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Abstract
We study the problems of distributed online and bandit convex optimization against an adaptive
adversary. Our goal is to minimize the average regret on M machines working in parallel over
T rounds that can communicate R times intermittently. Assuming the underlying cost functions
are convex, our results show collaboration is not beneficial if the machines have access to the
first-order gradient information at the queried points. We show that in this setting, simple non-
collaborative algorithms are min-max optimal, as opposed to the case for stochastic functions,
where each machine samples the cost functions from a fixed distribution. Next, we consider the
more challenging setting of federated optimization with bandit (zeroth-order) feedback, where the
machines can only access values of the cost functions at the queried points. The key finding here
is to identify the high-dimensional regime where collaboration is beneficial and may even lead to
a linear speedup in the number of machines. Our results are the first attempts towards bridging the
gap between distributed online optimization against stochastic and adaptive adversaries.

1. Introduction

We consider the following distributed regret minimization problem on M machines with horizon T :

min
{xm

t ∈X}m∈[M ]
t∈[T ]

1

MT

∑
m∈[M ],t∈[T ]

fm
t (xmt )− min

x⋆∈X

1

MT

∑
m∈[M ],t∈[T ]

fm
t (x⋆), (1)

where fm
t is a non-negative, convex cost function observed by machine m at time t, and xmt is the

model it plays. This formulation captures distributed learning problems where the data is generated
in real-time but isn’t stored, e.g., mobile keyboard prediction [11, 12] and self-driving vehicles
[7, 20]. We want to solve this problem in the intermittent communication (IC) setting [29, 31]
where the machines work in parallel and are allowed to communicate R times with K time steps in
between communication rounds. The IC setting captures the expensive nature of communication in
collaborative learning, such as in cross-device federated learning [15, 17].

The IC setting has been widely studied over the past decade [1, 2, 4, 5, 23, 25, 27, 32–34].
Most existing works consider the “stochastic” setting where {fm

t }’s are sampled from a distribu-
tion specified in advance. However, real-world applications may have distribution shifts, unmodeled
perturbations, or even an adversarial sequence of cost functions, all of which violate the fixed distri-
bution assumption. To alleviate this issue, in this paper, we extend our understanding of distributed
online optimization to “adaptive” adversaries that could potentially generate a worst-case sequence
of cost functions. Although some recent works have underlined the importance of the adaptive set-
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ting [3, 9, 10, 16, 18], our understanding of the optimal regret guarantees for problem (1) is still
lacking.

We first show that, under usual assumptions, there is no benefit of collaboration if all the ma-
chines have access to the gradients, a.k.a. first-order feedback for their cost functions. Specifically,
in this setting, running online gradient descent on each device without any communication is min-
max optimal for problem (1). Thus, we move to the harder setting of bandit convex optimization
with two-point feedback. We study a natural variant of FEDAVG equipped with a stochastic gradi-
ent estimator due to Shamir [22]. We show that collaboration reduces the variance of the stochastic
gradient estimator and is thus beneficial for problems of high enough dimension. We prove a linear
speedup in the number of machines for high-dimensional problems, which mimics the stochastic
setting [28, 31].

2. Setting

This section introduces notations, definitions, and assumptions used in our analysis.

Notation. We denote the horizon by T = KR. ⪰,⪯,∼= denote inequalities up to numerical
constants. We denote the average function by ft(·) := 1

M

∑
m∈[M ] f

m
t (·) for all t ∈ [T ]. We use

1A to denote the indicator function for the event A. Our model space is denoted by X ⊆ Rd. We
denote the expected averaged regret by Reg(M,K,R) in all the settings.

Function classes. We consider two common [13, 21] function classes in this paper: (i) FG,B , the
class of convex, differentiable, non-negative and G-Lipschitz functions, i.e., ∀x, y ∈ X , |f(x) −
f(y)| ≤ G ∥x− y∥2, with bounded optima, i.e., ∥x⋆∥2 ≤ B, ∀ x⋆ ∈ argminx∈X f(x); (ii)
FH,B , the class of convex, differentiable, non-negative and H-smooth functions, i.e., ∀x, y ∈ X ,
∥∇f(x)−∇f(y)∥2 ≤ H ∥x− y∥2, with bounded optima. FG,B includes linear cost functions,
while FH,B consists of quadratic functions denoted by FG,B

lin . We also define FG,H,B :=
FG,B ∩FH,B .

Adversary model. Note that in the most general setting, each machine will face arbitrary func-
tions from a class F at each time step. Our algorithmic results are for this general model, which
is usually referred to as an “adaptive” adversary. We also consider a weaker “stochastic” ad-
versary model to aid comparison. More specifically, the adversary cannot adapt to the sequence
of the models used by each machine but must fix a distribution in advance for each machine, i.e.,
∀m ∈ [M ], Dm ∈ ∆(F) such that at each time t ∈ [T ], fm

t ∼ Dm. An example of this easier
model is distributed stochastic optimization where fm

t (·) := f(·; zmt ∼ Dm) ∈ F for f(·; ·) ∈ F .

Oracle model. We consider two kinds of access to the cost functions in this paper. Each machine
m ∈ [M ] for all time steps t ∈ [T ] has access to one of the following: (i) gradient of fm

t at a
single point, a.k.a., first-order feedback; or (ii) function values of fm

t at two different points, a.k.a.,
two-point bandit feedback.

We consider two more assumptions controlling how similar the cost functions look across ma-
chines and the average regret at the comparator [24]:

Assumption 1 1 ∀ t ∈ [T ], x ∈ X , 1
M

∑
m∈[M ] ∥∇fm

t (x)−∇ft(x)∥22 ≤ ζ2 ≤ 4G2.

1. Woodworth et al. [30] consider a more relaxed assumption in the stochastic setting: ∀ x ∈
X , 1

M

∑
m∈[M ] ∥Ez∼Dm [∇f(x; z)]−∇f(x)∥22 ≤ ζ2 ≤ 4G2 for f(·) := 1

M

∑
m∈[M ] Ez∼Dm [∇f(x; z)].
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Assumption 2 ∀ x⋆ ∈ argminx∈X
∑

t∈[T ] ft(x),
1
T

∑
t∈[T ] ft(x

⋆) ≤ F⋆. For non-negative func-

tions in FG,H,B , this implies 1
T

∑
t∈[T ] ∥∇ft(x⋆)∥

2
2 ≤ HF⋆ (c.f., Lemma 4.1 [24]).

Min-max regret. We can finally define our problem class. We use PM,K,R(F) := F⊗MKR to
denote all selections of MKR functions from a class F . We use the argument ζ, F⋆ to further
restrict this to selections that satisfy Assumptions 1 and 2 respectively. Furthermore, with a slight
abuse of notation, we use the superscript 1 to denote first-order feedback and (0, 2) to denote two-
point zeroth-order feedback to the cost functions. In this paper, we consider four problem classes:
P1
M,K,R(FG,D, ζ), P0,2

M,K,R(FG,B, ζ), P1
M,K,R(FH,B, ζ, F⋆), P0,2

M,K,R(FG,H,B, ζ, F⋆). And we are
interested in characterizing the min-max regret for these classes. In particular, for a problem class
P , we want to characterize up to numerical constants the following quantity:

R(P) := min
A

max
P∈P

EA

 1

MT

∑
t∈[T ],m∈[M ]

fm
t (xmt )−min

x∈X

1

MT

∑
t∈[T ],m∈[M ]

fm
t (x)

 , (2)

where A is a randomized algorithm producing models xmt ’s. For stochastic adversaries, the expec-
tation is also taken over the randomness of sampling from the distributions Dm ∈ ∆(F).

3. Collaboration doesn’t help with First-order Feedback

We first consider the class P1
M,K,R(FG,B, ζ). Note the following bound is always true for any

stream of functions and sequence of models:

1

M

∑
m∈[M ]

 ∑
t∈[KR]

fm
t (xmt )− min

xm∈X

∑
t∈[KR]

fm
t (xm)

 ≥ 1

M

∑
t∈[KR],m∈[M ]

fm
t (xmt )−min

x∈X

∑
t∈[KR]

ft(x).

This means we can upper bound regret in equation 1 by running online gradient descent (OGD)
independently on each machine and not collaborating at all. In other words:

R
(
P1
M,K,R(FG,D, ζ)

)
⪯ R

(
P1
1,K,R(FG,D)

) ∼= GB√
T
. (3)

The min-max rate for a single machine follows classical results using vanilla OGD (c.f., Theorem
3.1 in [13]). But can collaborative algorithms beat this natural baseline? No!

Consider the problem where the functions don’t vary across the machines but may change with
time. This problem satisfies Assumption 1 with ζ = 0. In this problem, the machines jointly
see only T different functions but can make M first-order queries to the functions at each time step.
However, these additional queries are not useful as there is a known sample-complexity lower bound
of GB/

√
T for P1

1,K,R(FG,B) (c.f., Theorem 3.2 [13]) which holds for any number of first-order
queries at each time step. This implies that,

GB√
T
∼= R

(
P1
1,K,R(FG,D)

)
⪯ R

(
P1
M,K,R(FG,B, ζ)

)
. (4)

Combining equations (3) and (4), we conclude thatR
(
P1
M,K,R(FG,B, ζ)

)
∼= GB/

√
T . Or in other

words, there is no benefit of collaboration when the machines have first-order feedback.
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We recall several interesting functions, such as quadratics, that don’t lie in FG,B but lie in
FH,B . To understand the latter class we look at problems in P1

M,K,R(FH,B, ζ, F⋆). In the single
machine setting, we know that OGD incurs a regret of HB2/T +

√
HF⋆B/

√
T (c.f., Theorem 3

[24]). This serves as the non-collaborative baseline. Unfortunately, there is again a matching sample
complexity lower bound for P1

1,K,R(FH,B, F⋆) (c.f., Theorem 4 [28]). Using a similar argument as
before, we can obtain that,

R(P1
M,K,R(FH,B, ζ, F⋆)) ∼=

HB2

T
+

√
HF⋆B√

T
, (5)

which suggests that regret doesn’t improve with collaboration, either.
Thus, when the machines have first-order feedback for their own objectives, they do not benefit

from collaboration. The commonality between these problems is that even when the functions are
the same across the machines, the hardest instances within the problem class do not benefit from
the additional gradient accesses. This is not surprising because linear functions are the hardest
lipschitz and smooth functions in the adversarial online setting, and they are fully specified by their
gradient. This suggests that we should consider settings where machines have weaker oracles than
first-order and may benefit through collaboration. One such setting is with stochastic first-order
oracles because, with additional stochastic gradients, the machines can reduce the variance of their
gradient estimator. This is one mechanism through which collaboration helps in the stochastic
setting [28, 31], and we see next that it naturally arises in bandit convex optimization.

4. Online Local SGD Algorithm with Two-point Bandit Feedback

Algorithm 1: FEDOSGD (η, δ) with two-point bandit feedback

1 Initialize xm0 = 0 on all machines m ∈ [M ]
2 for t ∈ {0, . . . ,KR− 1} do
3 for m ∈ [M ] in parallel do
4 Sample umt ∼ Unif(Sd−1), i.e., a random unit vector
5 Query function fm

t at points (xm,1
t , xm,2

t ) := (xmt + δumt , xmt − δumt )
6 Incur loss (fm

t (xmt + δumt ) + fm
t (xmt − δumt ))

7 Compute stochastic gradient at point xmt as gmt =
d(f(xm

t +δum
t )−f(xm

t −δum
t ))um

t
2δ

8 if (t+ 1) mod K = 0 then
9 Communicate to server: (xmt − η · gmt )

10 On server xt+1 ← 1
M

∑
m∈[M ] (x

m
t − η · gmt )

11 Communicate to machine: xmt+1 ← xt+1

12 else
13 xmt+1 ← xmt − η · gmt

In this section, we study distributed bandit convex optimization with two-point feedback [6,
22], i.e., at each time step, the machines can query the value (and not the full gradient) of their
cost functions at two different points. We analyze the online variant of the FEDAVG or LOCAL-
SGD algorithm, which is common in the stochastic setting. We call the algorithm FEDOSGD and
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describe it in Algorithm 1. In line 7, we use the stochastic gradient estimator, originally proposed
by Shamir [22] and based on a similar estimator by Duchi et al. [6]. For a smoothed version of
the function f̂m

t (x) := Eu[f
m
t (x + δu)], this estimator satisfies (c.f., Lemmas 3 and 5 [22]) for all

t ∈ [T ], m ∈ [M ] and x ∈ X ,

Eu[g
m
t (x)] = ∇f̂m

t (x) and Eu

[∥∥∥gmt (x)−∇f̂(x)
∥∥∥2
2

]
⪯ dG2.

Equipped with this gradient estimator, we can prove the following guarantee for P1,σ
M,K,R(FG,B, ζ).

Theorem 1 Consider the problem classP0,2
M,K,R(FG,B, ζ). With η = B

G
√
T
·min

{
1,

√
M√
d
, 1
1K>1

√
Kd1/4

}
,

the queried points {xm,j
t }

T,M,2
t,m,j=1 of Algorithm 1 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ GB√

KR
+

GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the choice of function queries.

When K = 1, the above bound reduces to the first two terms, which are known to be tight for
two-point bandit feedback [6, 13] (see Appendix A), making FEDOSGD optimal. When K > 1,
we would like to compare our results to the non-collaborative baseline as we did in section 3.
Using the gradient estimator proposed by Shamir [22], the non-collaborative baseline gets regret
O
(
GB
√
d/
√
KR

)
. Thus, as long as d ⪰ K2, FEDOSGD is better than the non-collaborative

baseline. Furthermore, if d ⪰ K2M2, then the second term in the upper bound dominates, and
FEDOSGD gets a “linear speed-up” in the number of machines. Unfortunately, the bound doesn’t
improve with smaller ζ.

Note that the lipschitzness assumption is crucial to the two-point gradient estimator in algorithm
1. While there are gradient estimators that don’t require lipschitzness or bounded gradients [8],
they do require stronger assumptions such as bounded function values. To avoid making these
assumptions, we skip looking at the problems in P0,2

M,K,R(FH,B, ζ, F⋆) and look at the problems in
P0,2
M,K,R(FG,H,B, ζ, F⋆).

Theorem 2 Consider the problem class P0,2
M,K,R(FG,H,B, ζ, F⋆). With appropriate η (c.f., lemma

6), the queried points {xm,j
t }

T,M,2
t,m,j=1 of Algorithm 1 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ HB2

KR
+

GB
√
d√

MKR
+

GB√
KR

+

√
HF⋆B√
KR

+ 1K>1 ·min

{
H1/3B4/3G2/3d1/3

K1/3R2/3
+

H1/3B4/3ζ2/3

R2/3

+

√
ζGBd1/4

K1/4
√
R

+
ζB√
R
,
GBd1/4

K1/4
√
R

+

√
GζB√
R

}
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the choice of function queries.

The regret is also upper bounded as in theorem 1 for the corresponding step size.
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The above result is a bit technical, so to interpret it, we consider the simpler classFG,B
lin of linear

functions with bounded gradients. Linear functions are the “smoothest” Lipschitz functions as their
smoothness constant H = 0. We can get the following guarantee for this class:

Corollary 3 Consider the problem class P0,2
M,K,R(F

G,0,B
lin , ζ, F⋆). With appropriate η (c.f., lemma

6), the queried points {xm,j
t }

T,M,2
t,m,j=1 of Algorithm 1 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ GB√

KR
+

GB
√
d√

MKR
+ 1K>1 ·

(√
ζGBd1/4

K1/4
√
R

+
ζB√
R

)
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the choice of function queries.

Unlike general Lipschitz functions, the last two terms are zero for linear functions when ζ = 0
and the upper bound is smaller for smaller ζ. In fact, when K = 1 or ζ = 0, the upper bound
is tight [6]. More generally, when K ≤ max(1, G2ζ2d,G2d/ζ2M2) then FEDOSGD is optimal.
Recall that in this setting, the non-collaborative baseline obtains a regret [24] ofO(GB

√
d/
√
KR).

Thus, the benefit of collaboration through FEDOSGD again appears in high-dimensional problems
in P0,2

M,K,R(FG,H,B, ζ, F⋆) similar to what we discussed for P0,2
M,K,R(FG,B, ζ, F⋆).

5. Conclusion

In this paper, we show that, in the adaptive bandit setting, the benefit of collaboration is very similar
to the stochastic setting, where the collaboration is useful when: (i) There is stochasticity in the
problem and (ii) The variance of the gradient estimators is “high” [31] and reduces with collabora-
tion. There are several open questions and directions:

1. Does collaboration provably not help for the smaller class P1
M,K,R(FG,H,B, ζ, F⋆)? This

might require new proof techniques.

2. Is the final term tight in Theorems 1 and 2? We don’t know any lower bounds in the intermit-
tent communication setting against an adaptive adversary. Perhaps there is no gap between the
stochastic and adaptive adversaries, and we can use existing techniques and online-to-batch
conversion to provide a tight lower bound.

3. When K is large, but R is a fixed constant, the average regret of the non-collaborative baseline
goes to zero, but our upper bounds for FEDOSGD don’t. It is unclear if our analysis is loose
or if we need to modify the algorithm, for instance, add projection steps.

4. How to obtain second-order methods in the distributed online setting, especially in the inter-
mittent communication setting? This only makes sense when the worst-case functions are not
linear, which we might expect in the distributed setting [26].

5. For stochastic linear bandits, collaborative methods have been shown to attain optimal regret
with very few rounds of communication [14]. What structures in the problem can we further
exploit to reduce communication?
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Appendix A. Proof of Theorem 1

In this section and the next one, we consider access to a first-order stochastic oracle as an inter-
mediate step before considering the zeroth-order oracle. Specifically, each machine has access to a
stochastic gradient gmt of fm

t at point xmt , such that it is unbiased and has bounded variance, i.e.,
for all x ∈ X ,

E[gmt (xmt )|xmt ] = ∇fm
t (xmt ) and E

[
∥gmt (xmt )−∇fm

t (xmt )∥22 |x
m
t

]
≤ σ2.

In algorithm 1, we constructed a particular stochastic gradient estimator at xmt with σ2 = G2d.
We can define the corresponding problem class P1,σ

M,K,R(FG,B, ζ) when the agents can access a
stochastic first-order oracle. We prove the following lemma about this problem class:

Lemma 4 Consider the problem class P1,σ
M,K,R(FG,B, ζ). If we choose η = B

G
√
T
·min

{
1, G

√
M

σ ,
√
G

1K>1

√
σK

, 1
1K>1

√
K

}
, then the models {xmt }

T,M
t,m=1 of Algorithm 1 satisfy the following guarantee:

1

MKR

∑
t∈[KR],m∈[M ]

E [fm
t (xmt )− fm

t (x⋆)] ⪯ GB√
KR

+
σB√
MKR

+ 1K>1 ·

(√
σGB√
R

+
GB√
R

)
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the stochastic gradients.

Proof Consider any time step t ∈ [KR] and define ghost iterate x̄t =
1
M

∑
m∈[M ] x

m
t (which not

might actually get computed). If K = 1, the machines calculate the stochastic gradient at the same
point, x̄t. Then using the update rule of Algorithm 1, we can get the following:

Et

[
∥x̄t+1 − x⋆∥22

]
= Et

∥∥∥∥∥∥x̄t − ηt
M

∑
m∈[M ]

∇fm
t (xmt )− x⋆ +

ηt
M

M∑
m=1

(∇fm
t (xmt )− gmt (xmt ))

∥∥∥∥∥∥
2

2


= ∥x̄t − x⋆∥22 +

η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨x̄t − x⋆,∇fm
t (xmt )⟩+ η2t σ

2

M

= ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨xmt − x⋆,∇fm
t (xmt )⟩

+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xmt − x̄t,∇fm
t (xmt )⟩+ η2t σ

2

M

≤ ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

(fm
t (xmt )− fm

t (x⋆))

+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xmt − x̄t,∇fm
t (xmt )⟩+ η2t σ

2

M
,

10
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where Et is the expectation conditioned on the filtration at time t under which xmt ’s are measurable,
and the last inequality is due to the convexity of each function. Re-arranging this leads to

1

M

∑
m∈[M ]

(fm
t (xmt )− fm

t (x⋆)) ≤ 1

2ηt

(
∥x̄t − x⋆∥22 − Et

[
∥x̄t+1 − x⋆∥22

])
+

ηt
2M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

+ 1K>1 ·
1

M

∑
m∈[M ]

Et ⟨xmt − x̄t,∇fm
t (xmt )⟩+ ηtσ

2

2M

≤ 1

2ηt

(
∥x̄t − x⋆∥22 − Et

[
∥x̄t+1 − x⋆∥22

])
+

ηt
2

(
G2 +

σ2

M

)
+ 1K>1 ·

G

M

∑
m∈[M ]

E [∥xmt − x̄t∥2] . (6)

The last inequality comes from each function’s G-Lipschitzness. For the last term in (6), we can
upper bound it similar to lemma 8 in Woodworth et al. [30] to get that

1

M

∑
m∈[M ]

E [∥xmt − x̄t∥2] ≤ 2(σ +G)Kη. (7)

Plugging (7) into (6) and choosing a constant step-size η, and taking full expectation we get

1

M

∑
m∈[M ]

E [fm
t (xmt )− fm

t (x⋆)] ≤ 1

2η

(∥∥∥E [x̄t − x⋆]2
∥∥∥
2
− E

[
∥x̄t+1 − x⋆∥22

])
+

η

2

(
G2 +

σ2

M

)
+ 1K>1 · 2G(σ +G)Kη.

Summing this over time t ∈ [KR] we get,

1

M

∑
m∈[M ],t∈[T ]

E [fm
t (xmt )− fm

t (x⋆)] ⪯
∥x̄0 − x⋆∥22

η
+ η

(
G2 +

σ2

M
+ 1K>1 · σGK + 1K>1 · ζGK

)
T

⪯ B2

η
+ η

(
G2 +

σ2

M
+ 1K>1 · σGK + 1K>1 ·G2K

)
T.

Finally choosing,

η =
B

G
√
T
·min

{
1,

G
√
M

σ
,

√
G

1K>1

√
σK

,
1

1K>1

√
K

}
,

we can obtain,

1

M

∑
m∈[M ],t∈[T ]

E [fm
t (xmt )− fm

t (x⋆)] ⪯ GB
√
T + 1K>1 ·

√
σGB

√
KT + 1K>1 ·GB

√
KT +

σB
√
T√

M
.

(8)

Dividing by KR finishes the proof.
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Remark 5 Note that when K = 1, the upper bound in Lemma 4 reduces to the first two terms,
both of which are known to be optimal due to lower bounds in the stochastic setting, i.e., against
a stochastic online adversary [13, 19]. We now use this lemma to guarantee bandit two-point
feedback oracles for the same function class. We recall that one can obtain a stochastic gradient
for a “smoothed-version” f̂ of a Lipschitz function f at any point x ∈ X , using two function value
calls to f around the point x [6, 22].

With this lemma, we can prove Theorem 1.

Theorem 1 Consider the problem classP0,2
M,K,R(FG,B, ζ). With η = B

G
√
T
·min

{
1,

√
M√
d
, 1
1K>1

√
Kd1/4

}
,

the queried points {xm,j
t }

T,M,2
t,m,j=1 of Algorithm 1 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ GB√

KR
+

GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the choice of function queries.

Proof First, we consider smoothed functions

f̂m
t (x) := Eu∼Unif(Sd−1)[f

m
t (x+ δu)],

for some δ > 0 and Sd−1 denoting the euclidean unit sphere. Based on the gradient estimator in (??)
proposed by Shamir [22] (which can be implemented with two-point bandit feedback) and Lemma
4, we can get the following regret guarantee (noting that σ ≤ c1

√
dG for a numerical constant c1,

c.f., [22]):

E

 1

MKR

∑
t∈[KR],m∈[M ]

f̂m
t (x̂mt )

− 1

MKR

∑
t∈[KR],m∈[M ]

f̂m
t (x⋆) ⪯ GB√

KR
+

GB
√
d√

MKR
+1K>1·

GBd1/4√
R

,

where the expectation is w.r.t. the stochasticity in the stochastic gradient estimator. To transform
this into a regret guarantee for f we need to account for two things:

1. The difference between the smoothed function f̂ and the original function f . This is easy to
handle because both these functions are pointwise close, i.e., supx∈X |f(x)− f̂(x)| ≤ Gδ.

2. The difference between the points x̂mt at which the stochastic gradient is computed for f̂m
t

and the actual points xm,1
t and xm,2

t on which we incur regret while making zeroth-order
queries to fm

t . This is also easy to handle because due to the definition of the estimator in ??,
xm,1
t , xm,1

t ∈ Bδ(x̂
m
t ), where Bδ(x) is the L2 ball of radius δ around x.

In light of the last two observations, the average regret between the smoothed and original functions
only differs by a factor of 2Gδ, i.e.,

E

 1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

fm
t (xm,j

t )

− 1

MKR

∑
t∈[KR],m∈[M ]

fm
t (x⋆)

12
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⪯ Gδ +
GB√
KR

+
GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

⪯ GB√
KR

+
GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

,

where the last inequality is due to the choice of δ such that δ ⪯ Dd1/4√
R

(
1 + d1/4√

MK

)
.

Appendix B. Proof of Theorem 2

Similar to before, we start by looking at P1,σ
M,K,R(FG,H,B, ζ, F⋆). We first prove the following

Lemma:

Lemma 6 Consider the problem class P1,σ
M,K,R(FG,H,B, ζ, F⋆). The models {xmt }

T,M
t,m=1 of Algo-

rithm 1 with appropriate η (specified in the proof) satisfy the following regret guarantee:

1

MKR

∑
t∈[KR],m∈[M ]

E [fm
t (xmt )− fm

t (x⋆)] ⪯ HB2

KR
+

σB√
MKR

+min

{
GB√
KR

,

√
HF⋆B√
KR

}
,

+ 1K>1 ·min

{
H1/3B4/3σ2/3

K1/3R2/3
+

H1/3B4/3ζ2/3

R2/3
+

√
ζσB

K1/4
√
R

+
ζB√
R
,

√
GσB

K1/4
√
R

+

√
GζB√
R

}
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the stochastic gradients. The

models also satisfy the guarantee of lemma 4 with the same step-size.

Proof Consider any time step t ∈ [KR] and define ghost iterate x̄t =
1
M

∑
m∈[M ] x

m
t (which not

might actually get computed). Then using the update rule of Algorithm 1, we can get:

Et

[
∥x̄t+1 − x⋆∥22

]
= Et

∥∥∥∥∥∥x̄t − ηt
M

∑
m∈[M ]

∇fm
t (xmt )− x⋆ +

ηt
M

M∑
m=1

(∇fm
t (xmt )− gmt (xmt ))

∥∥∥∥∥∥
2

2

 ,

= ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨x̄t − x⋆,∇fm
t (xmt )⟩+ η2t σ

2

M

= ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨xmt − x⋆,∇fm
t (xmt )⟩

+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xmt − x̄t,∇fm
t (xmt )⟩+ η2t σ

2

M

≤ ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

(fm
t (xmt )− fm

t (x⋆))

13
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+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xmt − x̄t,∇fm
t (xmt )⟩+ η2t σ

2

M
,

where Et is the expectation taken with respect to the filtration at time t, and the last line comes from
the convexity of each function. Re-arranging this and taking expectation gives leads to

1

M

∑
m∈[M ]

E (fm
t (xmt )− fm

t (x⋆)) ≤ 1

2ηt

(
E ∥x̄t − x⋆∥22 − E

[
∥x̄t+1 − x⋆∥22

])
+

ηt
2M2

E

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

+ 1K>1 ·
1

M

∑
m∈[M ]

E ⟨xmt − x̄t,∇fm
t (xmt )⟩+ ηtσ

2

2M
(9)

Bounding the blue term. We consider two different ways to bound the term. First note that
similar to lemma 4 we can just use the following bound,

ηt
2M2

E

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

≤ ηtG
2

2
(10)

However, since we also have smoothness, we can use the self-bounding property (c.f., Lemma 4.1
[24]) to get,

ηt
2M2

E

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

≤ ηtH

2M

∑
m∈[M ]

(fm
t (xmt )− fm

t (x⋆)) +
ηtH

2M

∑
m∈[M ]

fm
t (x⋆) (11)

Bounding the red term. We will bound the term in three different ways. Similar to lemma 4,
we can bound the term after taking expectation and then bounding the consensus term similar to
Lemma 8 in Woodworth et al. [30] as follows,

1

M

∑
m∈[M ]

E [⟨xmt − x̄t,∇fm
t (xmt )⟩] ≤ G

M

∑
m∈[M ]

E [∥xmt − x̄t∥2]

≤ 2G(σ +G)

τ(t)+K−1∑
t′=τ(t)

ηt′ , (12)

where τ(t) maps t to the last time step when communication happens. Alternatively, we can use
smoothness as follows after assuming ηt ≤ 1/2H ,

1

M

∑
m∈[M ]

E [⟨xmt − x̄t,∇fm
t (xmt )⟩] = 1

M

∑
m∈[M ]

E [⟨xmt − x̄t,∇fm
t (xmt )−∇ft(x̄t)⟩] ,

≤

√√√√ 1

M

∑
m∈[M ]

E ∥xmt − x̄t∥22

√√√√ 1

M

∑
m∈[M ]

E ∥∇fm
t (xmt )−∇ft(x̄t)∥22,

≤

√√√√ 1

M

∑
m∈[M ]

E ∥xmt − x̄t∥22

√√√√ 2

M

∑
m∈[M ]

H2E ∥xmt − x̄t∥22 + 2ζ2,

14
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≤ 2H

M

∑
m∈[M ]

E ∥xmt − x̄t∥22 + 2ζ

√√√√ 1

M

∑
m∈[M ]

E ∥xmt − x̄t∥22,

≤ 2η2tH(σ2K + ζ2K2) + 2ηtζ(σ
√
K + ζK), (13)

where we used lemma 8 from Woodworth et al. [30] in the last inequality. We can also use the
lipschitzness and smoothness assumption together with a constant step size η < 1/2H to obtain,

1

M

∑
m∈[M ]

E [⟨xmt − x̄t,∇fm
t (xmt )⟩] ≤ G

M

∑
m∈[M ]

E [∥xmt − x̄t∥2]

≤ ηG(σ
√
K + ζK). (14)

Combining everything. After using a constant step-size η, summing (9) over time, we can use
the upper bound of the red and blue terms in different ways. If we plug in (10) and (12) we recover
the guarantee of lemma 4. This is not surprising because FG,H,B ⊆ FG,B . Combining the upper
bounds in all other combinations assuming η < 1

2H , we can show the following upper bound

Reg(M,K,R)

KR
⪯ HB2

KR
+

σB√
MKR

+min

{
GB√
KR

,

√
HF⋆B√
KR

}
,

+ 1K>1min

{
H1/3B4/3σ2/3

K1/3R2/3
+

H1/3B4/3ζ2/3

R2/3
+

√
ζσB

K1/4
√
R

+
ζB√
R
,

√
GσB

K1/4
√
R

+

√
GζB√
R

}
,

where we used step size,

η = min

{
1

2H
,
B
√
M

σ
√
KR

,max

{
B

G
√
KR

,
B√

HF⋆KR

}
,

1

1K>1
·max

{
min

{
B2/3

H1/3σ2/3K2/3R1/3
,

B2/3

H1/3ζ2/3KR1/3
,

B

K3/4
√
ζσR

,
B

ζK
√
R

}
,

min

{
B

K3/4
√
GσR

,
B

K
√
ζGR

}}}
This finishes the proof.

It is now straightforward to prove Theorem 2 similar to the proof for Theorem 1 by replacing
σ2 with G2d:

Theorem 2 Consider the problem class P0,2
M,K,R(FG,H,B, ζ, F⋆). With appropriate η (c.f., lemma

6), the queried points {xm,j
t }

T,M,2
t,m,j=1 of Algorithm 1 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ HB2

KR
+

GB
√
d√

MKR
+

GB√
KR

+

√
HF⋆B√
KR

+ 1K>1 ·min

{
H1/3B4/3G2/3d1/3

K1/3R2/3
+

H1/3B4/3ζ2/3

R2/3

15
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+

√
ζGBd1/4

K1/4
√
R

+
ζB√
R
,
GBd1/4

K1/4
√
R

+

√
GζB√
R

}
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the choice of function queries.

The regret is also upper bounded as in theorem 1 for the corresponding step size.
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