵ)] ≳
√

log(1/δ)
T , which finishes the proof.

Let ES [·] denote expectation w.r.t. the random sampling of SGD used to train a, hence condi-
tioned on {x(t), y(t)}T−1

t=0 . Also, define the stochastic noise in the gradient w.r.t. a as

eta = ∇aℓ(ŷ(x
(it);W T ,at, b)− y(it))−∇aR̂(W T ,at, b).

Notice that ES

[
eta
]
= 0.

Lemma 18 On the event of Lemma 16 and with (bj)
i.i.d.∼ Unif(−∆,∆), consider the mapping

a 7→ R̂λ′(a). Then, ∇2
aR̂λ′(a) ≾ m∆2 + λ′, and ∥eta∥2 ≲

√
mr(

√
d+∆).

Proof For ∇2
aR̂(a), and any v ∈ Rm with ∥v∥2 = 1, we have the following computation:〈

v,∇2
aR̂λ′(a)v

〉
=

2

T

T−1∑
t=0

∂2
12ℓ(ŷ, y)v

⊤σ(W Tx(t) + b)σ(W Tx(t) + b)⊤v + λ′

≤ 1

T

T−1∑
t=0

〈
v,W Tx(t)

〉2
+ 2∥b∥22 + λ′

(a)
≲ ∥W T ∥F + ∥b∥22 + λ′

≲ m∆2 + λ′

32



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

where (a) holds since ∥ 1
T

∑T−1
t=0 x(t)x(t)⊤∥2 ≲ 1. Thus ∇2

aR̂λ′(a) ≾ m∆2 + λ′. On the other
hand, as ∥W Tx(t)∥2 ≲

√
m(

√
d+∆) for all 0 ≤ t ≤ T − 1, we have

∥eta∥2 ≤ 2∥∇aℓ∥2 ≤ 2∥W Tx(t) + b∥2 ≲
√
m(

√
d+∆).

Now we can analyze the SGD run on the second layer a to give a high probability statement
for R̂λ′(aT ). As R̂λ′(a) is a smooth and strongly convex function of a, we will state the following
well-known elementary convergence result of SGD for smooth and strongly convex functions with
bounded noise, which we present in a high-probability framework suitable for our analysis.

Lemma 19 Let R : Rm → R be a µ-strongly convex function satisfying µIm ⪯ ∇2
aR(a) ⪯ LIm.

Suppose we run the SGD iterates at+1 = at − ηtg
t with E

[
gt |at

]
= ∇aR(at) and ∥gt∥2 ≤ G.

Choose ηt =
2t+1

µ(t+1)2
. Then with probability at least 1− δ

R(aT )−R∗ ≤ R0

T 2
+

CLG2

µ2T
+

CG2 log(1/δ)

µT
,

where R∗ = argminaR(a).

Proof Let et = gt − ∇aR(at) denote the stochastic noise. By the smoothness property of R, we
have

R(at+1)−R∗ ≤ R(at)−R∗ − ηt
〈
∇aR(at),∇aR(at) + et

〉
+

Lη2t
2

∥gt∥22

≤ R(at)−R∗ − ηt∥∇aR(at)∥22 − ηt
〈
∇aR(at), et

〉
+

Lη2tG
2

2
.

Notice that by Jensen’s inequality, ∥∇aR(at)∥2 ≤ G, thus ∥et∥2 ≤ 2G and the zero-mean random
variable ∥

〈
∇aR(at), et

〉
∥2 is 2G∥∇aR(at)∥2-sub-Gaussian conditioned on at. Now, we can es-

tablish the following recursive bound on the MGF of Rt := R(at) − R∗. For 0 ≤ s ≤ 1
4ηtG2 we

have

E
[
esR

t+1
]
≤ E

[
exp

(
sRt − sηt∥∇aR(at)∥22 − sηt

〈
∇aR(at), et

〉
+

η2tLG
2

2

)]
≤ E

[
exp

(
sRt − sηt(1− 2sηtG

2)∥∇aR(at)∥22 +
LG2η2t

2

)]
(a)
≤ E

[
exp

(
s(1− ηtµ)Rt +

LG2η2t
2

)]
where (a) follows since R(a) is strongly convex thus satisfies the Polyak-Łojasiewicz inequality
2λ(R(a)−R∗) ≤ ∥∇aR(a)∥22. As s(1−ηtµ) ≤ 1

4ηt−1G2 (cf. (D.5)), we can expand the recursion
and have

E
[
exp
(
sRt

)]
≤ exp

(
s

(
t∗

t∗ + t

)2

R0 +
16LG2

µ2(t∗ + t)

)
.

Finally, applying a Chernoff bound using s = (4ηt−1G
2)−1 concludes the proof.

33



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

We are finally in a position to complete the proof of Theorem 4.
Proof [Proof of Theorem 4] We will consider the event of Lemma 16 on which from Lemma 17
we know with probabilility at least 1− δ over the dataset and (bj)1≤j≤m we have

min
a:∥a∥2≲ ∆∗√

m

R̂(W T , a, b)− E[ℓH(ϵ)] ≲ ∆2
∗

(√
log(1/δ)

m
+

√
d+ log(1/δ)

T

)
.

Notice that a 7→ R̂(W ,a, b) is a convex function. Thus by strong duality, there exists λ′ > 0 such
that the value of the above constrained minimization problem is equal to the value of the following
regularized minimization problem,

min
a

R̂λ′(W T ,a, b)− E[ℓH(ϵ)] ≲ ∆2
∗

(√
log(1/δ)

m
+

√
d+ log(1/δ)

T

)
.

Explicitly, this λ′ can be chosen such that the unique solution to

∇aR̂(W T ,a∗, b) + λ′a∗ = 0 (E.7)

has ∥a∗∥2 ≲ ∆∗√
m

. Notice that this a∗ is the unique solution to argmina R̂λ′(W T ,a, b).
Moreover, from Lemma 19 we have

R̂λ′(W T ,aT ′
, b)− R̂λ′(W T ,a∗, b) ≲

R̂(W T ,a0, b)

T ′2 +
(d+∆2)(∆2 + λ′/m+ log(1/δ))

(λ′/m)2T ′ ,

and by strong convexity

∥aT ′ − a∗∥22 ≤
2

m

(
R̂λ′(W T ,aT ′

, b)− R̂λ′(W T ,a∗, b)
)
.

Thus, with sufficiently large T ′ such that

R̂(W T ,a0, b)

T ′2 +
(d+∆2)(∆2 + λ′/m+ log(1/δ)

(λ′/m)2T ′ ≲ ∆2
∗

√
d+ log(1/δ)

T
∧ λ′∆∗√

m
, (E.8)

we have ∥aT ′∥2 ≲ ∆∗√
m

and

R̂λ′(aT ′
)− E[ℓH(ϵ)] ≲ ∆2

∗

(√
log(1/δ)

m
+

√
d+ log(1/δ)

T

)
.

Finally, we invoke Theorem 5, to close the generalization gap and get

Rτ (W
T ,aT ′

, b)− E[ℓH(ϵ)] ≲ ∆2
∗

√
log(1/δ)

m
+∆2

∗

√
d+ log(1/δ)

T
.

34



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Appendix F. Example of Non-Convex Rλ(W )

Here, we outline an examples for which Rλ(W ) is non-convex on a neighborhood around W = 0

while λ = λ̃
m satisfies the condition in Theorem 2. For simplicity of exposition, we fix a = 1m

m
where 1m is the vector of all ones. It is easy to observe that the results hold with high probability
when a follows the initialization of Assumption 2 as well.

This example is constructed for the smooth activation case of Theorem 2. We require σ(±1) =
−β0 = −1 (which automatically implies σ′(±1) = 0 as σ attains its minimum) and σ′′(±1) =
β2 = 1. Then simplifying ∇2Rλ(0) yields

∇2Rλ(0) =
Im ⊗ (−1− E

[
yxx⊤])

m
+

λ̃

m
Imd = Im ⊗

(
λ̃− 1

m
Id −

E
[
yxx⊤]
m

)
.

Thus, we need to show that λ̃−1
m Id −

E[yxx⊤]
m is not PSD. Let y = 1

2(1 + tanh(⟨w,x⟩2 − ∥w∥22))
and λ̃ = 1 + E[y] + γ (notice that y ≥ 0 thus λ̃ indeed satisfies the assumption in Theorem 2) with

γ =
1

4
E
[
(⟨w,x⟩2 − ∥w∥22) tanh(⟨w,x⟩2 − ∥w∥22)

]
> 0.

Then we have

w⊤

(
λ̃− 1

m
Id −

E
[
yxx⊤]
m

)
w =

γ∥w∥22 + E
[
y(∥w∥22 − ⟨w,x⟩2)

]
m

=
γ∥w∥22 − 1

2 E
[
(⟨w,x⟩2 − ∥w∥22) tanh(⟨w,x⟩2 − ∥w∥22)

]
m

< 0.

Therefore, we have shown that Rλ(W ) is not convex on a neighborhood around zero.

Appendix G. Auxiliary Lemmas

In order to be explicit, we state the following definitions and lemmas that will be used in the proof
of Theorem 5. We only state the next definitions and lemmas and refer the reader to [68] and [67]
for proof and more details.

Definition 20 [68, Definitions 2.2 and 2.7] A real-valued random variable z is said to be ν-sub-
Gaussian if for all s ∈ R we have E[exp(sz)] ≤ exp(sE[z] + s2ν2

2 ), and is said to be u-sub-

exponential if for all |s| ≤ 1
ν we have E[exp(sz)] ≤ E

[
exp(sE[z] + s2ν2

2 )
]
.

Lemma 21 [67, Propositions 2.5.2 and 2.7.1] Suppose z is a zero-mean random variable and
E[|z|p]

1
p ≤ L

√
p for all p ≥ 1. Then z is cL-sub-Gaussian for an absolute constant c > 0, i.e.

E[exp(sz)] ≤ exp( s
2c2L2

2 ) for all s ∈ R. Similarly, suppose E[|z|p]
1
p ≤ Lp. Then z is cL-sub-

exponential for an absolute constant c > 0.

Lemma 22 [68, Theorem 2.26] Let x ∼ N (0, Id). If f : Rd → R is L-Lipschitz, then f(x) is
sub-Gaussian with parameter L.

35



NEURAL NETWORKS EFFICIENTLY LEARN LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Lemma 23 [68, Example 6.3] Let {x(i)}1≤i≤n be a sequence of i.i.d. standard Gaussian random
vectors xi ∼ N (0, Id). It holds with probability at least 1− δ that

∥ 1
n

n∑
i=1

x(i)x(i)⊤ − Id∥2 ≤ C

(√
d

n
+

√
log(1/δ)

n
+

d+ log(1/δ)

n

)
,

where C is an absolute constant.

The next lemma is the well-known symmetrization argument that upper bounds the expected
value of an empirical process with Rademacher complexity.

Lemma 24 [49, Theorem 3.3] Let F be a class functions f : Rp → R for some p > 0. For a
number of samples T and a probability distribution P on Rp, define the Rademacher complexity of
F as

R(F) = E

[
sup
f∈F

1

T

T−1∑
t=0

ξtf(x
(t))

]
, (G.1)

where {x(t)}T−1
t=0

i.i.d.∼ P and {ξt}T−1
t=0 are independent Rademacher random variables (i.e. ±1

equiprobably). Then the following holds,

E

[
sup
f∈F

| 1
T

T−1∑
t=0

f(x(t))− E[f(x)]|

]
≤ 2R(F).

Furthermore, we have the following fact for standard normal random vectors.

Lemma 25 Let x ∼ N (0, Id). There exists an absolute constant C > 0 such that for any V ∈
Rm×k and p ≥ 1 we have

E[∥V x∥p2]
1
p ≤ ∥V ∥F + C∥V ∥2

√
p.

Proof First of all, ∥V x∥2 is a ∥V ∥2-Lipschitz function of x, thus Lemma 22 applies and ∥V x∥2
is sub-Gaussian. Furthermore, by applying Lemma 21 to ∥V x∥2 − E[∥V x∥2] and Minkowski’s
inequality, we have

C∥V ∥2
√
p ≥ E[∥V x∥p2]

1
p − E[∥V x∥2]

≥ E[f∥V x∥p2]
1
p − ∥V ∥F,

where the last inequality follows from Jensen’s inequality.

Lemma 26 Let x ∼ N (0, Id). Then E
[
exp(c∥x∥22)

]
≤ exp(2cd) for c ≤ 1/4.

Proof Gaussian integration yields E
[
exp(cx2i )

]
= 1√

1−2c
. Furthermore, for c ≤ 1

4 we have
1√
1−2c

≤ exp(2c).

36


	Introduction
	Related work

	Preliminaries: Neural Networks and the Principal Subspace
	Convergence of Stochastic Gradient Descent
	Implications of Low-Dimensionality
	Learning Single-Index Targets
	Generalization Gap

	Conclusion
	Further Related Work
	Additional Notations
	Population Gradient Decomposition
	Proof of Lemma 1

	Proofs of Section 3
	Proof of Theorem 2

	Proofs of Section 4
	Proof of Theorem 5
	Proof of Theorem 4

	Example of Non-Convex R(W)
	Auxiliary Lemmas

