
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

Optimal Complexity in Non-Convex Decentralized Learning over
Time-Varying Networks

Xinmeng Huang XINMENGH@SAS.UPENN.EDU
Graduate Group in Applied Mathematics and Computational Science
University of Pennsylvania

Kun YuanB KUNYUAN@PKU.EDU.CN

Center for Machine Learning Research
Peking University

Abstract
Decentralized optimization with time-varying networks is an emerging paradigm in machine learn-
ing. It saves remarkable communication overhead in large-scale deep training and is more robust in
wireless scenarios especially when nodes are moving. Federated learning can also be regarded as
decentralized optimization with time-varying communication patterns alternating between global
averaging and local updates.

While numerous studies exist to clarify its theoretical limits and develop efficient algorithms, it
remains unclear what the optimal complexity is for non-convex decentralized stochastic optimiza-
tion over time-varying networks. The main difficulties lie in how to gauge the effectiveness when
transmitting messages between two nodes via time-varying communications, and how to establish
the lower bound when the network size is fixed (which is a prerequisite in stochastic optimization).
This paper resolves these challenges and establish the first lower bound complexity. We also de-
velop a new decentralized algorithm to nearly attain the lower bound, showing the tightness of the
lower bound and the optimality of our algorithm.

1. Introduction

Decentralized optimization. Decentralized optimization is an emerging learning paradigm in
which each node only communicates with its immediate neighbors per iteration. By avoiding the
central server and maintaining a more balanced communication between each pair of connected
nodes, decentralized approaches can significantly speedup the training process of large-scale ma-
chine learning models [4, 10, 43]. Although decentralized optimization has been extensively studied
in literature, its performance limits with time-varying communication patterns has not been fully
explored. This paper provides a better understanding in optimal complexity for non-convex decen-
tralized stochastic optimization over time-varying communication networks.
Time-varying communication pattern. Decentralized optimization over time-varying communi-
cation networks is ubiquitous in applications. In large-scale deep neural network training, sparse
and time-varying network topologies such as one-peer exponential graph [4, 42] and EquiRand [32]
endow decentralized learning with a state-of-the-art balance between communication efficiency and
convergence rate. In wireless signal processing, time-varying topologies naturally emerge when the
nodes (such as cellphones, drones, robots, etc.) are moving [37, 38]. Federated learning [22, 33]
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can also be regarded as a special decentralized learning paradigm which admits a time-varying
communication pattern alternating between global averaging and local updates.
Prior results in theoretical limits. A series of pioneering works have attempted to establish the
optimal complexity in decentralized optimization over static communication networks. In the de-
terministic regime, [30, 31, 34] clarified the theoretical limits and proposed algorithms to (nearly)
attain these limits. In the stochastic regime, recent works [21, 47] have established the optimal
complexity in the non-convex setting. However, there are few studies on theoretical limits in de-
centralized optimization over time-varying communication networks. A recent useful work [14] es-
tablishes the optimal complexity over time-varying networks for deterministic and strongly-convex
problems. While this bound is inspiring, its analysis, as well as all existing results in literature to
our knowledge, cannot be easily extended to the stochastic setting due to challenges below.
Challenges. When considering a static network topology, it is known that the optimal complexity in
decentralized optimization is typically proportional to diameter D of the static topology [30]. Clar-
ifying how the diameter D affects the algorithmic convergence is the key to justifying the influence
of the communication network on the optimal convergence rate. However, it is unclear in literature
how to gauge, or even define, the graph diameter for a sequence of time-varying networks.

Furthermore, this paper considers decentralized stochastic optimization where the network size
n is a fixed constant. A fixed n is a prerequisite in distributed stochastic optimization which en-
ables distributed algorithms to achieve the linear speedup in convergence rate O(σ/

√
nT ) where

σ indicates the gradient noise and T is the algorithmic iteration. In decentralized deterministic op-
timization, however, size n does not appear in the convergence rate. Thus, it does not need to be
fixed and can be varied freely to simplify the lower-bound analysis. In fact, references [14, 30, 31]
all tune n delicately to derive the optimal complexity for decentralized deterministic optimization
over static or time-varying networks. Therefore, the analysis in [14, 30, 31] cannot be extended to
decentralized stochastic setting in which the network size n is fixed.
Main results. This paper overcomes the above two challenges and successfully establishes the
optimal complexity for decentralized stochastic optimization over time-varying network topologies.

• Inspired by the graph diameter of a static network topology, we introduce a novel effective
graph diameter to gauge how efficient a message is transmitted between two farthest nodes
via a sequence of time-varying decentralized communications.

• We provide the first lower bound complexity for decentralized non-convex stochastic opti-
mization over time-varying networks. The derivation of this lower bound is based on a novel
family of sun-shaped network topologies. Given any fixed network size n, we can always con-
struct a sequence of time-varying sun-shaped topologies that maintains the optimal relation
between the effective graph diameter and the network connectivity.

• We prove that the established lower bound complexity can be nearly attained (up to logarith-
mic factors) by integrating multiple gossip communications [19, 28, 45] and gradient accu-
mulation [21, 27, 30] to the vanilla stochastic gradient tracking approach [8, 20, 24, 26, 41].
It implies that our complexity bound is tight and the proposed algorithm is nearly optimal.

All established results in this paper as well as those of existing state-of-the-art decentralized learning
algorithms over time-varying networks are listed in Table 1.
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Table 1: Rate comparison between different decentralized stochastic algorithms over time-varying net-
works. Parameter n denotes the number of all computing nodes, β ∈ [0, 1) denotes the connectivity
measure of the weight matrix, σ2 measures the gradient noise, b2 denotes data heterogeneity, and T
is the number of iterations. Other constants such as the initialization f(x(0))− f⋆ and smoothness
constant L are omitted for clarity. Logarithm factors are hidden in the Õ(·) notation.

Bound type Reference Gossip matrix Convergence rate

Lower Theorem 4 β ∈ [0, 1− 1
n ] Ω

(
σ√
nT

+ 1
T (1−β)

)

Upper

DSGD [12] β ∈ [0, 1) O
(

σ√
nT

+ σ
2
3

T
2
3 (1−β)

1
3
+ b

2
3

T
2
3 (1−β)

2
3
+ 1

T (1−β)

)
DSGT [40] β ∈ [0, 1) Õ

(
σ√
nT

+ σ
2
3

T
2
3 (1−β)

+ 1
T (1−β)2

)
MC-DSGT β ∈ [0, 1) Õ

(
σ√
nT

+ 1
T (1−β)

)
Other related works. Decentralized optimization can be tracked back to [36]. Decentralized gra-
dient descent [16, 25, 44], diffusion [7, 29] and dual averaging [9] are early popular decentralized
methods. Other advanced variants extend decentralized methods to data-heterogeneous scenarios
[1, 13, 20, 35, 40], adaptive momentum settings [18, 23, 46], or asynchronous implementations
[17]. When the network topology is time-varying, reference [14] establishes optimal convergence
rate under the deterministic and strongly-convex setting. References [14, 15] develop decentralized
methods with Nesterov acceleration to nearly achieve such optimal convergence rate. In the stochas-
tic and non-convex setting, the convergence rate of decentralized SGD over general time-varying
networks is clarified in [12]. Other references [32, 39, 42] study specific sparse and time-varying
network topologies that can further save communication overheads in decentralized SGD. How-
ever, none of these works provides the optimal complexity for non-convex decentralized learning
over time-varying networks.

2. Problem setup

Problem setup. Consider the following problem with a network of n computing nodes:

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x) where fi(x) := Eξi∼Di
[F (x; ξi)]. (1)

Function fi(x) is local to node i, and random variable ξi denotes the local data that follows distri-
bution Di. Each local data distribution Di can be different across all nodes.

Assumptions. The optimal convergence rate is established under the following assumptions.

• Function class. We let the function class F∆
L denote the set of all functions satisfying the

following assumption for any dimension d ∈ N+ and initialization point x(0) ∈ Rd.

Assumption 1 (COST FUNCTIONS) We assume each fi has L-Lipschitz gradient, i.e.,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥

for all i ∈ [n], x, y ∈ Rd, and f(x(0))− infx∈Rd f(x) ≤ ∆ with f = 1
n

∑n
i=1 fi.
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• Gradient oracle class. We assume each worker i has access to its local gradient ∇fi(x) via
a stochastic gradient oracle Oi(x; ζi) subject to independent randomness ζi, e.g., the mini-
batch sampling ζi ≜ ξi ∼ Di. We further assume that the output Oi(x, ζi) is an unbiased
estimator of the full-batch gradient ∇fi(x) with a bounded variance. Formally, we let the
stochastic gradient oracle class Oσ2 denote the set of all oracles Oi satisfying Assumption 2.

Assumption 2 (GRADIENT STOCHASTICITY) We assume local gradient oracle Oi satisfies

Eζi [Oi(x; ζi)] = ∇fi(x) and Eζi [∥Oi(x; ζi)−∇fi(x)∥2] ≤ σ2

for any x ∈ Rd and i ∈ [n].

• Decentralized communication. Let V = [n] denote the set of n computing nodes. For
any communication round t ≥ 0, we assume nodes are connected through a time-varying
communication network represented by a graph Gt = (V,Et), where Et ⊆ {(j, i) ∈ V ×V :
i ̸= j} is the set of links activated at round t. If a directed link (j, i) ∈ Et, then node j can
transmit information to node i at round t. In decentralized communication protocols, each
node i can only receive messages with its immediate neighbors via links in Et.

• Weight matrix class. To characterize the decentralized communication in algorithm devel-
opment, we associate each time-varying communication graph Gt with a weight matrix W t

(also known as the gossip matrix [25, 44]). As in [14, 21, 47], we consider a sequence of
time-varying weight matrices {W t}∞t=0 ⊆ Rn×n satisfying Assumption 3.

Assumption 3 (WEIGHT MATRIX) For any t ≥ 0, W t = [wt
i,j ]

n
i,j=1 satisfies

1. if (j, i) /∈ Et and i ̸= j, then wt
i,j = 0;

2. W t1n = 1n and 1⊤
nW

t = 1⊤
n where 1n = [1, . . . , 1]⊤ ∈ Rn;

3. there exists a fixed constant β ∈ [0, 1) such that ∥W t − 1n1
⊤
n /n∥2 ≤ β.

Note that a weight matrixW t satisfying Assumption 3 is not necessarily symmetric or positive
semi-definite. The constant β is the connectivity measure that gauges how well the network
topology Gt is connected. Constant β → 0 (which implies W t → 1

n1n1
⊤
n ) indicates a well-

connected topology while β → 1 (which implies W t → I) indicates a poor connection. We
let Wn,β denote the class of all weight matrices W t ∈ Rn×n satisfying Assumption 3.

• Algorithm class. We consider an algorithm A in which each node i assesses an unknown
local function fi via the independent stochastic gradient oracleOi(x; ζi) ∈ Oσ2 . Each node i
running algorithm A will maintain a local model copy x(t)i at round t. We assume A to follow
the partial averaging policy, i.e., each node communicates at round t via protocol

zi =
∑
j∈N t

i

wt
i,jyj , ∀ i ∈ [n]

with some W t = [wt
i,j ]

n
i,j=1 ∈ Wn,β where y and z are the input and output of the com-

munication protocol. In addition, we assume A to follow the zero-respecting policy [5, 6].
Informally speaking, the zero-respecting policy requires that the number of non-zero entries
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Figure 1: An illustration of the sun-shaped graph with size 8 and center sets [1], [2], [4], [7] (or [8]). It is
observed that S8,[1] is a star graph while S8,[8] is a complete graph.

of local model copy x(t)i can only be increased by either sampling its own stochastic gradient
oracle or interacting with the neighboring nodes. We let A{W t}∞t=0

be the set of all algorithms
following the partial averaging and zero-respecting policies.

With the above classes, this paper will clarify the following question: Given loss functions
{fi}ni=1 ⊆ F∆

L , stochastic gradient oracles {Oi}ni=1 ⊆ Oσ2 , a sequences of time-varying networks
{Gt}∞t=0 and its associated weight matrices {W t}∞t=0 ⊆ Wn,β , what is the optimal complexity to
solve problem (1), and what decentralized algorithm A ∈ A{W t}∞t=0

can achieve it?

Notations. We let [n] := {1, 2, · · · , n}. For any network G = ([n], E) and node i ∈ [n], we let
NG(i) denote {j : (j, i) ∈ E or j = i}, i.e., the neighborhood set of node i in networkG. Similarly,
for a subset of nodes I ⊆ [n], we use NG(I) to denote its neighborhood set ∪i∈ING(i).

3. Sun-shaped graphs and effective distance/diameter

As we have discussed in the Challenge paragraph in Section 1, it is unknown in literature (1) how to
gauge the graph diameter for a sequence of time-varying network topologies, and (2) how to develop
time-varying network topologies that can maintain the optimal relation between graph diameter and
the network connectivity when the network size n is fixed. This section will resolve these two
challenges by introducing a novel family of sun-shaped time-varying graphs.

Definition 1 (SUN-SHAPED GRAPH) Given any positive integers n ≥ 2 and C ⊆ [n], the sun-
shaped graph over nodes [n] with center set C, denoted by Sn,C , is an undirected graph in which the
neighborhood NSn,C(i) of node i ∈ [n] is given by

NSn,C(i) =

{
[n] if i ∈ C;
C ∪ {i} otherwise.

The center set C in Sn,C constitutes a complete subgraph. Nodes in the complete set [n]\C are
connected to each node in C, but there is no connection between any pair of nodes in [n]\C. Note
that a sun-shaped graph Sn,C with |C| = 1 corresponds to a star graph while |C| = n or |C| = n− 1
corresponds to a complete graph. Sn,C can be regarded as an intermediate state between the star and
complete graphs when 2 ≤ |C| ≤ n− 2, see the illustration in Figure 1.

We next introduce effective graph diameter to gauge how efficient a message is transmitted
between two farthest nodes via a sequence of time-varying decentralized communications.
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Definition 2 (EFFECTIVE DISTANCE/DIAMETER) We define the effective distance dist{Gt}∞t=0
(i, j)

between two nodes i ̸= j over a sequence of networks {Gt}∞t=0 to be the smallest number of rounds
with which a message sent from node i or j at some round t can be received by the other one via
decentralized communications (i.e., communicating over {Gt′}∞t′=t). Formally, we define

dist{Gt}∞t=0
(i, j) := max

{
argmin

R
{R : j ∈ NGt(NGt+1(· · · NGt+R−1(i) · · · )) for some t ≥ 0},

argmin
R

{R : i ∈ NGt(NGt+1(· · · NGt+R−1(j) · · · )) for some t ≥ 0}
}
.

Similarly, we define the effective distance between two disjoint subsets of nodes I1, I2 ⊊ [n] as

dist{Gt}∞t=0
(I1, I2) = min

i∈I1, j∈I2
{dist{Gt}∞t=0

(i, j)}.

We define the effective diameter to be the largest effective distance between any two nodes, i.e.,

diam{Gt}∞t=0
:= max

1≤i ̸=j≤n
{dist{Gt}∞t=0

(i, j)}.

The definitions of effective distance and effective diameter are specific to the time-varying networks.
We remark that when the networks are static, i.e., Gt = G for any t ≥ 0, then the effective
distance/diameter reduces to the canonical distance/diameter in a static graph.

The following fundamental theorem establishes the relation between the effective distance with
respect to a sequence of sun-shaped graphs and the connectivity measure β.

Theorem 3 Given a fixed n ≥ 2, two disjoint subsets of nodes I1, I2 ⊊ [n], and any β ∈ [0, 1− 1
n ],

there exists a sequence of sun-shaped graphs {Sn,Ct}∞t=0 such that

(1) the graph Sn,Ct at round t has an associated weight matrix W t ∈ Wn,β , i.e., W t ∈ Rn×n,
1⊤
nW

t = 1⊤
n , W t1n = 1n, and ∥W t − 1

n1n1
⊤
n ∥2 ≤ β;

(2) the effective distance between I1 and I2 satisfies

dist{Sn,Ct}∞t=0
(I1, I2) = Θ

(
1− (|I1|+ |I2|)/n

1− β
+ 1

)
;

In particular, if 1− (|I1|+ |I2|)/n = Ω(1), then dist{Sn,Ct}∞t=0
(I1, I2) = Θ((1− β)−1).

4. Lower Bound

With the help of Theorem 3, we are ready to establish the lower bound for non-convex decentralized
stochastic optimization over time-varying networks. All proof details are in Appendix B.

Theorem 4 For any L > 0, n ≥ 2, β ∈ [0, 1 − 1
n ], and σ > 0, there exists a set of loss functions

{fi}ni=1 ⊆ F∆
L , a set of stochastic gradient oracles {Oi}ni=1 ⊆ Oσ2 , and a sequence of weight

matrices {W t}∞t=0 ⊆ Wn,β resulted from the sun-shaped graphs, such that it holds for the output x̂
of any A ∈ A{W t}∞t=0

starting form x(0) that

E[∥∇f(x̂)∥2] = Ω

((
∆Lσ2

nT

) 1
2

+
∆L

T (1− β)

)
. (2)
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Algorithm 1 Decentralized Stochastic Gradient Tracking with Multiple Consensus (MC-DSGT)

Input: Initialize x(0)i = x(0) and h(0)i = 1
nR

∑n
i=1

∑R−1
r=0 Oi(x

(k+1); ζ
(k+1,r)
i ) for any i ∈ [n];

initialize x(0) = [x
(0)
1 , · · · , x(0)n ]⊤, h(0) = [h

(0)
1 , · · · , h(0)n ]⊤, and g̃(0) = h(0); the decentralized

gossip communication rounds R
for k = 0, · · · ,K − 1 do

Update x(k+1) = Multi-Consensus(x(k) − γh(k), 2kR, (2k + 1)R)

Query stochastic gradients g̃(k+1)
i = 1

R

∑R−1
r=0 Oi(x

(k+1)
i ; ζ

(k+1,r)
i ) at each node i

Update h(k+1) = Multi-Consensus(h(k) + g̃(k+1) − g̃(k), (2k + 1)R, (2k + 2)R)
end for

Algorithm 2 z(t2) = Multi-Consensus(z(t1), t1, t2)

Input: Variable z(t1); index t1 and t2
for t = t1, · · · , t2 − 1 do

Update z(t+1) =W tz(t)

end for
return Variable z(t2)

Remark 5 While the lower bound is established for β ∈ [0, 1 − 1/n] ⊂ [0, 1), it approaches
to [0, 1) as n goes large. Such interval is broad enough to cover most weight matrices (generated
through the Laplacian ruleW = I−L/dmax) resulted from common topologies such as grid, torus,
hypercube, exponential graph, complete graph, Erdos-Renyi graph, geometric random graph, etc.
whose β lies in the interval [0, 1− 1/n] when n is sufficiently large.

5. Upper Bound

This section presents a decentralized algorithm that achieves the lower bound established in Theo-
rem 4 up to logarithmic factors. The new algorithm is a direct extension of the vanilla decentralized
stochastic gradient tracking (DSGT) [20, 40]. Inspired by the algorithm development in [14, 21],
we add two additional components to DSGT: gradient accumulation and multiple-consensus com-
munication. The main recursions are listed in Algorithm 1 which utilizes the fast gossip average
step [19] in Algorithm 2. We call the new algorithm as MC-DSGT where “MC” indicates “multiple
consensus”. All proofs are in Appendix C. Since each node takes R gradient queries and R gossip
communications at round k, it holds that T = KR when MC-DSGT finishes after K rounds. The
following theorems clarify the convergence rate of MC-DSGT where T = KR.

Theorem 6 Given L > 0, n ≥ 1, β ∈ [0, 1), σ > 0, by choosing the learning rate γ as in (40), the
convergence of Algorithm 1 can be bounded for any {fi}ni=1 ⊆ F∆

L and any {W}∞t=0 ⊆ Wn,β that

1

K + 1

K∑
k=0

E[∥∇f(x̄(k))∥2] = O

((
∆Lσ2

nT

) 1
2

+
R∆L

T
+

(
ρ2∆2L2Rσ2

(1− ρ)3T 2

) 1
3

+
ρ2R∆L

T (1− ρ)2

)
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Figure 2: Performance of different stochastic algorithms to solve problem (4). The left plot is with MNIST,
and the right plot is with COVTYPE.binary.

where ρ ≜ βR ∈ [0, 1), x̄(k) = 1
n

∑n
i=1 x

(k)
i , and T = KR is the total number of gradient queries

and gossip communications at each node. If we further set R as in (41), then the rate becomes

1

K + 1

K∑
k=0

E[∥∇f(x̄(k))∥2] = Õ

((
∆Lσ2

nT

) 1
2

+
∆L

T (1− β)

)
. (3)

The rate (3) matches with the lower bound (2) up to logarithm factors. Therefore, our established
lower bound is tight and hence optimal. The comparison between MC-DSGT with other state-of-
the-art algorithms for non-convex decentralized stochastic optimization is listed in Table 1.

6. Experiments

We consider the logistic regression with a non-convex regularization term [2, 40]. The problem
formulation is given by minx

1
n

∑n
i=1 fi(x) + ρr(x) where

fi(x) =
1

m

m∑
j=1

ln(1 + exp(−yi,j⟨hi,j , x⟩)), r(x) =

d∑
k=1

[x]2k
1 + [x]2k

, (4)

[x]k denotes the k-the entry of x ∈ Rd, {(hi,j , yi,j)}mj=1 is the local dataset at node i where hi,j ∈
Rd, yi,j ∈ {±1} is a feature vector and label, respectively. The regularization r(x) is a smooth but
non-convex function and ρ > 0 is the regularization weight.

We consider two real datasets: MNIST and COVTYPE.binary. We binarize MNIST dataset by
considering datapoints with labels 2 and 4. The regularization weight ρ is chosen as 0.2 (MNIST)
and 0.015 (COVTYPE.binary). We partition the two datasets non-uniformly such that a half of
the nodes contain 80% positive datapoints while the other half hold 80% negative datapoints. We
compare decentralized stochastic gradient descent (DSGD) [12], decentralized stochastic gradient
tracking (DSGT) [40] and Algorithm 1 (MC-DSGT) with random time-varying sun-shaped graphs
with (n, |C|) equal to (16, 1) for MNIST and (32, 4) for COVTYPE.binary. We set R = 2 and 4 in
MC-DSGT for MNIST and COVTYPE.binary, repspectively

The performance of algorithms over MNIST and COVTYPE.binary is illustrated in the left and
right plot in Figure 2, respectively. The error metric is taken as ∥∇f(x̄)∥2 with x̄ = 1

n

∑n
i=1 x

(k)
i .

In both experiments, we find the convergence rate as well as the robustness to time-varying network
topology of MC-DSGT outperforms DSGD and DSGT, which coincides with our theory.
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7. Conclusion

This paper provides the first optimal complexity for non-convex decentralized stochastic optimiza-
tion over time-varying networks. We also generalize DSGT with multiple consensus under time-
varying networks to match the optimal bound up to logarithm factors. Future works include estab-
lishing the optimal rate for (strongly) convex stochastic scenarios over time-varying networks.
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Appendix A. Sun-shaped Graph

Proof [Proof of Theorem 3] It is easy to see that when |I1|+|I2| = n, dist{Sn,Ct}∞t=0
(I1, I2) = 1 for

any graphs {Sn,Ct}∞t=0. Thus in this case, we can simply let Ct = [n] andW t = βIn+(1−β)1n1
⊤
n

for any t ≥ 0. It is easy to see that W t ∈ Wn,β .
Next we consider |I1|+ |I2| < n. Let k = ⌈n(1− β)⌉ ∈ [1, n].
Case 1. If k = n, i.e., 0 ≤ β < 1

n , then we again let Ct = [n] with associate weight matrix
W t = βIn + (1− β)1n1

⊤
n for all t ≥ 0. It is easy to see that

dist{Sn,Ct}∞t=0
(I1, I2) = 1 = Θ(1) = Θ

(
1− (|I1|+ |I2|)/n

1− β
+ 1

)
where the last identity is because 0 ≤ 1− (|I1|+ |I2|)/n ≤ 1 and (1− β)−1 = Θ(1).
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Case 2. If 1 ≤ k ≤ n−1, then 1
n ≤ β ≤ 1− 1

n . Let J 0, . . . ,J p−1 with p = ⌊(n−|I1|−|I2|)/k⌋
be disjoint subsets of [n]\(I1 ∪ I2) such that each J q (0 ≤ q ≤ p − 1) exactly contains k nodes.
Such {J q}p−1

q=0 always exists due to p× k ≤ n− |I1| − |I2|. Now let Ct = J t mod p, i.e.,

{Sn,Ct}∞t=0 = {Sn,J 0 , . . . ,Sn,J p−1 ,Sn,J 0 . . . ,Sn,J p−1 ,Sn,J 0 , . . . }.

It is easy to see that for any center set C with |C| = k, the Laplacian L(Sn,C) of graph Sn,C has
eigenvalues:

0, k, . . . , k︸ ︷︷ ︸
(n−k−1)-folds

, n, . . . , n︸ ︷︷ ︸
k-folds

.

We thus let the associated weight matrices to beW t = In− δ
nL(Sn,Ct) with δ = n(1− β)/⌈n(1− β)⌉ ∈

(0, 1] for any t ≥ 0. Since δ < 1, {W t}∞t=0 are positive semi-definite. Therefore, we have∥∥∥∥W t − 1

n
1n1

⊤
n

∥∥∥∥ = 1− δk

n
= 1− n(1− β)

n
= β.

The rest is to verify dist{Sn,Ct}∞t=0
(I1, I2) = Θ

(
1−(|I1|+|I2|)/n

1−β + 1
)

. By the construction of sun-
shaped graphs, starting from any round t, the neighborhood of I1 (or I2) satisfies

NSn,Ct
(NSn,Ct+1 (· · · NS

n,Ct+R−1
(I1) · · · )) =

{(⋃t+R−1
t′=t J t mod p

)
∪ I1 if R ≤ p;

[n] if R > p+ 1.

Therefore, we conclude that

dist{Sn,Ct}∞t=0
(I1, I2) =p+ 1 = ⌊(n− |I1| − |I2|)/k⌋+ 1 =

⌊
n− |I1| − |I2|
⌈n(1− β)⌉

⌋
+ 1. (5)

On one hand, we easily see ⌊
n− |I1| − |I2|
⌈n(1− β)⌉

⌋
≤ n− |I1| − |I2|

n(1− β)
. (6)

On the other hand, since n(1− β) ≥ 1, we have ⌈n(1− β)⌉ ≤ 2n(1− β) and further⌊
n− |I1| − |I2|
⌈n(1− β)⌉

⌋
+ 1 ≥

⌊
n− |I1| − |I2|
2n(1− β)

⌋
+ 1 = Ω

(
n− |I1| − |I2|
2n(1− β)

+ 1

)
(7)

where the last step is due to ⌊x⌋ + 1 ≥ (x + 1)/2 for any x ≥ 0. Combining (6) and (7) with (5),
we reach dist{Sn,Ct}∞t=0

(I1, I2) = Θ
(
1−(|I1|+|I2|)/n

1−β + 1
)

.

Appendix B. Lower Bound

B.1. Proof of Theorem 4

Without loss of generality, we assume algorithms to start from x(0) = 0. We denote the j-th
coordinate of a vector x ∈ Rd by [x]j for j = 1, . . . , d, and let prog(x) be

prog(x) :=

{
0 if x = 0;

max1≤j≤d{j : [x]j ̸= 0} otherwise.
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Similarly, for a set of points X = {x1, x2, . . . }, we define prog(X ) := maxx∈X prog(x). As
described in [5, 6], a zero chain function f satisfies

prog(∇f(x)) ≤ prog(x) + 1, ∀x ∈ Rd,

which implies that, starting from x = 0, a single gradient evaluation can only make at most one
more coordinate for the model parameter x be non-zero.

We prove the two terms of the lower bound in Theorem 4 separately by constructing two hard-
to-optimize instances. We first state some key zero-chain functions that will be used to facilitate the
analysis.

Lemma 7 (Lemma 2 of [3]) Let [x]j denote the j-th coordinate of a vector x ∈ Rd, and define
function

h(x) := −ψ(1)ϕ([x]1) +
d−1∑
j=1

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
where for ∀ z ∈ R,

ψ(z) =

{
0 z ≤ 1/2;

exp
(
1− 1

(2z−1)2

)
z > 1/2,

ϕ(z) =
√
e

∫ z

−∞
e

1
2
t2dt.

Then h satisfy the following properties:

1. h(x)− infx h(x) ≤ δ0d, ∀x ∈ Rd with δ0 = 12;

2. h is ℓ0-smooth with ℓ0 = 152;

3. ∥∇h(x)∥∞ ≤ g∞, ∀x ∈ Rd with g∞ = 23;

4. ∥∇h(x)∥∞ ≥ 1 for any x ∈ Rd with [x]d = 0.

Lemma 8 (Lemma 4 of [11]) Let functions

h1(x) := −2ψ(1)ϕ([x]1) + 2
∑

j even, 0<j<d

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
and

h2(x) := 2
∑

j odd, 0<j<d

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
.

Then h1 and h2 satisfy the following properties:

1. 1
2(h1 + h2) = h, where h is defined in Lemma 7.

2. For any x ∈ Rd, if prog(x) is odd, then prog(∇h1(x)) ≤ prog(x); if prog(x) is even, then
prog(∇h2(x)) ≤ prog(x).

3. h1 and h2 are also ℓ0-smooth with ℓ0 = 152.

Given Lemmas 7 and 8, we now construct two instances that lead to the two terms in lower
bound (2), respectively.
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Instance 1. The proof of the first term Ω((∆Lσ2

nT )
1
2 ) essentially follows the first example in

proving Theorem 1 of [21]. We provide the key steps for the sake of being self-contained.
(Step 1.) Let fi = Lλ2h(x/λ)/ℓ0, ∀ i ∈ [n] be homogeneous and hence f = Lλ2h(x/λ)/ℓ0

where h is defined in Lemma 7 and λ > 0 is to be specified. Since ∇2fi = L∇2h/ℓ0 and h is
ℓ0-smooth by Lemma 7, we know fi is L-smooth for any λ > 0. By Lemma 7, we have

f(0)− inf
x
f(x) =

Lλ2

ℓ20
(h(0)− inf

x
h(x))≤Lλ

2δ0d

ℓ0
.

Therefore, to ensure fi ∈ F∆
L , it suffices to let

Lλ2δ0d

ℓ0
≤ ∆, i.e., dλ2 ≤ ℓ0∆

Lδ0
. (8)

(Step 2.) We construct the stochastic gradient oracle Oi on worker i, ∀ i ∈ [n] as the follows:

[Oi(x;Z)]j = [∇fi(x)]j
(
1 + 1{j > prog(x)}

(
Z

p
− 1

))
,∀x ∈ Rd, j = 1, . . . , d

with random variable Z ∼ Bernoulii(p) independent of x and fi, and p ∈ (0, 1) to be specified. It is
easy to see Oi is an unbiased stochastic gradient oracle. Moreover, since fi is zero-chain, we have
prog(Oi(x;Z)) ≤ prog(∇fi(x)) ≤ prog(x) + 1 and hence

E[∥[Oi(x;Z)]−∇fi(x)∥2] = |[∇fi(x)]prog(x)+1|2E

[(
Z

p
− 1

)2
]
= |[∇fi(x)]prog(x)+1|2

1− p

p

≤ ∥∇fi(x)∥2∞
1− p

p
≤ L2λ2(1− p)

ℓ20p
∥∇h(x)∥2∞

Lemma 7
≤ L2λ2(1− p)g2∞

ℓ20p
.

Therefore, to ensure Oi ∈ Oσ2 , it suffices to let

p = min{L
2λ2g2∞
ℓ20σ

2
, 1}. (9)

(Step 3.) Let x(t)i , ∀ t ≥ 0 and i ∈ [n], be the t-th query point of worker i. Since algorithms
satisfy the zero-respecting property, as discussed in [5, 6, 21], within T gradient queries on each
worker, algorithms can only return model x̂ such that

x̂ ∈ span
({
x(0),∇fi(x(0)),

{
{x(t)i ,∇fi(x(t)i ) : 0 ≤ t < T} : 1 ≤ i ≤ n

}})
,

which implies
prog(x̂) ≤ max

0≤t<T
max
1≤i≤n

prog(x
(t)
i ) + 1. (10)

By Lemma 2 of [21], we have

P(prog(x̂) ≥ d) ≤ P
(

max
0≤t<T

max
1≤i≤n

prog(x
(t)
i ) ≥ d− 1

)
≤ e(e−1)npT−d+1. (11)
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On the other hand, when prog(x̂) < d, by Lemma 7, it holds that

min
x̂∈span{{x(t)

i :1≤i≤n, 0≤t<T}}
∥∇f(x̂)∥ ≥ min

[x̂]d=0
∥∇f(x̂)∥ =

Lλ

ℓ0
min
[x̂]d=0

∥∇h(x̂)∥ ≥ Lλ

ℓ0
. (12)

Therefore, by combining (11) and (12), we have

E[∥∇f(x̂)∥2] ≥ P(prog(T ) < d)E[∥∇f(x̂)∥2 | prog(T ) < d] ≥ (1− e(e−1)npT−d+1)
L2λ2

ℓ20
. (13)

Let

λ =
ℓ0
L

(
∆Lσ2

3nTℓ0δ0g2∞

) 1
4

and d =

⌊(
3L∆nTg2∞
σ2ℓ0δ0

) 1
2

⌋
.

Then (8) naturally holds and p = min{g2∞
σ2

(
∆Lσ2

3nTℓ0δ0g2∞

) 1
2
, 1} by (9). Without loss of generality, we

assume d ≥ 2, which is guaranteed when T = Ω( σ2

nL∆). Then, using the definition of p, we have
that

(e− 1)npT − d+ 1 ≤ (e− 1)nT
g2∞
σ2

(
∆Lσ2

3nTℓ0δ0g2∞

) 1
2

− d+ 1

=
e− 1

3

(
3L∆nTg2∞
σ2ℓ0δ0

) 1
2

− d+ 1 <
e− 1

3
(d+ 1)− d+ 1 ≤ 2− e < 0

which, combined with (13), leads to

E[∥∇f(x̂)∥2] = Ω

(
L2λ2

ℓ20

)
= Ω

((
∆Lσ2

3nTℓ0δ0g2∞

) 1
2

)
= Ω

((
∆Lσ2

nT

) 1
2

)
.

Instance 2. The proof for the second term Ω(c∆LT (1− β)) utilizes weight matrices defined on
the sun-shaped graphs described in Theorem 3.

(Step 1.) Let functions

ℓ1(x) := − n

⌈n/4⌉
ψ(1)ϕ([x]1) +

n

⌈n/4⌉
∑

j even, 0<j<d

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
and

ℓ2(x) :=
n

⌈n/4⌉
∑

j odd, 0<j<d

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
.

By Lemma 8, ℓ1 and ℓ2 defined here are 2ℓ0-smooth. Furthermore, let

fi =


Lλ2ℓ1(x/λ)/(2ℓ0) if i ∈ I1 ≜ {j : 1 ≤ j ≤ ⌈n4 ⌉},
Lλ2ℓ2(x/λ)/(2ℓ0) if i ∈ I2 ≜ {j : n− ⌈n4 ⌉+ 1 ≤ j ≤ n},
0 else.

where λ > 0 is to be specified. To ensure fi ∈ F∆
L for all 1 ≤ i ≤ n, it suffices to let

Lλ2∆0d

2ℓ0
≤ ∆, i.e., dλ2 ≤ 2ℓ0∆

L∆0
. (14)
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With the functions defined above, we have f(x) = 1
n

∑n
i=1 fi(x) = Lλ2ℓ(x/λ)/(2ℓ0) and

prog(∇fi(x))

{
= prog(x) + 1 if {prog(x) is even and i ∈ I1} ∪ {prog(x) is odd and i ∈ I2}
≤ prog(x) otherwise.

Therefore, to make progress, i.e., to increase prog(x), for any gossip algorithm A, it must take the
gossip communications to transmit information between I1 to I2 alternatively. Namely, it takes at
least dist{Gt}∞t=0

(I1, I2) rounds of decentralized communications for any possible gossip algorithm
A to increase prog(x̂) by 1. Therefore, we have

prog(x̂) ≤ max
1≤i≤n, 0≤t<T

prog(x
(t)
i ) ≤

⌊
T

dist{Gt}∞t=0
(I1, I2)

⌋
+ 1, ∀T ≥ 0. (15)

(Step 2.) We consider a gradient oracle that return lossless full-batch gradients, i.e., Oi(x) =
∇fi(x), ∀x ∈ Rd, i ∈ [n]. For the construction of graphs and weight matrices, we consider the
sequence of sun-shaped graphs {Gt := Sn,Ct}∞t=0 and their associated weight matrices {W t}∞t=0 ∈
Wn,β investigated in Theorem 3. Since 1 − (|I1| + |I2|)/n = Ω(1), by Theorem 3, we have
dist{Gt}∞t=0

(I1, I2) = Θ((1 − β)−1). Suppose dist{Gt}∞t=0
(I1, I2) ≥ 1/(C(1 − β)) with some

absolute constant C, then by (15), we have

prog(x̂) ≤ ⌊C(1− β)T ⌋+ 1, ∀T ≥ 0. (16)

(Step 3.) We finally show the error E[∥∇f(x)∥2] is lower bounded by Ω
(

∆L
(1−β)T

)
, with any

algorithm A ∈ A{W t}∞t=0
. For any T ≥ 1/(C(1− β)) = Ω((1− β)−1), let

d = ⌊C(1− β)T ⌋+ 2 < 3C(1− β)T

and

λ =
L0

L

√
2∆L

3C(1− β)TL0∆0
. (17)

Then (14) naturally holds. Since prog(x̂) < d by (16), following (12) and using (17), we have

E[∥∇f(x̂)∥2] ≥ min
[x̂]d=0

∥∇f(x̂)∥2 ≥ L2λ2

L2
0

= Ω

(
∆L

(1− β)T

)
.

Appendix C. Upper Bound

C.1. Preliminary

Notation. We first introduce necessary notations as follows.

• x(k) = [(x
(k)
1 )⊤; (x

(k)
2 )⊤; · · · ; (x(k)n )⊤] ∈ Rn×d;

• g̃(k) ≜ ∇F (x(k); ξ(k,r)) = [∇F1(x
(k)
1 ; ξ

(k,r)
1 )⊤; · · · ;∇Fn(x

(k)
n ; ξ

(k,r)
n )⊤] ∈ Rn×d;

• ∇f(x(k)) = [∇f1(x(k)1 )⊤;∇f2(x(k)2 )⊤; · · · ;∇fn(x(k)n )⊤] ∈ Rn×d ;
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• x̄(k) = [(x̄(k))⊤; (x̄(k))⊤; · · · ; (x̄(k))⊤] ∈ Rn×d where x̄(k) = 1
n

∑n
i=1 x

(k)
i ;

• W t = [wt
i,j ] ∈ Rn×n is the weight matrix;

• 1n = [1, 1, · · · , 1]⊤ ∈ Rn;

• Given two matrices x,h ∈ Rn×d, we define inner product ⟨x,h⟩ = tr(xTh) and the Frobe-
nius norm ∥x∥2F = ⟨x,x⟩;

• Given W ∈ Rn×n, we let ∥W∥2 = σmax(W ) where σmax(·) denote the maximum sigular
value.

Smoothness. Since each fi(x) is assumed to be L-smooth, it holds that f(x) = 1
n

∑n
i=1 fi(x) is

also L-smooth. As a result, the following inequality holds for any x, y ∈ Rd:

fi(x) ≤ fi(y) + ⟨∇fi(y), x− y⟩+ L

2
∥x− y∥2. (18)

Gradient noise. For stochastic gradient oracles satisfying Assumption 2, by independence, it holds
for any k ≥ 0 and R ≥ 1 that

E[∥g̃(k)i −∇fi(x(k)i )∥2] ≤ σ2

R
and E

∥∥∥∥∥g̃(k) − 1

n

n∑
i=1

∇f(x(k)i )

∥∥∥∥∥
2
 ≤ σ2

nR
(19)

where g̃(k) ≜ 1
n

∑n
i=1 g̃

(k)
i = 1

nR

∑n
i=1

∑R−1
r=0 Oi(x

(k)
i ; ζ

(k,r)
i ).

Network weighting matrix. Since each weight matrix W t ∈ Wn,β , it holds that∥∥∥∥W t − 1

n
1n1

⊤
n

∥∥∥∥
2

≤ β. (20)

Following (20), it holds for a sequence of weight matrices W t1 , . . . ,W t2−1 that∥∥∥∥∥
t2−1∏
t=t1

W t − 1

n
1n1

⊤
n

∥∥∥∥∥
2

≤ βt2−t1 . (21)

Therefore, when t2 − t1 grows,
∏t2−1

t=t1
W t exponentially converges to 1

n1n1
⊤
n .

Submultiplicativity of the Frobenius norm. For any matrix W ∈ Rn×n and z ∈ Rn×d, it holds
that

∥Wz∥F ≤ ∥W∥2∥z∥F . (22)

To verify it, by letting zj be the j-th row of z, we have ∥Wz∥2F =
∑d

j=1 ∥Wzj∥22 ≤
∑d

j=1 ∥W∥22∥zj∥22 =
∥W∥22∥z∥2F .

18
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C.2. Proof of Theorem 6

Our proof is adapted from the proof of [40, Theorem 1], which presents the convergence rate of
stochastic decentralized gradient tracking with single consensus operation and a static weight ma-
trix. We generalize the proof to suit multiple consensus and time-varying weight matrices.

We use the matrix-form notations of the algorithm mostly for convenience. At the beginning of
phase k, the three quantities of interests are x(k), h(k) and g̃(k) ≜ ∇F (x(k); ξ(k,r)), and the update
rule for any k ≥ 0 is

x(k+1) = W
(2k)
R (x(k+1) − γh(k)), (23)

h(k+1) = W
(2k+1)
R (h(k) + g̃(k+1) − g̃(k)) (24)

where W
(k)
R ≜

∏(k+1)R−1
t=kR W t for any k ≥ 0 and R ≥ 1. By (21), we have ∥W(k)

R − 11⊤/n∥2 ≤
βR for any k ≥ 0. By multiplying 1n1

⊤
n /n to the left-side of (23) and (24), we have

x̄(k+1) = x̄(k+1) − γh̄(k)),

h̄(k+1) = h̄(k) + g̃
(k+1) − g̃

(k)
. (25)

Since h̄(0) = g̃
(0), by iterating (25) over 0, . . . , k − 1, it holds that h̄(k) = g̃

(k) for any k ≥ 0. We
will use the following descent lemma, which is adapted from [40, Lemma 3].

Lemma 9 (DESCENT LEMMA) Under Assumption 1, 2, 3, if 0 < γ ≤ 1
2L , then we have for any

k ≥ 0,

E[f(x̄(k+1))] ≤ E[f(x̄(k))]− γ

2
E[∥∇f(x̄(k))∥2]− γ

4
E[∥ḡ(k)∥2] + γL2

2n
E[∥Πx(k)∥2F ] +

γ2Lσ2

2nR
.

where Π ≜ I − 1
n1n1

⊤
n .

By iterating Lemma 9 over k = 0, . . . ,K, we obtain

1

K + 1

K∑
k=0

E[∥∇f(x̄(k))∥2]

≤ 2∆

γ(K + 1)
+
γLσ2

nR
− 1

2(K + 1)

K∑
k=0

E[∥ḡ(k)∥2] + L2

n(K + 1)

K∑
k=0

E[∥Πx(k)∥2F ] (26)

where ∆ ≥ f(x(0))−minx f(x).
We next turn to bound the consensus error E[∥Πx(k)∥2F ], which relies on the following recursion

bound of consensus errors.

Lemma 10 (RECURSION OF CONSENSUS ERROR) Under Assumption 1, 2, 3, denoting ρ ≜ βR,
it holds for 0 < γ ≤ 1−ρ2

24(1+ρ2)L
that

E[∥Πx(k+1)∥2F ] ≤
2ρ2

1 + ρ2
E[∥Πx(k)∥2F ] +

2γ2ρ2

1− ρ2
E[∥Πh(k)∥2F ]

E[∥Πh(k+1)∥2F ] ≤
36ρ2L2

1− ρ2
E[∥Πx(k)∥2F ] +

2ρ2

1 + ρ2
E[∥Πh(k)∥2F ] +

12nγ2ρ2L2

1− ρ2
E[∥ḡ(k)∥2] + 6n

σ2

R
.
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Proof Multiplying Π to the left side of (23) and (24), we have

Πx(k+1) = ΠW
(2k)
R (x(k+1) − γh(k)), (27)

Πh(k+1) = ΠW
(2k+1)
R (h(k) + g̃(k+1) − g̃(k)). (28)

Therefore, following (27), by using ∥ΠW
(2k)
R a∥F ≤ ρ∥Πa∥F for any a ∈ Rn×n and −⟨a,b⟩ ≤

1−ρ2

1+ρ2
∥a∥2F + 1+ρ2

1−ρ2
∥b∥2F for any a,b ∈ Rn×n, we have

∥Πx(k+1)∥2F =∥ΠW
(2k)
R x(k)∥2F − 2γ⟨ΠW(2k)

R x(k),ΠW
(2k)
R h(k)⟩F + γ2∥ΠW(2k)

R h(k)∥2F

≤ρ2∥Πx(k)∥2F +
ρ2(1− ρ2)

1 + ρ2
∥Πx(k)∥2F +

γ2ρ2(1 + ρ2)

1− ρ2
∥Πh(k)∥2F + γ2ρ2∥Πh(k)∥2F

=
2ρ2

1 + ρ2
∥Πx(k)∥2F +

2γ2ρ2

1− ρ2
∥Πh(k)∥2F .

Following (28), we can bound ∥Πh(k+1)∥2F as follows:

E[∥Πh(k+1)∥2F ] =E[∥ΠW
(2k+1)
R h(k)∥2F ] + 2E[⟨ΠW

(2k+1)
R h(k),ΠW

(2k+1)
R (g̃(k+1) − g̃(k))⟩F ]

+ E[∥ΠW
(2k+1)
R (g̃(k+1) − g̃(k))∥2F ]

≤ρ2E[∥Πh(k)∥2F ] + 2E[⟨ΠW
(2k+1)
R h(k),ΠW

(2k+1)
R (∇f(x(k+1))− g̃(k))⟩F ]

+ ρ2E[∥Π(g̃(k+1) − g̃(k))∥2F ]

=ρ2E[∥Πh(k)∥2F ] + 2E[⟨ΠW
(2k+1)
R h(k),ΠW

(2k+1)
R (∇f(x(k))− g̃(k))⟩F ]

+ 2E[⟨ΠW
(2k+1)
R h(k),ΠW

(2k+1)
R (∇f(x(k+1))−∇f(x(k)))⟩F ]

+ ρ2E[∥g̃(k+1) − g̃(k)∥2F ] (29)

where the inequality follows ∥ΠW
(2k)
R a∥F ≤ ρ∥Πa∥F ≤ ρ∥a∥F and E[g̃(k+1) | h(k), g̃(k)] =

∇f(x(k+1)). We next bound the terms in (29) one by one. By using the similar derivation to [40,
Lemma 5], we can easily reach

E[∥g̃(k+1) − g̃(k)∥2F ] =E[∥∇f(x(k+1))− g̃(k)∥2F ] + E[∥g̃(k+1) −∇f(x(k+1))∥2F ]

≤2E[∥∇f(x(k+1))−∇f(x(k))∥2F ] + 2E[∥∇f(x(k))− g̃(k)∥2F ] +
nσ2

R

≤2L2E[∥x(k+1) − x(k)∥2F ] +
3nσ2

R
(30)

and

E[∥x(k+1) − x(k)∥2F ] ≤3E[∥Πx(k+1)∥2F ] + 3E[∥Πx(k)∥2F ] + 3E[∥x̄(k+1) − x̄(k)∥2F ]

≤3E[∥Πx(k+1)∥2F ] + 3E[∥Πx(k)∥2F ] + 3γ2E[∥g̃(k)∥2F ]

≤9E[∥Πx(k)∥2F ] + 6γ2ρ2E[∥Πh(k)∥2F ] + 3nγ2E[∥ḡ(k)∥2] + 3γ2σ2

R
(31)
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where we use x̄(k+1) − x̄(k) = −γg̃(k) and E[∥g̃(k)∥2F ] ≤ E[∥ḡ(k)∥2F ] + σ2/R = nE[∥ḡ(k)∥2] +
σ2/R. Combining (30) and (31) together, we reach

E[∥g̃(k+1) − g̃(k)∥2F ]

≤18L2E[∥Πx(k)∥2F ] + 12γ2ρ2L2E[∥Πh(k)∥2F ] + 6nγ2L2E[∥ḡ(k)∥2] + (3n+ 6nγ2L2)
σ2

R
. (32)

We next turn to bound E[⟨ΠW(2k+1)
R h(k),ΠW

(2k+1)
R (∇f(x(k))− g̃(k))⟩F ] in (29). For any k ≥ 1,

since h(k) = W
(2k−1)R
R (h(k−1) + g̃(k) − g̃(k−1)), E[∇f(x(k)) − g̃(k) | h(k−1), g̃(k−1)] = 0, we

reach

E[⟨ΠW(2k+1)
R h(k),ΠW

(2k+1)
R (∇f(x(k))− g̃(k))⟩F ]

=E[⟨ΠW(2k+1)
R W

(2k−1)
R g̃(k),ΠW

(2k+1)
R (∇f(x(k))− g̃(k))⟩F ]

=E[⟨ΠW(2k+1)
R W

(2k−1)
R (g̃(k) −∇f(x(k))),ΠW

(2k+1)
R (∇f(x(k))− g̃(k))⟩F ].

Since∥∥∥∥(ΠW
(2k+1)
R W

(2k−1)
R

)⊤
ΠW

(2k+1)
R

∥∥∥∥
2

=

∥∥∥∥(W(2k+1)
R W

(2k−1)
R

)⊤
W

(2k+1)
R − 1

n
1n1

⊤
n

∥∥∥∥
2

≤ ρ3,

we further have

E[⟨ΠW
(2k+1)
R h(k),ΠW

(2k+1)
R (∇f(x(k))− g̃(k))⟩F ] ≤ E[∥∇f(x(k))− g̃(k)∥2F ] ≤

nρ2σ2

R
. (33)

It is easy to see that (33) also holds for k = 0. We finally bound the last term
E[⟨ΠW

(2k+1)
R h(k),ΠW

(2k+1)
R (∇f(x(k+1)) − ∇f(x(k)))⟩F ] in (29). Since ∥ΠW

(2k+1)
R a∥F ≤

ρ∥a∥F for any a ∈ Rn×d, we have

E[⟨ΠW
(2k+1)
R h(k),ΠW

(2k+1)
R (∇f(x(k+1))−∇f(x(k)))⟩F ] ≤ ρ2LE[∥Πh(k)∥F ∥x(k+1) − x(k)∥F ]

≤ρ2LE
[
∥Πh(k)∥F

(
∥Πx(k+1)∥F + ∥Πx(k)∥F + ∥x̄(k+1) − x̄(k)∥F

)]
≤ρ2LE

[
∥Πh(k)∥F

(
2∥Πx(k)∥F + γρ∥Πhk∥F + γ∥g̃(k)∥F

)]
(34)

where we us ∥Πx(k+1)∥F ≤ ρ∥Πx(k)∥F + γρ∥Πh(k)∥F and x̄(k+1) − x̄(k) = −γg̃(k) in the last
inequality. By Young’s inequality, we have for any η1, η2 > 0 that

E[ρ∥Πh(k)∥FγρL∥g̃
(k)∥F ]

≤0.5η1ρ
2E[∥Πh(k)∥2F ] + 0.5η−1

1 γ2ρ2L2E[∥g̃(k)∥2F ]

≤0.5η1ρ
2E[∥Πh(k)∥2F ] + 0.5η−1

1 γ2ρ2L2nE[∥ḡ(k)∥2] + 0.5η−1
1 γ2ρ2L2σ

2

R
(35)

and

2E[ρ∥Πh(k)∥FρL∥Πx(k)∥F ] ≤η2ρ2E[∥Πh(k)∥] + η−1
2 ρ2L2E[∥Πx(k)∥F ]. (36)
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Plugging (35) and (36) into (34), we have

E[⟨ΠW
(2k+1)
R h(k),ΠW

(2k+1)
R (∇f(x(k+1))−∇f(x(k)))⟩F ]

≤ρ2(γρL+ 0.5η1 + η2)E[∥Πh(k)∥2F ] + η−1
2 ρ2L2E[∥Πx(k)∥2F ]

+ 0.5η−1
1 γ2ρ2L2nE[∥ḡ(k)∥2] + 0.5η−1

1 γ2ρ2L2σ
2

R
. (37)

Plugging (32), (33), and (37) into (29), we reach

E[∥Πh(k+1)∥2F ] ≤ρ2(1 + 12γ2ρ2L2 + 2γρL+ η1 + 2η2)E[∥Πh(k)∥2F ]
+ ρ2L2(18 + 2η−1

2 )E[∥Πx(k)∥2F

+ nγ2ρ2L2(6 + η−1
1 )E[∥ḡ(k)∥2] + (5ρ2n+ 2nγ2ρ2L2 + η−1

1 γ2ρ2L2)
σ2

R
.

(38)

Letting η1 =
2(1−ρ2)
9(1+ρ2)

and η2 = 1−ρ2

9(1+ρ2)
, then it holds for any 0 ≤ γ ≤ 1−ρ2

24(1+ρ2)L
that

ρ2(1 + 12γ2ρ2L2 + 2γρL+ η1 + 2η2) ≤
2ρ2

1 + ρ2

ρ2L2(18 + 2η−1
2 ) ≤ 36ρ2L2

1− ρ2

nγ2ρ2L2(6 + η−1
1 ) ≤ 12nγ2ρ2L2

1− ρ2

5ρ2n+ 2nγ2ρ2L2 + η−1
1 γ2ρ2L2 ≤ 6n,

which, combined with (38), leads to the conclusion.

Letting ak ≜ [ 1nE[∥Πx(k)∥2F ],
1

nL2E[∥Πh(k)∥2F ]]⊤ ∈ R2, bk ≜ [0, 12γ
2ρ2

1−ρ2
E[∥ḡ(k)∥2F ]+

6σ2

RL2 ]
⊤ ∈

R2 for any k ≥ 0, and

M ≜

[
2ρ2

1+ρ2
2γ2ρ2L2

1−ρ2

36ρ2

1−ρ2
2ρ2

1+ρ2

]
,

by Lemma 10, it holds that
ak+1 ⪯Mak + bk

where ⪯ indicates entry-wise inequality. Since γ ≤ (1−ρ2)2

9ρ2(1+ρ2)L
, one can check that there exists

v1, v2 ≥ 0 such that M [v1, v2]
⊤ ≺ [v1, v2]

⊤. Therefore, by [40, Lemma 9], we have for any k ≥ 0
that

k∑
ℓ=0

M ℓ ⪯ (I2×2 −M)−1 ⪯

[
9(1+ρ2)
1−ρ2

18γ2ρ2(1+ρ2)2L2

(1−ρ2)3

324ρ2(1+ρ2)2

(1−ρ2)3
9(1+ρ2)
1−ρ2

]
.
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Therefore, we reach

K∑
k=0

ak ⪯
K∑
k=0

(
Mka0 +

k−1∑
ℓ=0

M ℓbk−1−ℓ

)

⪯
∞∑
k=0

Mk

(
a0 +

K−1∑
k=0

bk

)

⪯(I2×2 −M)−1

(
a0 +

K−1∑
k=0

bk

)
.

Since a(0) = 0 by our initialization, considering the first entry of the above, we have

L2

n(K + 1)

K∑
k=0

E[∥Πx(k)∥2F ] ≤
216γ4ρ4(1 + ρ2)2L4

(1− ρ2)4(K + 1)

K∑
k=0

E[∥ḡ(k)∥2F ] +
108γ2ρ2(1 + ρ2)2L2σ2

(1− ρ2)3R
.

(39)
When γ ≤ 1−ρ2

5ρ
√

1+ρ2L
,

216γ4ρ4(1 + ρ2)2L4

(1− ρ2)4(K + 1)
≤ 1

2(K + 1)
.

Hence, plugging (39) into (26) yields

1

K + 1

K∑
k=0

E[∥∇f(x̄(k))∥2] ≤ 2∆

γ(K + 1)
+
γLσ2

nR
+

108γ2ρ2(1 + ρ2)2L2σ2

(1− ρ2)3R
.

Plugging

γ =min

{
1

2L
,

1− ρ2

24(1 + ρ2)L
,

(1− ρ2)2

9ρ2(1 + ρ2)L
,

1− ρ2

5ρ
√
1 + ρ2L

,

(
(1− ρ2)3R∆

108ρ2(1 + ρ2)2L2σ2(K + 1)

) 1
3

}
(40)

=Θ

(
min

{
1− ρ

L
,
(1− ρ)2

ρ2L
,

(
(1− ρ)3R2∆

ρ2L2σ2T

) 1
3

})
and T = KR into the above, we reach

1

K + 1

K∑
k=0

E[∥∇f(x̄(k))∥2] = O

((
∆Lσ2

nT

) 1
2

+
R∆L

T
+

(
ρ2∆2L2Rσ2

(1− ρ)3T 2

) 1
3

+
ρ2R∆L

T (1− ρ)2

)
.

Furthermore, if one set

R =
1

1− β
max

{
ln(2), ln

(
n

3
4L

1
4∆

1
4

T
1
4 (1− β)

1
2σ

1
2

)}
= Õ

(
1

1− β

)
, (41)

so that

ρ = βR ≤ e−(1−β)R ≤ min

{
1

2
,
T

1
4 (1− β)

1
2σ

1
2

n
3
4L

1
4∆

1
4

}
,
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then we obtain

1

K + 1

K∑
k=0

E[∥∇f(x̄(k))∥2] = Õ

((
∆Lσ2

nT

) 1
2

+
∆L

T (1− β)

)
.
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