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Abstract
In many cases, neural networks trained with stochastic gradient descent (SGD) that share an early
and often small portion of the training trajectory have solutions connected by a linear path of low
loss. This phenomenon, called linear mode connectivity (LMC), has been leveraged for pruning
and model averaging in large neural network models, but it is not well understood how broadly or
why it occurs. LMC suggests that SGD trajectories somehow end up in a “convex” region of the
loss landscape and stay there. In this work, we confirm that this eventually does happen by finding
a high-dimensional convex hull of low loss between the endpoints of several SGD trajectories.
But to our surprise, simple measures of convexity do not show any obvious transition at the point
when SGD will converge into this region. To understand this convex hull better, we investigate
the functional behaviors of its endpoints. We find that only a small number of correct predictions
are shared between all endpoints of a hull, and an even smaller number of correct predictions are
shared between the hulls, even when the final accuracy is high for every endpoint. Thus, we tie
LMC more tightly to convexity, and raise several new questions about the source of this convexity
in neural network optimization.

1. Introduction

Neural networks are omnipresent today, but we still do not understand many aspects of their opti-
mization. It is well known that many, often infinite minima exist in the neural network loss land-
scape. Yet, only some solutions generalize well [14, 23], raising questions about how and why
common optimization algorithms find the solutions they do and how one might realize algorithms
that find better solutions.

Many researchers have studied the loss landscape of neural networks [4, 6, 13, 14, 17, 19] in
the past decade. Linear mode connectivity (LMC), i.e., the existence of linear paths of low loss
between solutions of optimization, was likely first observed by Goodfellow et al. [10] between two
small networks with the same initialization but different data orders for stochastic gradient descent
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(SGD). Frankle et al. [9] subsequently demonstrated that LMC occurs in larger vision models when
branch trajectories with different data orders are split from a shared early portion of training with a
common data order. They describe the length of the linear interpolation as being “large” in terms of
the length of the whole trajectory traveled.

Such LMC behavior would be expected if the loss landscape were convex, as, by definition, any
two points in a convex region could be connected by a linear path of lower loss. Even if the entire
loss landscape were non-convex, but SGD converged to a convex region at some point in training,
LMC would still hold due to local convexity. Given this simple explanation, we are motivated by
several questions regarding LMC:

• Is LMC really indicating that the loss surface is convex between the endpoints? We find
a convex hull of low loss defined by the endpoints of many SGD trajectories and show that
its dimension is large. This shows that LMC is not a property of any two endpoints, but the
entire loss-landscape around a ‘‘mode” indeed looks convex. This gives more credence to the
explanation for LMC through convexity.

• Is the optimization problem approximately convex after the point at which we expect
LMC? We see that the Hessian nearly always has negative eigenvalues but their relative
magnitude doesn’t change much, and in between stochastic updates the training loss looks
convex. Neither of these metrics change significantly throughout training, so even if they
indicate optimization is nearly convex, they fail to identify the start of LMC.

• How are the functions corresponding to linearly connected parameters related? We
probe deeper into the source of LMC. We see that the number of shared correct predictions
between convex hulls is not close to the shared correct predictions among endpoints of a hull,
even when the training accuracy is high, suggesting that the ability to interpolate between
parameters is only loosely related to functional similarity.

2. Convex Mode Connectivity

Linear mode connectivity was defined for a pair of branch trajectories. Instead of a pair, we split into
P branches and sample convex combinations of the endpoints to better understand the loss inside
the convex hull of these endpoints. Algorithm 1 presents this convex mode connectivity (CMC)
procedure, which is a slight modification of the original LMC procedure [9].

In Figure 2, we plot the probability that convex combinations of hull parameters have better
training loss hull endpoints, and likewise for random perturbations around hull endpoints. Notably,
like LMC, after some point in training, random convex combinations become better than endpoint
averages, while random perturbations are almost always worse—strong evidence that LMC de-
scribes a convex region in the loss surface. We call the time after this first point in training the LMC
regime. We verify these observations in a regression task (SIREN) and a few different networks
trained to classify CIFAR-10. For more details on the task selection, see Appendix A.

In order to understand the space that this mode takes up in parameter space, we stack all the
parameters W1, . . . ,Wn into a matrix A = [flatten(W1)

⊤ · · · flatten(Wn)
⊤]⊤ and take its SVD. We

then plot the singular values of this matrix as a measure of the volume spanned by the endpoints for
the different tasks. We see in Figure 3, that for all tasks for which we train sufficient branches, there
does not appear to be a sharp cutoff in the magnitude plot corresponding to the number of classes
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Algorithm 1: Convex mode procedure
Initialize weights with W0, and seed for data order with z0;
Train k steps with algorithm A to yield Wk = Ak(W0, z0);
Sample P new data order seeds z1, . . . , zP ;
Train for T steps: W 1

T = AT (Wk, z1), . . . ,W
P
T = AT (Wk, zP );

for j = 1, . . . , J do
Sample aj ∼ Unif(∆n) and compute W j

conv =
∑P

i=1 a
j
iW

i
T ;

Find closest endpoint W j
end = argminW i

T
∥W j

conv −W i
T ∥;

Sample random perturbation ϵj ∼ N (0, I);

Compute perturbed parameter W j
rand = W j

end +
∥W j

end−W j
conv∥

∥ϵj∥ ϵj ;

Measure Ijconv = 1[L(W j
conv) < L(W j

end)] and
Ijrand = 1[L(W j

rand) < L(W j
end)];

end
Compute Pconv = 1

J

∑
j I

j
conv and Prand = 1

J

∑
j I

j
rand;
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Figure 1: The algorithmic procedure and graphic for measuring convex mode connectivity.
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Figure 2: Top row: The empirical probability Pconv that a sample inside the convex hull (Convex)
and a random perturbation Prand around the endpoint (Random) has lower loss than its closest end-
point vs. the split epoch (k in 1) for the many different trajectories. After an initial phase of training,
the probability of lower loss inside the hull quickly converges to one, the loss inside the hull is al-
ways better than at the endpoints. Bottom row: Parameter distances between pairs of points in the
CMC procedure. The distance between pairs of endpoints is of the same order of magnitude as other
distances for all tasks. In other words, the apparent scale of convexity is similar to that of the total
trajectory. Error bars for probabilities are computed by empirical standard deviations std(Ijconv) and
std(Ijrand), hence are not meaningful when values stretch greater than 1 or less than 0.

or the hidden dimension. The only cutoffs occur when there are not enough endpoints to see any
higher dimension (P points define an object of dimension at most P − 1). This tells us that we are
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Figure 3: Singular values for the matrix of stacked endpoints of the mode. We examine endpoints
split after the point when the hull center performs better than the endpoints (see Figure 2). For P
points in space, the shape they define can have at most P − 1 dimensions. We see in all cases that
the magnitudes do not decay to zero until component P − 1. In the case that there are K outputs
and P < K (ResNet), we see a roughly uniform mode. In cases with P > K (SIREN, LeNet, and
LeNet-m), it does not appear that there is any special fragmenting at K. In particular, the LeNet
plot is over 300 endpoints, and the tail does not look as if it will decay to zero any time soon. The
computational expense of these experiments limits how many endpoints we train.

seeing a non-degenerate convex mode in the loss landscape, and that the particular region does not
seem related to the Hessian subspace identified by Gur-Ari et al. [11], or to other simplices of low
loss achieved via additional optimization [2, 7].

3. Measures of Convexity

One natural explanation for the previously demonstrated convex hulls is that, after some point in
training, the trajectory enters a convex “basin” and the rest of the time is spent inside this region.
However, previous work has shown that the linear interpolation between points early on the train-
ing trajectory and at the end can exhibit large increases in training loss [8, 22], making such an
explanation tenuous.

Still, the loss could locally be behaving more “convexly” after some early point in training.
In order to test this, we examine the bottom part of the Hessian spectrum and the convexity of
the training loss between two possible stochastic updates at a point (see Appendix B for details).
We see in Figure 4 that the Hessian shows only a small amount of local non-convexity throughout
training and that the measurement of convexity between pairs of updates makes training always
appear locally convex, making neural network optimization look quite well-behaved. None of the
curves show distinguishing features at the LMC point (see Figure 2). Rather than believing that
there is a particular point in training at which a difference in SGD updates causes the trajectories to
diverge, it seems the eventual convergence to different convex hulls happens much more gradually.

4. Diversity of Endpoints

Figure 2 and prior work has shown that endpoints that exhibit LMC are far apart in parameter space
with respect to the total trajectory length [9, 18]. A natural question is whether these distances are
deceptive and the endpoints are actually “functionally similar”. It is well known that with clever
scaling, one can transform a set of parameters into another set, and the distance between the two
will be large, while the functions they describe will remain the same. Such scaling was employed
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Figure 4: Top row: The ratio of smallest to largest eigenvalue of the Hessian throughout training.
This ratio is almost always negative, but quite small, making any local non-convexity appear unim-
portant. Bottom row: Probability of a convex line of loss between a pair of updates. Notice that
this probability is close to 1 for the entire optimization, typically before the LMC regime in Figure
2.

by Dinh et al. [4] to make the case that two equivalent functions could have very different sharpness.
Another way to preserve functionality is through permutations of rows of weight matrices. Entezari
et al. [5] hypothesize that such permutations can map unconnected endpoints into the same mode
and Ainsworth et al. [1] show this is true for wide networks, but not the case for standard ResNets,
which [3] concurrently confirm. Still, these works do not characterize the behavior within a mode.

Let Cj
i be the set of correct predictions for endpoint W i

T of a convex hull, where j indexes
over different hulls. The set of correct predictions on the training set common to all endpoints is
Sj =

⋂
iC

j
i . The set of correct predictions common between hulls is S∗ =

⋂
j Sj . Comparing |S∗|

to E[|Sj |] provides a proxy measurement of the similarity between the functions for two different
hulls. Figure 5 reveals that there is a substantial gap between |S∗|, E[|Sj |], and E[|Cj

i |] for functions
that do not interpolate the data perfectly, suggesting only a fraction of the predictions within a mode
are shared, and only a fraction of those are shared across hulls. We also see that accuracy improves
inside the convex hull, so it is not the case that the loss improvement we saw previously is driven
by better performance on a common set of points shared across the whole mode. Rather, it seems
like there is a large collection of points in the data for which it is possible to flip predictions easily
without incurring increases in the loss. Additionally, the poor agreement between hulls suggests
that permutations either are not a sufficient explanation for the similarity between hulls, or that they
only preserve the function on a relatively small set of predictions.

5. Discussion

In this paper, we presented some dichotomous evidence for local convexity in the neural network
loss landscape. We show that trajectories that split after a point early in training define a convex hull
of low loss in the loss landscape. On one hand, this might be taken as evidence for the loss landscape
being (weakly) convex after this early point in training. But on the other, we cannot detect such a
point with simple proxies for convexity. In particular, our measures indicate no increase in the
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Figure 5: Top row: Average accuracies at the endpoints of training (Endpoint), inside the convex
mode defined by the endpoints (Convex), and at random directions around endpoints (Random).
Notice that after a late enough split, samples in the hull are better than the endpoints. Bottom row:
Average training accuracy over runs (Accuracy) compared to common points predicted correctly
within a mode (Intra mode) and common points predicted correctly between hulls (Inter mode). We
see that for models with an imperfect training accuracy, intra mode agreement is substantially lower
than accuracy, and inter mode agreement is even lower. This suggests that endpoints of a mode are
not similar functions.

convexity of the function before or after the split point which gives rise to LMC. Failure to measure
a difference could be due to sparse sampling of our metrics, but it might also indicate that neural
network optimization is much more convex than we might expect. Probing the mode, it seems the
convexity in training loss and error is not due to a large subset of shared predictions on the training
set, but rather a diverse set of functions that are amenable to interpolation.

Prior work has shown that, on the scale of the optimization trajectory, the neural network loss
landscape does not appear convex [8, 17, 22], yet a large convex hull appears at the end of training.
Given that hulls only agree on a small subset of predictions, yet interpolation is possible, studying
the behavior of the convex hull while training on the subset of the data corresponding to predictions
that are and are not shared may provide more insight.

There may also be a relationship between LMC and neural collapse [20], a recently identified
tendency in classifiers to collapse the output feature space to a set of class means over the course of
training. It could be the case that interpolating within a given convex hull corresponds to minimal
disturbances to class means, but interpolating between convex hulls corresponds to changing the
location of class means in feature space. If such a relationship existed, neural collapse might provide
an early metric for detecting the first iteration after which a convex hull will exist, which would
allow for parallelization of training without the extra computational cost needed to identify the
LMC regime.
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Appendix A. Task Details

SIREN [21] is a fully-connected network with sine activations. It was originally designed to over-
come the low-frequency bias in radiance fields. Here it is tuned to reconstruct an audio waveform,
where the input is the timestep, and the output is the waveform value. We choose to study it because
all prior experiments on LMC were conducted with ReLU activations, and we wished to observe
a system that was not piece-wise linear. For our other models, we use LeNet-5 [16], and ResNet-
20 [12] trained on CIFAR-10 [15]. These combinations are some of the simplest systems for which
we do not see LMC at initialization [1, 9, 18]. For the sake of simplicity, all learning rates are con-
stant in our experiments. Because the SIREN task does not include generalization, we stop training
when the training loss has converged. In the case of our other models, we tune hyper-parameters
and stop training when the validation error has converged, which is typically the desired criterion in
practice. For hyperparameters, see Table 1. For full training loss curves, see Figure 6.
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Table 1: Summary of tasks studied in this paper.

Abbrev. Task Dataset Model Optimizer LR Batch size

SIREN Regress. Bach Waveform 5-layer SIREN Adam 1e-5 8192
LeNet Classif. CIFAR-10 LeNet-5 SGD 1e-2 128

LeNet-m Classif. CIFAR-10 LeNet-5 SGD+mom. (0.9) 1e-2 128
ResNet Classif. CIFAR-10 ResNet-20 SGD+mom. (0.9) 0.1 128
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Figure 6: Training loss curves for all tasks. When cross-referencing with Figure 2, we see that the
first split point that leads to a convex hull is quite early, long before the loss has converged, and
often before it has even halved.

Appendix B. Metric Calculation Details

In order to calculate Hessian eigenvalues, we use a power iteration method with Hessian vector
products, like in Li et al. [17]. To measure local convexity between a pair of stochastic updates from
parameters W , we take compute two stochastic updates ∆W1 and ∆W2, and measure the gap

g = L
(
1

2
(W +∆W1) +

1

2
(W +∆W2)

)
−
(
1

2
L(W +∆W1) +

1

2
L(W +∆W2)

)
.

We then compute the probability that this gap is negative over many samples. This gives us a
metric for the non-convexity that a single update induces, which we can measure at different points
throughout training.
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