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Abstract
We provide a novel first-order optimization algorithm for bilinearly-coupled strongly-convex-concave
minimax optimization called the AcceleratedGradient OptimisticGradient (AG-OG). The main idea
of our algorithm is to leverage the structure of the considered minimax problem and operates
Nesterov’s acceleration on the individual part and optimistic gradient on the coupling part of the
objective. We motivate our method by showing that its continuous-time dynamics corresponds to
an organic combination of the dynamics of optimistic gradient and of Nesterov’s acceleration. By
discretizing the dynamics we conclude polynomial convergence behavior in discrete time. Further
enhancement of AG-OG with proper restarting allows us to achieve rate-optimal (up to a constant)
convergence rates with respect to the conditioning of the coupling and individual parts, which results
in the first single-call algorithm achieving improved convergence in the deterministic setting and
rate-optimality in the stochastic setting under bilinearly coupled minimax problem sets.

1. Introduction

Optimization is the workhorse of machine learning (ML) and artificial intelligence research; indeed,
many basic ML learning tasks can be cast as a minimization problem. In an increasing number
of applications, however, such as generative adversarial networks (GANs) [17], robust/adversarial
optimization [3, 28], Markov games (MGs) [35], and reinforcement learning (RL) [9, 11, 37], the

. ∗Equal contribution.
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goal is to solve instead a minimax problem of the form:

min
x∈X

max
y∈Y

L(x,y). (1.1)

When L(x, y) : X × Y → R is a smooth function that is convex in x and concave in y, we refer to
this problem as a convex-concave saddle-point problem. In this work, we focus on designing sharp or
optimal deterministic and stochastic first-order algorithms for solving convex-concave saddle-point
problems of the form (1.1).

Unlike in the minimization setting, there are no general convergence guarantees when simple
gradient methods are used on convex-concave objectives. Indeed, there are examples showing the
divergence of gradient descent ascent (GDA) on bilinear objectives [14, 25]. This has led to the
development of extrapolation-based methods that include the extra-gradient (EG) method [22] and
the optimistic gradient descent ascent (OGDA) method [32], both of which can be shown to converge
in the convex-concave setting. While the EG algorithm summons an additional gradient oracle at
each step, the OGDA algorithm can be seen as a single-call version of EG [14, 19]. In this paper, we
design algorithms based on the idea of the OGDA iteration, aiming to improve its performance while
retaining the convergence guarantee.

We focus on a specific instance of the general minimax problem, which we call the bilinearly
coupled strongly convex-strongly concave saddle point problem (bi-SC-SC), formulated as follows:

min
x∈X

max
y∈Y

L(x,y) ≡ f(x) + x⊤By − g(y), (1.2)

where f is Lf -smooth and µf -strongly convex, and g is Lg-smooth and µg-strongly convex. Here
x⊤By is called the bilinear coupling term and is LH -smooth where LH ≡

√
λmax(B⊤B). More-

over, we consider throughout this paper the unconstrained problem where X = Rn and Y = Rm

except specified in some application instances. When considering L := max(LH , Lf , Lg) and
µ = min(µf , µg), the standard OGDA algorithm can be shown to yield a coarse-grained complexity
of Lf∨Lg∨LH

µf∧µg
log
(
1
ϵ

)
when applied to Problem (1.2) [14, 29]. In fact this rate is optimal in the coarse

sense , as has been shown by Azizian et al. [2] that the minimal complexity is Ω(Lµ log(1ϵ )). Neverthe-
less, the above convergence rate has a dependency on the parameters Lf , Lg, LH and also µf , µg as a
whole. Moreover, when reducing to an individual optimization problem minxmaxy f(x)− g(y), it
does not achieve accelerated rate. This motivates and illustrates the difficulty of deriving fine-grained
convergence rates that depend on the condition numbers of f , g and H separately and for which a
notion of acceleration is possible.

Providing fine-grained rates in the unbalanced strongly-convex-strongly-concave setting where
µx ̸= µy is of particular importance when the constants µx, µy, LH , Lx and Ly are drastically
different. For instance when µg is significantly larger than µf , decoupling the dependencies on
Lf , µf and Lg, µg from the coarsened smoothness and strong convexity parameters Lf ∨Lg, µf ∧µg

would significantly improve the theoretical complexity. In this paper, we focus on accelerating OGDA
when constrained to the specific problem (1.2), and show that it enjoys a fine-grained, accelerated
convergence rate in the sense that it has sharp dependency on the aforementioned Lipschitz constants
in an individual fashion. More precisely, one can reduce the complexity due to the condition number
of f and g by a square root. Overall, the best rate that can be achieved in this setting is given by the

lower bound Ω
(√

Lf

µf
+

Lg

µg
+

√
L2
H

µfµg

)
log
(
1
ϵ

)
, established by Zhang et al. [43]. With the goal of
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matching such a first-order complexity, we are devoted to the problem of: Designing rate-optimal
single-call algorithms for deterministic and stochastic bilinearly coupled saddle point problems.

1.1. Contributions

We list our contributions in this subsection. First, we present a novel algorithm that blends accel-
eration dynamics based on the single-call OGDA algorithm for the adversarial part and Nesterov’s
acceleration for the individual part. We refer to this blend as the Accelerated Gradient-Optimistic
Gradient (AG-OG) algorithm. Second, we illustrate how the dynamics of AG-OG can be seen as the
summation of the OGDA dynamics and Nesterov’s acceleration dynamics, which simplifies the un-
derstanding of acceleration on OGDA and provides insights into the convergence proof. Additionally,
equipped with a scheduled restarting technique, we derive an “accelerated optimistic gradient with
Nesterov’s acceleration and restarting” (AVATAR) method that achieves an upper bound that matches
the lower bound on Problem (1.2). Finally, when it comes to stochastic settings, we present a stochas-
tic version of AVATAR and establish its convergence at an optimal rate. Overall, our work provides
novel acceleration schemes for deterministic/stochastic OGDA under bilinearly-coupled saddle point
problems (1.2) (Thms 4 and 6). Our algorithm is simple, shows high interpretability in discrete and
continuous dynamics, and is the first single-call algorithm with a rate-optimal convergence rate with
known sharpest bias term in the stochastic settings.

2. Preliminaries

In minimax optimization the goal is to find the Nash equilibrium point of problem (1.1), defined as a
pair [x∗;y∗] ∈ X × Y satisfying:

L(x∗,y) ≤ L(x∗,y∗) ≤ L(x,y∗).

In order to analyze first-order gradient methods for this problem, we assume access to the gradients
of the objective ∇xL(x,y),∇yL(x,y). Thus, finding the Nash equilibrium of the original convex-
concave optimization problem (1.1) and (1.2) reduces to finding the point where the gradients vanish.
Accordingly, we use W to denote the gradient vector field and z ∈ Rn+m the concatenation of x,y,
and analogously for z∗:

W (z) :=

(
∇xL(x,y)
−∇yL(x,y)

)
=

(
∇f(x) +By
−B⊤x+∇g(y)

)
. (2.1)

Based on this formulation, our goal is to find the stationary point of the monotone operator (or vector
field) W (z), namely a z∗ = [x∗;y∗] ∈ Rn+m satisfying (in the unconstrained case)

W (z∗) = 0. (2.2)

Problem (2.2) is referred to as the variational inequality (VI) formulation of minimax optimization.
The compact representation of the convex-concave saddle-point problem as a VI allows us to simplify
the notation.

In the gradient field (2.1), there are individual parts that points towards the direction optimizing
f, g cooperatively, and adversarial part which corresponds to the gradient vector field of a bilinear
minimax problem. For the individual part, we let F (z) := f(x) + g(y) and correspondingly
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∇F (z)⊤ =
[
∇f(x)⊤,∇g(y)⊤

]
. For the adversarial part, we define the operator H(z)⊤ =[

(By)⊤,−(B⊤x)⊤
]
. Note that the representation allows us to write W (z) in Problem (2.2) as the

summation of the two vector fields W (z) = ∇F (z) +H(z).
We introduce our main assumptions as follows:

Assumption 1 (Convexity and Smoothness) We assume that f(·) : Rn → R is µf -strongly convex
and Lf -smooth, g(·) : Rm → R is µg-strongly convex and Lg-smooth. Formally we have for
∀x,x′ ∈ Rn and ∀y,y′ ∈ Rm:

µf

2

∥∥x− x′∥∥2 ≤ f(x)− f(x′)−
〈
∇f(x′),x− x′〉 ≤ Lf

2

∥∥x− x′∥∥2 ,
µg

2

∥∥y − y′∥∥2 ≤ g(y)− g(y′)−
〈
∇g(y′),y − y′〉 ≤ Lg

2

∥∥y − y′∥∥2 .
This implies that F (z) is Lf ∨ Lg-smooth and µ-strongly convex, where µ = µf ∧ µg.

The above assumption adds convexity and smoothness constraints to the individual parts f(x)
and g(y). For the adversarial part x⊤By, without loss of generality, we assume that B ∈ Rn×m, n ≥
m > 0 is a tall matrix. Note that as x and y are exchangeable, tall matrices cover all circumstances.
Moreover, the bilinear structure of the coupling function yields the property that for all z, z′ ∈ Rn+m:〈

H(z)−H(z′), z − z′〉 = 0. (2.3)

Regarding the stochastic setting, we assume access to an unbiased stochastic oracle, H̃(z, ζ), of
H(z) and an unbiased stochastic oracle ∇F̃ (z; ξ) of ∇F (z). Furthermore, we consider the case
where the variances of such stochastic oracles are bounded.

Assumption 2 (Bounded Variance) We assume that the stochastic gradients admit bounded second
moments σ2

H , σ2
F ≥ 0:

Eξ

[
||H̃(z; ζ)−H(z)||2

]
≤ σ2

H , Eζ

[
||∇F̃ (z; ξ)−∇F (z)||2

]
≤ σ2

F .

Note that the bounded noise assumption is common in the stochastic optimization literature.
Under the above assumptions, our goal is to find a ϵ-optimal solution z such that ||z − z∗||2 ≤ ϵ.
In the section that follows, we achieve this goal by adopting carefully crafted blending between
Nesterov’s acceleration, optimism, and scheduled restarting.

3. Accelerated Gradient Optimistic Gradient Descent Ascent

In this section, we discuss key elements of our algorithm design—the so-called OptimisticGradient
Descent-Ascent (OGDA) and Nesterov’s acceleration method—that together solves the bilinear
saddle-point problem. Such an approach allows us to demonstrate the main properties of our
approach that will eventually guide our analysis in the discrete-time case.

. We leave the generalization to models of unbounded noises to future work.
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3.1. Optimistic Gradient Descent Ascent

The OptimisticGradient Descent Ascent (OGDA) algorithm has received considerable attention
in the recent literature, especially for the problem of training Generative Adversarial Networks
(GANs) [17]. In the general variational inequality setting, the iteration of OGDA takes the following
form [32]:

zk+ 1
2
= zk − ηW (zk− 1

2
), zk+1 = zk − ηW (zk+ 1

2
). (3.1)

Note that at step k, the scheme performs a gradient descent-ascent step at the extrapolated point
zk+ 1

2
. Equivalently, with simple algebraic modification (3.1) can be written in a standard form [14]:

zk+ 1
2
= zk− 1

2
− 2ηW (zk− 1

2
) + ηW (zk− 3

2
). (3.2)

Treating W (zk− 1
2
) −W (zt− 3

2
) as a prediction of the future, W (zk+ 1

2
) −W (zk− 1

2
), this update

rule can be viewed as an approximation of the implicit proximal point (PP) method:

zk+ 1
2
= zk− 1

2
− ηW (zk+ 1

2
).

Another popular tractable approximation of the PP method is the ExtraGradient (EG) method [22]: Al-
though similar conceptually to OGDA (3.1), EG requires two gradient computations per iterate, which
doubles the number of gradient computations of OGDA. Both OGDA and EG dynamics (3.1) alleviate
the cyclic behavior by extrapolation from the past and exhibit a complexity of (L/µ) log(1/ϵ) [14, 29]
in general setting (1.1) with L-smooth, µ-strongly-convex-µ-strongly-concave objectives.

3.2. Nesterov’s Acceleration Scheme

Turning to the minimization problem, while vanilla gradient descent enjoys a gradient complexity of
κ log(1/ϵ) on L-smooth, µ-strongly convex problems, with κ = L/µ being the condition number,
Nesterov’s method [30], when equipped with proper restarting, achieves an improved gradient
complexity of

√
κ log(1/ϵ). We adopt the following version of the Nesterov acceleration, known as

the “second scheme” [27, 39]: 
zmd
k = k

k+2z
ag
k + 2

k+2zk, (3.3a)

zk+1 = zk − ηk∇F (zmd
k ), (3.3b)

z
ag
k+1 = k

k+2z
ag
k + 2

k+2zk+1. (3.3c)

Subtracting (3.3a) from (3.3c) and combining the resulting equation with (3.3b), we conclude

z
ag
k+1 − zmd

k =
2

k + 2
(zk+1 − zk) = −ηk∇F (zmd

k )⇒ z
ag
k+1 = zmd

k − ηk∇F (zmd
k ). (3.4)

Moreover, shifting the index forward by one in (3.3a) and combining it with (3.3c) to cancel the
zk+1 term, we obtain

k + 2

k + 3
z

ag
k+1 − zmd

k+1 =
k

k + 3
z

ag
k −

k + 1

k + 3
z

ag
k+1 ⇒ zmd

k+1 = z
ag
k+1 +

k

k + 3

(
z

ag
k+1 − z

ag
k

)
.

(3.5)

. In fact an analogous result holds true for general smooth, strongly monotone variational inequalities. We refer to
Mokhtari et al. [29] for background and related work.
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Algorithm 1 AcceleratedGradient-OptimisticGradient (AG-OG)(zag
0 , z0, z−1/2,K)

1: for k = 0, 1, . . . ,K − 1 do
2: zmd

k = (1− αk)z
ag
k + αkzk

3: zk+ 1
2
= zk − ηk

(
H(zk− 1

2
) +∇F (zmd

k )
)

4: z
ag
k+1 = (1− αk)z

ag
k + αkzk+ 1

2

5: zk+1 = zk − ηk

(
H(zk+ 1

2
) +∇F (zmd

k )
)

6: end for
7: Output: zag

K

Thus, by a simple notational transformation, (3.4) plus (3.5) (and hence the original update rule (3.3))
is exactly equivalent to the original updates of Nesterov’s acceleration scheme [30]. Here, zag

k

denotes a 2
k -weighted-averaged iteration. In other words, compared with the vanilla gradient descent

that proceeds as zk+1 = zk − ηk∇F (zk), Nesterov’s acceleration conducts a step at the negated
gradient direction evaluated at a predictive iterate of the weighted-averaged iterate of the sequence.
This enables a larger choice of stepsize, reflecting the enhanced stability. An analogous interpretation
has also been discussed in recent work on the heavy-ball-based acceleration method [34, §1.3].

3.3. Accelerating OGDA on Bilinear Saddle Point Problems

In this subsection and §3.4, we show that an organic combination of the two algorithms in §3.1
and §3.2 achieves a desirable convergence rate in discrete time and when equipped with scheduled
restarting, obtains a lower bound complexity of

(√
Lf/µf ∨

√
Lg/µg + LH/

√
µfµg

)
log(1/ϵ).

Our algorithm is shown in Algorithm 1. In Line (2) and (4) the update rules of the evaluated point
and the extrapolated point of f follows that in (3.3), while in Line (3) and (5) the updates follows the
OGDA dynamics (3.1) with each step modified by (3.3b).

We first state an elementary lemma that shows the non-expansive property of zk, whose proof is
presented in §G.3.

Lemma 3 (Bounded Iterates) Under Assumptions 1, we set the parameters as L = Lf ∨ Lg,
LH =

√
λmax(B⊤B), ηk = k+2

2L+
√

3+
√
3LH(k+2)

and αk = 2
k+2 in Algorithm 1, at any iterate

k < K, zk stays within the region defined by the initialization z0:

||zk − z∗|| ≤ ||z0 − z∗||,

where we recall that z∗ denotes the unique solution of Problem (1.2).

Lemma 3 establishes the following last-iterate boundedness: the zk iteration is bounded within
the ball centered at z∗ and radius ||z0 − z∗|| and is essential in proving convergence of iteration z

ag
k ,

where handling additional recursions brought by gradient evaluated from a previous step is the main
technical difficulty. With the parameter choice in Lemma 3, Line 4 can also be seen as an average
step that makes the cycling last iterates shrink toward the center of convergence. Equipped with
Lemma 3, we are ready to state the following convergence theorem for discrete-time AG-OG:
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Algorithm 2 Accelerated optimistic gradient with nesteroV AcceleraTion And Restarting (AVATAR)
Require: Initialization z0

0 , total number of epochs N ≥ 1, per-epoch iterates (Kn : n = 0, . . . , N−
1)

1: for n = 0, 1, . . . , N − 1 do
2: zout = AG-OG(zn

0 , z
n
0 , z

n
0 ,Kn)

3: Set zn+1
0 ← zout

//Warm-starting from the previous output
4: end for
5: Output: zN

0

Theorem 4 Under Assumption 1 and setting the parameters as in Lemma 3, the output of Algorithm 1
satisfies:

||zag
K − z∗||2 ≤ 4L+ 2

√
3 +
√
3LH(K + 1)

µ(K + 1)2
∥z0 − z∗∥2. (3.6)

The proof of Theorem 4 is provided in §E.1. The choice of αk = 2
k+2 is vital for Nesterov’s

accelerated gradient descent to achieve desirable convergence behavior [30]. The convergence rate
in (3.6) for strongly convex problems is slow and is not even a linear convergence. However, in the
next subsection we show how a simple restarting technique not only achieves the linear convergence
rate, but also matches the lower bound in Zhang et al. [43].

3.4. Improving Convergence Rates via Restarting

Normally, as f and g has different strong convexity parameters (µf and µg), it is not ideal to use
the same stepsize ηk for both the descent step on f(x) and the ascent step on g(y). We accordingly
introduce a scaling reduction technique [13] that allows us to consider applying a single scaling for all
parameters. Setting ŷ =

√
µg

µf
y, we have ∇ŷH(z) =

√
µf

µg
∇yH(z) and∇ŷG(y) =

√
µf

µg
∇G(y).

Other scaling changes are listed as follows:

L = Lf ∨
µf

µg
Lg, LH =

√
λmax(B⊤B) ·

µf

µg
, ηk,y =

ηkµf

µg
, µ = µf , (3.7)

where by ηk,y we mean that when updating z = [x;y] ∈ Rn+m, we adopt stepsize ηk on the first
n coordinates and ηk,y on the last m coordinates. With the new scaling, by scheduled restarting
the AGOG algorithm 1, we call the restarting Algorithm 2 the AVATAR, the overall algorithm the
AGOG-Avatar and have the following Corollary 5.

Corollary 5 With scheduled restarting imposed on top of Algorithm 1. Algorithm 2 outputs a
solution within an ϵ-ball of z∗ within a number N of iterates, where N satisfies

N ≥ O

((√
Lf

µf
∨ Lg

µg
+

√
L2
H

µfµg

)
· log

(
1

ϵ

))
. (3.8)

We defer the proof of the corollary to §E.2. Our rate in Eq. (3.8) of Corollary 5 exactly matches the
lower bound result in Zhang et al. [43].
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4. Stochastic Accelerated Gradient Optimistic Gradient Descent Ascent

While the complexity result in Corollary 5 has also been obtained in Jin et al. [20], Kovalev et al.
[23], Thekumparampil et al. [38], in addition to conceptual simplicity our approach has the significant
advantage that it yields a stochastic version of the algorithm and a convergence rate for the stochastic
case. Indeed, the stochastic version of Algorithm 1 and 2 maintains an optimal convergence behavior.
The stochastic AG-OG algorithm simply replaces each deterministic gradient with its stochastic
counterpart, with noise represented by ζt, ξt. The full stochastic AG-OG algorithm is shown in
Algorithm 3 in §D.2.

Based on a boundedness lemma (Lemma 17, presented in §E.3), which is the stochastic analogue
of Lemma 3, we can proceed to our stochastic result. See §E.3 for the proof.

Theorem 6 Under Assumption 1 and 2, set the parameters as in Lemma 17 and take ηk =
k+2

4L+D+4
√

2+
√
2LH(k+2)

. Then the output of Algorithm 3 satisfies:

E||zag
K − z∗||2 ≤

[
8L

µ(K + 1)2
+

7.4(1 + C2)LH

µ(K + 1)

]
E||z0 − z∗||2 +

2(C + 1
C )σ

µ
√
K + 1

√
E||z0 − z∗||2.

Remark 7 Without knowledge of E||z0 − z∗||2, we need a different scheme to set up the stepsize ηk.
We assume an upper bound on ||z0 − z∗||2 defined as Γ0 and let C = Γ0√

E||z0−z∗||2
. Then, we have

that D = σA(K)
Γ0

which is known. Thus,

E||zag
K − z∗||2 ≤

[
8L

µ(K + 1)2
+

14.8LH

µ(K + 1)

]
Γ2
0 +

4σ

µ
√
K + 1

Γ0.

As in §3.4, we restart the S-AG-OG algorithm and obtain the following optimal complexity:

Corollary 8 With scheduled restarting imposed on top of Algorithm 1, Algorithm 2 outputs a solution
within an ϵ-ball of z∗ within N iterates, for N satisfying:

N ≥ O

((√
Lf

µf
∨ Lg

µg
+

√
L2
H

µfµg

)
· log

(
1

ϵ

)
+

σ2

µ2
f ϵ

2

)
.

This result matches that of Du et al. [13] which matches Zhang et al. [43] in the nonrandom setting
and admits worst-case optimality on the stochastic noise.

5. Conclusion

In this paper, we propose novel algorithms under both a deterministic setting (AG-OG) and a stochas-
tic setting (S-AG-OG) with structural interpretability and simplicity. To illustrate the design, we
provide a continuous-time dynamics approximation that blends optimism with Nesterov’s accel-
eration and an intuitive proof of convergence by leveraging a novel Lyapunov analysis. When
discretizing the dynamics using AG-OG, we conclude desirable polynomial convergence behavior in
discrete time. By properly restarting the algorithm, we propose the corresponding AGOG-Avatar and
S-AGOG-Avatar algorithms and prove theoretically that our restarted algorithms enjoys rate-optimal
sample complexity for finding an ϵ-accurate solution. Future directions include generalizations
to stochastic settings, to nonconvexity, and to improvement of statistical error from worst-case
optimality to (near) instance-dependent optimality.
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Appendix A. Related Work

Deterministic Case. Many works have studied the linear convergence rate of gradient-based
methods for games in the context of strongly monotone operators (which is implied by strong
convex-concavity) [29] and several works [8, 40–42, 44] have slowly bridged the gap with the lower
bound provided for unbalanced strongly-convex-strongly-concave objective. There has been a series
of papers along this direction [8, 26, 29, 40, 41], and only very recently have optimal results that
reach the lower bound been presented Jin et al. [20], Kovalev et al. [23], Thekumparampil et al. [38].
These three works proposed improved methods leveraging convex duality. However, it could be
challenging to extend the proposed methods to the non-bilinear coupling term case or the stochastic
case. In particular, none of these previous works provide result in the non-finite-sum stochastic case.

Stochastic Case. There exists a rich literature on stochastic variational inequalities with application
to solving stochastic minimax problems [1, 5, 6, 19, 21, 45]. However, only a few works have
proposed fined-grained bounds suited to the (Bil-)SC-SC setting. To the best of our knowledge, most
fined-grained bounds have been proposed in the finite-sum setting [20, 31]. Two closely related works
are Li et al. [24], who provide a convergence rate for extra-gradient in the purely bilinear setting
and Du et al. [13], who study an accelerated version of extra-gradient, dubbed as AcceleratedGradient-
ExtraGradient (AG-EG) in the Bil-SC-SC setting. Our work provides results in the same vein as Du
et al. [13] but instead employs the optimistic gradient instead of extra-gradient to handle the bilinear
coupling part. Optimistic-gradient-based methods have been considered extensively in literature
due to its requiring fewer gradient oracle calls per iteration than standard extra-gradient and can
be applied to the online learning setting [16]. Note that, in general, EG and OG methods often
share some similarities in their analyses, but also acknowledge sigfinicant differences [16, §3.1], [18,
§2]. More specifically in our case, using a single-call algorithm that reuses previously calculated
gradients alters the recursion (Eq. (E.6)). Although the main part of the proof follows the streamline
of estimating Nesterov’s acceleration terms first, an additional squared error norm involving the
previous iterates is present, intrinsically implying an additional iterative rule (Eq. (E.7)) underneath
the original iterative rule essential for proving bounded iterates. In addition, due to the accumulated
error across iterates, the maximum stepsize allowed in single-call algorithms is forced to be smaller.

Appendix B. Examples

In this subsection, we use two examples to showcase the applications of formulation (1.2). In the
first example, we demonstrate how the parameters of a linear state-value function can be estimated
by solving (1.2). In the second example, we illustrate that turning the contraint in a robust learning
problem into penalty and we get an objective in the form of (1.2).

Policy Evaluation in Reinforcement Learning. The policy evaluation problem in RL can be
formulated as a convex-concave bilinearly-coupled saddle-point problem. Provided a sequence of
{st, at, rt, st+1}nt=1 where

• st, st+1 are the current state (at time t) and future state (at time t+ 1), respectively;

• at is the action at time t generated by policy π, that is, at = π(st);

. Limited by space, we refer readers to §E.1 and §E.3 for technical details.
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• rt = r(st, at) is the reward obtained after taken action at at state st.

Our goal is to estimate the value function of a fixed policy π in the discounted, infinite-horizon
setting with discount factor γ ∈ (0, 1), where for each state s

V π(s) ≡ E

[ ∞∑
t=0

γtrt

∣∣∣∣ s0 = s, at = π(st), ∀t ≥ 0

]
.

If a linear function approximation is adopted, i.e. V π(s) = ϕ(s)⊤x where ϕ(·) is a feature mapping
from the state space to feature space, we estimate the model parameter x via minimizing the empirical
mean-squared projected Bellman error (MSPBE):

min
x

1

2
∥Ax− b∥2C−1 . (B.1)

where ||x||M ≡
√
x⊤Mx denotes the M-norm, for positive semi-definite matrix M, of an arbitrary

vector x, and

A =
1

n

n∑
t=1

ϕ(st) (ϕ(st)− γϕ(st+1))
⊤ , b =

1

n

n∑
t=1

rtϕ(st), C =
1

n

n∑
t=1

ϕ(st)ϕ(st)
⊤.

Applying first-order optimization directly to (B.1) would necessitate computing the inversion (and
storing) of the matrix C, or alternatively computing the matrix-vector product C−1v for a vector v
at each step, and would be computationally costly or even prohibited. To circumvent inverting matrix
C a reformulation via conjugate function can be resorted to; that is, solving (B.1) is equivalent to
solving the following saddle-point (or minimax) problem [10, 11]:

min
x

max
y
− y⊤Ax− 1

2
∥y∥2C + b⊤y.

Such an instance falls under the category of minimax problem (1.2) where the individual part is
convex-concave, and is further enhanced to be strongly-convex-strongly-concave when a regularizer
term is added on top and C is strictly positive definite.

Robust Learning. A robust learning or robust optimization problem targets to minimize an
objective function (here the least-square) formulated as a minimax (saddle-point) optimization
problem [4, 10, 38]

min
x

max
y:∥y−y0∥≤R

1

2
∥Ax− y∥2, (B.2)

where A is a coefficient matrix and y is a noisy observation vector, which is perturbed by a vector of
R-bounded norm. Transforming (B.2) to a penalized objective gives a formulation of

min
x

max
y

1

2
∥Ax− y∥2 − ρ∥y − y0∥2.

When ρ is selected to be strictly greater than 1
2 , we get a strongly-convex-strongly-concave bilinearly-

coupled saddle-point optimization problem.
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Appendix C. Motivations of AG-OG from Continuous-Time Perspectives

C.1. Motivations of AG-OG from Continuous-Time Perspectives

We now consider the problem of accelerating the OGDA dynamics. We adopt a continuous-time
perspective to motivate our algorithm design and guide our convergence analysis. The design hinges
on adopting separate dynamics for the individual and coupling parts of the minimax problem.

Dynamics of OGDA. Our derivation is based on writing ordinary differential equation (ODE)
representations for OGDA and Nesterov’s acceleration, and sequencing these ODEs in a particular
way such that the OGDA component only applies to the coupling term x⊤By. We begin by
rearranging the terms in the OGDA dynamics (3.2), yielding the following updates:

zk+ 1
2
= zk− 1

2
− ηH(zk− 1

2
)− η

(
H(zk− 1

2
)−H(zk− 3

2
)
)

︸ ︷︷ ︸
ϵk−1

.

In comparison with some of the alternatives, our OGDA algorithm is featured by the single-call
property that reuses gradients from past iterates and the sample and iteration complexities match
up. Note in our paper H is a linear operator due to the bilinearity of x⊤By, but can be nonlinear
in general. For deriving the continuous limit of the OGDA iteration, we let Ẑ(t) = zk+ 1

2
for

t = (k + 1
2)∆t and set η = ∆t → 0 as ∆t → 0. Moreover, by the Lipschitz property of H and

using the fact that zk− 1
2
− zt− 3

2
≤ O(η)→ 0, we have that ϵk−1 ≤ o(η) = o(∆t). Dividing both

sides by ∆t and letting ∆t→ 0, we obtain a first-order ODE for (3.2) that is equivalent to gradient
descent-ascent:

˙̂
Z +H(Ẑ) = 0. (C.1)

We note here that ODE (C.1) is a coarse-grained dynamics and its discretization can be either EG
or GDA as well. However, as can be seen later in Proposition 9 and Theorem 10, the intuition of
blending (C.1) with another dynamics motivates a strongly interpretable algorithm together with its
theoretical analysis.

Dynamics of Nesterov’s Acceleration. Su et al. [36] derived the following ODE for the standard
form of Nesterov’s scheme:

Z̈ +
3

t
Ż +∇F (Z) = 0. (C.2)

Note that Eq. (3.3) exhibits the same ODE (C.2) with Z(k∆t) = z
ag
k and ∆t → 0. Moreover, a

compact way of writing (C.2) is
˙̂
Z +

t

2
∇F (Z) = 0, (C.3)

where Ẑ = Z+ t
2 Ż. Intuitively, while Z represents the continuous dynamics of zag

k (averaging point),
Ẑ represents the dynamics of zk. The equality Ẑ = Z+ t

2 Ż exactly matches the relationship between
z

ag
k and zk shown in the update rule (3.3c). More specifically, starting from the lens of discrete time

. In fact, a direct acceleration via momentum leads to sub-optimality for the refined case (1.2) where the condition
number of the three parts are entangled [15].
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updates (3.3c) and (3.3b), where zk+1 = k
2 (z

ag
k+1 − z

ag
k ) + z

ag
k+1, zk+1 = zk − ηk∇F (zmd

k ), by
choosing L′ > L where L is the Lipschitz constant of f , ηk = k

2L′ , t = k∆t, ∆t = 1√
L′ and finally

let L′ →∞, we conclude that (also noting that zmd
k − z

ag
k+1 is o(∆t)):

Ẑ = Z +
t

2
Ż,

˙̂
Z +

t

2
∇F (Z) = 0,

which again leads to the ODE (C.2). On a related note, the dynamics of Z is the averaged iteration
and is highly related to the idea of anchoring [33].

Blending the Two Dynamics. To solve the saddle-point problem with bilinear coupling (1.2), we
blend the aforementioned continuous-time dynamics (C.1) corresponding to OGDA on the (linear)
coupling component H , and also (C.3) that conducts Nesterov’s acceleration on the individual
component f . Note that Eqs. (C.3) and (C.1) admit different timescales so the resulting continuous-
time dynamics of AG-OG cannot be a direct addition, and a modified timescale analysis is essential
to obtain the desired result.

We derive the following proposition, where the derivation of the ODE approximation is deferred
to §F:

Proposition 9 We let ηk = k+1

2L′+
√

3+
√
3L′

H(k+1)
, where we assume arbitrarily large L′ > L and

L′
H > LH . Furthermore by letting δ = 1√

L′∨L′
H

, as δ → 0+ and L′
H√
L′ → c ∈ [0,∞) the ODE for

the AG-OG Algorithm 1 under this scaling condition is

˙̂
Z + ct

(
H(Ẑ) +∇F (Z)

)
= 0, Ẑ = Z +

t

2
Ż, (C.4)

where ct ≡ t(1∨c)2

2+
√

3+
√
3c(1∨c)t

. Eq. (C.4) is also equivalent to a single-line higher-order ODE

t

2
Z̈ +

3

2
Ż + ct

(
∇F (Z) +HZ +

t

2
HŻ

)
= 0. (C.5)

We finalize this subsection with a convergence rate result for the combined dynamics in
ODE (C.4). Throughout the paper we use z∗ to denote a solution to Problem (1.2). We con-
duct a standard continuous-time analysis based on the following Lyapunov energy function: E =
t2(F (Z) − F (z∗)) + t

ct
∥Ẑ − z∗∥2, and compute the time-derivative Ė . In contrast with existing

analysis for the optimization setting [36], our analysis reposes on the use of a continuous-time
Gronwall-inequality-based analysis. The overall result is the following theorem, whose proof is
deferred to §F.1:

Theorem 10 We define the gap function as V (Z) = F (Z)− F (z∗) + ⟨Z − z∗, Hz∗⟩ and have

V (Z(T )) ≤ 1

T

(
2

(1 ∨ c)2T
+

√
3 +
√
3c

1 ∨ c

)
∥z0 − z∗∥2 .

Note in the special case where c = 0, the result recovers the standard continuous-time convergence
rate as in Su et al. [36]. Later in §3.3 we will prove a similar result (Theorem 4) in the discrete-time
context. We note in the meantime that the continuous-time analysis is much simpler and more
informative than the (comparatively more complicated) discrete-time analysis.
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(a) Lg = 64, µg = 1 (b) Lg = 1, µg = 1/64 (c) Lg = 4096, µg = 64

Figure 1: Comparison with OGDA on different problem sets (Deterministic)

Appendix D. Experiments

In this section, we study the performance of our AGOG-Avatar Algorithm empirically. We study
both deterministic [§D.1] and stochastic settings [§D.2]. In each of these settings we compare our
algorithm with the state-of-the-art experimental result.

D.1. Deterministic Setting

We present results on synthetic quadratic game datasets:

x⊤A1x+ y⊤A2x− y⊤A3y, (D.1)

with various settings of the eigenvalues of A1, A2, A3.

Comparison with OGDA We use the single-call OGDA algorithm [14, 19] as the baseline. In
Figure 1 we plot the AGOG algorithm and the AGOG-Avatar algorithm under three different
instances. We use stepsize ηk = k+2

2L+
√

3+
√
3LH(k+2)

in both the AGOG and the AGOG-Avatar

algorithms and restart AGOG-Avatar once every 100 iterates. For the OGDA algorithm, we take
stepsize η = 1

2(L∨LH) . For the parameters of the problem (D.1), we fix LH = 1, Lf = 64, µf = 1
and change different choices of Lg, µg. In Figure 1(a)subfigure we take Lg = 64, µg = 1. In
Figure 1(b)subfigure we take Lg = 1, µg = 1/64 and in Figure 1(c)subfigure we take Lg = 4096,
µg = 64. We see from 1(a)subfigure, 1(b)subfigure and 1(c)subfigure when the problem has different
Lf , µf and Lg, µg, changing Lg, µg has larger impact on OGDA than on AGOG, matching our
theoretical observations.

Comparison with LPD Next, we focus on comparison to the Lifted Primal-Dual (LPD) al-
gorithm [38]. We implement the AGOG algorithm and its restarted version, the AGOG-Avatar.
Additionally, inspired by the technique of a single-loop direct-approach in Du et al. [13], we consider
a single-loop algorithm named AGOG-Direct that takes advantage of the strongly-convex strongly-
concave property of the problem. We refer readers to Du et al. [13] for the ”direct” method. The
parameters of LPD are chosen as described in Thekumparampil et al. [38]. For our AGOG and
AGOG-Avatar Algorithm, we take ηk = k+2

2L+
√

3+
√
3LH(k+2)

and the scaling parameters are taken as

in Eq. (3.7). For the AGOG-direct algorithm, we take η = 1

(1+
√

L/µf+(
√

3+
√
3LH)2/µ2

f )µf

with the

same set of scaling parameters. We restart AGOG-Avatar once every 100 iterates.
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(a) Lf = Lg = µf = µg = 1,
LH = 356, µH = 101

(b) Lf = Lg = µf = µg = 1,
LH = 725, µH = 101

(c) Lf = Lg = 100, µf =
µg = 1, LH = µH = 1

Figure 2: Comparison with LPD on different problem sets (Deterministic)

(a) Lf = Lg = µf =
µg = 1, LH = 356, µH =
101, σ = 0.1

(b) Lf = Lg = 10, µf = µg =
µH = 1, LH = 11, σ =
0.1

(c) Lf = Lg = 1, µf = µg =
1/8, LH = µH = 1, σ =
0.1

Figure 3: Comparison of algorithms on different problem sets (Stochastic)

In Figure 2(a)subfigure, the bilinear coupling part y⊤A2x is the dominant part. In Fig-
ure 2(b)subfigure, we set the eigenvalues of A2 even larger than in Figure 2(a)subfigure. In Fig-
ure 2(c)subfigure, x⊤A1x and y⊤A3y are the dominant terms. More details on the specific designs
of the matrices are shown in the caption of the corresponding figures.

We see from Figures 2(a)subfigure and 2(b)subfigure that AGOG-Avatar (green line) outperforms
LPD and MP in regimes where the bilinear term dominates, and when the eigenvalues of the coupling
matrix increase, the performance of AGOG-Avatar relative to other algorithms is enhanced. This is
in accordance with our theoretical analysis. In addition, AGOG-Avatar outperforms its non-restarted
version (orange line) which has a gentle slope at the end. On the other hand, when the individual part
dominates, our AGOG-direct (red line) slightly outperforms LPD. Moreover, AGOG-direct and LPD
almost overlap in 2(a)subfigure and 2(b)subfigure.

D.2. Stochastic Setting

We compared stochastic AGOG and its restarted version S-AGOG-Avatar with Stochastic Extra-
gradient (SEG) SEG with restarting, respectively [cf. 24]. The complete algorithm is shown in 3. We
note that we refer to the averaged iterates version of SEG everywhere when using SEG. For SEG
and SEG-restart, we use stepsize ηk = 1

2(L∨LH) . For AGOG and AGOG-Avatar, we use stepsize

ηk = k+2

2L+
√

3+
√
3LH(k+2)

. We restart every 100 gradient calculations for both SEG-restart and

AGOG-Avatar.
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Algorithm 3 Stochastic AcceleratedGradient-OptimisticGradient (S-AG-OG)(zag
0 , z0, z−1/2,K)

1: for k = 0, 1, . . . ,K − 1 do
2: zmd

k = (1− αk)z
ag
k + αkzk

3: zk+ 1
2
= zk − ηk

(
H̃(zk− 1

2
; ζk− 1

2
) +∇F̃ (zmd

k ; ξk)
)

4: z
ag
k+1 = (1− αk)z

ag
k + αkzk+ 1

2

5: zk+1 = zk − ηk

(
H̃(zk+ 1

2
; ζk+ 1

2
) +∇F̃ (zmd

k ; ξk)
)

6: end for
7: Output: zag

K

We use the same quadratic game setting as in (D.1) except that we assume access only to noisy
estimates of A1, A2, A3. We add Gaussian noise to A1, A2, A3 with σ = 0.1 throughout this ex-
periment. We plot the squared norm error with respect to the number of gradient computations in
Figure 3. In 3(a)subfigure we consider larger eigenvalues for A2 than A1, A3. In 3(b)subfigure,
we let A1, A2, A3 to be approximately of the same scale. In 3(c)subfigure, as the scale of the
eigenvalues shrinks, the noise is relatively larger than in 3(a)subfigure and 3(b)subfigure. The
specific choice of parameters are shown in the caption of the corresponding figures. We see
from 3(a)subfigure, 3(c)subfigure and 3(c)subfigure that S-AGOG-Avatar achieves a more desirable
convergence speed than SEG-restart. Also, the restarting technique significantly accelerates the
convergence, validating our theory.

Appendix E. Proof of Main Convergence Results

This section collects the proofs of our main results, Theorem 4 [§E.1], Corollary 5 [§E.2], and
Theorem 6 [§E.3].

E.1. Proof of Theorem 4

Proof.[Proof of Theorem 4] We define the point-wise primal-dual gap function as:

V (z, z′) := f(z)− f(z′) +
〈
H(z′), z − z′〉 (E.1)

Step 1: Estimating weighted temporal difference in squared norms We first prove a result on
bounding the temporal difference of the point-wise primal-dual gap between z

ag
k and z∗, whose proof

is delayed to §G.5.

Lemma 11 For arbitrary αk ∈ (0, 1] the iterates of Algorithm 1 satisfy for t = 1, . . . , T almost
surely

V (zag
k+1, ωz)− (1− αk)V (zag

k , ωz)

≤ αk

〈
∇F (zmd

k ) +H(zk+ 1
2
), zk+ 1

2
− ωz

〉
︸ ︷︷ ︸

I

+
Lα2

k

2

∥∥∥zk+ 1
2
− zk

∥∥∥2︸ ︷︷ ︸
II

. (E.2)

Note that in Lemma 11, the term I is an inner product with the gradient term and reduces to
⟨∇f(zk), zk − ωz⟩ of the vanilla gradient algorithm if acceleration and optimistic-gradient are
removed. The squared term II is brought by gradient evaluated at zmd

k .
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Additionally, throughout the proof of Lemma 11, we only leverage the convexity and L-
smoothness of f and the property of H (2.3), as well as the update rules in Line (2) and Line (4).
The proof involves no update rules regarding the gradient updates and hence Lemma 11 holds for the
stochastic case as well.

Next, to further bound the inner product term I, we introduce a general proposition that holds for
two updates starting from the same point. Proposition 12 is a slight modification from the proof of
Proposition 4.2 in Chen et al. [7] and analogous to Lemma 7.1 in Du et al. [13]. We omit the proof
here as the argument comes from simple algebraic tricks. Readers can refer to Du et al. [13] for more
details.

Proposition 12 (Proposition 4.2 in Chen et al. 7 and Lemma 7.1 in Du et al. [12]) Given an ini-
tial point θ ∈ Rd, two update directions δ1, δ2 ∈ Rd, and the corresponding results φ1,φ2 ∈ Rd

satisfying:

φ1 = θ − δ1, φ2 = θ − δ2. (E.3)

For any point z ∈ Rd we have

⟨δ2,φ1 − z⟩ ≤ 1

2
∥δ2 − δ1∥2 +

1

2

[
∥θ − z∥2 − ∥φ2 − z∥2 − ∥θ −φ1∥2

]
. (E.4)

Noting that the gradient term ∇F (zmd
k ) +H(zk+ 1

2
) in I of inequality (E.2) of Lemma 11 has

been used in updating zk to zk+1 in Line (5) in Algorithm 1. Comparing Line (5) with Line (3) and
by letting θ = zk,φ1 = zk+ 1

2
,φ2 = zk+1 in Proposition 12, we obtain an upper bound for the inner

product term I:

ηk · I ≤
1

2
η2k||H(zk+ 1

2
)−H(zk− 1

2
)||2 + 1

2

[
||zk − z||2 − ||zk+1 − z||2 − ||zk+ 1

2
− zk||2

]
≤

η2kL
2
H

2
||zk+ 1

2
− zk− 1

2
||2 + 1

2

[
||zk − z||2 − ||zk+1 − z||2 − ||zk+ 1

2
− zk||2

]
(E.5)

where the last inequality is by properties of H and the definition of LH . Combining Eq. (E.5) with
Eq. (E.2), we obtain

V (z
ag
k+1, ωz)− (1− αk)V (z

ag
k , ωz) ≤

ηkαkL
2
H

2
||zk+ 1

2
− zk− 1

2
||2

+
αk

2ηk

[
||zk − z||2 − ||zk+1 − z||2 − ||zk+ 1

2
− zk||2

]
+

Lα2
k

2
||zk+ 1

2
− zk||2 (E.6)

Step 2: Building and solving the recursion To build a iterative rule that connects the previous
iterate with the current iterate, we first apply the following lemma to connect ||zk+ 1

2
− zk− 1

2
||2

and ||zk+ 1
2
− zk||2 and reduce Eq. (E.6) to compositions of {||zk − z||2}k=0,...,K−1 and {||zk+ 1

2
−

zk||2}k=0,...,K−1 terms. The proof of Lemma 13 is delayed to §G.6.

Lemma 13 For any stepsize sequence {ηk}k=0,...,K−1 satisfying for some positive constant c > 0
and the Lipchitz parameter LH that ηkLH ≤

√
c/2 holds for all k . In Algorithm 1, the following

holds for any k ∈ [K − 1]:

||zk+ 1
2
− zk− 1

2
||2 ≤ 2ck

k∑
ℓ=0

c−ℓ||zℓ+ 1
2
− zℓ||2. (E.7)
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Combining Eq. (E.7) with (E.6), bringing in the choice of αk = 2
k+2 and by rearranging the terms,

we obtain the following relation:

V (z
ag
k+1, ωz)−

k

k + 2
V (z

ag
k , ωz) ≤

1

ηk(k + 2)

[
||zk − z||2 − ||zk+1 − z||2

]
−
(

1

ηk(k + 2)
− 2L

(k + 2)2

)
||zk+ 1

2
− zk||2 +

2ηkL
2
H

k + 2

k∑
ℓ=0

ck−ℓ||zℓ+ 1
2
− zℓ||2

Multiplying both sides by (k + 2)2, we obtain

(k + 2)2V (z
ag
k+1, ωz)− [(k + 1)2 − 1]V (z

ag
k , ωz) ≤

k + 2

ηk

[
||zk − z||2 − ||zk+1 − z||2

]
−
(
k + 2

ηk
− 2L

)
||zk+ 1

2
− zk||2 + 2(k + 2)ηkL

2
H

k∑
ℓ=0

ck−ℓ||zℓ+ 1
2
− zℓ||2

Taking ηk = k+2

2L+
√

2/cLH(k+2)
, we have

k + 2

ηk
− 2L ≥

√
2/c(k + 2)LH

and the previous inequality reduces to

(k + 2)2V (z
ag
k+1, ωz)− [(k + 1)2 − 1]V (z

ag
k , ωz)

≤
(
2L+

√
2/cLH(k + 2)

) [
||zk − z||2 − ||zk+1 − z||2

]
−
√
2/c(k + 2)LH ||zk+ 1

2
− zk||2 + (k + 2)

√
2cLH

k∑
ℓ=0

ck−ℓ||zℓ+ 1
2
− zℓ||2

Rearranging and summing over k from 0 to K − 1, we have[
(K + 1)2 − 1

]
V (z

ag
K , z∗) +

(
2L+

√
2/cLH(K + 1)

)
∥zK − z∗∥2

≤
(
2L+

√
2/cLH

)
||z0 − z∗||2 +

√
2/cLH

K−1∑
k=0

∥zk − z∗∥2 −
K−1∑
k=0

V (z
ag
k+1, z

∗)

−
√

2/cLH

K−1∑
k=0

(k + 2)||zk+ 1
2
− zk||2︸ ︷︷ ︸

III1

+
√
2cLH

K−1∑
k=0

(k + 2)

k∑
ℓ=0

ck−l||zℓ+ 1
2
− zℓ||2︸ ︷︷ ︸

III2

Simple algebra yields:

III2 =
K−1∑
l=0

||zℓ+ 1
2
− zℓ||2

K−1∑
k=ℓ

(k + 2)ck−l ≤
K−1∑
ℓ=0

[
ℓ+ 2

1− c
+

c

(1− c)2

]
||zℓ+ 1

2
− zℓ||2.
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Straightforward derivations give that if we choose c = 2
3+

√
3
,

√
2/c(k + 2) ≥

√
2c

[
k + 2

1− c
+

c

(1− c)2

]
holds for all k ≥ 0. Thus, summing III1 and III2 terms we have

−
(√

2/c−
√
2c
)
LH III1 + 2

√
c/2LH III2 ≤ 0.

Finally, we solve the recursion as:[
(K + 1)2 − 1

]
V (z

ag
K , z∗) +

(
2L+

√
2/cLH(K + 1)

)
∥zK − z∗∥2

≤
(
2L+

√
2/cLH

)
||z0 − z∗||2 +

√
2/cLH

K−1∑
k=0

∥zk − z∗∥2 −
K−1∑
k=0

V (z
ag
k+1, z

∗) (E.8)

Step 3: Proving zk stays within a neighbourhood of z∗ In Lemma 3 we show that zk is always
bounded within the ball centered at z∗ with radius ||z0 − z∗||.

Lemma 14 (Lemma 3) Under Assumption 1. Set the parameters as L = Lf ∨ Lg, LH =√
λmax(B⊤B), ηk = k+2

2L+
√

3+
√
3LH(k+2)

and αk = 2
k+2 in Algorithm 1, at any iterate k < K, zk

stays within the region defined by the initialization z0:

||zk − z∗||2 ≤ ||z0 − z∗||2

where we use z∗ to denote the unique solution of Problem (1.2).

Step 4: Combining everything together Bringing the bounded iterates results in Lemma 3 into
the recursion (E.8) and rearranging, we obtain the following:

(K + 1)2V (z
ag
K , z∗) ≤ (K + 1)2V (z

ag
K , z∗) +

(
2L+

√
2/cLH(K + 1)

)
∥zK − z∗∥2

≤
(
2L+

√
2/cLH(K + 1)

)
∥z0 − z∗∥2

Dividing both sides by (K + 1)2 and noting that V (z
ag
K , z∗) ≥ µ

2E||z
ag
K − z∗||2, bringing in the

choice of c = 2
3+

√
3

and we conclude our proof of Theorem 4. □

We finally remark that a limitation of this convergence rate bound is that the coefficient for LH in
our stepsize choosing scheme is

√
3 +
√
3 ≈ 2.175 while an improved stepsize in this special case

is 1
2LH

, yielding a sharper coefficient 2. Although the slight difference in constant factors does not
harm the practical performance drastically, we anticipate that this constant might be further improved
and leave it to future work.

E.2. Proof of Corollary 5

Proof.[Proof of Corollary 5] The proof of restarting argument is direct. By Eq. (3.6), if we want
||zag

K − z∗||2 ≤ 1
e ||z0 − z∗||2 to hold, we can choose K such that

4L

µ(K + 1)2
≤ 1

2e
,

2
√
3 +
√
3LH

µ(K + 1)
≤ 1

2e
.
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This is equivalent to

K + 1 ≥

√
8eL

µ
, K + 1 ≥ 4e

√
3 +
√
3LH

µ
.

For a given threshold ϵ > 0, with the output of every epoch satisfying ||zag
K − z∗||2 ≤ 1

e ||z0 − z∗||2,

the total epochs required to get within the ϵ-ball centered at z∗ would be log( ||z0−z∗||2
ϵ ). Thus, the

total number of iterates required to get within the ϵ threshold would be:

O
(√

Lµ+
LH

µ

)
· log

(
1

ϵ

)
.

Bringing the choice of scaling parameters in (3.7) and we conclude our proof of Corollary 5. □

E.3. Proof of Theorem 6

Proof.[Proof of Theorem 6] For the stochastic case, we use the same definition of the primal-dual
gap function, rewritten as:

V (z, z′) := f(z)− f(z′) +
〈
H(z′), z − z′〉 (E.1)

Step 1: Estimating weighted temporal difference in squared norms We mentioned in the proof
of Theorem 4 that Lemma 11 holds for the stochastic case as well. Thus, we have

V (z
ag
k+1, ωz)− (1− αk)V (z

ag
k , ωz)

≤ αk

〈
∇F (zmd

k ) +H(zk+ 1
2
), zk+ 1

2
− ωz

〉
︸ ︷︷ ︸

I

+
Lα2

k

2

∥∥∥zk+ 1
2
− zk

∥∥∥2︸ ︷︷ ︸
II

. (E.2)

By applying Proposition 12 to the iterates of Algorithm 3. Taking x = zk,ϕ1 = zk+ 1
2
,ϕ2 = zk+1

in Proposition 12, we obtain the following stochastic version of inequality (E.5):

ηk ·
〈
∇F̃ (zmd

k ; ξk) +∇H̃(zk+ 1
2
; ζk+1), zk+ 1

2
− ωz

〉
≤ 1

2
η2k ||H̃(zk+ 1

2
; ζk+ 1

2
)− H̃(zk− 1

2
; ζk− 1

2
)||2︸ ︷︷ ︸

(a)

+
1

2

[
||zk − z||2 − ||zk+1 − z||2 − ||zk+ 1

2
− zk||2

]
Step 2: Building and solving the recursion Note that in the stochastic case, unlike Step 2 in the
proof of Theorem 4, before connecting ||zk+ 1

2
− zk− 1

2
||2 with ||zk+ 1

2
− zk||2 to get an iterative rule,

we need to bound the expectation of (a) with additional noise first.
Throughout the rest of the proof of Theorem 6, we denote

∆
k+ 1

2
h = H̃(zk+ 1

2
; ζk+ 1

2
)−H(zk+ 1

2
), ∆k

f = ∇F̃ (zmd
k ; ξk)−∇F (zmd

k )

Taking expectation over (a), we use the following lemma to depict the upper bound of the
quantity. The proof is delayed to §G.7.
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Lemma 15 For any β > 0, under Assumption 2, we have

E||H̃(zk+ 1
2
; ζk+ 1

2
)− H̃(zk− 1

2
; ζk− 1

2
)||2 ≤ (1 + β)L2

HE||zk+ 1
2
− zk− 1

2
||2 +

(
2 +

1

β

)
σ2
H .

(E.9)

Taking β = 1 in Lemma 15 and bringing the result into the expectation of (E.2), we obtain that

EV (z
ag
k+1, ωz)− (1− αk)EV (z

ag
k , ωz)

≤ αkηk
2

[
2L2

HE||zk+ 1
2
− zk− 1

2
||2 + 3σ2

H

]
+ αkE

〈
∆k

f +∆
k+ 1

2
h , zk+ 1

2
− z∗

〉
+

Lα2
k

2
E||zk+ 1

2
− zk||2 +

αk

2ηk
E
[
||zk − z||2 − ||zk+1 − z||2 − ||zk+ 1

2
− zk||2

]
. (E.10)

Following the above inequality and following similar techniques as in Step 2 of the proof of
Theorem 4, we can derive the following Lemma 16, whose proof is delayed to §G.8.

Lemma 16 For the choice of stepsize such that ηkLH ≤
√
c
2 holds for all k and any constant r > 0,

we have

EV (zag
k+1, ωz)− (1− αk)EV (zag

k , ωz) ≤
αk

2ηk
E
[
||zk − z||2 − ||zk+1 − z||2

]
+

3αkηk
2(1− c)

σ2
H

+ 2αkηkL
2
H

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 −

(
rαk

2ηk
−

Lα2
k

2

)
E||zk+ 1

2
− zk||2 +

αkηk
2(1− r)

σ2
F

Recalling that αk = 2
k+2 , we have

EV (z
ag
k+1, ωz)−

k

k + 2
EV (z

ag
k , ωz) ≤

1

ηk(k + 2)
E
[
||zk − z||2 − ||zk+1 − z||2

]
+

4ηkL
2
H

k + 2

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 −

(
r

ηk(k + 2)
− 2L

(k + 2)2

)
E||zk+ 1

2
− zk||2

+
3ηk

(1− c)(k + 2)
σ2
H +

ηk
(1− r)(k + 2)

σ2
F

Multiplying both sides by (k + 2)2 and taking r = 1
2 , we obtain

(k + 2)2EV (z
ag
k+1, ωz)− [(k + 1)2 − 1]EV (z

ag
k , ωz)

≤ k + 2

ηk
E
[
||zk − z||2 − ||zk+1 − z||2

]
+ 4ηkL

2
H(k + 2)

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2

−
(
r(k + 2)

ηk
− 2L

)
E||zk+ 1

2
− zk||2 +

3ηk(k + 2)

1− c
σ2
H +

ηk(k + 2)

1− r
σ2
F

≤ k + 2

ηk
E
[
||zk − z||2 − ||zk+1 − z||2

]
+ 4ηkL

2
H(k + 2)

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2

−
(
k + 2

2ηk
− 2L

)
E||zk+ 1

2
− zk||2 +

3ηk(k + 2)

1− c
σ2
H + 2ηk(k + 2)σ2

F

24



R AT E - O P T I M A L O P T I M I S T I C - G R A D I E N T- B A S E D M E T H O D F O R M I N I M A X O P T I M I Z AT I O N

Telescoping over k = 0, 1, . . .K− 1 and using the same techniques as in the proof of Theorem 4, we
have for k+2

2ηk
≥ 2L+ 1√

c
LH(k+2) and c = 1

2+
√
2

(c/(1− c) =
√
2−1, write σ2 = 3

√
2σ2

H +2σ2
F

that [
(K + 1)2 − 1

]
EV (z

ag
K , z∗) +

K + 1

ηK−1
E||zK − z∗||2

≤ 2

η0
E||z0 − z∗||2 + 2√

c
LH

K−1∑
k=1

E ∥zk − z∗∥2 +
K−1∑
k=0

(k + 2)ηkσ
2 −

K−1∑
k=0

EV (z
ag
k+1, z

∗)

(E.11)

Step 3: Proving zk stays within a neighbourhood of z∗ We introduce the following Lemma 17,
whose proof is in §G.4

Lemma 17 Given the maximum epoch number K > 0 and stepsize sequence {ηk}k∈[K] satisfying

(a) k+2
ηk
− k+1

ηk−1
= 2√

c
LH for any k < K, we have for ∀k ∈ [K − 1]:

||zk − z∗||2 ≤ ||z0 − z∗||2 + η0
2

K−1∑
k=0

(k + 2)ηkσ
2

(b) In addition if ηk ≤ k+2
D for ∀k ∈ [K − 1] where D will be specified in (c) and taking

A(K) :=
√
(K + 1)(K + 2)(2K + 3)/6, we have

||zk − z∗||2 ≤ ||z0 − z∗||2 + A(K)2σ2

D2
(E.12)

(c) Taking D = σ
C

A(K)√
E||z0−z∗||2

for some absolute constant C > 0 , bound (E.12) reduces to

||zk − z∗||2 ≤
(
1 + C2

)
||z0 − z∗||2 (E.13)

Step 4: Combining everything together Combining the choice of stepsize ηk in (a), (b) in
Lemma 17 and k+2

2ηk
≥ 2L+ 1√

c
LH(k + 2), and bound (E.11) with Eq. (E.13), by rearranging the

terms again, we conclude that for ηk = k+2

4L+D+4
√

2+
√
2LH(k+2)

,

(K + 1)2EV (z
ag
K , z∗) ≤

(
4L+ 2

√
2 +
√
2(K + 1)

(
1 + C2

)
LH

)
E||z0 − z∗||2

+

(
C +

1

C

)
σA(K)

√
E||z0 − z∗||2

Dividing both sides by (K + 1)2 and noting that V (z
ag
K , z∗) ≥ µ

2E||z
ag
K − z∗||2, we conclude that

E||zag
K − z∗||2 ≤

[
8L

µ(K + 1)2
+

7.4(1 + C2)LH

µ(K + 1)

]
E||z0 − z∗||2 +

2(C + 1
C )σ

µ
√
K + 1

√
E||z0 − z∗||2.

□
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Appendix F. Understanding the Continuous-Time Dynamics of AG-OG

Due to the complexity of discrete analysis, in §C.1 we describe the continuous dynamics of AG-OG
as a hybrid dynamics of OGDA and Nesterov’s acceleration. After introducing the discrete dynamics
of AG-OG in §3.3, we are now ready to present a formal proposition that connects Algorithm 1 with
its ODE. We adopt similar stepsize scheme as in Theorem 4 by letting ηk = k+1

2L′+
√

3+
√
3L′

H(k+1)

where L′ and L′
H can be arbitrarily large. Furthermore, we set ∆t = 1√

L′∨L′
H

, let L′
H√
L′ → c and use

the notation ct =
t(1∨c)2

2+
√

3+
√
3c(1∨c)t

. We derive the following proposition:

Proposition 18 (Proposition 9) The ODE for the AG-OG Algorithm 1 is

t

2
Z̈ +

3

2
Ż + ct

(
∇F (Z) +HZ +

t

2
HŻ

)
= 0 (F.1)

Proof.[Proof of Proposition 9] We recall that in Algorithm 1, Line 3 and 5 yield:

zk+ 1
2
= zk − ηk

(
H(zk− 1

2
) +∇F (zmd

k )
)

zk+1 = zk − ηk

(
H(zk+ 1

2
) +∇F (zmd

k )
)

Subtracting the first line from the second line, we have

zk+1 = zk+ 1
2
− ηk

(
H(zk+ 1

2
)−H(zk− 1

2
)
)

(F.2)

Furthermore, by shifting indices, we have

zk+ 3
2
= zk+1 − ηk+1

(
H(zk+ 1

2
) +∇F (zmd

k+1)
)

(F.3)

Combining (F.2) and (F.3), we derive the iterative update rule on zk+ 1
2

that

zk+ 3
2
= zk+ 1

2
− (ηk + ηk+1)H(zk+ 1

2
) + ηkH(zk− 1

2
)− ηk+1∇F (zmd

k+1)

= zk+ 1
2
− ηk+1H(zk+ 1

2
)− ηk+1∇F (zmd

k+1)− ηk

(
H(zk+ 1

2
)−H(zk− 1

2
)
)
.

Moreover, Line 2 and 4 in Algorithm 1 imply that

zmd
k+1 = z

ag
k+1 +

k

k + 3

(
z

ag
k+1 − z

ag
k

)
.

Thus, we obtain

zk+ 3
2
− zk+ 1

2
= −ηk+1

[
H(zk+ 1

2
) +∇F (z

ag
k+1)

]
− ηk

[
H(zk+ 1

2
)−H(zk− 1

2
)
]

− ηk+1

[
∇F (zmd

k+1)−∇F (z
ag
k+1)

]
(F.4)
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Recalling that in Theorem 4 we take the stepsize ηk = k+2

2L+
√

3+
√
3LH(k+2)

and noting that the

stepsize can actually be chosen for any L′ > L,L′
H > LH as ηk = k+2

2L′+
√

3+
√
3L′

H(k+2)
. We let

t = k∆t where ∆t = 1√
L′∨L′

H

. Thus, we obtain

ηk =
k + 2

2L′ +
√

3 +
√
3L′

H(k + 2)
=

t∆t+ 2(∆t)2

2L′(∆t)2 +
√
3 +
√
3L′

H(t∆t+ 2(∆t)2)
.

We use c =
L′
H√
L′ to depict the relationship between L′

H and L′, simple algebra yields:

L′
H =

c

(1 ∨ c)∆t
, L′ =

1

(1 ∨ c)2(∆t)2
.

Combining this with the value of ηk and we obtain that

ηk =
t∆t+ 2(∆t)2

2
(1∨c)2 +

√
3 +
√
3 c
1∨c(t+ 2∆t)

=
(1 ∨ c)2(t+ 2∆t)

2 +
√
3 +
√
3c(1 ∨ c)(t+ 2∆t)

∆t

=
(1 ∨ c)2t

2 +
√
3 +
√
3c(1 ∨ c)t

∆t+ (∆t)2 (F.5)

which goes to 0 as L′, L′
H → ∞ and ∆t → 0. We let ct = (1∨c)2t

2+
√

3+
√
3c(1∨c)t

and (F.5) can be

shortened as:

ηk = ct∆t+ o(∆t).

With this choice of ηk, by Taylor expansion we have:

H(zk+ 1
2
)−H(zk− 1

2
) ≤ O(zk+ 1

2
− zk− 1

2
) ≤ O(ηk) = o(1),

∇F (zmd
k+1)−∇F (z

ag
k+1) ≤ O

(
zmd
k+1 − z

ag
k+1

)
(a)

≤ O
(
z

ag
k+1 − z

ag
k

)
≤ O

(
2

k + 2
(zk+ 1

2
− z

ag
k )

)
= o(1).

we rewrite (F.4) in continuous dynamics by letting Ẑ(t) = zk− 1
2

and Z(t) = z
ag
k+1:

Ẑ(t+ 1)− Ẑ(t) = −ηk+1

[
H(Ẑ(t)) +∇F (Z(t))

]
+ o(ηk) + o(ηk+1)

= −ct∆t
[
H(Ẑ(t)) +∇F (Z(t))

]
+ o(∆t).

Dividing both sides by ∆t and with ∆t→ 0, we obtain

˙̂
Z(t) + ct

[
H(Ẑ(t)) +∇F (Z(t))

]
= 0. (F.6)

In the final step we calculate the relationship between Ẑ(t) and Z(t). By Line 4, we have

zk+1 =
k

2

(
z

ag
k+ 1

2

− z
ag
k

)
+ z

ag
k+1,
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which is equivalent to

Ẑ(t) =
t

2

Z(t)− Z(t− 1)

∆t
+ Z(t).

Letting ∆t→ 0, we have

Ẑ(t) = Z(t) +
t

2
Ż(t). (F.7)

Combining (F.6) with (F.7) we conclude our proof.
□

F.1. Proof of Theorem 10

Proof.[Proof of Theorem 10] We first provide an estimate of the time derivative Ė of the Lyapunov
function corresponding to (C.4), and the result is shown is Lemma 19:

Lemma 19 We set the Lyapunov function as defined in the following (F.8):

E = t2V (Z) +
t

ct
∥Ẑ − z∗∥2, (F.8)

where ct =
(1∨c)2t

2+
√

3+
√
3c(1∨c)t

. Given the dynamics in (C.4) starting from Z(0) = z0, we have

Ė =
d

dt

[
t2V (Z) +

t

ct
∥Ẑ − z∗∥2

]
≤
√
3 +
√
3

c

1 ∨ c
∥Ẑ − z∗∥2. (F.9)

We postpone the proof of Lemma 19 to §G.1. Note that both sides of (F.9) in Lemma 19 presents the
quantity t

ct
∥Ẑ − z∗∥2 in its original and gradient forms, respectively. By integrating on both sides

and applying a Gronwall-type technique, we obtain the following Lemma 20 which shows that the
continuous-time dynamics of AG-EG-ODE are non-expansive with respect to saddle z∗.

Lemma 20 We have

∥Ẑ − z∗∥ ≤ ∥z0 − z∗∥. (F.10)

We postpone the rigorous proof of Lemma 20 to §G.2. Now bringing (F.10) in Lemma 20 into (F.9),
we conclude that

Ė =
d

dt

[
t2V (Z) +

t

ct
∥Ẑ − z∗∥2

]
≤
√
3 +
√
3

c

1 ∨ c
∥z0 − z∗∥2.

Integrating both sides gives

T 2V (Z)+
2 +

√
3 +
√
3c(1 ∨ c)T

(1 ∨ c)2
∥Ẑ−z∗∥2− 2

(1 ∨ c)2
∥z0−z∗∥2 ≤

√
3 +
√
3

c

1 ∨ c
T∥z0−z∗∥2.

Rearranging and dividing both sides by T 2, we obtain that

V (Z) ≤ V (Z) +
2 +

√
3 +
√
3c(1 ∨ c)T

(1 ∨ c)2T 2

∥∥∥Ẑ − z∗
∥∥∥2 ≤ 2 +

√
3 +
√
3c(1 ∨ c)T

(1 ∨ c)2T 2
∥z0 − z∗∥2 ,

which concludes our proof.
□
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Appendix G. Proof of Auxiliary Lemmas

G.1. Proof of Lemma 19

Proof.[Proof of Lemma 19] Since E(t) is set as

E = t2V (Z) +
t

ct
∥Ẑ − z∗∥2, (F.8)

we have its time derivative

dE
dt

= 2tV (Z) + t2⟨∇V (Z), Ż⟩+ 2t

ct
⟨Ẑ − z∗,

˙̂
Z⟩︸ ︷︷ ︸+

√
3 +
√
3

c

1 ∨ c
∥Ẑ − z∗∥2.

We want to show the bracketed part above is nonpositive, i.e.

2t [F (Z)− F (z∗) + ⟨Z − z∗, Hz∗⟩] + t2⟨∇F (Z) +Hz∗, Ż⟩+ 2t

ct
⟨Ẑ − z∗,

˙̂
Z⟩ ≤ 0.

Saddle definition gives∇F (z∗) +Hz∗ = 0, and hence µ-strong convexity of F implies

V (Z) = F (Z)− F (z∗) + ⟨Z − z∗, Hz∗⟩

≥ ⟨Z − z∗,∇F (z∗) +Hz∗⟩+ µ

2
∥Z − z∗∥2 = µ

2
∥Z − z∗∥2 ≥ 0.

Denote

2t [F (Z)− F (z∗) + ⟨Z − z∗, Hz∗⟩] + t2⟨∇F (Z) +Hz∗, Ż⟩+ 2t

ct
⟨Ẑ − z∗,

˙̂
Z⟩

≡ I + II + III.

Then using Ẑ = Z + t
2 Ż

III =
2t

ct
⟨Ẑ − z∗,−ct[∇F (Z) +HẐ]⟩

= −2t⟨Ẑ − z∗,∇F (Z) +HẐ⟩

≤ −2t⟨Ẑ − z∗,∇F (Z) +Hz∗⟩
= −⟨2t(Z − z∗) + t2Ż,∇F (Z) +Hz∗⟩,

where in the third equality above we used the property of monotone operator H (and also linearity)
and conclude ⟨Ẑ − z∗, H(Ẑ − z∗)⟩ ≥ 0 which is actually = 0 for bilinear operator H . Therefore

I + II = 2t [F (Z)− F (z∗) + ⟨Z − z∗, Hz∗⟩] + t2⟨Ż,∇F (Z) +Hz∗⟩,

and

I + II + III = 2t [F (Z)− F (z∗) + ⟨Z − z∗, Hz∗⟩]− ⟨2t(Z − z∗),∇F (Z) +Hz∗⟩
= 2t [F (Z)− F (z∗)− ⟨Z − z∗,∇F (Z)⟩] ≤ 0,

where the last step uses the convexity of f . This concludes the desired result of Lemma 19. □
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G.2. Proof of Lemma 20

Proof.[Proof of Lemma 20] To proceed with proof we adopt a Gronwall-type argument. Note

Ė(t) = d

dt

[
t2V (Z(t)) +

t

ct
∥Ẑ(t)− z∗∥2

]
≤
√
3 +
√
3

c

1 ∨ c
∥Ẑ(t)− z∗∥2

Taking integrals on both sides
∫ T
0 dt gives

T 2V (Z(T )) +
T

ct
∥Ẑ(T )− z∗∥2 − 2

(1 ∨ c)2
∥z0 − z∗∥2 ≤

√
3 +
√
3

c

1 ∨ c

∫ T

0
∥Ẑ(t)− z∗∥2dt

Let y(T ) ≡
∫ T
0 ∥Ẑ(t)− z∗∥2dt then we have by removing the first term

T

ct
y′(T )− 2

(1 ∨ c)2
y′(0) =

2 +
√
3 +
√
3c(1 ∨ c)T

(1 ∨ c)2
y′(T )− 2

(1 ∨ c)2
y′(0) ≤

√
3 +
√
3

c

1 ∨ c
y(T )

(G.1)
which gives, via quotient rule,

d

dT

(
cty(T )

T

)
=

d

dT

(
(1 ∨ c)2y(T )

2 +
√
3 +
√
3c(1 ∨ c)T

)

= (1 ∨ c)2
(2 +

√
3 +
√
3c(1 ∨ c)T )y′(T )− c(1 ∨ c)y(T )

(2 +
√
3 +
√
3c(1 ∨ c)T )2

≤ 2(1 ∨ c)2y′(0)

(2 +
√
3 +
√
3c(1 ∨ c)T )2

so

(1 ∨ c)2y(T )

2 +
√
3 +
√
3c(1 ∨ c)T

− (1 ∨ c)2y(0)

2
≤ 2(1 ∨ c)2y′(0)

∫ T

0

1

(2 +
√
3 +
√
3c(1 ∨ c)t)2

dt

= 2
1 ∨ c√
3 +
√
3c

y′(0)

(
1

2
− 1

2 +
√

3 +
√
3c(1 ∨ c)T

)
Therefore

y(T ) ≤ 2
1√

3 +
√
3c(1 ∨ c)

y′(0)

(
2 +

√
3 +
√
3c(1 ∨ c)T

2
− 1

)
= y′(0)T

Plugging in back (G.1) gives

T

ct
y′(T )− 2

(1 ∨ c)2
y′(0) ≤

√
3 +
√
3

c

1 ∨ c
y(T ) ≤

√
3 +
√
3

c

1 ∨ c
y′(0)T

so
T

ct
y′(T ) =

2 +
√

3 +
√
3c(1 ∨ c)T

(1 ∨ c)2
y′(T ) ≤ 2 +

√
3 +
√
3c(1 ∨ c)T

(1 ∨ c)2
y′(0)

so y′(T ) ≤ y′(0) which indicates

∥Ẑ(T )− z∗∥2 ≤ ∥z0 − z∗∥2

completing the proof. □
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G.3. Proof of Lemma 3

Proof.[Proof of Lemma 3] Following (E.8), we drop the V terms and have:(
2L+

√
2/cLH(K + 1)

)
∥zK − z∗∥2

≤
(
2L+

√
2/cLH

)
||z0 − z∗||2 +

√
2/cLH

K−1∑
k=0

∥zk − z∗∥2 .

We adopt a ”bootstrapping” argument, similar as the Gronwall-type analysis in the Proof of Theo-
rem 10. We define MK = max0≤k≤K−1 ||zk − z∗||2 and taking a maximum on each term on the
right hand side of the above inequality, we conclude that(

2L+
√
2/cLH(K + 1)

)
∥zK − z∗∥2 ≤

(
2L+

√
2/cLH

)
MK−1 +

√
2/cLH

K−1∑
k=0

MK−1

=
(
2L+

√
2/cLH(K + 1)

)
MK−1.

Thus, we know that ||zK − z∗||2 ≤ MK−1 and hence MK = MK−1 always holds. That yields
MK = M0, and we conclude the proof of Lemma 3. □

G.4. Proof of Lemma 17

Proof.[Proof of Lemma 17] Starting from (E.11) that[
(K + 1)2 − 1

]
EV (z

ag
K , z∗) +

K + 1

ηK−1
E||zK − z∗||2

≤ 2

η0
E||z0 − z∗||2 + 2√

c
LH

K−1∑
k=1

E ∥zk − z∗∥2 +
K−1∑
k=0

(k + 2)ηkσ
2 −

K−1∑
k=0

EV (z
ag
k+1, z

∗)

We first omit the V (·, ·) terms and have

K + 1

ηK−1
E||zK − z∗||2 ≤ 2

η0
E||z0 − z∗||2 + 2√

c
LH

K−1∑
k=1

||zk − z∗||2 +
K−1∑
k=0

(k + 2)ηkσ
2. (G.2)

Rewrite ||zK − z∗||2 as the difference between two summations, we obtain:

K + 1

ηK−1

(
K∑
k=1

−
K−1∑
k=1

)
E||zk − ωz||2

≤ 2

η0
E||z0 − z∗||2 + 2√

c
LH

K−1∑
k=1

E||zk − z∗||2 +
K−1∑
k=0

(k + 2)ηkσ
2.

Rearranging the terms and by the first condition (a) that k+2
ηk
− k+1

ηk−1
= 2√

c
LH , we have:

K + 1

ηK−1

K∑
k=1

E||zk − z∗||2

≤ 2

η0
E||z0 − z∗||2 + K + 2

ηK

K−1∑
k=1

E||zk − ωz||2 +
K−1∑
k=0

(k + 2)ηkσ
2.
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To construct a valid iterative rule, we divide both sides of the above inequality with (K+1)(K+2)
ηK−1ηK

and
obtain the following:

ηK
K + 2

K∑
k=1

E||zk − z∗||2 ≤ ηK−1

K + 1

K−1∑
k=1

E||zk − ωz||2

+
ηK−1ηK

(K + 1)(K + 2)

[
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]
.

Here we slightly abuse the notations and use K to denote an arbitrary iteration during the process of
the algorithm and use K to denote the fixed total number of iterates. Thus,

∑K−1
k=0 (k + 2)ηkσ

2 ≤∑K−1
k=0 (k + 2)ηkσ

2 is an upper bound that does not change with the choice of K. It follows that:

ηK
K + 2

K∑
k=1

E||zk − z∗||2 ≤ ηK−1

K + 1

K−1∑
k=1

E||zk − ωz||2

+

√
c

2LH

[
ηK−1

K + 1
− ηK

K + 2

][
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]

≤
√
c

2LH

[
η0
2
− ηK

K + 2

][
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]
.

Dividing both sides by ηK
K+2 , the result follows:

K∑
k=1

E||zk − z∗||2 ≤
√
c

2LH

[
η0(K + 2)

2ηK
− 1

][
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]
.

Bringing this into Eq. (G.2), we conclude that

K + 1

ηK−1
E||zK − z∗||2 ≤ η0(K + 1)

2ηK−1

[
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]
.

Dividing both sides by K+1
ηK−1

and we have:

E||zK − z∗||2 ≤ η0
2

[
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]
.

Now we change back using the notation K to denote the total iterates and k is the iterates indexes,
we have

E||zk − z∗||2 ≤ E||z0 − z∗||2 + η0
2

K−1∑
k=0

(k + 2)ηkσ
2

which concludes the proof of (a) of Lemma 17. Additionally, if ηk ≤ k+2
D for some quantity D, we

have
K−1∑
k=0

(k + 2)ηk ≤
K−1∑
k=0

(k + 2)2

D
≤ (K + 1)(K + 2)(2K + 3)

6D
.
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We use A(K) =
√

(K + 1)(K + 2)(2K + 3)/6 and noting that η0 ≤ 2
D , we have

E||zk − z∗||2 ≤ E||z0 − z∗||2 + A(K)2σ2

D2

which concludes our proof of (b). And (c) follows by direct calculation. □

G.5. Proof of Lemma 11

Proof.[Proof of Lemma 11] Recalling that F is L-smooth. To upper-bound the difference in pointwise
primal-dual gap between iterates, we first estimate the difference in function values of f via gradients
at the extrapolation point. For all u ∈ Z , the convexity and L-smoothness of F (·) implies that:

F (z
ag
k+1)− F (u) = F (z

ag
k+1)− F (zmd

k )−
(
F (u)− F (zmd

k )
)

≤
〈
∇F (zmd

k ), z
ag
k+1 − zmd

k

〉
+

L

2

∥∥zag
k+1 − zmd

k

∥∥2 − 〈∇F (zmd
k ),u− zmd

k

〉
Taking u = ωz and u = z

ag
k respectively, we conclude that

F (z
ag
k+1)− F (ωz) ≤

〈
∇F (zmd

k ), z
ag
k+1 − zmd

k

〉
+

L

2

∥∥zag
k+1 − zmd

k

∥∥2 − 〈∇F (zmd
k ), ωz − zmd

k

〉
(G.3)

F (z
ag
k+1)− F (z

ag
k ) ≤

〈
∇F (zmd

k ), z
ag
k+1 − zmd

k

〉
+

L

2

∥∥zag
k+1 − zmd

k

∥∥2 − 〈∇F (zmd
k ), z

ag
k − zmd

k

〉
(G.4)

Multiplying (G.3) by αk and (G.4) by (1− αk) and adding them up, we have

F (z
ag
k+1)− αkF (ωz)− (1− αk)F (z

ag
k ) (G.5)

≤
〈
∇F (zmd

k ), z
ag
k+1 − (1− αk)z

ag
k − ωz

〉
+

L

2
||zag

k+1 − zmd
k ||2

= αk

〈
∇F (zmd

k ), zk+ 1
2
− ωz

〉
︸ ︷︷ ︸

I(a)

+
Lα2

k

2

∥∥∥zk+ 1
2
− zk

∥∥∥2︸ ︷︷ ︸
II

(G.6)

where by substracting Line (2) from Line (4) of Algorithm 1 and by Line (4) it self, the last equality
of (G.6) follows.

Recalling that zag
k corresponds to regular iterates and zmd

k corresponds to the extrapolated iterates
of Nesterov’s acceleration scheme. The squared error term II in (G.6) is brought by gradient
calculation at the extrapolated point instead of the regular point. Note that if we do an implicit
version of Nesterov such that zmd

k−1 = z
ag
k , this squared term goes to zero, and the convergence

analysis would be the same as in OGDA. This could potentially result in a new implicit algorithm
with better convergence guarantee.

On the other hand, for the coupling term of the updates, we have〈
H(ωz), z

ag
k+1 − ωz

〉
− (1− αk)

〈
H(ωz), z

ag
k − ωz

〉
= αk

〈
H(ωz), zk+ 1

2
− ωz

〉
= αk

〈
H(zk+ 1

2
), zk+ 1

2
− ωz

〉
︸ ︷︷ ︸

I(b)

(G.7)
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where the last equality comes from the following property of H(·) that:〈
H(zk+ 1

2
)−H(ωz), zk+ 1

2
− ωz

〉
= 0

Summing up Eq. (G.7) with Eq. (G.6), we obtain the following:

F (z
ag
k+1)− αkF (ωz)− (1− αk)F (z

ag
k ) +

〈
H(ωz), z

ag
k+1 − ωz

〉
− (1− αk)

〈
H(ωz), z

ag
k − wz

〉
≤ αk

〈
∇F (zmd

k ) +H(zk+ 1
2
), zk+ 1

2
− ωz

〉
︸ ︷︷ ︸

I

+
Lα2

k

2

∥∥∥zk+ 1
2
− zk

∥∥∥2︸ ︷︷ ︸
II

where I is the summation of I(a) and I(b). This concludes our proof of Lemma 11 by bringing in
the definitions of V (z

ag
k+1, z

∗), V (z
ag
k , z∗). □

G.6. Proof of Lemma 13

Proof.[Proof of Lemma 13] By Young’s inequality and Cauchy-Schwarz inequality, we have that∥∥∥zk+ 1
2
− zk− 1

2

∥∥∥2 ≤ 2
∥∥∥zk+ 1

2
− zk

∥∥∥2 + 2
∥∥∥zk − zk− 1

2

∥∥∥2
(a)

≤ 2
∥∥∥zk+ 1

2
− zk

∥∥∥2 + 2η2k−1L
2
H

∥∥∥zk− 1
2
− zk− 3

2

∥∥∥2
(b)

≤ 2
∥∥∥zk+ 1

2
− zk

∥∥∥2 + c
∥∥∥zk− 1

2
− zk− 3

2

∥∥∥2
(G.8)

where (a) is by Line (3) and (5) of Algorithm 1 and the definition of LH , and (b) is by the condition
in Lemma 13 that ηkLH ≤

√
c/2.

Recursively applying the above gives

∥∥∥zk+ 1
2
− zk− 1

2

∥∥∥2 ≤ 2ck
k∑

ℓ=0

c−ℓ
∥∥∥zℓ+ 1

2
− zℓ

∥∥∥2 (G.9)

Indeed, from (G.8)

c−k
∥∥∥zk+ 1

2
− zk− 1

2

∥∥∥2 − c−(k−1)
∥∥∥zk− 1

2
− zk− 3

2

∥∥∥2 ≤ 2c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2
so telescoping over k = 1, . . . ,K gives

c−K
∥∥∥zk+ 1

2
− zk− 1

2

∥∥∥2 − ∥∥∥z 1
2
− z− 1

2

∥∥∥2 ≤ 2
K∑
k=1

c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2
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which is just (due to z0 = z− 1
2
)

c−K
∥∥∥zk+ 1

2
− zk− 1

2

∥∥∥2 ≤ 2
K∑
k=1

c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2 + ∥∥∥z 1
2
− z0

∥∥∥2
≤ 2

K∑
k=1

c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2 + 0∑
k=0

c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2
≤ 2

K∑
k=2

c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2 + 2
0∑

k=0

c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2
= 2

K∑
k=1

c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2
which gives (G.9). □

G.7. Proof of Lemma 15

Proof.[Proof of Lemma 15] We recall that we denote

∆
k+ 1

2
h = H̃(zk+ 1

2
; ζk+ 1

2
)−H(zk+ 1

2
), ∆k

f = ∇F̃ (zmd
k ; ξk)−∇F (zmd

k )

Then, we have

E||H̃(zk+ 1
2
; ζk+ 1

2
)− H̃(zk− 1

2
; ζk− 1

2
)||2 = E||H(zk+ 1

2
)−H(zk− 1

2
) + ∆

k+ 1
2

h −∆
k− 1

2
h ||2

By first taking expectation over ζk+ 1
2

condition on zk+ 1
2

given, we have

LHS ≤ E||H(zk+ 1
2
)−H(zk− 1

2
)−∆

k− 1
2

h ||2 + E||∆k+ 1
2

h ||2

≤ (1 + β)E||H(zk+ 1
2
)−H(zk− 1

2
)||2 + (1 +

1

β
)E||∆k− 1

2
h ||2 + E||∆k+ 1

2
h ||2

≤ (1 + β)L2
HE||zk+ 1

2
− zk− 1

2
||2 + (1 +

1

β
)E||∆k− 1

2
h ||2 + E||∆k+ 1

2
h ||2.

Recalling that by Assumption 2, E||∆k+ 1
2

h ||2 ≤ σ2
H and E||∆k− 1

2
h ||2 ≤ σ2

H , we conclude our proof
of Lemma 15. □

G.8. Proof of Lemma 16

Proof.[Proof of Lemma 16] By inequality (E.10), we have

EV (z
ag
k+1, ωz)− (1− αk)EV (z

ag
k , ωz)

≤ αkηk
2

[
2L2

HE||zk+ 1
2
− zk− 1

2
||2 + 3σ2

H

]
+ αkE

〈
∆k

f +∆
k+ 1

2
h , zk+ 1

2
− z∗

〉
+

Lα2
k

2
E||zk+ 1

2
− zk||2 +

αk

2ηk
E
[
||zk − z||2 − ||zk+1 − z||2 − ||zk+ 1

2
− zk||2

]
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The inner product term can be decomposed into

E
〈
∆k

f +∆
k+ 1

2
h , zk+ 1

2
− z∗

〉
= E

〈
∆

k+ 1
2

h , zk+ 1
2
− z∗

〉
+ E

〈
∆k

f , zk − z∗
〉
+ E

〈
∆k

f , zk+ 1
2
− zk

〉
= E

〈
∆k

f , zk+ 1
2
− zk

〉
Where the expectation of the first two terms all equals 0. Thus, we obtain

EV (z
ag
k+1, ωz)− (1− αk)EV (z

ag
k , ωz)

≤ αkηk
2

[
2L2

HE||zk+ 1
2
− zk− 1

2
||2 + 3σ2

H

]
+ αkE

〈
∆k

f , zk+ 1
2
− zk

〉
+

αk

2ηk
E
[
||zk − z||2 − ||zk+1 − z||2

]
−
(

αk

2ηk
−

Lα2
k

2

)
E||zk+ 1

2
− zk||2

For any r > 0, we pair up

−(1− r)αk

2ηk
E||zk+ 1

2
− zk||2 + αkE

〈
∆k

f , zk+ 1
2
− zk

〉
≤ αkηk

2(1− r)
E||∆k

f ||2

and thus

EV (z
ag
k+1, ωz)− (1− αk)EV (z

ag
k , ωz)

≤ αkηk
2

[
2L2

HE||zk+ 1
2
− zk− 1

2
||2 + 3σ2

H

]
+

αkηk
2(1− r)

E||∆k
f ||2

+
αk

2ηk
E
[
||zk − z||2 − ||zk+1 − z||2

]
−
(
rαk

2ηk
−

Lα2
k

2

)
E||zk+ 1

2
− zk||2. (G.10)

Next, we connect ||zk+ 1
2
− zk− 1

2
||2 with the squared norms ||zℓ+ 1

2
− zℓ||2. For ηk satisfying

ηkLH ≤
√
c
2 , we have

E
∥∥∥zk+ 1

2
− zk− 1

2

∥∥∥2 ≤ 2E||zk+ 1
2
− zk||2 + 2E||zk − zk− 1

2
||2

= 2E||zk+ 1
2
− zk||2 + 2η2k−1E||H̃(zk− 1

2
)− H̃(zk− 3

2
)||2

= 2E||zk+ 1
2
− zk||2 + 2η2k−1E||H(zk− 1

2
)−H(zk− 3

2
) + ∆

k− 3
2

h ||2 + 2η2k−1E||∆
k− 1

2
h ||2

≤ 2E||zk+ 1
2
− zk||2 + 4η2k−1L

2
HE||zk− 1

2
− zk− 3

2
||2 + 6η2k−1σ

2
H

= 2
k∑

ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 + 6

k∑
ℓ=0

ck−ℓη2ℓ−1σ
2
H

(G.11)
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Bringing Eq. (G.11) into (G.10), we have

EV (z
ag
k+1, ωz)− (1− αk)EV (z

ag
k , ωz)

≤ αkηk
2

[
4L2

H

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 + 12L2

H

k∑
ℓ=0

ck−ℓη2ℓ−1σ
2
H + 3σ2

H

]
+

αkηk
2(1− r)

σ2
F

+
αk

2ηk
E
[
||zk − z||2 − ||zk+1 − z||2

]
−
(
rαk

2ηk
−

Lα2
k

2

)
E||zk+ 1

2
− zk||2

≤ αkηk
2

[
4L2

H

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 + 3

c

1− c
σ2
H + 3σ2

H

]
+

αkηk
2(1− r)

σ2
F

+
αk

2ηk
E
[
||zk − z||2 − ||zk+1 − z||2

]
−
(
rαk

2ηk
−

Lα2
k

2

)
E||zk+ 1

2
− zk||2

≤ 2αkηkL
2
H

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 +

3αkηk
2(1− c)

σ2
H +

αkηk
2(1− r)

σ2
F

+
αk

2ηk
E
[
||zk − z||2 − ||zk+1 − z||2

]
−
(
rαk

2ηk
−

Lα2
k

2

)
E||zk+ 1

2
− zk||2

and that concludes our proof of Lemma 16. □
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