
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

Why (and When) does Local SGD Generalize Better than SGD?

Xinran Gu* GXR21@MAILS.TSINGHUA.EDU.CN

IIIS, Tsinghua University, China
Kaifeng Lyu* KLYU@CS.PRINCETON.EDU

Department of Computer Science, Princeton University, USA
Longbo Huang† LONGBOHUANG@TSINGHUA.EDU.CN

IIIS, Tsinghua University, China
Sanjeev Arora † ARORA@CS.PRINCETON.EDU

Department of Computer Science, Princeton University, USA

Abstract
Local SGD is a communication-efficient variant of SGD for large-scale training, where multiple
GPUs perform SGD independently and average the model parameters periodically. It has been
recently observed that Local SGD can not only achieve the design goal of reducing the commu-
nication overhead but also lead to higher test accuracy than the corresponding SGD baseline [39],
though the training regimes for this to happen are still in debate [47]. This paper aims to understand
why (and when) Local SGD generalizes better based on Stochastic Differential Equation (SDE) ap-
proximation. The main contributions of this paper include (i) the derivation of an SDE that captures
the long-term behavior of Local SGD with a small learning rate, after approaching the manifold of
minima, (ii) a comparison between the SDEs of Local SGD and SGD, showing that Local SGD
induces a stronger drift term that can result in a stronger effect of regularization, e.g., a faster re-
duction of sharpness, and (iii) empirical evidence validating that having small learning rate and
long enough training time enables the generalization improvement over SGD but removing either
of the two conditions leads to no improvement.

1. Introduction

Recent advances suggest that the ultimate performance of deep learning on test sets can be dras-
tically improved by scaling up the dataset and increasing the model size, but this requires more
computation. In response, recent works [15, 24, 65] seek to speed up standard training methods by
exploiting data parallelism in a distributed computing setting and most works focus on improving
Stochastic Gradient Descent (SGD).

SGD tries to solve problems of the form minθ∈Rd Eξ∼D̃[ℓ(θ; ξ)], where θ ∈ Rd is the parameter
vector of the model, ℓ(θ; ξ) is the loss function for a data sample ξ drawn from the training distribu-
tion D̃, e.g., the uniform distribution over the training set. SGD with learning rate η and batch size
B does the following update at each step, using a batch of B independent ξt,1, . . . , ξt,B ∼ D̃:

θt+1 ← θt − ηgt, where gt =
1

B

B∑
i=1

∇ℓ(θt; ξt,i). (1)

Parallel SGD tries to improve efficiency by distributing the gradient computation toK ≥ 2 workers,
each of whom focuses on a local batch ofBloc := B/K samples and computes the average gradient
over the local batch. Finally, gt is obtained by averaging the local gradients over the K workers.
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(a) CIFAR-10, B = 4096, ResNet-56.
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(b) ImageNet, B = 8192, ResNet-50.

Figure 1: Post-Local SGD (H > 1) generalizes better than SGD (H = 1). We switch to Local
SGD at the first learning rate decay (epoch 250) for CIFAR-10 and at the second learning
rate decay (epoch 100) for ImageNet. See Appendix L.1 for training details.

In the ideal case where the batch sizeB is large enough, the speedup of parallel SGD over single-
machine SGD (in terms of wall-clock time) can be linear in the number of workers K. However,
large-batch training leads to a significant test accuracy drop compared to a small-batch training
baseline with the same number of training steps or epochs [23, 27, 53, 55], which probably stems
from a low level of gradient noise (see Appendix A for discussion).

A variant of SGD, called Local SGD [61, 67, 69] has been recently observed to help resolve the
generalization degradation in certain regimes of large-batch training. Perhaps surprisingly, Local
SGD is not designed for better generalization, but for reducing the high communication cost, another
important issue that bottlenecks large-batch training [5, 50, 52, 58].

Instead of averaging the local gradients per step as in parallel SGD, Local SGD averages the
local model parameters on the K workers whenever they finish H local steps of SGD (reducing
the communication by a factor H). Formally, Local SGD proceeds in multiple rounds of model
averaging, where each round produces a global iterate θ̄(s). In the (s + 1)-th round, every worker
k ∈ [K] starts with its local copy of the global iterate θ

(s)
k,0 ← θ̄(s) and does H steps of SGD with

local batches. The k-th worker at its t-th local step draws a local batch ofBloc := B/K independent
samples ξ(s)k,t,1, . . . , ξ

(s)
k,t,Bloc

from a shared training distribution D̃ and updates as follows:

θ
(s)
k,t+1 ← θ

(s)
k,t − ηg

(s)
k,t , where g

(s)
k,t =

1

Bloc

Bloc∑
i=1

∇ℓ(θt; ξ(s)k,t,i), t = 0, . . . ,H − 1. (2)

After finishing the H local steps, the workers aggregate the resulting local iterates θ(s)
k,H and assign

the average to the next global iterate: θ̄(s+1) ← 1
K

∑K
k=1 θ

(s)
k,H .

Lin et al. [39] discovered that Local SGD can be used as a strong component to improve gen-
eralization in large-batch training. They proposed Post-local SGD, a hybrid method that starts with
parallel SGD (equivalent to Local SGD with H = 1 in math) and switches to Local SGD with
H > 1 after a fixed number of steps t0. Following a standard training procedure with momentum
and multiple learning rate decays, they showed through extensive CIFAR-10 [31] experiments that
Post-local SGD significantly outperforms parallel SGD in test accuracy, where t0 is carefully cho-
sen to be the time of the first learning rate decay. Ortiz et al. [47] conducted a large-scale empirical
study on ImageNet [51] but found that switching at the first learning rate decay can hurt general-
ization; instead, switching at a later time may improve validation accuracy. Our experiments on
CIFAR-10 and ImageNet (Figure 1) reproduce the generalization improvement of Post-local SGD.

The success of Post-local SGD suggests that Local SGD induces a generalization benefit if the
training starts from a model pre-trained by (parallel) SGD, though Local SGD is designed for a
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(a) CIFAR-10, start from random.
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(b) CIFAR-10, start from #250.
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(c) ImageNet, start from #100.
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(d) ImageNet, η1 = 3.2.
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(e) CIFAR-10, test acc v.s. H .
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(f ) ImageNet, test acc v.s. H .

Figure 2: Effect of η, H and training time. See Appendix L.2 for training details.

different purpose. The current paper tries to understand: Why does Local SGD generalize better?
Under what general conditions does this generalization benefit arise?

Previous theoretical research on Local SGD is mainly restricted to the convergence rate for
minimizing a convex or non-convex objective (see Appendix A for a survey), and the generalization
aspect of Local SGD is still unclear.
Our Contributions. In this paper, we provide the first theoretical understanding on why (and
when) switching from parallel SGD to Local SGD improves generalization.

1. We conduct ablation studies on CIFAR-10 and ImageNet and identify that small learning rate
and sufficient training time are two important factors that contribute to the generalization im-
provement of Local SGD over the corresponding (parallel) SGD baseline.

2. Inspired by a previous analysis of the long-term generalization benefit of SGD [37], we derive
an SDE for Local SGD that can track its long-term behavior with a novel proof.

3. We explain the generalization improvement of Local SGD over SGD through comparison with
the corresponding SDEs: increasing the number of local steps H strengthens the drift term of
SDE. We then connect the stronger drift term to a stronger implicit regularization effect.

2. When does Local SGD Generalize Better?

It is still in debate under what general conditions this generalization benefit arises; see Appendix B.1
for a review. In response, we focus on a simple yet insightful setup: the learning rate η is constant
with time, and we train SGD and Local SGD without additional tricks (e.g., without momentum).
We observed the generalization improvement of Local SGD over SGD even in this setting (Figure 1).
We further conduct ablation studies and identify that small learning rate and sufficient training
time are key factors that enable the improved generalization of Local SGD over its SGD counterpart.

Finding 2.1 Given a sufficiently small learning rate η and sufficiently long training time, Local
SGD exhibits better generalization than (parallel) SGD (with the same η,Bloc,K), if the number of
local steps H is tuned properly according to η. This holds for both training from random initializa-
tion and from SGD pre-trained models.

Our finding can help to settle the debate to a large extent; see Appendix B.3 for discussion.
Now we go through each point of our finding. (1). Pretraining is not necessary. In contrast to
previous works claiming the benefits of Post-local SGD over Local SGD [39, 47], we observe that
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Local SGD with random initialization also generalizes significantly better than SGD, as long as
η is small and the training time is sufficiently long (Figure 2(a)). (2). The learning rate should
be small. The learning rate is 0.32 for Figures 2(a) and 2(b) and is 0.16 for Figure 2(c). As
shown in Figure 2(d), Local SGD encounters optimization difficulty in the first phase when η is
large (e.g., η = 3.2), resulting in inferior final test accuracy. Even for training from a pre-trained
model, the generalization improvement of Local SGD disappears for large learning rates (e.g., η =
1.6 in Figure 3(d)). In contrast, Figure 3(c) shows that Local SGD achieves a comparable test
accuracy with a much smaller learning rate η = 0.064 (withH and the training budget set properly).
(3). Training time should be long enough. In Figures 2(b) and 2(c), we extend the training budget
for the Post-local SGD experiments in Section 1 and observe that a longer training time leads to
greater generalization improvement upon SGD. On the other hand, Local SGD generalizes worse
than SGD in the first few epochs of Figures 2(a) and 2(c); see Figures 3(a) and 3(b) for an enlarged
view. (4). The number of local steps H should be tuned carefully. The number of local steps H
has a complex interplay with the learning rate η, but generally speaking, the test accuracy first rises
as H increases, then it begins to fall when H is too large. A smaller η needs a higher H to achieve
consistent generalization improvement. See Figures 2(e) and 2(f ).

3. Theoretical Analysis of Local SGD: The Slow SDE
In this section, we use an SDE-based approach to establish the generalization benefit of Local SGD.
Below, we first identify the difficulty of adapting the conventional SDE framework to Local SGD.
Then, we present our new SDE and explain the generalization benefit.
Notations. We follow the notations in Section 1. We also define L(θ) := Eξ∼D̃[ℓ(θ; ξ)] as the
expected loss, Σ(θ) := Covξ∼D̃[∇ℓ(θ; ξ)] as the noise covariance of gradients at θ. Let {Wt}t≥0

denote the standard Wiener process. For a mapping F : Rd → Rd, denote by ∂F (θ) the Jaco-
bian at θ and ∂2F (θ) the second order derivative at θ. Furthermore, for any matrix M ∈ Rd×d,
∂2F (θ)[M ] =

∑
i∈[d]⟨∂

2Fi
∂θ2 ,M⟩ei where ei is the i-th vector of the standard basis. We write

∂2(∇L)(θ)[M ] as∇3L(θ)[M ] for short.

3.1. Difficulty of Adapting the SDE Framework to Local SGD
A widely-adopted approach to understanding the dynamics of SGD is to approximate it with the
following SDE (3), which we call the conventional SDE approximation. Below, we discuss why it
cannot be directly adopted to characterize the behavior of Local SGD.

dX(t) = −∇L(X)dt+
√

η
BΣ

1/2(X)dWt. (3)

It is proved by Li et al. [34] that this SDE is a first-order approximation to SGD, where each discrete
step corresponds to a continuous time interval of η. By Finding 2.1, it is tempting to consider the
limit η → 0 and see if Local SGD can also be modeled via a variant of the conventional SDE. In
this case the typical time length that guarantees a good SDE approximation error isO(η−1) discrete
steps [34, 36]. However, this time scaling is too short for the difference to appear between Local
SGD and SGD. We show in Theorem 9 that they closely track each other forO(η−1) steps. See also
Appendix D for Lin et al. [39]’s attempt to model Local SGD with multiple conventional SDEs and
for our discussion on why it does not give much insight.

3.2. SDE Approximation near the Minimizer Manifold
Inspired by a recent paper [37], our strategy to overcome the shortcomings of the conventional
SDE is to design a new SDE that can guarantee a good approximation for O(η−2) discrete steps.
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Following their setting, we assume the existence of a manifold Γ consisting only of local minimizers
and track the global iterate θ̄(s) around Γ after it takes Õ(η−1) steps to approach Γ.

Assumption 3.1 The loss function L(·) and the matrix square root of the covariance Σ1/2(·) are
C∞-smooth. Besides, we assume that ∥∇ℓ(θ; ξ)∥2 is bounded by a constant for all θ and ξ.

Assumption 3.2 Γ is a C∞-smooth, (d − m)-dimensional submanifold of Rd, where any ζ ∈ Γ
is a local minimizer of L. For all ζ ∈ Γ, rank(∇2L(ζ)) = m. Additionally, there exists an open
neighborhood of Γ, denoted as U , such that Γ = argminθ∈U L(θ).
Assumption 3.3 Γ is a compact manifold.

The existence of a minimizer manifold with rank(∇2L(ζ)) = m has also been made as a key
assumption in Fehrman et al. [11], Li et al. [37], Lyu et al. [40]. rank(∇2L(ζ)) = m ensures
that the Hessian is maximally non-degenerate on the manifold and implies that the tangent space at
ζ ∈ Γ equals the null space of∇2L(ζ).

Our SDE for Local SGD characterizes the training dynamics near Γ. For ease of presentation,
we define the following projection operators Φ, Pζ for points and differential forms.

Definition 1 (Gradient Flow Projection) Fix a point θnull /∈ Γ. For x ∈ Rd, consider the gradient
flow dx(t)

dt = −∇L(x(t)) with x(0) = x. We denote the gradient flow projection of x as Φ(x).
Φ(x) := limt→+∞ x(t) if the limit exists and belongs to Γ; otherwise, Φ(x) = θnull.

Definition 2 For any ζ ∈ Γ and any differential form AdWt + bdt in Itô calculus, where A
is a matrix and b is a vector, we use Pζ(AdWt + bdt) as a shorthand for the differential form
∂Φ(ζ)AdWt +

(
∂Φ(ζ)b+ 1

2∂
2Φ(ζ)[AA⊤]

)
dt.

Here Pζ equals Φ(ζ +AdWt + bdt)−Φ(ζ) by Itô calculus, which means ζ + Pζ(AdWt + bdt)
does not leave Γ. It can be shown that ∂Φ(ζ) equals the projection matrix onto the tangent space of
Γ at ζ. We decompose the noise covariance Σ(ζ) for ζ ∈ Γ into the tangent space part Σ∥(ζ) :=
∂Φ(ζ)Σ(ζ)∂Φ(ζ) and the rest part Σ♢(ζ) := Σ(ζ)−Σ∥(ζ). Now we are ready to state our SDE.

Definition 3 (Slow SDE for Local SGD) Given η,H > 0 and ζ0 ∈ Γ, define ζ(t) as the solution
of the following SDE with initial condition ζ(0) = ζ0:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion

− 1
2B∇3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸

(b) drift-I

−K−1
2B ∇3L(ζ)[Ψ̂(ζ)]dt︸ ︷︷ ︸

(c) drift-II

)
. (4)

Here Σ̂♢(ζ), Ψ̂(ζ) ∈ Rd×d are defined as

Σ̂♢(ζ) :=
∑

i,j:(λi ̸=0)∨(λj ̸=0)
1

λi+λj

〈
Σ♢(ζ),viv

⊤
j

〉
viv

⊤
j , (5)

Ψ̂(ζ) :=
∑

i,j:(λi ̸=0)∨(λj ̸=0)
ψ(ηH·(λi+λj))

λi+λj

〈
Σ♢(ζ),viv

⊤
j

〉
viv

⊤
j , (6)

where {vi}di=1 is a set of eigenvectors of∇2L(ζ) that forms an orthonormal eigenbasis, λ1, . . . , λd
are the corresponding eigenvalues. Additionally, ψ(0) = 0 and ψ(x) := e−x−1+x

x for x ̸= 0.

The use of Pζ keeps ζ(t) on Γ through projection. Σ
1/2
∥ (ζ) introduces a diffusion term to the

SDE in the tangent space. The two drift terms involve Σ̂♢(·) and Ψ̂(·), which can be intuitively
understood as rescaling the entries of the noise covariance in the eigenbasis of Hessian. In the
special case where ∇2L = diag(λ1, · · · , λd) ∈ Rd×d, we have Σ̂♢,i,j = 1

λi+λj
Σ0,i,j . Ψ̂i,j =

ψ(ηH(λi+λj))
λi+λj

Σ0,i,j . ψ(x) increases from 0 to 1 as x goes from 0 to infinity (see Figure 7)
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We name this SDE as the Slow SDE for Local SGD because we will show that each discrete
step of Local SGD corresponds to a continuous time interval of η2 instead of an interval of η in
the conventional SDE. This Slow SDE is inspired by Li et al. [37]. Under nearly the same set of
assumptions, they proved that SGD can be tracked by an SDE that is essentially equivalent to (4)
with K = 1, namely, without the drift-II term:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dW (t)︸ ︷︷ ︸

(a) diffusion

− 1
2B∇3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸

(b) drift-I

)
. (7)

We refer to (7) as the Slow SDE for SGD. We remark that the drfit-II term in (4) is novel and is the
key to separate the generalization behaviors of Local SGD and SGD in theory. We will discuss this
point later in Section 3.3. Now we present our SDE approximation theorem for Local SGD.
Theorem 4 Let Assumptions 3.1 to 3.3 hold. Let T > 0 be a constant and ζ(t) be the solution
to (4) with the initial condition ζ(0) = Φ(θ̄(0)) ∈ Γ. If H is set to α

η for some constant α > 0,

then for any C3-smooth function g(θ), max0≤s≤ T
Hη2

∣∣E[g(Φ(θ̄(s))]− E[g(ζ(sHη2)]
∣∣ = Õ(η0.25),

where Õ(·) hides log factors and constants that are independent of η but can depend on g(θ).

Theorem 5 For δ = O(poly(η)), with probability at least 1 − δ, it holds for all O( 1α log 1
η ) ≤

s ≤ T
αη that Φ(θ̄(s)) ∈ Γ and ∥θ̄(s) − Φ(θ̄(s))∥2 = O(

√
αη log α

ηδ ), where O(·) hides constants

independent of η, α and δ.

Theorem 4 suggests that the trajectories of the manifold projection and the solution to the Slow
SDE (4) are close to each other in the weak approximation sense. Theorem 5 further states that the
iterate θ̄(s) keeps close to its manifold projection after the first few rounds.
Remark 6 To connect to Finding 2.1, we remark that our theorems (1) do not require the model to
be pre-trained (as long as the gradient flow starting with θ(0) can converge to Γ); (2) give better
bounds for smaller η; (3) characterize a long training horizon ∼ η−2. The need for tuning H will
be discussed in Remark 8.

3.3. Interpretation of the Slow SDEs
In this subsection, we compare the Slow SDEs for SGD and Local SGD and provide an important
insight into why Local SGD generalizes better than SGD: Local SGD strengthens the drift term in
the Slow SDE which makes the implicit regularization of stochastic gradient noise more effective.
Interpretation of the Slow SDE for SGD. The Slow SDE for SGD (7) consists of the diffusion
and drift-I terms. The former injects noise into the dynamics; the latter one drives the dynam-
ics to move along the negative gradient of 1

2B ⟨∇2L(ζ), Σ̂♢(ζ)⟩ projected onto the tangent space,
but ignoring the dependency of Σ̂♢(ζ) on ζ. This can be connected to the class of semi-gradient
methods which only computes a part of the gradient [4, 45, 60]. In this view, the long-term be-
havior of SGD is similar to a stochastic semi-gradient method minimizing the implicit regularizer
1
2B ⟨∇2L(ζ), Σ̂♢(ζ)⟩ on Γ. This argument reveals that SGD has a deterministic trend toward the
region with a smaller magnitude of Hessian, which is commonly believed to correlate with better
generalization [19, 25, 27, 46]. In contrast, the diffusion term can be regarded as a random per-
turbation to this trend, which can impede optimization when the drift-I term is not strong enough.
Based on this view, we conjecture that strengthening the drift term of the Slow SDE can help SGD
to better regularize the model, yielding a better generalization performance. More specifically, we
propose the following hypothesis, which compares the generalization performances of the following
generalized Slow SDEs. Note that ( 1

B ,
1
2B )-Slow SDE corresponds to the Slow SDE for SGD (7).

6
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Definition 7 For κ1, κ2 ≥ 0, define (κ1, κ2)-Slow SDE to be the following:
dζ(t) = Pζ

(√
κ1Σ

1/2
∥ (ζ)dW (t)− κ2∇3L(ζ)[Σ̂♢(ζ)]dt

)
. (8)

Hypothesis 3.1 Starting at a minimizer ζ0 ∈ Γ, run (κ1, κ2)-Slow SDE and (κ1, κ
′
2)-Slow SDE

respectively for the same amount of time T > 0 and obtain ζ(T ), ζ′(T ). If κ2 > κ′2, then the
expected test accuracy at ζ(T ) is better than that at ζ′(T ).
One motivating example is SGD with label noise regularization. In this case, the Slow SDE for
SGD turns out as a simple gradient flow on Γ aimed at minimizing tr(∇2L), and larger drift term
means flatter minima; see Appendix E. Due to the No Free Lunch Theorem, we do not claim that
our hypothesis is always true, but we do believe that the hypothesis holds when training usual neural
networks (e.g., ResNets, VGGNets) on standard benchmarks (e.g., CIFAR-10, ImageNet).
Local SGD Strengthens the Drift Term in Slow SDE. Our hypothesis can help us understand
why Local SGD generalizes better than SGD. The Slow SDE for Local SGD (4) has an additional
drfit-II term. Similarly, this term has the effect of driving the dynamics to move along the negative
semi-gradient of K−1

2B ⟨∇2L(ζ), Ψ̂(ζ)⟩ (with the dependency of Ψ̂(ζ) on ζ ignored). Combining
it with the implicit regularizer induced by the drift-I term, we can see that the long-term behavior
of Local SGD is similar to a stochastic semi-gradient method minimizing the implicit regularizer
1
2B ⟨∇2L(ζ), Σ̂♢(ζ)⟩+ K−1

2B ⟨∇2L(ζ), Ψ̂(ζ)⟩ on the minimizer manifold of the original loss L.
Ψ̂(ζ) is basically a rescaling of the entries of Σ̂⋄(ζ) in the eigenbasis of Hessian, where the

rescaling factor ψ(ηH · (λi + λj)) is between 0 and 1 (see Figure 7 for the plot of ψ). When ηH
is small, the rescaling factors should be close to 0, then Ψ̂(ζ) ≈ 0, leading to almost no additional
regularization. On the other hand, when ηH is large, the rescaling factors should be close to 1, then
Ψ̂(ζ) ≈ Σ̂⋄(ζ). We can then merge the two implicit regularizers to be K

2B ⟨∇2L(ζ), Σ̂♢(ζ)⟩. The
corresponding Slow SDE is approximately the ( 1

B ,
K
2B )-Slow SDE, which is restated below:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dW (t)− K

2B∇3L(ζ)[Σ̂♢(ζ)]dt
)
. (9)

Comparing the ( 1
B ,

1
2B )-Slow SDE for SGD (7) and the ( 1

B ,
K
2B )-Slow SDE above (9), the difference

is that the drift term is amplified by K times. According to our hypothesis, we can then attribute the
generalization improvement of Local SGD to the amplified drift term.

Since the Slow SDE of Local SGD is better approximated by the ( 1
B ,

K
2B )-Slow SDE above (9)

when Hη increases, our hypothesis also implies that we should increase H when decreasing η
to experience the similar generalization benefit, which is consistent with our empirical finding in
Section 2 that the optimal H for generalization increases as η decreases (Figures 2(e) and 2(f )).
Remark 8 When η is small but finite, tuning H offers a trade-off between regularization strength
and SDE approximation quality. Larger α := ηH makes the regularization stronger in the SDE, but
the SDE itself may lose track of Local SGD, which can be seen from the error bound in Theorem 5.
This matches our finding that tuning H is important for better generalization (Finding 2.1).
Prediction: Increasing the number of workers helps generalization. In addition to strengthen-
ing the drift term of the Slow SDE for SGD, another way to help the corresponding semi-gradient
method to optimize the implicit regularizer is to reduce the diffusion term. We conduct experi-
ments where we keep H and η fixed and gradually increase the number of workers K to reduce the
diffusion term. As shown in Figure 6, a higher test accuracy is achieved for larger K.

4. Conclusions
In this paper, we provide a theoretical analysis for Local SGD that captures its long-term gener-
alization benefit in the small learning rate regime. We derive the Slow SDE for Local SGD as a
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generalization of the Slow SDE for SGD [37], and attribute the generalization improvement over
SGD to the larger drift term in the SDE for Local SGD. Our empirical validation show that Local
SGD indeed induces generalization benefits with small learning rate and long enough training time.
The main limitation of our work is that our analysis does not imply any direct theoretical separation
between SGD and Local SGD in terms of test accuracy, which requires a much deeper understand-
ing of loss landscape and the Slow SDEs and is left for future work. Another future work direction
is to design a distributed training method that provably generalizes better than SGD based on the
insights from Slow SDEs.
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Appendix A. Additional Related Works

Optimization Aspect of Local SGD. Local SGD is a communication-efficient variant of parallel
SGD, where multiple workers perform SGD independently and average the model parameters pe-
riodically. Dating back to Mann et al. [43] and Zinkevich et al. [71], this strategy has been widely
adopted to reduce the communication cost and speed up training in both scenarios of data center
distributed training [6, 48, 59, 68] and Federated Learning [26, 44]. To further accelerate train-
ing, Wang and Joshi [61] and Haddadpour et al. [16] proposed adaptive schemes for the averaging
frequency, and Basu et al. [1] combined Local SGD with gradient compression. Motivated to the-
oretically understand the empirical success of Local SGD, a lot of researchers [14, 28, 57, 62, 67]
analyzed the convergence rate of Local SGD under various settings, e.g., convex/non-convex ob-
jective functions. The error bound of Local SGD obtained by these works is typically inferior to
that of SGD for fixed number of iterations/epochs and becomes worse as the number of local steps
increases, revealing a trade-off between less communication and better optimization. In this pa-
per, we are interested in the generalization aspect of Local SGD, assuming the training loss can be
optimized to a small value.
Gradient noise and generalization. The effect of stochastic gradient noise on generalization
has been studied from different aspects, e.g., changing the order of learning different patterns Li
et al. [34], inducing an implicit regularizer in the second-order SDE approximation Li et al. [34],
Smith et al. [56]. Our work follows a line of works studying the effect of noise in the lens of
sharpness, which is long believed to be related to generalization Hochreiter and Schmidhuber [19],
Neyshabur et al. [46]. Keskar et al. [27] empirically observed that large-batch training leads to worse
generalization and sharper minima than small-batch training. Hu et al. [21], Ma and Ying [41], Wu
et al. [63] showed that gradient noise destabilizes the training around sharp minima, and Ibayashi
and Imaizumi [22], Kleinberg et al. [29], Xie et al. [64], Zhu et al. [70] quantitatively characterized
how SGD escapes sharp minima. The most related papers are Blanc et al. [3], Damian et al. [7], Li
et al. [37], which focus on the training dynamics near a manifold of minima and study the effect of
noise on sharpness (see also Section 3.2). Though the mathematical definition of sharpness may be
vulnerable to the various symmetries in deep neural nets [8], sharpness still appears to be one of the
most promising tools for predicting generalization [13, 25].
Improving generalization in large-batch training. The generalization issue of the large-batch
(or full-batch) training has been observed as early as [2, 33]. As mentioned in Section 1, the gen-
eralization issue of large-batch training could be due to the lack of a sufficient amount of stochastic
noise. To make up the noise in large-batch training, Goyal et al. [15], Krizhevsky [30] empirically
discovered the Linear Scaling Rule for SGD, which suggests enlarging the learning rate propor-
tionally to the batch size. Jastrzębski et al. [23] adopted an SDE-based analysis to justify that this
scaling rule indeed retains the same amount of noise as small-batch training (see also Section 3.1).
However, the SDE approximation may fail if the learning rate is too large [36], especially in the
early phase of training before the first learning rate decay [55]. Shallue et al. [53] demonstrated that
generalization gap between small- and large-batch training can also depend on many other training
hyperparameters. Besides enlarging learning rate, other approaches have also been proposed to re-
duce the gap, including training longer [20], learning rate warmup [15], LARS [65], LAMB [66].
In this paper, we focus on using Local SGD to improve generalization, but adding local steps is a
generic training trick that can also be combined with others, e.g., Local LARS [39], Local Extrap-
SGD [38].
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Appendix B. Supplementary for Section 2

B.1. The Debate on Local SGD

In this section, we summarize a debate in the literature regarding when to switch the training mode in
Post-local SGD. As Post-local SGD can be viewed as running Local SGD from an SGD-pretrained
model, the discussion around the time point for switching can reveal some information about the
conditions for Local SGD to generalize better.
Local SGD generalizes better than SGD on CIFAR-10. Lin et al. [39] empirically observed that
Post-local SGD exhibits a better generalization performance than SGD. Most of their experiments
are conducted on CIFAR-10 and CIFAR-100 with multiple learning rate decay, and the algorithm
switches from (parallel) SGD to Local SGD right after the first learning rate decay. We refer to
this particular choice of the switching time point as the first-decay switching strategy for short.
To justify this strategy, they empirically showed that the generalization improvement can be less
significant if starting Local SGD from the beginning or right after the second learning rate decay.
It has also been observed by Wang and Joshi [62] that running Local SGD from the beginning
improves generalization, but the test accuracy improvement may not be large enough. A subsequent
work by Lin et al. [38] showed that adding local steps to Extrap-SGD, a variant of SGD proposed
therein, after the first learning rate decay also improves generalization, suggesting that the first-
decay switching strategy can also be applied to the post-local variant of other optimizers.
Does Local SGD exhibit the same generalization benefit on large-scale datasets? Going be-
yond CIFAR-10, Lin et al. [39] conducted a few ImageNet experiments and showed that Post-local
SGD with first-decay switching strategy still leads to better generalization than SGD. However, the
improvement is sometimes marginal, e.g., 0.1% for batch size 8192. For the general case, Lin et al.
[39] suggested that the time of switching should be tuned aiming at “capturing the time when trajec-
tory starts to get into the influence basin of a local minimum” in a footnote, but no further discussion
or experiments are provided to justify this guideline. Ortiz et al. [47] conducted a more extensive
evaluation on ImageNet (with a different set of hyperparameters) and concluded with the opposite:
the first-decay switching strategy can hurt the validation accuracy. Instead, switching at a later time,
such as the second learning rate decay, leads to a better validation accuracy than SGD.1 To explain
this phenomenon, they conjecture that switching to Local SGD has a regularization effect that is
beneficial only in the short-term, so it is always better to switch as late as possible. They further
conjecture that this discrepancy between CIFAR-10 and ImageNet is mainly due to the task scale.
On TinyImageNet, which is a spatially downscaled subset of ImageNet, the first-decay switching
strategy indeed leads to better validation accuracy.

B.2. Additional Experimental Results for Section 2

In Figure 3, we present additional experimental results for Section 2 to further verify our finding.
Specifically, in Figure 3, (a) and (b) are enlarged views for Figure 2 (a) and (c) respectively, showing
that Local SGD can generalize worse than SGD in the first few epochs. (c) shows that Local SGD
can still chieve comparable test accuracy when we use a much smaller learning rate (e.g., η = 0.064)
on the condition that H and the training budget are set properly. (d) presents the case where, with
a large learning rate, the generalization improvement of Local SGD disappears even starting from

1. This generalization improvement is not mentioned explicitly in [47] but can be clearly seen from Figures 7 and 8 in
their paper.
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a pre-trained model. In (e), the generalization benefit of Local SGD with H = 24 becomes less
significant after the learning rate decay at epoch 226, which is consistent with the observation by
Ortiz et al. [47] that the generalization benefit of Local SGD usually disappears after the learning
rate decay. But we can preserve the improvement by increasing H to 900. Here, we use Local SGD
with momentum. We refer the readers to Appendix L.2 for training details.
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(a) CIFAR-10, start from random.
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(c) CIFAR-10, start from #250.
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(e) CIFAR-10, start from #150.

Figure 3: Additional experimental results about the effect of learning rate, training time and the
number of local steps.

B.3. Reconciling previous works

Our finding can help to settle the debate presented in Appendix B.1 to a large extent. Simultaneously
requiring a small learning rate and sufficient training time poses a trade-off when learning rate decay
is used with a limited training budget: switching to Local SGD earlier may lead to a large learning
rate, while switching later may result in insufficient training time. It is thus unsurprising that first-
decay switching strategy is not always the best when the dataset and learning rate schedule change.

The need for sufficient training time does not contradict with Ortiz et al. [47]’s conjecture that
Local SGD only has a “short-term” generalization benefit. In their experiments, the generalization
improvement usually disappears right after the next learning rate decay (instead of after a fixed
amount of time). We suspect that the real reason why the improvement vanishes is that the number
of local steps H was kept as a constant, but our finding suggests to tune H after η changes. In
Figure 3 (e), we reproduce this phenomenon and show that increasing H after learning rate decay
retains the improvement.

Appendix C. Accuracy and Loss on the Training Set

This section visualizes the accuracy and loss on the training set for CIFAR-10 experiments in Fig-
ures 1, 2 and 3. The accuracy and loss on the training set are computed on the averaged parameters.
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In each evaluation, we first randomly sample 100 batches of training data (batch size = 128) without
replacement and go through them to estimate the running mean and variance. Then we compute
accuracy and loss on the whole training set. We omit the plots for training accuracy and loss for
ImageNet experiments since it is computationally expensive to go through the whole training set of
ImageNet.
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(a) Train acc. for Figure 1 (a).
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(b) Train acc. for Figure 2 (a).
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(c) Train acc. for Figure 2 (b).
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(d) Train loss for Figure 1 (a).
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(e) Train loss for Figure 2 (a).
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(f ) Train loss for Figure 2 (b).
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(g) Train acc. for Figure 3 (c).
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(h) Train acc. for Figure 3 (e).
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(i) Train loss for Figure 3 (c).
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(j) Train loss for Figure 3 (e).

Figure 4: Accuracy and loss on the training set for CIFAR-10 experiments.

Appendix D. Modeling Local SGD with Multiple Conventional SDEs

Several previous works adopt the conventional SDE approximation (3) and connect good gener-
alization to having a large diffusion term

√
η
BΣ

1/2dWt in the SDE [23, 55], because a suitable
amount of noise can be necessary for large-batch training to generalize well (see also Appendix A).

Lin et al. [39] tried to informally explain the success of Local SGD by adopting this argument.
Basically, they attempted to write multiple SDEs, each of which describes the H-step local training
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process of each worker in each round (from θ
(s)
k,0 to θ

(s)
k,H ). The key difference between each of

these SDEs and the SDE for SGD (3) is that the former one has a larger diffusion term because the
workers use batch size Bloc instead of B:

dX(t) = −∇L(X)dt+

√
η

Bloc
Σ

1/2(X)dWt. (10)

Lin et al. [39] then argue that the total amount of “noise” in the training dynamics of Local SGD
is larger than that of SGD. However, it is hard to see whether it is indeed larger, since the model
averaging step at the end of each round can reduce the variance in training and may cancel the effect
of having larger diffusion terms.

More formally, a complete modeling of Local SGD following this idea should view the se-
quence of global iterates {θ̄(s)} as a Markov process {X(s)}. Let PX(x, B, t) the distribution of
X(t) in (3) with initial condition X(0) = x. Then the Markov transition should be X(s+1) =
1
K

∑K
k=1X

(s)
k,H , where X

(s)
1,H , . . . ,X

(s)
K,H are K independent samples from PX(X(s), Bloc, Hη),

i.e., sampling from (10).
Consider one round of model averaging. It is true that PX(X(s), Bloc, Hη) may have a larger

variance than the corresponding SGD baseline PX(X(s), B,Hη) because the former one has a
smaller batch size. However, it is unclear whether X(s+1) also has a larger variance thanPX(X(s), B,Hη).
This is because X(s+1) is the average of K samples, which means we have to compare 1

K times the
variance of PX(X(s), Bloc, Hη) with the variance of PX(X(s), B,Hη). Then it is unclear which
one is larger.

In the special case where Hη is small, PX(X(s), Bloc, Hη) is approximately equal to the fol-
lowing Gaussian distribution:

N
(
X(s) − ηH∇L(X(s)),

η2H

Bloc
Σ(X(s))

)
(11)

Then averaging over K samples gives

N
(
X(s) − ηH∇L(X(s)),

η2H

B
Σ(X(s))

)
, (12)

which is exactly the same as the Gaussian approximation of the SGD baseline. This means there do
exist certain cases where Lin et al. [39]’s argument does not give a good separation between Local
SGD and SGD.

Moreover, we do not gain any further insights from this modeling since it is hard to see how
model averaging interacts with the SDEs.

Appendix E. The Slow SDE for Training with Label Noise Regularization

In this section, we study the case of training over-parameterized neural nets with label noise regu-
larization to exemplify the generalization benefit of having a larger drift term [3, 7, 37].

For a C-class classification task, the label noise regularization is as follows: every time we draw
a sample from the training set, we make the true label as it is with probability 1− p, and replace it
with any other label with equal probability p

C−1 . When we use cross-entropy loss, the Slow SDE for
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SGD turns out to be a simple deterministic gradient flow on Γ (instead of a semi-gradient method)
for minimizing the trace of Hessian:

dζ(t) = − 1

4B
∇Γtr(∇2L(ζ))dt, (13)

where ∇Γf stands for the gradient of the function f projected to the tangent space of Γ. Checking
the validity of Hypothesis 3.1 reduces to the following question: Is minimizing the trace of Hessian
beneficial to generalization? Many previous works provide positive answers, including the line of
works we just mentioned. Blanc et al. [3] and Li et al. [37] connect minimizing the trace of Hessian
to finding sparse or low-rank solutions for training two-layer linear nets. Damian et al. [7] empiri-
cally showed that good generalization correlates with a smaller trace of Hessian in training ResNets
with label noise. Besides, Ma and Ying [41] connects the trace of Hessian to the smoothness of the
function represented by a deep neural net. We defer all the proofs to Appendix K.

As for Local SGD, the Slow SDE can be simplified as:

dζ(t) = − 1

4B
∇Γ

(
tr(∇2L(ζ)) + (K − 1) · tr(F (2Hη∇

2L(ζ)))
2Hη

)
dt, (14)

where F (x) :=
∫ x
0 ψ(y)dy and is interpreted as a matrix function in (14). Note that the magnitude

of the RHS in (14) becomes larger as H increases. When H gets large enough, the RHS in (14) is
approximately K times of the RHS in (13):

dζ(t) = − K

4B
∇Γtr(∇2L(ζ))dt. (15)

Comparing (13) and (15), we can conclude that Local SGD accelerates the process of sharpness
reduction, thus leading to better generalization. Furthermore, the regularization effect gets stronger
for larger H . We also conduct experiments on non-augmented CIFAR-10 with label noise regu-
larization to verify our conclusion. As shown in Figure 5, adding local steps indeed gives better
generalization performance.
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(a) ResNet-56 + GroupNorm.
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(b) VGG-16 w/o normalization.

Figure 5: Local SGD with label noise regularization on CIFAR-10 without data augmentation. A
larger number of local steps indeed enables higher test accuracy. For both architectures,
we replace ReLU with Swish. See Appendix L.4 for training details.

Appendix F. Experimental Results on Reducing the Diffusion Term

We conduct experiments on CIFAR-10 with varying K and fixed η, H to justify that reducing the
diffusion term is beneficial to generalization. As shown in Figure 6, we can achieve higher test
accuracy for larger K where the diffusion term is smaller.
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(a) CIFAR-10, H = 600 for K > 1.
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(b) ImageNet, H = 78 for K > 1.

Figure 6: A smaller diffusion term leads to better generalization. Test accuracy improves as we
increase K with fixed η and H to reduce the diffusion term while keeping the generaliza-
tion part untouched. See Appendix L.3 for training details.

Appendix G. Discussion

Connection to the conventional wisdom that the diffusion term matters more. As mentioned
in Section 3.1, it is believed in the literature is that a large diffusion term in the conventional SDE
leads to good generalization. One may think that the diffusion term in the Slow SDE corresponds to
that in the conventional SDE, and thus enlarging the diffusion term rather than the drift term should
lead to better generalization. However, we note that both the diffusion and drift terms in the Slow
SDEs are associated with the diffusion term in the conventional SDE (Slow SDEs become stationary
if Σ = 0). Our view identifies the effect of each different component of the noise covariance on
generalization, and therefore, goes one step further on the conventional wisdom.
Can Local SGD close the generalization gap between small- and large-batch training? We
remark that the mechanism causing the generalization gap is different from the mechanism of Local
SGD for improving generalization, so it is unclear what a general claim can be made. As noted by
Smith et al. [55], the generalization gap occurs early in the training when the learning rate is large
and SDE does not give a good approximation. In contrast, as shown in our paper, Local SGD yields
generalization benefits mainly for small learning rate in later phases of training.

Appendix H. Local SGD stays close to SGD for O(η−1) steps

The following theorem states that Local SGD and SGD closely track each other for O(η−1) steps.
It suggests that this time horizon is too short for the difference between the two algorithm to appear,
necessitating an analysis that lasts for a longer time.

Theorem 9 Assume that the loss function L is C3-smooth with bounded second and third order
derivatives and that ∇ℓ(θ; ξ) is bounded. Let T > 0 be a constant, θ̄(s) be the s-th global iterate
of Local SGD and wt be the t-th iterate of SGD with the same initialization w0 = θ̄(0) and same
η,Bloc,K. Then for any H ≤ T

η and δ = O(poly(η)), it holds with probability at least 1 − δ that

for all s ≤ T
ηH , ∥θ̄(s) −wsH∥2 = O(

√
η log 1

ηδ ).
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H.1. Proof of Theorem 9

This subsection presents the proof for Theorem 9. First, we define some notations that will be
used throughout this section. For the sequence of Local SGD iterates {θ(s)

k,t : k ∈ [K], 0 ≤ t ≤
H, s ≥ 0}, we introduce an auxiliary sequence {ût}t∈N which starts from θ̄(0) and follows. Define
∆̂

(s)
k,t := θ

(s)
k,t − û

(s)
t and ∆̄(s) := θ̄(s) − û

(s)
0 , which stand for the difference between the Local

SGD iterate and GD iterate. For convenience, let û(s)
t = ûsH+t and zk,sH+t = z

(s)
k,t , which will be

used interchangeably. Assume that L is C3-smooth with bounded second and third order derivatives.
Let ν2 := supθ∈Rd ∥∇2L(θ)∥2 and ν3 := supθ∈Rd ∥∇3L(θ)∥2. Since ∇ℓ(θ; ζ) is bounded, the
gradient noise z

(s)
k,t is also bounded and we denote by σmax the upper bound such that ∥z(s)

k,t∥2 ≤
σmax, ∀s, k, t.

For each client, define the following sequence {Ẑk,t : t ≥ 0}:

Ẑk,t =
t−1∑
τ=0

[
t−1∏
l=τ+1

(I − η∇2L(ûl))
]
zk,τ , Ẑk,0 = 0,∀k ∈ [K].

To prove Theorem 9, we will show that both Local SGD iterates θ̄(s) and SGD iterates wsH

will closely track GD iterates ûsH with high probability. The following lemma establishes the
concentration property of Ẑk,t.

Lemma 10 (Concentration property of {Ẑk,t}) With probability at least 1 − δ, the following
holds simultaneously for all k ∈ [K], 0 ≤ t < ⌊Tη ⌋:

∥Ẑk,t∥2 ≤ Ĉ1σmax

√
2T

η
log

2TK

δη
,

where Ĉ1 := exp(Tν2).

Proof For each Ẑk,t, construct a sequence {Ẑk,t,t′}tt′=0:

Ẑk,t,t′ :=
t′−1∑
τ=0

(
t−1∏
l=τ+1

(I − η∇2L(ûl))
)
z
(s)
k,τ , Z̃

(s)
k,t,0 = 0.

Since ∥∇2L(ûl)∥2 ≤ ν2 for all l ≥ 0, the following holds for all 0 ≤ τ < t− 1 and 0 < t < ⌊Tη ⌋:

∥
t−1∏
l=τ+1

(I − η∇2L(ûl))∥2 ≤ (1 + ρ2η)
t ≤ exp(Tν2) = Ĉ1.

Notice that {Ẑk,t,t′}tt′=0 is a martingale with ∥Ẑk,t,t′ − Ẑk,t,t′−1∥2 ≤ Ĉ1σmax. Since Ẑk,t = Ẑk,t,t,
by Azuma-Hoeffding’s inequality,

P(∥Ẑk,t∥2 ≥ ϵ′) ≤ 2 exp

 −ϵ′2

2t
(
Ĉ1σmax

)2
.
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Taking union bound on all k ∈ [K] and 0 ≤ t ≤ ⌊Tη ⌋, we can conclude that with probability at least
1− δ,

∥Ẑk,t∥2 ≤ Ĉ1σmax

√
2T

η
log

2TK

δη
, ∀0 ≤ t < ⌊T

η
⌋, k ∈ [K].

The following lemma states that, with high probability, Local SGD iterates θ
(s)
k,t and θ̄(s) closely

track the gradient descent iterates ûsH for ⌊ THη ⌋ rounds.

Lemma 11 For δ = O(poly(η)), the following inequalities hold with probability at least 1− δ:

∥θ(s)
k,t − ûsH+t∥2 ≤ Ĉ3

√
η log

1

ηδ
, ∀k ∈ [K], 0 ≤ s < ⌊ T

Hη
⌋, 0 ≤ t ≤ H,

and

∥θ̄(s) − ûsH∥2 ≤ Ĉ3

√
η log

1

ηδ
, ∀0 ≤ s ≤ ⌊ T

Hη
⌋,

where Ĉ3 is a constant independent of η and H .

Proof According to the update rule for θ(s)
k,t and û

(s)
t ,

θ
(s)
k,t+1 = θ

(s)
k,t − η∇L(θ

(s)
k,t )− ηz

(s)
k,t (16)

û
(s)
t+1 = û

(s)
t − η∇L(û

(s)
t ). (17)

Subtracting (16) from (17) gives

∆̂
(s)
k,t+1 = ∆̂

(s)
k,t − η(∇L(θ

(s)
k,t )−∇L(û

(s)
t ))− ηz(s)

k,t

= (I − η∇2L(û(s)
t ))∆̂

(s)
k,t − ηz

(s)
k,t + ηv̂

(s)
k,t , (18)

where ∥v̂(s)
k,t∥2 ≤

ρ3
2 ∥∆̂

(s)
k,t∥22. Applying (18) t times, we have

∆̂
(s)
k,t =

[
t−1∏
τ=0

(I − η∇2L(û(s)
τ ))

]
∆̂

(s)
k,0 − η

t−1∑
τ=0

[
t−1∏
l=τ+1

(I − η∇2L(û(s)
l ))

]
z
(s)
k,τ︸ ︷︷ ︸

T

+ η
t−1∑
τ=0

t−1∏
l=τ+1

(I − η∇2L(û(s)
l ))v̂

(s)
k,τ .

(19)

Here, T can expressed in the following form:

T = Ẑk,sH+t −
[
sH+t−1∏
l=sH+1

(I − η∇2L(ûl))
]
Ẑk,sH .
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Substituting in t = H and taking the average, we derive the following recursion:

∆̄(s+1) =
1

K

∑
k∈[K]

∆̂
(s)
k,H

=

[
H−1∏
τ=0

(I − η∇2L(û(s)
τ ))

]
∆̄(s) − η

K

∑
k∈[K]

H−1∑
τ=0

[
H−1∏
l=τ+1

(I − η∇2L(û(s)
l ))

]
z
(s)
k,τ

+
η

K

∑
k∈[K]

H−1∑
τ=0

H−1∏
l=τ+1

(I − η∇2L(û(s)
l ))v̂

(s)
k,τ . (20)

Applying (20) s times yields

∆̄(s) = − η

K

∑
k∈[K]

Ẑk,sH +
η

K

s−1∑
r=0

H−1∑
τ=0

∑
k∈[K]

[
sH∏

l=rH+τ+1

(I − η∇2L(ûl))
]
v̂
(r)
k,τ . (21)

Substitute (21) into (19) and we have

∆̂
(s)
k,t = −

η

K

∑
k′∈[K]

Ẑk′,sH − ηẐk,sH+t + η

[
sH+t−1∏
l=sH+1

(I − η∇2L(ûl))
]
Ẑk,sH

+
η

K

s−1∑
r=0

H−1∑
τ=0

∑
k′∈[K]

[
sH+t−1∏
l=rH+τ+1

(I − η∇2L(ûl))
]
v̂
(r)
k′,τ

+ η

t−1∑
τ=0

[
sH+t−1∏
l=sH+τ+1

(I − η∇2L(ûl))
]
v̂
(s)
k,τ .

By Cauchy-Schwartz inequality and triangle inequality, we have

∥∆̂(s)
k,t∥2 ≤

η

K

 ∑
k′∈[K]

∥Ẑk′,sH∥2

+ η∥Ẑk,sH+t∥2 + ηĈ1∥Ẑk,sH∥2

+
ηĈ1ν3
2K

s−1∑
r=0

H−1∑
τ=0

∑
k′∈[K]

∥∆̂(r)
k′,τ∥22 +

ηĈ1ν3
2

t−1∑
τ=0

∥∆̂(r)
k,τ∥22,

(22)

where Ĉ1 = exp(ν2T ). Below we prove by induction that for δ = O(poly(η)), if

∥Ẑk,t∥2 ≤ Ĉ1σmax

√
2T

η
log

2TK

ηδ
, ∀0 ≤ t < ⌊T

η
⌋, k ∈ [K], (23)

then there exists a constant Ĉ2 such that for all k ∈ [K], 0 ≤ s < ⌊ TηH ⌋ and 0 ≤ t ≤ H ,

∥∆̂(s)
k,t∥2 ≤ Ĉ2

√
η log

2TK

ηδ
. (24)
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First, for all k ∈ [K], ∥∆̂(0)
k,0∥2 = 0 and hence (24) holds. Assuming that (24) holds for all ∆̂(r)

k′,τ
where k′ ∈ [K], 0 ≤ r < s, 0 ≤ τ ≤ H and r = s, 0 ≤ τ < t, then by (22), then for all k ∈ [K],
the following holds:

∥∆̂(s)
k,t∥2 ≤ 3C̃2

1σmax

√
2Tη log

2TK

ηδ
+ C̃1Ĉ

2
2Tην3 log

2TK

ηδ
.

Let Ĉ2 ≥ 6C̃2
1σmax

√
2T . Then for sufficiently small η, (24) holds. By Theorem 10, (23) holds with

probability at least 1 − δ. Furthermore, notice that θ̄(s) − ûsH = 1
K

∑
k∈[K] ∆̂

(s−1)
k,H . Hence we

have the lemma.

The iterates of standard SGD can be viewed as the local iterates on a single client with the number
of local steps ⌊Tη ⌋. Therefore, we can directly apply Theorem 11 and obtain the following lemma
about the SGD iterates wt.

Corollary 12 For δ = O(poly(η)), the following holds with probability at least 1− δ:

∥wsH − ûsH∥2 ≤ Ĉ3

√
η log

1

ηδ
, ∀0 ≤ s ≤ T

Hη
,

where Ĉ3 is the same constant as in Theorem 11.

Applying Theorem 11 and Theorem 12 and taking union bound, we have Theorem 9.

Appendix I. Proof Outline of Main Theorems

In this section, we provide the proof outline of Theorem 4. The proof details are deferred to Ap-
pendix J. We first introduce additional notations that will be used throughout Appendix I and Ap-
pendix J.

I.1. Additional Notations and Definitions

We first introduce the notion of µ-PL.

Definition 13 (Polyak-Łojasiewicz Condition) For µ > 0, we say a function L(·) satisfies µ-
Polyak-Łojasiewicz condition (abbreviated as µ-PL) on set U if

1

2
∥∇L(θ)∥22 ≥ µ(L(θ)− inf

θ′∈U
L(θ′)).

We will later show that there exists a neighborhood of Γ where L satisfies µ-PL.
We then introduce the definitions of the ϵ-ball at a point and the ϵ-neighborhood of a set. For

θ ∈ Rd and ϵ > 0, Bϵ(θ) := {θ′ | ∥θ′ − θ∥2 < ϵ} is the open ϵ-ball centered at θ. For a set
Z ⊆ Rd,Mϵ :=

⋃
θ∈MBϵ(θ) is the ϵ-neighborhood ofM.
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I.2. Construction of working zones

We construct four nested working zones (Γϵ0 ,Γϵ1 ,Γϵ2 ,Γϵ3) in the neighborhood of Γ. Later we will
show that the local iterates θ(s)

k,t ∈ Γϵ2 and the global iterates θ̄(s) ∈ Γϵ0 with high probability after
O(log 1

η ) rounds. The following lemma illustrates the properties the working zones should satisfy
and the proof is deferred to Appendix J.4.

Lemma 14 (Working zone lemma) There exists constants ϵ0 < ϵ1 < ϵ2 < ϵ3 such that (Γϵ0 ,Γϵ1 ,Γϵ2 ,Γϵ3)
satisfy the following properties:

1. L satisfies µ-PL in Γϵ3 for some µ > 0.

2. Any gradient flow starting in Γϵ2 converges to some point in Γ. Then, by [10], Φ(·) is C∞ in
Γϵ2 .

3. Any θ ∈ Γϵ1 has an ϵ1 neighborhood Bϵ1(θ) such that Bϵ1(θ) ⊆ Γϵ2 .

4. Any gradient descent starting in Γϵ0 with sufficiently small learning rate will stay in Γϵ1 .

I.3. Proof Outline

We are now in a position to state the proof outline. The general idea is to adopt the framework
proposed by Li et al. [34] to bound the closeness of the manifold projection {Φ(θ̄(s))}⌊T/(Hη

2)⌋
s=0 and

the solution to SDE (4), {ζ(t) : t ∈ [0, T ]}. A key component of this framework is to estimate
the moments of change over a fixed time interval. To obtain the estimation of moments for ζ(t),
we can directly apply the results in Li et al. [34]. However, the estimation of the moments for
Φ(θ̄(s)) requires a careful analysis of the limiting dynamics of {θ̄(s)}⌊T/(Hη

2)⌋
s=0 . The dynamics of

{θ̄(s)}⌊T/(Hη
2)⌋

s=0 are divided into two phases: the approaching phase and the drift phase.
For the approaching phase (Phase 1), we show that after O(log 1

η ) rounds, the iterate will reach
within Õ(√η) from Γ (see Appendix J.5).

For the drift phase (Phase 2), we first prove that, with high probability, both θ̄(s) and θ
(s)
k,t stay

close to Γ with a distance of only Õ(√η) for all O(log 1
η ) < s < ⌊ T

Hη2
⌋. We also provide a

high probability bound on the movement of the manifold projection (see Appendix J.6). Based on
these high probability bounds, we group Rgrp := ⌊ 1

αηβ
⌋ rounds together and compute the first and

second moments of Φ(θ̄(s+Rgrp)) − Φ(θ̄(s)), which is the movement of manifold projection over
Rgrp rounds (see Appendix J.9). Here, β is a constant between 0 and 0.5 and will be specified later.

Finally, utilizing the estimation of moments in Appendix J.9, we prove that {ζ(t) : t ∈ [0, T ]}
following the SDE (4) are weak approximations of each other following Li et al. [34] in Ap-
pendix J.10.

Appendix J. Proof Details of Main Theorems

The detailed proof is organized as follows. In Appendix J.1, we introduce the notations that will be
used throughout the proof. To establish preliminary knowledge, Appendix J.2 provides explicit ex-
pression for the projection operator Φ(·) and Appendix J.3 presents lemmas about gradient descent
(GD) and gradient flow (GF). Based on the preliminary knowledge, we prove the working zone
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lemma in Appendix J.4. Appendices J.5 to J.10 make up the main body of the proof. Specifically,
Appendices J.5 and J.6 derive high probability bounds for phase 1 and 2 respectively. Then, we
provide a summary of these high probability bounds in Appendix J.7 and the proof of Theorem 5
in Appendix J.8. Utilizing the high probability bounds, we derive the estimation for the first and
second moments of the one step update Φ(θ̄(s+Rgrp))−Φ(θ̄(s)) in Appendix J.9. Finally, we prove
the approximation theorem 4 in Appendix J.10.

J.1. Additional Notations

Let Rtot := ⌊ T
Hη2
⌋ be the total number of rounds. Denote by ϕ(s) the manifold projection of the

global iterate at the beginning of round s. Let x(s)
k,t := θ

(s)
k,t − ϕ(s) be the difference between the

local iterate and the manifold projection of the global iterate. Also define x̄
(s)
H := 1

K

∑
k∈[K] x

(s)
k,H

and x̄
(s)
0 := 1

K

∑
k∈[K] x

(s)
k,0 which is the average of x(s)

k,t among K workers at step 0 and H . Then

for all k ∈ [K], x(s)
k,0 = x̄

(s)
0 = θ̄(s) − ϕ(s). Finally, Since ∇ℓ(θ; ζ) is bounded, the gradient noise

z
(s)
k,t is also bounded and we denote by σmax the upper bound such that ∥z(s)

k,t∥2 ≤ σmax,∀s, k, t.

J.2. Computing the Derivatives of the Limiting Mapping

In subsection, we present lemmas that relate the derivatives of the limiting mapping Φ(·) to the
derivatives of the loss function L(·). We first introduce the operator VH .

Definition 15 For a semi-definite symmetric matrix H ∈ Rd×d, let λj , vj be the j-th eigenvalue
and eigenvector and vj’s form an orthonormal basis of Rd. Then, define the operator VH : Rd×d →
Rd×d as

VH(M) :=
∑

i,j:λi ̸=0∨λj ̸=0

1

λiλj

〈
M ,viv

⊤
j

〉
viv

⊤
j ,∀M ∈ Rd×d.

Intuitively, this operator projects M to the base matrix viv
⊤
j and sums up the projections with

weights 1
λi+λj

.

Additionally, for θ ∈ Γ, denote by Tθ and T⊥
θ the tangent and normal space of Γ at θ respectively.

Lemmas 16 to 19 are from Li et al. [37]. We include them to make the paper self-contained.

Lemma 16 (Lemma C.1 of Li et al. [37]) For any θ ∈ Γ and any v ∈ Tθ(Γ), it holds that
∇2L(θ)v = 0.

Lemma 17 (Lemma 4.3 of Li et al. [37]) For any θ ∈ Γ, ∂Φ(θ) ∈ Rd×d is the projection matrix
onto the tangent space Tθ(Γ).

Lemma 18 (Lemma C.4 of [37]) For any θ ∈ Γ, u ∈ Rd and v ∈ Tθ(Γ), it holds that

∂2Φ(θ)[v,u] = −∂Φ(θ)∇3L(θ)[v,∇2L(θ)+u]−∇2L(θ)+∇3L(θ)[v, ∂Φ(θ)u].

Lemma 19 (Lemma C.6 of [37]) For any θ ∈ Γ and Σ ∈ span{uu⊤ | u ∈ T⊥
θ (Γ)},〈

∂2Φ(θ),Σ
〉
= −∂Φ(θ)∇3L(θ)[V∇2L(θ)(Σ)].
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Lemma 20 For all θ ∈ Γ, u,v ∈ Tθ(Γ), it holds that

∂Φ(θ)∇3L[vu⊤] = 0. (25)

Proof This proof is inspired by Lemma C.4 of [37]. For any θ ∈ Γ, consider a parameterized
smooth curve v(t), t ≥ 0 on Γ such that v(0) = θ and v′(0) = v. Let P∥(t) = ∂Φ(v(t)),
P⊥(t) = I − ∂Φ(v(t)) and H(t) = ∇2L(v(t)). By Lemma C.1 and 4.3 in [37],

H(t) = P⊥(t)H(t).

Take the derivative with respect to t on both sides,

H ′(t) = P⊥(t)H
′(t) + P ′

⊥(t)H(t)

⇒ P∥(t)H
′(t) = P ′

⊥(t)H(t) = −P ′
∥(t)H(t).

At t = 0, we have

P∥(0)H
′(0) = −P ′

∥(0)H(0). (26)

WLOG let H(0) = diag(λ1, · · · , λd),∈ Rd×d, where λi = 0 for all m < i ≤ d. Therefore

P⊥(0) =

[
Im 0
0 0

]
, P∥(0) =

[
0 0
0 Id−m

]
. Decompose P ′

∥(0), H(0) and H ′(0)as follows.

P ′
∥(0) =

[
P ′
∥,11(0) P ′

∥,12(0)

P ′
∥,21(0) P ′

∥,22(0)

]
,H(0) =

[
H11(0) 0

0 0

]
,H ′(0) =

[
H ′

11(0) H ′
12(0)

H ′
21(0) H ′

22(0)

]
.

Substituting the decomposition into (26), we have[
0 0

H ′
21(0) H ′

22(0)

]
= −

[
P ′
∥,11(0)H11(0) 0

P ′
∥,21(0)H11(0) 0

]
.

Therefore, H ′
22(0) = 0 and

P∥(0)H
′(0) = −P ′

∥(0)H(0) = −
[

0 0
H ′

21(0) 0

]
.

Any u ∈ Tθ(Γ) can be decomposed as u =
[
0,u2

]⊤ where u2 ∈ Rd−m. With this decomposition,
we have P∥(0)H

′(0)u = 0. Also, note that H ′(0) = ∇3L(θ)[v]. Hence,

∂Φ(θ)∇3L(θ)[vuT ] = 0.
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J.3. Preliminary Lemmas for GD and GF

In this subsection, we introduce a few useful preliminary lemmas about gradient descent and gradi-
ent flow. Before presenting the lemmas, we introduce some notations and assumptions that will be
used in this subsection.

Assume that the loss function L(θ) is ρ-smooth and µ-PL in an open, convex neighborhood U
of a local minimizer θ∗. Denote by L∗ := L(θ∗) the minimum value for simplicity. Let ϵ′ be the
radius of the open ϵ′-ball centered at θ∗ such that Bϵ′(θ∗) ⊆ U . We also define a potential function
Ψ̃(θ) :=

√
L(θ)− L∗.

Consider gradient descent iterates {ût}t∈N following the update rule ût+1 = ût − η∇L(ût).
We first introduce the descent lemma for gradient descent.

Lemma 21 (Descent lemma for GD) If ût ∈ U and η ≤ 1
ρ , then

η

2
∥∇L(ût)∥22 ≤ L(ût)− L(ût+1),

and

L(ût+1)− L∗ ≤ (1− µη)(L(ût)− L∗).

Proof By ρ-smoothness,

L(ût+1) ≤ L(ût) + ⟨∇L(ût), ût+1 − ût⟩+
ρη2

2
∥ût+1 − ût∥22

= L(ût)− η(1−
ρη

2
)∥∇L(ût)∥22

≤ L(ût)−
η

2
∥∇L(ût)∥22

By the definition of µ-PL, we have

L(ût+1)− L∗ ≤ (1− µη)(L(ût)− L∗).

Then we prove the Lipschitzness of Ψ̃(θ).

Lemma 22 (Lipschitzness of Ψ̃(θ)) Ψ̃(θ) is
√
2ρ-Lipschitz for θ ∈ U . That is, for any θ1, θ2 ∈

U ,

|Ψ̃(θ1)− Ψ̃(θ2)| ≤
√

2ρ∥θ1 − θ2∥2.

Proof Fix θ1 and θ2. Denote by θ(t) := (1 − t)θ1 + tθ2 the convex combination of θ1 and θ2
where t ∈ [0, 1]. Further define f(t) := Ψ̃(θ(t)). Below we consider two cases.
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Case 1. If ∀t ∈ (0, 1), f(t) > 0, then f(t) is differentiable on (0, 1).

|Ψ̃(θ2)− Ψ̃(θ1)| = |f(1)− f(0)|

=

∣∣∣∣∫ 1

0
f ′(t)dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

〈
∇Ψ̃(θ(t)),θ2 − θ1

〉
dt

∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

⟨∇L(θ(t)),θ2 − θ1⟩√
L(θ(t))− L∗

dt

∣∣∣∣∣
≤ ∥θ2 − θ1∥2

∫ 1

0

∥∇L(θ(t))∥2√
L(θ(t))− L∗

dt.

By ρ-smoothness of L, for all θ ∈ U ,

∥∇L(θ)∥22 ≤ 2ρ (L(θ)− L∗) .

Since
√
L(θ(t))− L∗ > 0 for all t ∈ (0, 1), ∥∇L(θ(t))∥2√

L(θ(t))−L∗ ≤
√
2ρ. Therefore,

|Ψ̃(θ2)− Ψ̃(θ1)| ≤
√

2ρ2∥θ2 − θ1∥2.

Case 2. If ∃t′ ∈ (0, 1) such that f(t′) = 0, then

|Ψ̃(θ2)− Ψ̃(θ1)| = |f(1)− f(0)|

=

∣∣∣∣(1− t′)f(1)− f(t′)1− t′ + t′
(
f(t′)− f(0)

t′

)∣∣∣∣
≤ max

(
f(1)

1− t′ ,
f(0)

t′

)
.

Since θ(t′) minimizes L in an open set,∇L(θ(t′)) = 0. By ρ-smoothness of L, for all θ ∈ U ,

L(θ) ≤ L∗ + ρ

2
∥θ − θ(t′)∥22 ⇒ Ψ̃(θ) ≤

√
ρ

2
∥θ − θ(t′)∥2.

Therefore,

f(1) ≤
√
ρ

2
∥θ2 − θ(t′)∥2 = (1− t′)

√
ρ

2
∥θ2 − θ1∥2

f(0) ≤
√
ρ

2
∥θ1 − θ(t′)∥2 = t′

√
ρ

2
∥θ2 − θ1∥2.

Then we have

|Ψ̃(θ2)− Ψ̃(θ1)| ≤
√
ρ

2
∥θ2 − θ1∥2.

Combining case 1 and case 2, we conclude the proof.

Below we introduce a lemma that relates the movement of one step gradient descent to the
change of the potential function.
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Lemma 23 (Lemma G.1 in [40]) If ût ∈ U and η ≤ 1/ρ2 then

Ψ̃(ût)− Ψ̃(ût+1) ≥
√
2µ

4
η∥∇L(ût)∥2.

Proof

Ψ̃(ût)− Ψ̃(ût+1) =
L(ût)− L(ût+1)

Ψ̃(ût) + Ψ̃(ût+1)

≥ L(ût+1)− L(ût)
2Ψ̃(ût)

≥ η(1− ρ2η/2)∥∇L(ût)∥22
2Ψ̃(ût)

,

where the two inequalities uses Theorem 21. By µ-PL, Ψ̃(ût) ≤ 1√
2µ
∥∇L(ût)∥2. Therefore, we

have Ψ̃(ût)− Ψ̃(ût+1) ≥
√
2µ
2 (1− ηρ/2)η∥∇L(ût)∥2 ≥

√
2µ
4 η∥∇L(ût)∥2.

Based on Theorem 23, we have the following lemma that bounds the movement of GD over
multiple steps.

Lemma 24 (Bounding the movement of GD) If û0 is initialized such that ∥û0−θ∗∥2 ≤ 1
4

√
µ
ρ ϵ

′,

then for all t ≥ 0, ût ∈ Bϵ′(θ∗) and

∥ût − û0∥2 ≤
√

8

µ
Ψ̃(û0).

Proof We prove the proposition by induction. When t = 0, it trivially holds. Assume that the
proposition holds for ûτ , 0 ≤ τ < t. For step t, since ûτ ∈ Bϵ′(θ∗), we apply Theorem 23 and
obtain

∥ût − û0∥2 ≤ η
t−1∑
τ=0

∥∇L(ûτ )∥2 ≤
√

8

µ

(
Ψ̃(û0)− Ψ̃(ût)

)
≤
√

8

µ
Ψ̃(û0).

Further by ρ-smoothness of L(·),

∥ût − û0∥2 ≤
√

8

µ
Ψ̃(û0) ≤ 2

√
ρ

µ
∥û0 − θ∗∥2 ≤

1

2
ϵ′.

Therefore, ∥ût − θ∗∥2 ≤ ∥ût − û0∥2 + ∥û0 − θ∗∥2 < ϵ′, which concludes the proof.

Finally, we introduce a lemma adapted from Thm. D.4 of which bounds the movement of GF.
[40].

Lemma 25 Assume that ∥θ0 − θ∗∥2 <
√

µ
ρ ϵ

′. The gradient flow θ(t) = −dL(θ(t))
dt starting at θ0

converges to a point in U and∥∥∥∥θ0 − lim
t→+∞

θ(t)

∥∥∥∥
2

≤
√

2

µ

√
L(θ0)− L∗ ≤

√
ρ

µ
∥θ0 − θ∗∥2

32



WHY (AND WHEN) DOES LOCAL SGD GENERALIZE BETTER THAN SGD?

Proof Let T := inf{t : θ /∈ U}. Then for all t < T ,

d

dt
(L(θ)− L∗)1/2 = 1

2
(L(θ)− L∗)−1/2 ·

〈
∇L(θ), dθ

dt

〉
= −1

2
(L(θ)− L∗)−1/2∥∇L(θ)∥2∥

dθ

dt
∥2.

By µ-PL, ∥∇L(θ)∥2 ≥
√

2µ(L(θ)− L∗). Hence,

d

dt
(L(θ)− L∗)1/2 ≤ −

√
2µ

2
∥dθ
dt
∥2.

Integrating both sides, we have∫ T

0
∥dθ(τ)

dτ
∥dτ ≤ 2√

2µ
(L(θ0)− L∗)1/2 ≤

√
ρ

µ
∥θ0 − θ∗∥2 < ϵ′,

where the second inequality uses ρ-smoothness of L. Therefore, T = +∞ and θ(t) converges to
some point in U .

J.4. Construction of working zones

In this subsection, we provide the proof for Theorem 14. Note that the notions of Zϵ,Mϵ4 , ρ2, ρ3,
ν1 and ν2 defined in the proof will be useful in the remaining part of this section.
Proof [Proof of Theorem 14] Let θ̄(0) be initialized such that Φ(θ̄(0)) ∈ Γ. Let Z be the set of all
points on the gradient flow trajectory starting from θ̄(0) and Zϵ be the ϵ-neighborhood of Z , where
ϵ is a positive constant. Since the gradient flow converges to ϕ(0), Z and Zϵ are bounded.

We construct four nested working zones. By Lemma H.3 in [40], there exists an ϵ3-neighborhood
of Γ, Γϵ3 , such that L satisfies µ-PL for some µ > 0. LetM be the convex hull of Γϵ3 ∪ Zϵ and
Mϵ4 be the ϵ4-neighborhood ofM where ϵ4 is a positive constant. ThenMϵ4 is bounded.

Define ρ2 = supθ∈Mϵ4 ∥∇2L(θ)∥2 and ρ3 = supMϵ4 ∥∇3L(θ)∥2. By Theorem 25, we
can construct an ϵ2-neighborhood of Γ where ϵ2 <

√
µ
ρ2
ϵ3 such that all GF starting in Γϵ2 con-

verges to Γ. By Falconer [10], Φ(·) is C2 in Γϵ3 . Define ν1 = supθ∈Γϵ3 ∥∂Φ(θ)∥2 and ν2 =

supθ∈Γϵ3 ∥∂2Φ(θ)∥2. We also construct an ϵ1 neighborhood of Γ, Γϵ1 , where ϵ1 ≤ 1
2ϵ2 <

1
2

√
µ
ρ2
ϵ3

such that all θ ∈ Γϵ1 has an ϵ1 neighborhood where Φ is well defined. Finally, by Theorem 24, there
exists an ϵ0-neighborhood of Γ where ϵ0 ≤ 1

4

√
µ
ρ2
ϵ1 such that all gradient descent iterates starting

in Γϵ0 with η ≤ 1
ρ2

will stay in Γϵ1 .

When analyzing the limiting dynamics of Local SGD, we will show that all θ(s)
k,t stays in Γϵ2 ,

ũ
(s)
t ∈ Γϵ1 , θ̄(s) ∈ Γϵ0 with high probability after O(log 1

η ) rounds.

J.5. High Probability Bounds for Phase 1: Iterate Approaching the Manifold

The approaching phase can be further divided two subphases. In the first subphase, θ̄(0) is initialized
such that ϕ(0) ∈ Γ. We will show that after a constant number of rounds s0, θ̄(s0) goes to the inner
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part of Γϵ0 such that ∥θ̄(s0) − ϕ(0)∥2 ≤ cϵ0 with high probability, where 0 < c < 1 and the
constants will be specified later (see Appendix J.5.2). In the second subphase, we show that the
iterate can reach within Õ(√η) distance from Γ after O(log 1

η ) rounds with high probability (see
Appendix J.5.3).

J.5.1. ADDITIONAL NOTATIONS

Consider an auxiliary sequence {ũ(s)
t } where ũ

(s)
0 = θ̄(s) and ũ

(s)
t+1 = ũ

(s)
t − η∇L(ũ

(s)
t ), 0 ≤ t ≤

H − 1. Define ∆̃
(s)
k,t := θ

(s)
k,t − ũ

(s)
t to be the difference between the local iterate and the gradient

descent iterate. Notice that ∆̃(s)
k,0 = 0, for all k and s.

Consider a gradient flow {u(t)}t≥0 with the initial condition u(0) = θ̄(0) and converges to
ϕ(0) ∈ Γ. For simplicity, let u(s)

t := u(sα + tη) be the gradient flow after s rounds plus t steps.
Let s0 be the smallest number such that ∥u(s0)

0 − ϕ(0)∥2 ≤ 1
4

√
µ
ρ2
ϵ0 . Note that s0 is a constant

independent of η.
In this subsection, the minimum value of the loss in Appendix J.3 corresponds to the loss value

on Γ, i.e., L∗ = L(ϕ),∀ϕ ∈ Γ.
We also define the following sequence {Z̃(s)

k,t }Ht=0 that will be used in the proof. Define

Z̃
(s)
k,t :=

t−1∑
τ=0

(
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))

)
z
(s)
k,τ , Z̃

(s)
k,0 = 0.

J.5.2. PROOF FOR SUBPHASE 1

First, we have the following lemma about the concentration of Z̃(s)
k,t .

Lemma 26 (Concentration property of {Z̃(s)
k,t }Ht=0) Given θ̄(s) such that ũ(s)

t ∈ Γϵ3 ∪ Zϵ for all
0 ≤ t ≤ H , then with probability at least 1− δ,

∥Z̃(s)
k,t ∥2 ≤ C̃1σmax

√
2H log

2HK

δ
, ∀0 ≤ t ≤ H, k ∈ [K],

where C̃1 := exp(αρ2).

Proof For each Z̃
(s)
k,t , construct a sequence {Z̃(s)

k,t,t′}tt′=0:

Z̃
(s)
k,t,t′ :=

t′−1∑
τ=0

(
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))

)
z
(s)
k,τ , Z̃

(s)
k,t,0 = 0.

Since ũ
(s)
t ∈ Γϵ3 ∪ Zϵ, we have ∥∇2L(ũ(s)

t )∥2 ≤ ρ2 for all 0 ≤ t ≤ H . Then, for all τ and t,

∥
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))∥2 ≤ (1 + ρ2η)

H ≤ exp(αρ2) = C̃1.
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Notice that for all 0 ≤ t ≤ H , {Z̃(s)
k,t,t′}tt′=0 is a martingale with ∥Z̃(s)

k,t,t′ − Z̃
(s)
k,t,t′−1∥2 ≤ C̃1σmax.

By Azuma-Hoeffding’s inequality,

P(∥Z̃(s)
k,t ∥2 ≥ ϵ′) ≤ 2 exp

 −ϵ′2

2t
(
C̃1σmax

)2
 ≤ 2 exp

 −ϵ′2

2H
(
C̃1σmax

)2
.

Taking a union bound on all k ∈ [K] and 0 ≤ t ≤ H , we can conclude that with probability at least
1− δ,

∥Z̃(s)
k,t ∥2 ≤ C̃1σmax

√
2H log

2HK

δ
, ∀0 ≤ t ≤ H, k ∈ [K].

The following lemma states that the gradient descent iterates will closely track the gradient flow
with the same initial point.

Lemma 27 Denote G := supt≥0 ∥∇L(u(t))∥2 as the upper bound of the gradient on the gradient

flow trajectory. If ∥ũ(s)
t − u

(s)
t ∥2 = O(

√
η), then for all 0 ≤ t ≤ H , the closeness of ũ(s)

t and u
(s)
t

is bounded by

∥ũ(s)
t − u

(s)
t ∥2 ≤ C̃1∥ũ(s)

0 − u
(s)
0 ∥2 + C̃1ηG,

where C̃1 = exp(αρ2).

Proof We prove by induction that

∥ũ(s)
t − u

(s)
t ∥2 ≤ (1 + ρ2η)

t∥ũ(s)
0 − u

(s)
0 ∥2 + ρ2η

2G
t−1∑
τ=0

(1 + ρ2η)
τ . (27)

When t = 0, (27) holds trivially. Assume that (27) holds for 0 ≤ τ ≤ t, then

ũ
(s)
t+1 − u

(s)
t+1 = ũ

(s)
t − η∇L(ũ

(s)
t )−

(
ut −

∫ sα+(t+1)η

sα+tη
∇L(u(v))dv

)
= ũ

(s)
t − ut − η

(
∇L(ũ(s)

t )−∇L(u(s)
t )
)

−
∫ sα+(t+1)η

sα+tη

(
∇L(u(s)

t )−∇L(u(v))
)
dv.

By smoothness of L,

∥∇L(u(s)
t )−∇L(u(v))∥2 ≤ ρ2∥u(s)

t − u(v)∥2

≤ ρ2
∫ v

sα+tη
∥∇L(u(w))∥2dw

≤ ρ2ηG.
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Since ρ22η
2G
∑t−1

τ=0(1 + ρ2η)
τ ≤ ηG(1 + ρ2η)

t ≤ exp(αρ2)ηG, then ∥ũ(s)
t − u

(s)
t ∥2 = O(√η),

which implies that ũ(s)
t ∈Mϵ4 . Hence, ∥∇L(ũ(s)

t )− L(u(s)
t )∥2 ≤ ρ2∥ũ(s)

t − u
(s)
t ∥2.

By triangle inequality,

∥ũ(s)
t+1 − u

(s)
t+1∥2 ≤ (1 + ρ2η)∥ũ(s)

t − u
(s)
t ∥2 + ρ2η

2G

≤ (1 + ρ2η)
t+1∥ũ(s)

t − u
(s)
t ∥2 + ρ2η

2G
t∑

τ=0

(1 + ρ2η)
τ ,

which concludes the induction step. Appling 1 + ρ2η ≤ exp(ρ2η), we have the lemma.

Utilizing the concentration probability of {Z̃(s)
k,t }, we can obtain the following lemma which implies

that the Local SGD iterates will closely track the gradient descent iterates with high probability.

Lemma 28 Given θ̄(s) such that ũ(s)
t ∈ Γϵ3 ∪ Zϵ for all 0 ≤ t ≤ H , then for δ = O(poly(η)),

with probability at least 1− δ, there exists a constant C̃3 such that

∥θ(s)
k,t − ũ

(s)
t ∥2 ≤ C̃3

√
η log

1

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K],

and

∥θ̄(s+1) − ũ
(s)
H ∥2 ≤ C̃3

√
η log

1

ηδ
.

Proof Since ũ
(s)
t ∈ Γϵ3 ∪ Zϵ for all 0 ≤ t ≤ H , we have ∥∇2L(ũ(s)

t )∥2 ≤ ρ2. According to the
update rule for θ(s)

k,t and ũ
(s)
t ,

θ
(s)
k,t+1 = θ

(s)
k,t − η∇L(θ

(s)
k,t )− ηz

(s)
k,t , (28)

ũ
(s)
t+1 = ũ

(s)
t − η∇L(ũ

(s)
t ). (29)

Subtracting (29) from (28) gives

∆̃
(s)
k,t+1 = ∆̃

(s)
k,t − η(∇L(θ

(s)
k,t )−∇L(ũ

(s)
t ))− ηz(s)

k,t

= (I − η∇2L(ũ(s)
t ))∆̃

(s)
k,t − ηz

(s)
k,t + ηṽ

(s)
k,t . (30)

Here, ṽ(s)
k,t = (1 − β(s)k,t )θ

(s)
k,t + β

(s)
k,t ũ

(s)
k,t , where β(s)k,t ∈ (0, 1) depends on θ

(s)
k,t and ũ

(s)
t . Therefore,

∥ṽ(s)
k,t∥2 ≤ ρ3

2 ∥∆̃
(s)
k,t∥22 if θ(s)

k,t ∈Mϵ4 . Applying (30) t times, we have

∆̃
(s)
k,t =

[
t−1∏
τ=0

(I − η∇2L(ũ(s)
τ ))

]
∆̃

(s)
k,0 − η

t−1∑
τ=0

t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))z

(s)
k,τ

+ η

t−1∑
τ=0

t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))ṽ

(s)
k,τ .
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By Cauchy-Schwartz inequality, triangle inequality and the definition of Z̃(s)
k,t , if for all 0 ≤ τ ≤ t−1

and k ∈ [K], θ(s)
k,τ ∈Mϵ4 , then we have

∥∆̃(s)
k,t∥2 ≤ η∥Z̃

(s)
k,t ∥2 +

1

2
ηρ3

t−1∑
τ=0

C̃1∥∆̃(s)
k,τ∥22. (31)

Applying Theorem 26 and substituting in the value ofH , we have that with probability at least 1−δ,

∥Z̃(s)
k,t ∥2 ≤ C̃1σmax

√
2α

η
log

2αK

ηδ
, ∀k ∈ K, 0 ≤ t ≤ H. (32)

Now we show by induction that for δ = O(poly(η)), when (32) holds, there exists a constant

C̃2 > 2σmax

√
2αC̃1 such that ∥∆̃(s)

k,t∥2 ≤ C̃2

√
η log 2αK

ηδ .

When t = 0, ∆̃(s)
k,0 = 0. Assume that ∥∆̃(s)

k,τ∥2 ≤ C̃2

√
η log 2αK

ηδ , for all k ∈ [K], 0 ≤ τ ≤ t−1.

Then for all 0 ≤ τ ≤ t− 1, θ(s)
k,τ ∈Mϵ4 . Therefore, we can apply (31) and obtain

∥∆̃(s)
k,t∥2 ≤ η∥Z̃

(s)
k,t ∥2 +

1

2
ηρ3

t−1∑
τ=0

C̃1∥∆̃(s)
k,τ∥22

≤ C̃1σmax

√
2αη log

2αK

ηδ
+

1

2
C̃1C̃

2
2σ

2
maxαρ3η log

2αK

ηδ
.

Given that C̃2 ≥ 2σmax

√
2αC̃1 and δ = O(poly(η)), when η is sufficiently small, ∥∆̃(s)

k,t∥2 ≤
C̃2

√
η log 2αK

ηδ .

To sum up, for δ = O(poly(η)), with probability at least 1− δ, ∥∆̃(s)
k,t∥2 ≤ C̃2

√
η log 2αK

ηδ for
all k ∈ [K], 0 ≤ t ≤ H . By triangle inequality,

∥θ̄(s+1) − ũ
(s)
H ∥2 ≤

1

K

∑
k∈[K]

∥∆̃(s)
k,H∥2 ≤ C̃2

√
η log

2αK

ηδ
.

The combination of Theorem 27 and Theorem 28 leads to the following lemma, which states that
the Local SGD iterate will enter Γϵ1 after s0 rounds with high probability.

Lemma 29 Given θ̄(0) such that Φ(θ̄(0)) ∈ Γ, then for δ = O(poly(η)), there exists a positive
constant C̃4 such that with probability at least 1− δ,

∥θ̄(s0) − ϕ(0)∥2 ≤
1

4

√
µ

ρ2
ϵ0 + C̃4

√
η log

1

ηδ
.

Proof First, we prove by induction that for δ = O(poly(η)), when

∥Z̃(s)
k,t ∥2 ≤ C̃1σmax

√
2H log

2HKs0
δ

, ∀0 ≤ t ≤ H, k ∈ [K], 0 ≤ s < s0, (33)
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the closeness of θ̄(s) and u
(s)
0 is bounded by

∥θ̄(s) − u
(s)
0 ∥2 ≤

s∑
l=1

C̃ l1

(
ηG+ C̃3

√
η log

s0
ηδ

)
, ∀0 ≤ s ≤ s0. (34)

When s = 0, θ̄(0) = u
(0)
0 . Assume that (34) holds for round s. Then by Theorem 27, for all

0 ≤ t ≤ H ,

∥ũ(s)
t − u

(s)
t ∥2 ≤ C̃1∥ũ(s)

0 − u
(s)
0 ∥2 + C̃1ηG

= C̃1∥θ̄(s)
0 − u

(s)
0 ∥2 + C̃1ηG

≤
s∑
l=1

C̃ l+1
1

(
ηG+ C̃3

√
η log

s0
ηδ

)
+ C̃1ηG.

Therefore, for sufficiently small η, ũ(s)
t ∈ Zϵ, ∀0 ≤ t ≤ H . Combing the above inequality with

Theorem 28, we have

∥θ̄(s+1) − u
(s+1)
0 ∥2 = ∥θ̄(s+1) − u

(s)
H ∥2

≤ ∥θ̄(s+1) − ũ
(s)
H ∥2 + ∥ũ

(s)
H − u

(s)
H ∥2

≤
s+1∑
l=1

C̃ l+1
1

(
ηG+ C̃3

√
η log

s0
ηδ

)
,

which concludes the induction.
Therefore, when (33) holds, there exists a positive constant C̃4 such that

∥θ̄(s0) − u
(s0)
0 ∥2 ≤ C̃4

√
η log

1

ηδ
.

By definition of u(s0)
0 ,

∥θ̄(s0) − ϕ(0)∥2 ≤
1

4

√
µ

ρ2
ϵ0 + C̃4

√
η log

1

ηδ
.

Finally, according to Theorem 26, (33) holds with probability at least 1− δ.

J.5.3. PROOF FOR SUBPHASE 2

In subphase 2, we show that the iterate can reach within Õ(√η) distance from Γ after O(log 1
η )

rounds with high probability. The following lemma manifests how the potential function Ψ̃(θ̄(s))
evolves after one round.

Lemma 30 Given θ̄(s) ∈ Γϵ0 , for δ = O(poly(η)), with probability at least 1− δ,

θ
(s)
k,t ∈ Γϵ2 , Ψ̃(θ

(s)
k,t ) ≤ Ψ̃(θ̄(s)) + C̃5

√
η log

1

ηδ
, ∀k ∈ [K], 0 ≤ t ≤ H
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and

θ̄(s+1) ∈ Γϵ2 , Ψ(θ̄(s+1)) ≤ exp(−αµ/2)Ψ̃(θ̄(s)) + C̃5

√
η log

1

ηδ
,

where C̃5 is a positive constant.
Proof Since θ̄(s) ∈ Γϵ0 , then for all 0 ≤ t ≤ H , ũ(s)

t ∈ Γϵ1 by the definition of the working zone.
By Theorem 21, for η ≤ 1

ρ2
,

L(ũ(s)
t )− L∗ ≤ (1− µη)t

(
L(θ̄(s))− L∗

)
≤ L(θ̄(s))− L∗, ∀0 ≤ t ≤ H.

Specially, for t = H ,

L(ũ(s)
H )− L∗ ≤ (1− µη)

α
η

(
L(θ̄(s))− L∗

)
≤ exp(−αµ)(L(θ̄(s))− L∗).

Therefore,

Ψ̃(ũ
(s)
H ) ≤ exp(−αµ/2)Ψ̃(θ̄(s)).

According to the proof of Theorem 28, for δ = O(poly(η)), when

∥Z̃(s)
k,t ∥2 ≤ C̃1σmax

√
2α

η
log

2αK

ηδ
, ∀k ∈ [K], 0 ≤ t ≤ H, (35)

there exists a constant C̃3 such that

∥θ(s)
k,t − ũ

(s)
t ∥2 ≤ C̃3

√
η log

1

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K],

and

∥θ̄(s+1) − ũ
(s)
H ∥2 ≤ C̃3

√
η log

1

ηδ
.

Since ũ
(s)
t ∈ Γϵ1 , ∀0 ≤ t ≤ H , θ̄(s+1) ∈ Γϵ2 and θ̄

(s)
k,t ∈ Γϵ2 , ∀0 ≤ t ≤ H , k ∈ [K].

By Theorem 22, Ψ̃(·) is
√
2ρ2-Lipschitz in Mϵ4 . Therefore, when (35) holds, there exists a

constant C̃5 :=
√
2ρ2C̃3 such that

Ψ̃(θ
(s)
k,t ) ≤ Ψ̃(ũ

(s)
t ) +

√
2ρ2∥θ(s)

k,t − ũ
(s)
t ∥2

≤ Ψ̃(θ̄(s)) + C̃5

√
η log

1

ηδ
,

and

Ψ̃(θ̄(s+1)) ≤ Ψ̃(ũ
(s)
H ) +

√
2ρ2∥θ̄(s+1) − ũ

(s)
H ∥2

≤ exp(−αµ/2)Ψ̃(θ̄(s)) + C̃5

√
η log

1

ηδ
.

Finally, by Theorem 26, (35) holds with probability at least 1− δ.
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We are thus led to the following lemma which characterizes the evolution of the potential Ψ̃(θ̄(s))

and Ψ̃(θ
(s)
k,t ) over multiple rounds.

Lemma 31 Given ∥θ̄(0)−ϕ(0)∥2 ≤ 1
2

√
µ
ρ2
ϵ0, for δ = O(poly(η)) and any integer 1 ≤ R ≤ Rtot,

with probability at least 1− δ,

θ̄(s) ∈ Γϵ0 , Ψ̃(θ̄(s)) ≤ exp(−αµs/2)Ψ̃(θ̄(0)) +
1

1− exp(−αµ/2) C̃5

√
η log

R

ηδ
, ∀0 ≤ s ≤ R.

(36)

Furthermore,

θ̄
(s)
k,t ∈ Γϵ2 , Ψ̃(θ

(s)
k,t ) ≤ Ψ̃(θ̄(s)) + C̃5

√
η log

R

ηδ
, ∀0 ≤ t ≤ H, 0 ≤ s < R, k ∈ [K]. (37)

Proof We prove induction that for δ = O(poly(η)), when

∥Z̃(s)
k,t ∥2 ≤ C̃1σmax

√
2α

η
log

2RαK

ηδ
, ∀k ∈ [K], 0 ≤ t ≤ H, 0 ≤ s < R, (38)

then for all 0 ≤ s ≤ R, (36) and (37) hold.
When s = 0, θ̄(0) ∈ Γϵ0 and (36) trivially holds. By Theorem 30, (37) holds. Assume that (36)

and (37) hold for round s− 1. Then for round s, by Theorem 30, θ̄(s) ∈ Γϵ2 and

Ψ(θ̄(s)) ≤ exp(−αµ/2)Ψ̃(θ̄(s−1)) + C̃5

√
η log

R

ηδ

≤ exp(−αµs/2)Ψ̃(θ̄(0)) +
1

1− exp(−αµ/2) C̃5

√
η log

R

ηδ
,

where the second inequality comes from the induction hypothesis. By Theorem 25,

∥θ̄(s) − ϕ(s)∥2 ≤
2√
2µ

Ψ̃(θ̄(s))

≤ 2√
2µ

Ψ̃(θ̄(0)) +
2√

2µ(1− exp(−αµ/2)) C̃5

√
η log

R

ηδ

≤ 1

2
ϵ0 +

2√
2µ(1− exp(−αµ/2)) C̃5

√
η log

R

ηδ
.

Here, the last inequality uses Ψ̃(θ̄(0)) ≤
√

ρ2
2 ∥θ̄(s) − ϕ(0)∥2 ≤ 1

2

√
µ
2 ϵ0. Hence, when η is suffi-

ciently small, θ̄(s) ∈ Γϵ0 . Still by Theorem 30, θ̄(s)
k,t ∈ Γϵ2 and

Ψ̃(θ
(s)
k,t ) ≤ Ψ̃(θ̄(s)) + C̃5

√
η log

R

ηδ
.
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Finally, according to Theorem 26, (38) holds with probability at least 1− δ.

The following corollary is a direct consequence of Theorem 31 and Theorem 25.

Corollary 32 Let s1 := ⌈ 20αµ log 1
η ⌉. Given ∥θ̄(0) − ϕ(0)∥2 ≤ 1

2

√
µ
ρ2
ϵ0, for δ = O(poly(η)), with

probability at least 1− δ,

Ψ̃(θ̄(s1)) ≤ C̃6

√
η log

1

ηδ
, ∥θ̄(s1) − ϕ(s1)∥2 ≤ C̃6

√
η log

1

ηδ
, (39)

where C̃6 is a constant.

Proof Substituting in R = s1 to Theorem 31 and applying ∥θ̄(s1) − ϕ(s)∥2 ≤
√

2
µΨ̃(θ̄(s1)) for

θ̄(s1) ∈ Γϵ0 , we have the lemma.

Finally, we provide a high probability bound for the movement of the projection on the manifold
after s1 rounds ∥ϕ(s1) − ϕ(0)∥2.

Lemma 33 Let s1 := ⌈ 20αµ log 1
η ⌉. Given ∥θ̄(0) − ϕ(0)∥2 ≤ 1

2

√
µ
ρ2
ϵ0. For δ = O(poly(η)), with

probability at least 1− δ,

∥ϕ(s1) − ϕ(0)∥2 ≤ C̃8 log
1

η

√
η log

1

ηδ
.

Proof From Theorem 31, for δ = O(poly(η)), when

∥Z̃(s)
k,t ∥2 ≤ C̃1σmax

√
2α

η
log

2s1αK

ηδ
, ∀k ∈ [K], 0 ≤ t ≤ H, 0 ≤ s < s1, (40)

then θ̄(s) ∈ Γϵ0 , for all 0 ≤ s ≤ s1. By the definition of Γϵ0 , ũ(s)
t ∈ Γϵ1 , for all 0 ≤ t ≤ H, 0 ≤

s ≤ s1. By triangle inequality, ∥ϕ(s1) − ϕ(0)∥2 can be decomposed as follows.

∥ϕ(s1) − ϕ(0)∥2 ≤
s1−1∑
s=0

∥ϕ(s+1) − ϕ(s)∥2

≤
s1−1∑
s=0

∥Φ(ũ(s)
H )− Φ(ũ

(s)
0 )∥2 +

s1−1∑
s=0

∥Φ(θ̄(s+1))− Φ(ũ
(s)
H )∥2. (41)

By Theorem 28, when (40) hold , then for all 0 ≤ s < s1 − 1,

∥θ̄(s+1) − ũ
(s)
H ∥2 ≤ C̃3

√
η log

s1
ηδ
.

This implies that θ̄(s+1) ∈ Bϵ1(ũ
(s)
H ). Since for all θ ∈ Γϵ2 , ∥∂Φ(θ)∥2 ≤ ν1, then Φ(·) is ν1-

Lipschitz in Bϵ1(ũ
(s)
H ). This gives

∥Φ(θ̄(s+1))− Φ(ũ
(s)
H )∥2 ≤ ν1∥θ̄(s+1) − ũ

(s)
H ∥2

≤ ν1C̃3

√
η log

s1
ηδ
. (42)
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Then we analyze ∥θ̄(s+1) − ũ
(s)
H ∥2. By Theorem 24 and the definition of Γϵ0 and Γϵ1 , there exists

ϕ ∈ Γ such that ũ(s)
t ∈ Bϵ1(ϕ), ∀0 ≤ t ≤ H . Therefore, we can expand Φ(ũ

(s)
t+1) as follows:

Φ(ũ
(s)
t+1) = Φ(ũ

(s)
t − η∇L(ũ

(s)
t ))

= Φ(ũ
(s)
t )− η∂Φ(ũ(s))∇L(u(s)

t ) +
η2

2
∂2Φ(û

(s)
t )[∇L(ũ(s)

t ),∇L(ũ(s)
t )]

= Φ(ũ
(s)
t ) +

η2

2
∂2Φ

(
c
(s)
t ũ

(s)
t + (1− c(s)t )ũ

(s)
t+1

)
[∇L(ũ(s)

t ),∇L(ũ(s)
t )],

where c(s)t ∈ (0, 1). Then we have

∥Φ(ũ(s)
H )− Φ(ũ

(s)
0 )∥2 ≤

η2

2

H−1∑
t=0

∥∂2Φ(
(
c
(s)
t ũ

(s)
t + (1− c(s)t )ũ

(s)
t+1

)
)[∇L(ũ(s)),∇L(ũ(s)

t )]∥2

≤ η2

2
ν2

H−1∑
t=0

∥∇L(ũ(s)
t )∥22.

By Theorem 21, η2∥∇L(ũ
(s)
t )∥22 ≤ L(ũ

(s)
t )− L(ũ(s)

t+1). Therefore,

∥Φ(ũ(s)
H )− Φ(ũ

(s)
0 )∥2 ≤ ην2(L(ũ(s)

0 )− L(ũ(s)
H ))

≤ ην2[Ψ̃(θ̄(s))]2

≤ ν2η
[
2 exp(−αsµ)Ψ̃(θ̄(0)) +

C̃2
5η

(1− exp(−αµ/2))2 log
s1
ηδ

]
, (43)

where the last inequality uses Cauchy-Schwartz inequality and Theorem 31. Summing up (43) , we
obtain
s1−1∑
s=0

∥Φ(ũ(s)
H )− Φ(ũ

(s)
0 )∥2 ≤ ν2η

[
2Ψ̃(θ̄(0))

s1−1∑
s=0

exp(−αµs) + s1C̃
2
5η

(1− exp(−αµ/2))2 log
s1
ηδ

]

≤ C̃7η log
1

η
log

1

ηδ
, (44)

where C̃7 is a constant. Substituting (42) and (44) into (41), for sufficiently small η, we have

∥ϕ(s1) − ϕ(0)∥2 ≤ ν1C̃3s1

√
η log

s1
ηδ

+ C̃7η log
1

η
log

1

ηδ

≤ C̃8 log
1

η

√
η log

1

ηδ
,

where C̃8 is a constant. Finally, according to Theorem 26, (40) holds with probability at least 1− δ.

J.6. High Probability Bounds for Phase 2: Iterates Staying Close to Manifold

In this subsection, we show that ∥x(s)
k,t∥2 = Õ(√η) and ∥θ̄(s+r) − θ̄(s)∥2 = Õ(η0.5−0.5β), ∀0 ≤

r ≤ Rgrp with high probability.
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J.6.1. ADDITIONAL NOTATIONS

Before presenting the lemmas, we define the following martingale {m(s)
k,t}Ht=0 that will be useful in

the proof:

m
(s)
k,t :=

t−1∑
τ=0

z
(s)
k,τ , mk,0 = 0.

We also define P̃ : Rd → Rd×d as an extension of ∂Φ:

P̃ (θ) :=

{
∂Φ(θ), if θ ∈ Γϵ2 ,

0, otherwise.

Finally, we define a martingale {Z(s)
t : s ≥ 0, 0 ≤ t ≤ H}:

Z
(s)
t :=

1

K

∑
k∈[K]

s−1∑
r=0

H−1∑
τ=0

P̃ (θ̄(r))z
(r)
k,t +

1

K

∑
k∈[K]

t−1∑
τ=0

P̃ (θ̄(s))z
(s)
k,t , Z

(0)
0 = 0.

J.6.2. PROOF FOR THE HIGH PROBABILITY BOUNDS

A direct application of Azuma-Hoeffding’s inequality yields the following lemma.

Lemma 34 (Concentration property of m(s)
k,t) With probability at least 1−δ, the following holds:

∥m(s)
k,t∥2 ≤ C̃9

√
1

η
log

1

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K], 0 ≤ s < Rgrp,

where C̃9 is a constant.

Proof Notice that ∥m(s)
k,t+1 −m

(s)
k,t∥2 ≤ σmax. Then by Azuma-Hoeffdings inequality,

P(∥m(s)
k,t∥2 ≥ ϵ′) ≤ 2 exp

(
− ϵ′2

2tσ2max

)
.

Taking union bound on K clients, H local steps and Rgrp rounds, we obtain that the following
inequality holds with probability at least 1− δ:

∥m(s)
k,t∥2 ≤ σmax

√
2H log

2KHRgrp

δ
, ∀0 ≤ t ≤ H, k ∈ [K], 0 ≤ s < Rgrp.

Substituting in H = α
η and Rgrp = ⌊ 1

αηβ
⌋ yields the lemma.

Again applying Azuma-Hoeffding’s inequality, we have the following lemma about the concentra-
tion property of Z(s)

t .

Lemma 35 (Concentration property of Z(s)
t ) With probability at least 1 − δ, the following in-

equality holds:

∥Z(s)
H ∥2 ≤ C̃12η

−0.5−0.5β

√
log

1

ηδ
, ∀0 ≤ s < Rgrp.
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Proof Notice that ∥Z(s)
t+1 −Z

(s)
t ∥2 ≤ ν2σmax, ∀0 ≤ t ≤ H − 1 and ∥Z(s+1)

0 −Z
(s)
H ∥2 ≤ ν2σmax.

By Azuma-Hoeffding’s inequality,

P(∥Z(s)
t ∥2 ≥ ϵ′) ≤ 2 exp

(
− ϵ′2

2(sH + t)ν22σ
2
max

)
.

Taking union bound on Rgrp rounds, we obtain that the following inequality holds with probability
at least 1− δ:

∥Z(s)
H ∥2 ≤ σmaxν2

√
2HRgrp log

2Rgrp

δ
, ∀0 ≤ s < Rgrp.

Substituting in H = α
η and Rgrp = ⌊ 1

αηβ
⌋ yields the lemma.

We proceed to present a direct corollary of Theorem 31 which provides a bound for the potential
function over Rgrp rounds.

Lemma 36 Given ∥θ̄(0)−ϕ(0)∥2 ≤ C0

√
η log 1

η whereC0 is a constant, then for δ = O(poly(η)),
with probability at least 1− δ,

θ̄(s) ∈ Γϵ0 , Ψ̃(θ̄(s)) ≤ C1

√
η log

1

ηδ
, ∀0 ≤ s < Rgrp, (45)

and

θ̄
(s)
k,t ∈ Γϵ2 , Ψ̃(θ̄

(s)
k,t ) ≤ C1

√
η log

1

ηδ
, ∀0 ≤ s < Rgrp, 0 ≤ t ≤ H, k ∈ [K], (46)

where C1 is a constant that can depend on C0.

Furthermore,

Ψ̃(θ̄(Rgrp)) ≤ C̃10

√
η log

1

ηδ
,

where C̃9 is a constant independent of C0.
Proof By ρ2-smoothness of L, Ψ̃(θ̄(0)) ≤ C0

√
ηρ2
2 log 1

η . Substituting Rgrp = ⌊ 1
αηβ
⌋ and

Ψ̃(θ̄(0)) ≤ C0

√
ηρ2
2 log 1

η into Theorem 31, for δ = O(poly(η)), with probability at least 1 − δ,
(45) and (46) where C1 is a constant that can depend on C0.

Furthermore, for round θ̄(Rgrp),

Ψ̃(θ̄(Rgrp)) ≤ exp(−O(η−β)) + 1

1− exp(−αµ/2) C̃5

√
η log

Rgrp

ηδ
≤ C̃10

√
η log

1

ηδ
,

where C̃9 is a constant independent of C0.

44



WHY (AND WHEN) DOES LOCAL SGD GENERALIZE BETTER THAN SGD?

Lemma 37 Given ∥θ̄(0)−ϕ(0)∥2 ≤ C0

√
η log 1

η whereC0 is a constant, then for δ = O(poly(η)),
with probability at least 1− δ, for all 0 ≤ s0 < Rgrp, 0 ≤ t ≤ H , k ∈ [K],

∥x(s)
k,t∥2 ≤ C2

√
η log

1

ηδ
, ∥x̄(s)

H ∥2 ≤ C2

√
η log

1

ηδ
,

∥θ̄(s)
k,t − θ̄(s)∥2 ≤ C2

√
η log

1

ηδ
, ∥θ̄(s+1) − θ̄(s)∥2 ≤ C2

√
η log

1

ηδ
.

where C2 is a constant that can depend C0. Furthermore,

∥θ̄(Rgrp) − ϕ(Rgrp)∥2 ≤ C̃11

√
η log

1

ηδ
,

where C̃11 is a constant independent of C0.

Proof Decomposing x
(s)
k,t by triangle inequality, we have

∥x(s)
k,t∥2 ≤ ∥θ

(s)
k,t − θ̄(s)∥2 + ∥θ̄(s) − ϕ(s)∥2.

We first bound ∥θ̄(s)−ϕ(s)∥2. By Theorem 36, for δ = O(poly(η)), with probability at least 1− δ
2 ,

Ψ̃(θ̄(s)) ≤ C1

√
η log

2

ηδ
,∀0 ≤ s < Rgrp, (47)

Ψ̃(θ
(s)
k,t ) ≤ C1

√
η log

2

ηδ
, ∀0 ≤ s < Rgrp, 0 ≤ t ≤ H, (48)

and

Ψ̃(θ̄(Rgrp)) ≤ C̃10

√
η log

2

ηδ
, (49)

where C2 is a constant that may depend on C0 and C̃10 is a constant independent of C0. When (47)
and (49) hold, by Theorem 25,

∥θ̄(s) − ϕ(s)∥2 ≤
√

2

µ
Ψ̃(θ̄(s)) ≤ C1

√
2η

µ
log

2

ηδ
, (50)

∥θ̄(Rgrp) − ϕ(Rgrp)∥2 ≤
√

2

µ
Ψ̃(θ̄(Rgrp)) ≤ C̃10

√
2η

µ
log

2

ηδ
. (51)

Then we bound ∥θ(s)
k,t − θ̄(s)∥2. By the update rule, we have

θ
(s)
k,t = θ̄(s) − η

t−1∑
τ=0

∇L(θ(s)
k,τ )− η

t−1∑
τ=0

z
(s)
k,τ = θ̄(s) − η

t−1∑
τ=0

∇L(θ(s)
k,τ )− ηm

(s)
k,t .

Still by triangle inequality, we have

∥θ(s)
k,t − θ̄(s)∥2 ≤ η

t−1∑
τ=0

∥∇L(θ(s)
k,τ )∥2 + η∥m(s)

k,t∥2.
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Due to ρ2-smoothness of L, when (48) holds,

∥∇L(θ(s)
k,τ )∥2 ≤

√
2ρ2Ψ̃(θ

(s)
k,τ ) ≤ C1

√
2ρ2η log

2

ηδ
. (52)

By Theorem 34, with probability at least 1− δ
2 ,

∥m(s)
k,t∥2 ≤ C̃9

√
1

η
log

2

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K], 0 ≤ s < Rgrp. (53)

Combining (52) and (53), when (48) and (49) hold simultaneously, there exists a constant C3 which
can depend on C0 such that

∥θ(s)
k,t − θ̄(s)∥2 ≤ C3

√
η log

1

ηδ
, ∀k ∈ [K], 0 ≤ t ≤ H. (54)

By triangle inequality,

∥θ̄(s+1) − θ̄(s)∥2 ≤ C3

√
η log

1

ηδ
.

Combining (50), (51) and (54), we complete the proof.

Then we provide high probability bounds for the movement of ϕ(s) within Rgrp rounds.

Lemma 38 Given ∥θ̄(0)−ϕ(0)∥2 ≤ C0

√
η log 1

η whereC0 is a constant, then for δ = O(poly(η)),
with probability at least 1− δ,

∥ϕ(s) − ϕ(0)∥2 ≤ C4η
0.5−0.5β

√
log

1

ηδ
, ∀1 ≤ s ≤ Rgrp.

where C4 is a constant that can depend on C0.

Proof By the update rule of Local SGD,

θ
(s)
k,H = θ̄(s) − η

H−1∑
t=0

∇L(θ(s)
k,t )− η

H−1∑
t=0

z
(s)
k,t

Averaging among K clients gives

θ̄(s+1) = θ̄(s) − η

K

H−1∑
t=0

∑
k∈[K]

∇L(θ(s)
k,t )−

η

K

H−1∑
t=0

∑
k∈[K]

z
(s)
k,t .

By Theorem 37, for δ = O(poly(η)), the following holds with probability at least 1− δ/3,

∥θ(s)
k,t − θ̄(s)∥2 ≤ C2

√
η log

3

ηδ
, θ

(s)
k,t ∈ Bϵ0(ϕ(s)), ∀0 ≤ s < Rgrp, 0 ≤ t ≤ H, k ∈ [K], (55)

∥θ̄(s+1) − θ̄(s)∥2 ≤ C2

√
η log

3

ηδ
, θ̄(s), θ̄(s+1) ∈ Bϵ0(ϕ(s)), ∀0 ≤ s < Rgrp. (56)
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When (55) and (56) hold, we can expand Φ(θ̄(s+1)) as follows:

ϕ(s+1) = ϕ(s) + ∂Φ(θ̄(s))(θ̄(s+1) − θ̄(s)) +
1

2
∂2Φ(θ̃(s))[θ̄(s+1) − θ̄(s), θ̄(s+1) − θ̄(s)]

= ϕ(s)− η

K

H−1∑
t=0

∑
k∈[K]

∂Φ(θ̄(s))∇L(θ(s)
k,t )︸ ︷︷ ︸

T (s)
1

− η

K
∂Φ(θ̄(s))

H−1∑
t=0

∑
k∈[K]

z
(s)
k,t︸ ︷︷ ︸

T (s)
2

+
1

2
∂2Φ(a(s)θ̄(s) + (1− a(s))θ̄(s+1))[θ(s+1) − θ(s),θ(s+1) − θ(s)]︸ ︷︷ ︸

T (s)
3

,

where a(s) ∈ (0, 1). Telescoping from round 0 to s− 1, we have

∥ϕ(s) − ϕ(0)∥2 =
s−1∑
r=0

T (r)
1 +

s−1∑
r=0

T (r)
2 +

s−1∑
r=0

T (r)
3 .

From (56), we can bound ∥T (s)
3 ∥2 by ∥T (s)

3 ∥2 ≤ 1
2ν2C

2
2η log

3
ηδ . We proceed to bound ∥T (s)

1 ∥2.
When (55) and (56) hold, we have

∂Φ(θ̄(s))∇L(θ(s)
k,t ) = ∂Φ(θ

(s)
k,t )∇L(θ

(s)
k,t ) + ∂2Φ(θ̂

(s)
k,t )[θ

(s)
k,t − θ̄(s),∇L(θ(s)

k,t )]

= ∂2Φ(b
(s)
k,t θ̄

(s) + (1− b(s)k,t)θ̂
(s)
k,t )[θ

(s)
k,t − θ̄(s),∇L(θ(s)

k,t )],

where b(s)k,t ∈ (0, 1). By Theorem 31, with probability at least 1− δ/3, the following holds:

∥∇L(θ(s)
k,t )∥2 ≤

√
2ρ2Ψ̃(θ

(s)
k,t ) ≤ C1

√
2ρ2η log

3

ηδ
,∀k ∈ [K], 0 ≤ t ≤ H, 0 ≤ s < Rgrp. (57)

When (55), (56) and (57) hold simultaneously, we have for all 0 ≤ s < Rgrp,

∥T (s)
1 ∥2 ≤

ην2
K

H−1∑
t=0

∥θ(s)
k,t − θ̄(s)∥2∥∇L(θ(s)

k,t )∥2

≤ αν2
√
2ρ2C1C2

K
η log

3

ηδ
.

Finally, we bound ∥∑s−1
r=0 T

(r)
2 ∥2. By Theorem 35, the following inequality holds with proba-

bility at least 1− δ/3:

∥Z(s)
H ∥2 ≤ C̃12η

−0.5−0.5β

√
log

3

ηδ
, ∀0 ≤ s < Rgrp. (58)

When (55), (56) and (58) hold simultaneously, we have

∥
s∑
r=0

T (r)
2 ∥2 = η∥Z(s)

H ∥2 ≤ C̃12η
0.5−0.5β

√
log

3

ηδ
, ∀0 ≤ s < Rgrp
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Combining the bounds for ∥T (s)
1 ∥2, ∥∑s

r=0 T
(r)
2 ∥2 and ∥T (s)

3 ∥2 and taking union bound, we obtain
that for δ = O(poly(η)), the following inequality holds with probability at least 1− δ:

∥ϕ(s) − ϕ(0)∥2 ≤ C4η
0.5−0.5β

√
log

1

ηδ
, ∀1 ≤ s ≤ Rgrp.

where C4 is a constant that can depend on C0.

J.7. Summary of High Probability Bounds

Based on the results in Appendix J.5 and Appendix J.6, we summarize the dynamics of Local SGD
iterates in this subsection. For convenience, we first introduce the definition of global step and
δ-good step.

Definition 39 (Global step) Define an index set I := {(s, t) | s ≥ 0, 0 ≤ t ≤ H} with lexico-
graphical order, which means (s1, t1) ⪯ (s2, t2) if and only if s1 < s2 or (s1 = s2 and t1 ≤ t2). A
global step is indexed by (s, t) which corresponds to the t-th local step at round s.

Definition 40 (δ-good step) In the training process of Local SGD, we say the global step (s, t) ⪯
(Rtot, 0) is δ-good if the following inequalities hold:

∥Z̃(r)
k,τ∥2 ≤ exp(αρ2)σmax

√
2H log

6HRtotK

δ
, ∀k ∈ [K], (r, τ) ⪯ (s, t),

∥m(r)
k,τ∥2 ≤ σmax

√
2H log

6KHRtot

δ
, ∀k ∈ [K], (r, τ) ⪯ (s, t),

∥Z(r)
H ∥2 ≤ σmaxν2

√
2HRgrp log

2Rtot

δ
, ∀0 ≤ r < s.

Applying the concentration properties of Z̃(r)
k,τ ,m

(r)
k,τ and Z

(r)
H (Lemmas 35, 34 and 26) yields the

following theorem.

Theorem 41 For δ = O(poly(η)), with probability at least 1−δ, all global steps (s, t) ⪯ (Rtot, 0)
are δ-good.

In the remainder of this subsection, we use O(·) notation to hide constants independent of δ and η.
Now we are ready to present a summary of the dynamics of Local SGD when θ̄(0) is initialized

such that Φ(θ̄(0)) ∈ Γ and all global steps are δ-good. Phase 1 lasts for s0 + s1 = O(log 1
η )

rounds. At the end of phase 1, the iterate reaches within O(
√
η log 1

ηδ ) from Γ, i.e., ∥θ̄(s0+s1) −
ϕ(s0+s1)∥2 = O(

√
η log 1

ηδ ) . The movement of the projection on manifold over s0 + s1 rounds,

∥ϕ(s1+s0) − ϕ(0)∥2, is bounded by O(log 1
η

√
η log 1

ηδ ).

After s0 + s1 rounds, the dynamic enters phase 2 when the iterates stay close to Γ with θ̄(s) ∈
Γϵ2 ,∀s0+s1 ≤ s ≤ Rtot and θ

(s)
k,t ∈ Γϵ2 , ∀k ∈ [K], (s0+s1, 0) ⪯ (s, t) ⪯ (Rtot, 0). Furthermore,

∥x(s)
k,t∥2 and ∥x̄(s)

H ∥2 satisfy the following equations:

∥x(s)
k,t∥2 = O(

√
η log 1

ηδ ), ∀k ∈ [K], 0 ≤ t ≤ H, s0 + s1 ≤ s < Rtot,

∥x̄(s)
H ∥2 = O(

√
η log 1

ηδ ), ∀s0 + s1 ≤ s < Rtot.
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Moreover, the movement of the manifold projection within Rgrp rounds can be bounded as follows:

∥ϕ(s+r) − ϕ(s)∥2 = O(η0.5−0.5β

√
log

1

ηδ
), ∀1 ≤ r ≤ Rgrp.

Finally, we provide a theorem which states that θ̄(s) stays within Õ(√η) from the manifold after
O(log 1

η ) rounds with high probability. This theorem is a direct consequence of the lemmas in
Appendix J.5 and J.6.

Theorem 42 For δ = O(poly(η)), with probability at least 1 − δ, for all O(log 1
η ) ≤ s ≤

⌊T/(Hη2)⌋,

Φ(θ̄(s)) ∈ Γ, ∥θ̄(s) − Φ(θ̄(s))∥2 = O
(√

η log
1

ηδ

)
,

where O(·) hides constants independent of η and δ.

Proof [Proof for Theorem 42] By Lemmas 29, 37 and Theorem 32, for δ = O(poly(η)), when all
global steps are δ-good, θ̄(s) ∈ Γϵ2 , ∀s0 + s1 ≤ s ≤ Rtot and θ

(s)
k,t ∈ Γϵ2 , ∀k ∈ [K], (s0 + s1, 0) ⪯

(s, t) ⪯ (Rtot, 0) and ∥x(s)
k,t∥2, ∥x̄(s)

H ∥2 satisfy the following equations:

∥x(s)
k,t∥2 = O(

√
η log 1

ηδ ), ∀k ∈ [K], 0 ≤ t ≤ H, s0 + s1 ≤ s < Rtot,

∥x̄(s)
H ∥2 = O(

√
η log 1

ηδ ), ∀s0 + s1 ≤ s < Rtot.

Hence ∥x̄(Rtot)
0 ∥2 = O(Ψ̃(θ̄(Rtot))) = O(∥x̄(Rtot−1)

H ∥2) = O(
√
η log 1

ηδ ) by smoothness of L and
Theorem 25. According to Theorem 41, with probability at least 1− δ, all global steps are δ-good,
thus completing the proof.

J.8. Proof of Theorem 5

In this subsection, we explicitly derive the dependency of the approximation error on α. The proofs
are quite similar to those in Appendix J.5 and hence we only state the key proof idea for brevity.
With the same method as the proofs in Appendix J.5.2, we can show that with high probability,
∥θ̄(s) − ϕ(s)∥2 ≤ 1

2

√
µ
ρ2

after s′0 = O(1) rounds. Below we focus on the dynamics of Local SGD

thereafter. We first remind the readers of the definition of {Z̃s
k,t}:

Z̃
(s)
k,t :=

t−1∑
τ=0

(
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))

)
z
(s)
k,τ , Z̃

(s)
k,0 = 0.

We have the following lemma that controls the norm of the matrix product
∏t−1
l=τ+1(I−η∇2L(ũ(s)

l )).

Lemma 43 Given θ̄(s) ∈ Γϵ0 , then there exists a positive constant C ′
3 independent of α such that

for all 0 ≤ τ < t ≤ H ,

∥
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))∥2 ≤ C ′

3.
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Proof Since θ̄(s) ∈ Γϵ0 , then ũ
(s)
t ∈ Γϵ1 for all 0 ≤ t ≤ H . We first bound the minimum eigenvalue

of∇2L(ũ(s)
t ). Due to the PL condition, by Theorem 21, for η ≤ 1

ρ2
,

L(ũ(s)
t )− L∗ ≤ (1− µη)t

(
L(θ̄(s))− L∗

)
≤ exp(−µtη)(L(θ̄(s))− L∗), ∀0 ≤ t ≤ H.

Therefore,

Ψ̃(ũ
(s)
t ) ≤ exp(−µtη/2)Ψ̃(θ̄(s)).

Let C ′
1 = ρ3

√
ρ2
µ . By Weyl’s inequality,

|λmin(∇2L(ũ(s)
t ))| = |λmin(∇2L(ũ(s)

t ))− λmin(∇2L(Φ(ũ(s)
t ))|

≤ ρ3∥∇2L(ũ(s)
t )−∇2L(Φ(ũ(s)

t ))∥2
≤ ρ3∥ũ(s)

t − Φ(ũ
(s)
t )∥2

≤ ρ3
√

2

µ
exp(−µtη/2)Ψ̃(θ̄(s))

≤ C ′
1 exp(−µtη/2)ϵ0,

where the last two inequalities use Lemmas 25 and 22 respectively. Therefore, for all 0 ≤ t ≤ H
and 0 ≤ τ ≤ t− 1,

∥
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))∥2 ≤

t−1∏
l=τ+1

(1 + η|λmin∇2L(ũ(s)
l )|)

≤
∞∏
l=0

(1 + η|λmin∇2L(ũ(s)
l )|)

≤ exp(ηϵ0C
′
1

∞∑
l=0

exp(−µlη/2)). (59)

For sufficiently small η, there exists a constant C ′
2 such that

∞∑
l=0

exp(−µlη/2)) = 1

1− exp(−µη/2) ≤
C ′
2

η
. (60)

Substituting (60) into (59), we obtain the lemma.

Based on Theorem 43, we obtain the following lemma about the concentration property of Z̃(s)
k,t ,

which can be derived in the same way as Theorem 26.

Lemma 44 Given θ̄(s) ∈ Γϵ0 , then with probability at least 1− δ,

∥Z̃(s)
k,t ∥2 ≤ C ′

3σmax

√
2α

η
log

2αK

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K],

where C ′
3 is defined in Theorem 43.
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The following lemma can be derived analogously to Theorem 28 but the error bound is tighter in
terms of its dependency on α.

Lemma 45 Given θ̄(s) ∈ Γϵ1 , then for δ = O(poly(η)), with probability at least 1− δ, there exists
a constant C ′

4 independent of α such that

∥θ(s)
k,t − ũ

(s)
t ∥2 ≤ C ′

4

√
αη log

α

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K],

and

∥θ̄(s+1) − ũ
(s)
H ∥2 ≤ C ′

4

√
αη log

α

ηδ
.

Then, similar to Theorem 31, we can show that for δ = O(poly(η)) and simultaneously all s ≥
s′0 + s′1 where s′1 = O( 1α log 1

η ), it holds with probability at least 1 − δ that ∥θ̄(s) − ϕ(s)∥2 =

O(
√
αη log α

ηδ ). Note that to eliminate the dependency of the second term’s denominator on α in

(37), we can discuss the cases of α > c0 and α < c0 respectively where c0 can be an arbitrary
positive constant independent of α. For the case of α < c0 group ⌈ c0α ⌉ rounds together and repeat
the arguments in this subsection to analyze the closeness between Local SGD and GD iterates as
well as the evolution of loss.

J.9. Computing the Moments for Phase 2

In this subsection, we compute the first and second moments for the movement of manifold projec-
tion after Rgrp rounds of Local SGD. Since the randomness in training might drive the iterate out
of the working zone, making the dynamic intractable, we analyze a more well-behaved sequence
{θ̂(s)

k,t : (s, t) ⪯ (Rtot, 0), k ∈ [K]} which is equal to {θ̂(s)
k,t} with high probability. Specifically, θ̂(s)

k,t

equal to θ
(s)
k,t if the global step (s, t) is η100-good and is set as a point ϕnull ∈ Γ otherwise. Denote

by E(s)t the event {global step (s, t) is η100-good}. Then θ̂
(s)
k,t = θ

(s)
k,t1E(s)

t
+ ϕnull1Ē(s)

t
and {θ̂(s)

k,t}
satisfy the following update rule:

θ̂
(s)
k,t+1 = θ

(s)
k,t+11E(s)

t+1

+ ϕnull1Ē(s)
t+1

(61)

= θ̂
(s)
k,t − η∇L(θ̂

(s)
k,t )− ηz

(s)
k,t −1Ē(s)

t+1

(θ̂
(s)
k,t − η∇L(θ̂

(s)
k,t )− ηz

(s)
k,t ) + 1Ē(s)

t+1

ϕnull︸ ︷︷ ︸
:ê

(s)
k,t

. (62)

By Theorem 41, with probability at least 1−η100, θ̂(s)
k,t = θ

(s)
k,t , ∀k ∈ [K], (s, t) ⪯ (Rtot, 0). Similar

to {θ(s)
k,t}, we define the following variables with respect to {θ̂(s)

k,t}:

θ̂(s+1)
avg :=

1

K

∑
k∈[K]

θ̂
(s)
k,H , ϕ̂(s) := Φ(θ̂(s)

avg),

x̂
(s)
k,t := θ̂

(s)
k,t − ϕ̂(s), x̂

(s)
avg,0 := θ̂(s)

avg − ϕ̂(s), x̂
(s)
avg,H :=

1

K

∑
k∈[K]

x̂
(s)
k,H .

51



WHY (AND WHEN) DOES LOCAL SGD GENERALIZE BETTER THAN SGD?

0 10 20 30
x

0.00

0.25

0.50

0.75

1.00
ψ(x)

Figure 7: A plot of ψ(x)

Notice that x̂(s)
k,0 = x̂

(s)
avg,0 for all k ∈ [K]. Finally, we introduce the following mapping Ψ(θ) :

Γ→ Rd×d, which is closely related to Ψ̂ defined in Theorem 4.

Definition 46 For θ ∈ Γ, we define the mapping Ψ(θ) : Γ→ Rd×d:

Ψ(θ) =
∑
i,j∈[d]

ψ(ηH(λi + λj))
〈
Σ(θ),viv

⊤
j

〉
viv

⊤
j ,

where λi,vi are the i-th eigenvalue and eigenvector of∇2L(θ) and vi’s form an orthonormal basis
of Rd. Additionally, ψ(x) := e−x−1+x

x and ψ(0) = 0; see Figure 7 for a plot.

Remark 47 Intuitively, Ψ(θ) rescales the entries of Σ(θ) in the eigenbasis of ∇2L(θ). When
∇2L(θ) = diag(λ1, · · · , λd) ∈ Rd×d, where λi = 0 for all m < i ≤ d, Ψ(Σ0)i,j = ψ(ηH(λi +
λj))Σ0,i,j . Note that Ψ(θ) can also be written as

vec(Ψ(θ)) = ψ(ηH(∇2L(θ)⊕∇2L(θ)))vec(Σ(θ)),

where⊕ denotes the Kronecker sum A⊕B = A⊗Id+Id⊗B, vec(·) is the vectorization operator
of a matrix and ψ(·) is interpreted as a matrix function.

Now we are ready to present the result about the moments of ϕ̂(s+Rgrp) − ϕ̂(s).

Theorem 48 For s0 + s1 ≤ s ≤ Rtot − Rgrp and 0 < β < 0.5, the first and second moments of
ϕ̂(s+Rgrp) − ϕ̂(s) are as follows:

E[ϕ̂(s+Rgrp) − ϕ̂(s) | ϕ̂(s), E(s)s,0 ] =
η1−β

2B
∂2Φ(ϕ̂(s))[Σ(ϕ̂(s)) + (K − 1)Ψ(ϕ̂(s))]

+ Õ(η1.5−2β) + Õ(η),
(63)

E[(ϕ̂(s+Rgrp) − ϕ̂(s))(ϕ̂(s+Rgrp) − ϕ̂(s))⊤ | ϕ̂(s), E(s)0 ] =
η1−β

B
Σ∥(ϕ̂

(s)) + Õ(η1.5−2β) + Õ(η),
(64)

where Õ(·) hides log terms and constants independent of η.

Remark 49 By Theorem 41 and the definition of θ̂(s)
k,t , (63) and (64) still hold when we replace

ϕ̂(s) with ϕ(s) and replace ϕ̂(s+Rgrp) with ϕ(s+Rgrp).
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We shall have Theorem 48 if we prove the following theorem, which directly gives Theorem 48
with a simple shift of index. For brevity, denote by ∆ϕ̂(s) := ϕ̂(s) − ϕ̂(0), Σ0 := Σ(ϕ̂(0)),
Σ0,∥ := Σ∥(ϕ̂

(0)).

Theorem 50 Given ∥θ̂(0)
avg − ϕ̂(0)∥2 = O(

√
η log 1

η ), for 0 < β < 0.5, the first and second

moments of ∆ϕ̂(Rgrp) are as follows:

E[∆ϕ̂(Rgrp)] =
η1−β

2B
∂2Φ(ϕ̂(0))[Σ0 + (K − 1)Ψ(ϕ̂(0))] + Õ(η1.5−2β) + Õ(η),

E[∆ϕ̂(Rgrp)∆ϕ̂(Rgrp)⊤] =
η1−β

B
Σ0,∥ + Õ(η1.5−1.5β) + Õ(η).

We will prove Theorem 50 in the remainder of this subsection. For convenience, we introduce more
notations that will be used throughout the proof. Let H0 := ∇2L(ϕ̂(0)). By Assumption 3.2,
rank(H0) = m. WLOG, assume H0 = diag(λ1, · · · , λd) ∈ Rd×d, where λi = 0 for all m <
i ≤ d and λ1 ≥ λ2 · · · ≥ λm. By Theorem 17, ∂Φ(ϕ̂(0)) is the projection matrix onto the tangent

space Tϕ̂(0)(Γ) (i.e. the null space of ∇2L(ϕ̂(0))) and therefore, ∂Φ(ϕ̂(0)) =

[
0 0
0 Id−m

]
. Let

P∥ := ∂Φ(ϕ̂(0)) and P⊥ := Id − P∥.

Let Â(s)
avg := E[x̂(s)

avg,H x̂
(s)⊤
avg,H ], q̂

(s)
t := E[x̂(s)

k,t ] and B̂
(s)
t := E[x̂(s)

k,t∆ϕ̂(s)]. The latter two

notations are independent of k since for all k ∈ [K], θ̂(s)
k,t ’s are identically distributed. The following

lemma computes the first and second moments of the one round movement.

Lemma 51 Given ∥θ̂(0)
avg−ϕ̂(0)∥2 = O(

√
η log 1

η ), for 0 ≤ s < Rgrp, the first and second moments

of ϕ̂(s+1) − ϕ̂(s) are as follows:

E[ϕ̂(s+1) − ϕ̂(s)] = P∥q̂
(s)
H + ∂2Φ(ϕ̂(0))[B̂

(s)
H ] +

1

2
∂2Φ(ϕ̂(0))[Â(s)

avg] + Õ(η1.5−β), (65)

E[(ϕ̂(s+1) − ϕ̂(s))(ϕ̂(s+1) − ϕ̂(s))⊤] = P∥Â
(s)
avgP∥ + Õ(η1.5−0.5β). (66)

Proof By Taylor expansion, we have

ϕ̂(s+1) = Φ
(
ϕ̂(s) + x̂

(s)
avg,H

)
= ϕ̂(s) + ∂Φ(ϕ̂(s))x̂

(s)
avg,H +

1

2
∂2Φ(ϕ̂(s))[x̂

(s)
avg,H x̂

(s)⊤
avg,H ] +O(∥x̂

(s)
avg,H∥32)

= ϕ̂(s) + ∂Φ(ϕ̂(0) +∆ϕ̂(s))x̂
(s)
avg,H +

1

2
∂2Φ(ϕ̂(0) +∆ϕ̂(s))[x̂

(s)
avg,H x̂

(s)⊤
avg,H ]

+O(∥x̂(s)
avg,H∥32)

= ϕ̂(s) + P∥x̂
(s)
avg,H + ∂2Φ(ϕ̂(0))[x̂

(s)
avg,H∆ϕ̂(s)⊤] +

1

2
∂2Φ(ϕ̂(0))[x̂

(s)
avg,H x̂

(s)⊤
avg,H ]

+O(∥∆ϕ̂(s)∥22∥x̂(s)
avg,H∥2 + ∥∆ϕ̂(s)∥2∥x̂(s)

avg,H∥22 + ∥x̂
(s)
avg,H∥32).

Rearrange the terms and we obtain:

ϕ̂(s+1) − ϕ̂(s) = P∥x̂
(s)
avg,H + ∂2Φ(ϕ̂(0))[x̂

(s)
avg,H∆ϕ̂(s)⊤] +

1

2
∂2Φ(ϕ̂(0))[x̂

(s)
avg,H x̂

(s)⊤
avg,H ]

+O(∥∆ϕ̂(s)∥22∥x̂(s)
avg,H∥2 + ∥∆ϕ̂(s)∥2∥x̂(s)

avg,H∥22 + ∥x̂
(s)
avg,H∥32).

(67)
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Moreover,

(ϕ̂(s+1) − ϕ̂(s))(ϕ̂(s+1) − ϕ̂(s))⊤ = P∥x̂
(s)
avg,H x̂

(s)⊤
avg,HP∥ +O(∥∆ϕ̂(s)∥2∥x̂(s)

avg,H∥22). (68)

Noticing that x̂(s)
k,H∆ϕ̂(s)⊤ are identically distributed for all k ∈ [K], we have E[x̂(s)

avg,H∆ϕ̂(s)⊤] =
1
K

∑
k∈[K] E[x̂

(s)
k,H∆ϕ̂(s)⊤] = B̂

(s)
H . Then taking expectation of both sides of (67) gives

E[ϕ̂(s+1) − ϕ̂(s)] = P∥q̂
(s)
H + ∂2Φ(ϕ̂(0))[B̂

(s)
H ] +

1

2
∂2Φ(ϕ̂(0))[Â(s)

avg]

+O(E[∥∆ϕ̂(s)∥22∥x̂(s)
avg,H∥2] + E[∥∆ϕ̂(s)∥2∥x̂(s)

avg,H∥22] + E[∥x̂(s)
avg,H∥32]).

Again taking expectation of both sides of (68) yields

E[(ϕ̂(s+1) − ϕ̂(s))(ϕ̂(s+1) −∆ϕ̂(s)⊤)] = P∥Â
(s)
avgP∥ +O(E[∥∆ϕ̂(s)∥2∥x̂(s)

avg,H∥22]).
By Lemmas 37 and 38, the following holds simultaneously with probability at least 1− η100:

∥∆ϕ̂(s)∥2 = Õ(η0.5−0.5β), ∥x̂(s)
avg,H∥2 = Õ(η0.5).

Furthermore, since for all k ∈ [K] and (s, t) ⪯ (Rtot, 0), θ̂
(s)
k,t stays in Γϵ2 which is a bounded set,

∥∆ϕ̂(s)∥2 and ∥x̂(s)
avg,H∥2 are also bounded. Therefore, we have

E[∥∆ϕ̂(s)∥22∥x̂(s)
avg,H∥2] = Õ(η1.5−β), (69)

E[∥∆ϕ̂(s)∥2∥x̂(s)
avg,H∥22] = Õ(η1.5−0.5β), (70)

E[∥x̂(s)
avg,H∥32] = Õ(η1.5), (71)

which concludes the proof.

We compute Â(s)
avg, q̂(s)t and B̂

(s)
t by solving a set of recursions, which is formulated in the following

lemma. Additionally, define Â
(s)
t := E[x̂(s)

k,tx̂
(s)⊤
k,t ] and M̂

(s)
t := E[x̂(s)

k,tx̂
(s)
k,l ], (k ̸= l).

Lemma 52 Given ∥θ̂(0)
avg − ϕ̂(0)∥2 = O(

√
η log 1

η ), for 0 ≤ s < Rgrp and 0 ≤ t < H , we have
the following recursions.

q̂
(s)
t+1 = q̂

(s)
t − ηH0q̂

(s)
t − η∇3L(ϕ(0))[B̂

(s)
t ]− η

2
∇3L(ϕ(0))[Â

(s)
t ] + Õ(η2.5−β), (72)

Â
(s)
t+1 = Â

(s)
t − ηH0Â

(s)
t − ηÂ

(s)
t H0 +

η2

Bloc
Σ0 + Õ(η2.5−0.5β), (73)

M̂
(s)
t+1 = M̂

(s)
t − ηH0M̂

(s)
t − ηM̂

(s)
t H0 + Õ(η2.5−0.5β), (74)

B̂
(s)
t+1 = (I − ηH0)B̂

(s)
t + Õ(η2.5−β). (75)

Moreover,

Â(s)
avg =

1

K
Â

(s)
H + (1− 1

K
)M̂

(s)
H , (76)

M̂
(s+1)
0 = Â

(s+1)
0 = P⊥Â

(s)
avgP⊥ +O(η1.5−0.5β), (77)

q̂
(s+1)
0 = P⊥q̂

(s)
H − ∂2Φ(ϕ(0))[B̂

(s)
H ]− 1

2
∂2Φ(ϕ(0))[Â(s)

avg] + Õ(η1.5−β), (78)

B̂
(s+1)
0 = P⊥B̂

(s)
H + P⊥Â

(s)
avgP∥ + Õ(η1.5−β). (79)

54



WHY (AND WHEN) DOES LOCAL SGD GENERALIZE BETTER THAN SGD?

Proof We first derive the recursion for q̂(s)t . Recall the update rule for θ̂(s)
k,t :

θ̂
(s)
k,t+1 = θ̂

(s)
k,t − η∇L(θ̂

(s)
k,t )− ηz

(s)
k,t + ê

(s)
k,t .

Subtracting ϕ̂(s) from both sides gives

x̂
(s)
k,t+1 = x̂

(s)
k,t − η∇L(θ̂

(s)
k,t )− ηz

(s)
k,t +O(∥ê

(s)
k,t∥2)

= x̂
(s)
k,t − η

(
∇2L(ϕ̂(s))x̂

(s)
k,t +

1

2
∇3L(ϕ̂(s))[x̂

(s)
k,tx̂

(s)⊤
k,t ] +O(∥x̂(s)

k,t∥32)
)

− ηz(s)
k,t +O(∥ê

(s)
k,t∥2)

= x̂
(s)
k,t − η

(
∇2L(ϕ̂(0)) +∇3L(ϕ̂(0))∆ϕ̂(s) +O(∥∆ϕ̂(s)∥2)

)
x̂
(s)
k,t

− η

2

(
∇3L(ϕ̂(0)) +O(∥∆ϕ̂(s)∥2)

)
[x̂

(s)
k,tx̂

(s)⊤
kt ]− ηz(s)

k,t +O(η∥x̂
(s)
k,t∥32 + ∥ê

(s)
k,t∥2)

= x̂
(s)
k,t − ηH0x̂

(s)
k,t − η∇3L(ϕ̂(0))[x̂

(s)
k,t∆ϕ̂(s)⊤]− η

2
∇3L(ϕ̂(0))[x̂

(s)
k,tx̂

(s)⊤
k,t ]− ηz(s)

k,t

+O(η∥x̂(s)
k,t∥32 + η∥∆ϕ̂(s)∥2∥x̂(s)

k,t∥22 + η∥∆ϕ̂(s)∥22∥x̂(s)
k,t∥2 + ∥ê

(s)
k,t∥2), (80)

where the second and third equality perform Taylor expansion. Taking expectation on both sides
gives

q̂
(s)
t+1 = (I − ηH0)q̂

(s)
t − η∇3L(ϕ̂(0))[q̂

(s)
t ]− η

2
∇3L(ϕ̂(0))[Â

(s)
t ]

+O
(
ηE[∥x̂(s)

k,t∥32] + ηE[∥∆ϕ̂(s)∥2∥x̂(s)
k,t∥22] + ηE[∥∆ϕ̂(s)∥22∥x̂(s)

k,t∥2] + E[∥ê(s)k,t∥2]
)
.

By Theorem 41, with probability at least 1 − η100, ê(s)k,t = 0, ∀k ∈ [K], (s, t) ⪯ (Rgrp, 0). Also

notice that both θ̂
(s)
k,t and ϕnull belong to the bounded set Γϵ2 . Therefore, ∥ê(s)k,t∥2 is bounded and we

have E[∥ê(s)k,t∥2] = O(η100). Combining this with (69) to (71) yields (72).

Secondly, we derive the recursion for B̂
(s)
t . Multiplying both sides of (80) by ∆ϕ̂(s)⊤ and

taking expectation, we have

B̂
(s)
t+1 = (I − ηH0)B̂

(s)
t +O(ηE[∥∆ϕ̂(s)∥2∥x̂(s)

k,t∥22 + ∥∆ϕ̂(s)∥22∥x̂(s)
k,t∥2 + ∥ê

(s)
k,t∥2]).

Still by Theorem 41 and (69) to (71), we have (75).
Thirdly, we derive the recursion for Â(s)

t . By (80), we have

Â
(s)
t+1 = Â

(s)
t − ηH0Â

(s)
t − ηÂ

(s)
t H0 +

η2

Bloc
Σ0 +O(η2E[∥∆ϕ̂(s)∥2 + ∥x̂(s)

k,t∥2])

+O(ηE[∥x̂(s)
k,t∥32 + ∥x̂

(s)
k,t∥22∥∆ϕ̂(s)∥2 + ∥ê(s)k,t∥2])

= (I − ηH0)Â
(s)
t +

η2

Bloc
Σ0 + Õ(η2.5−0.5β),

which establishes (73).

55



WHY (AND WHEN) DOES LOCAL SGD GENERALIZE BETTER THAN SGD?

Fourthly, we derive the recursion for M̂ (s)
t . Multiplying both sides of (80) by x̂

(s)
l,t+1 and taking

expectation, l ̸= k, we obtain

M̂
(s)
t+1 = M̂

(s)
t − ηH0M̂

(s)
t − ηM̂

(s)
t H0 +O(ηE[∥x̂(s)

k,t∥2∥x̂
(s)
l,t ∥2∥∆ϕ̂(s)∥2])

+O(ηE[∥x̂(s)
k,t∥22∥x̂

(s)
l,t ∥2 + ∥ê

(s)
k,t∥2]).

By a similar argument to the proof of Theorem 51, we have

E[∥x̂(s)
k,t∥22∥x̂

(s)
l,t ∥2] = Õ(η1.5),

E[∥x̂(s)
k,t∥2∥x̂

(s)
l,t ∥2∥∆ϕ̂(s)∥2] = Õ(η1.5−0.5β),

which yields (74).
Now we proceed to prove (76) to (79). By definition of Â(s)

avg,

Â(s)
avg =

1

K2
E[(

∑
k∈[K]

x̂
(s)
k,H)(

∑
k∈[K]

x̂
(s)
k,H)

⊤]

=
1

K2

∑
k∈[K]

E[x̂(s)
k,H x̂

(s)⊤
k,H ] +

1

K2

∑
k,l∈[K],k ̸=l

E[x̂(s)
k,H x̂

(s)⊤
l,H ]

=
1

K
Â

(s)
H + (1− 1

K
)M̂

(s)
H ,

which demonstrates (76). Then we derive (77). By definition of x̂(s+1)
avg,0 ,

x̂
(s+1)
avg,0 = ϕ̂(s) + x̂

(s)
avg,H − Φ(ϕ̂(s) + x̂

(s)
avg,H)

= ϕ̂(s) + x̂
(s)
avg,H −

(
ϕ̂(s) + ∂Φ(ϕ̂(s))x̂

(s)
avg,H +O(∥x̂(s)

avg,H∥22)
)

= x̂
(s)
avg,H −

(
P∥ +O(∥∆ϕ̂(s)∥2)

)
x̂
(s)
avg,H +O(∥x̂(s)

avg,H∥22)

= P⊥x̂
(s)
avg,H +O(∥x̂(s)

avg,H∥22 + ∥x̂
(s)
avg,H∥2∥∆ϕ̂(s)∥2). (81)

Hence,

M̂
(s+1)
0 = Â

(s+1)
0 = E[x̂(s)

avg,0x̂
(s)⊤
avg,0]

= P⊥Â
(s)
avgP⊥ +O(E[∥x̂(s)

avg,H∥32 + ∥x̂
(s)
avg,H∥22∥∆ϕ̂(s)∥2]).

By (69) and (71), we obtain (77). By (67),

ϕ̂(s+1) − ϕ̂(s) = P∥x̂
(s)
avg,H +O(∥x̂(s)

avg,H∥2∥∆ϕ̂(s)∥2 + ∥x̂(s)
avg,H∥22). (82)

Combining (81) and (82) gives

E[x̂(s)
avg,0(ϕ̂

(s+1) − ϕ̂(s))⊤] = P⊥Â
(s)
avgP∥ + Õ(η1.5−0.5β).

Therefore,

B̂
(s+1)
0 = E[x̂(s+1)

avg,0 ∆ϕ̂(s+1)⊤] = E[x̂(s+1)
avg,0 (∆ϕ̂(s) + ϕ̂(s+1) − ϕ̂(s))⊤]

= P⊥B̂
(s)
H + P⊥Â

(s)
avgP∥ + Õ(η1.5−β).
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Finally, we apply Theorem 51 to derive (78).

q̂
(s+1)
0 = E[x̂(s+1)

avg,0 ] = E[x̂(s)
avg,H − (ϕ̂(s+1) − ϕ̂(s))]

= q̂
(s)
H − P∥q̂

(s)
H − ∂2Φ(ϕ̂(0))[B̂

(s)
H ]− 1

2
∂2Φ(ϕ̂(0))[Â(s)

avg] + Õ(η1.5−β)

= P⊥q̂
(s)
H − ∂2Φ(ϕ̂(0))[B̂

(s)
H ]− 1

2
∂2Φ(ϕ̂(0))[Â(s)

avg] + Õ(η1.5−β),

which concludes the proof.

With the assumption that the hessian at ϕ̂(0) is diagonal, we have the following corollary that
formulates the recursions for each matrix element.

Corollary 53 Given ∥θ̂(0)
avg − ϕ̂(0)∥2 = O(

√
η log 1

η ), for 0 ≤ s < Rgrp and 0 ≤ t < H , we have
the following elementwise recursions.

Â
(s)
t+1,i,j = (1− (λi + λj) η)Â

(s)
t,i,j +

η2

Bloc
Σ0,i,j + Õ(η2.5−0.5β), (83)

M̂
(s)
t+1,i,j = (1− (λi + λj) η)M̂

(s)
t,i,j + Õ(η2.5−0.5β), (84)

B̂
(s)
t+1,i,j = (1− λiη)B̂(s)

t,i,j + Õ(η2.5−β), (85)

Â
(s)
avg,i,j =

1

K
(Â

(s)
H,i,j − M̂

(s)
H,i,j) + M̂

(s)
H,i,j , (86)

M̂
(s+1)
0,i,j = Â

(s+1)
0,i,j =

{
Â

(s)
avg,i,j + Õ(η1.5−0.5β), 1 ≤ i ≤ m, 1 ≤ j ≤ m,
Õ(η1.5−0.5β), otherwise.

(87)

B̂
(s+1)
0,i,j =


B̂

(s)
H,i,j + Â

(s)
avg,,i,j

+ Õ(η1.5−β), 1 ≤ i ≤ m,m < j ≤ d,
B̂

(s)
H,i,j + Õ(η1.5−β), 1 ≤ i ≤ m, 1 ≤ j ≤ m,
Õ(η1.5−β), m < i ≤ d.

(88)

Having formulated the recursions, we are ready to solve out the explicit expressions. We will
split each matrix into four parts and them one by on. Specifically, a matrix M can be split into
P∥MP∥ in the tangent space of Γ at ϕ̂(0), P⊥MP⊥ in the normal space, along with P∥MP⊥ and
P⊥MP∥ across both spaces.

We first compute the elements of P⊥Â
(s)
t P⊥ and P⊥Â

(s)
avgP⊥.

Lemma 54 (General formula for P⊥Â
(s)
t P⊥ and P⊥Â

(s)
avgP⊥) Let R0 := ⌈ 10

λmα
log 1

η ⌉. Then
for 1 ≤ i ≤ m, 1 ≤ j ≤ m and R0 ≤ s < Rgrp,

Â
(s)
avg,i,j =

1

(λi + λj)KBloc
ηΣ0,i,j + Õ(η1.5−0.5β),

Â
(s)
t,i,j = −

(
1− 1

K

)
(1− (λi + λj)η)

t

(λi + λj)Bloc
ηΣ0,i,j +

η

(λi + λj)Bloc
Σ0,i,j + Õ(η1.5−0.5β).

For s < R0, Â(s)
t,i,j = Õ(η) and Â(s)

avg,,i,j
= Õ(η).
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Proof For 1 ≤ i ≤ m, 1 ≤ j ≤ m, λi > 0, λj > 0. By (83),

Â
(s)
t,i,j = (1− (λi + λj)η)

tÂ
(s)
0,i,j +

t−1∑
τ=0

(1− (λi + λj)η)
τ η2

Bloc
Σ0,i,j

+ Õ(
t−1∑
τ=0

(1− (λi + λj)η)
τη2.5−0.5β)

= (1− (λi + λj)η)
tÂ

(s)
0,i,j +

1− (1− (λi + λj)η)
t

(λi + λj)Bloc
ηΣ0,i,j + Õ(η1.5−0.5β),

where the second inequality uses
∑t−1

τ=0(1− (λi + λj)η)
τ =

1−(1−(λi+λj)η)
t

(λi+λj)η
≤ 1

(λi+λj)η
. By (84),

M̂
(s)
t,i,j = (1− (λi + λj)η)

tM̂
(s)
0,i,j + Õ(

t−1∑
τ=0

(1− (λi + λj)η)
τη2.5−0.5β)

= (1− (λi + λj)η)
tÂ

(s)
0,i,j + Õ(η1.5−0.5β),

where the second equality uses M (s+1)
0 = A

(s+1)
0 . By (86) and (87),

Â
(s)
avg,i,j =

1− (1− (λi + λj)η)
H

(λi + λj)KBloc
ηΣ0,i,j + (1− (λi + λj)η)

HÂ
(s)
0,i,j + Õ(η1.5−0.5β),

Â
(s+1)
0,i,j = Â

(s)
avg,i,j + Õ(η2.5−0.5β)

=
1− (1− (λi + λj)η)

H

(λi + λj)KBloc
ηΣ0,i,j + (1− (λi + λj)η)

HÂ
(s)
0,i,j + Õ(η1.5−0.5β).

Then we obtain

Â
(s)
0,i,j = (1− (λi + λj)η)

sHÂ
(0)
0,i,j +

1− (1− (λi + λj)η)
H

(λi + λj)KBloc
ηΣ0,i,j

s−1∑
r=0

(1− (λi + λj)η)
rH

+ Õ(η1.5−0.5β
s−1∑
r=R0

(1− (λi + λj)η)
rH).

Notice that |1− (λi + λj)η| < 1 and

(1− (λi + λj)η)
H ≤ exp(−(λi + λj)ηH) = exp(−(λi + λj)α). (89)

Therefore,

s−1∑
r=0

(1− (λi + λj)η)
rH =

1− (1− (λi + λj)η)
rH

1− (1− (λi + λj)η)H
≤ 1

1− exp(−(λi + λj)α)
.

Then we have

Â
(s)
0,i,j = (1− (λi + λj)η)

sHÂ
(0)
0,i,j +

1− (1− (λi + λj)η)
sH

(λi + λj)KBloc
ηΣ0,i,j + Õ(η1.5−0.5β).
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Finally, we demonstrate that for s ≥ R0, Â(s)
0,i,j and Â(s)

avg,i,j is approximately equal to η
(λi+λj)KBloc

Σ0,i,j .

By (89), when s ≥ R0, (1− (λi + λj)η)
sH = O(η10), which gives

Â
(s)
avg,i,j =

1

(λi + λj)KBloc
ηΣ0,i,j + Õ(η1.5−0.5β),

A
(s)
t,i,j = −

(
1− 1

K

)
(1− (λi + λj)η)

t

(λi + λj)Bloc
ηΣ0,i,j +

η

(λi + λj)Bloc
Σ0,i,j + Õ(η1.5−0.5β).

For s < R0, since Â
(0)
0 = x̂

(s)
avg,0x̂

(s)⊤
avg,0=Õ(η), we have Â(s)

avg,,i,j
= Õ(η) and Â(s)

t,i,j = Õ(η).

Secondly, we compute P∥Â
(s)
t P⊥ and P∥Â

(s)
avgP⊥.

Lemma 55 (General formula for P⊥Â
(s)
t P∥ and P⊥Â

(s)
avgP∥) For 1 ≤ i ≤ m,m < j ≤ d,

Â
(s)
t,i,j =

1− (1− λiη)t
λiBloc

ηΣ0,i,j + Õ(η1.5−0.5β),

Â
(s)
avg,i,j =

1− (1− λiη)H
λiKBloc

ηΣ0,i,j + Õ(η1.5−0.5β).

Proof Note that for 1 ≤ i ≤ m,m < j ≤ d and λi > 0, λj = 0. By (83) and (87),

Â
(s)
t,i,j = (1− λiη)tÂ(s)

0,i,j +
1− (1− λiη)t

λiBloc
ηΣ0,i,j + Õ(η1.5−0.5β)

=
1− (1− λiη)t

λiBloc
ηΣ0,i,j + Õ(η1.5−β).

By (84) and (87), M̂ (s)
t,i,j = Õ(η1.5−0.5β). Then,

Â
(s)
avg,i,j =

1− (1− λiη)H
λiKBloc

ηΣ0,i,j + Õ(η1.5−0.5β).

Similar to Theorem 55, we have the following lemma for the general formula of P∥Â
(s)
t P⊥ and

P∥Â
(s)
avgP⊥.

Lemma 56 (General formula for P∥Â
(s)
t P⊥ and P∥Â

(s)
avgP⊥) For m < i ≤ d and 1 ≤ j ≤ m,

Â
(s)
t,i,j =

1− (1− λjη)t
λjBloc

ηΣ0,i,j + Õ(η1.5−0.5β),

Â
(s)
avg,i,j =

1− (1− λjη)H
λjKBloc

ηΣ0,i,j + Õ(η1.5−0.5β).

Finally, we derive the general formula for P∥Â
(s)
t P∥ and P∥Â

(s)
avgP∥.
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Lemma 57 (General formula for P∥Â
(s)
t P∥ and P∥Â

(s)
avgP∥) For m < i ≤ d and m < j ≤ d,

Â
(s)
avg,i,j =

Hη2

KBloc
Σ0,i,j + Õ(η1.5−0.5β),

Â
(s)
t,i,j = Â

(s)
0,i,j +

tη2

Bloc
Σ0,i,j + Õ(η1.5−0.5β).

Proof Note that for m < i ≤ d, m < j ≤ d and λi = λj = 0. (83) is then simplified as

Â
(s)
t+1,i,j = Â

(s)
t,i,j +

η2

Bloc
Σ0,i,j + Õ(η2.5−0.5β).

Therefore,

Â
(s)
t,i,j = Â

(s)
0,i,j +

tη2

Bloc
Σ0,i,j + Õ(η1.5−0.5β). (90)

According to (84), M̂ (s)
t,i,j = Õ(η1.5−0.5β) for m < i ≤ d and m < j ≤ d. Combining (84), (87)

and (90) yields

Â
(s)
avg,i,j =

Hη2

KBloc
Σ0,i,j + Õ(η1.5−0.5β).

Now, we move on to compute the general formula for B̂(s)
t .

Lemma 58 (The general formula for P⊥B̂
(s)
t P∥) Note that for 1 ≤ i ≤ m and m < j ≤ d,

when R0 := ⌈ 10
λmα

log 1
η ⌉ ≤ s < Rgrp,

B̂
(s)
t,i,j =

(1− λiη)t
λiKBloc

ηΣ0,i,j + Õ(η1.5−β).

For s < R0, B̂(s)
t,i,j = Õ(η).

Proof Note that for 1 ≤ i ≤ m, λi > 0. By (85),

B̂
(s)
t+1,i,j = (1− λiη)B̂(s)

t,i,j + Õ(η2.5−β).

Hence,

B̂
(s)
t,i,j = (1− λiη)tB̂(s)

0,i,j + Õ(η1.5−β).

According to (88),

B̂
(s+1)
0,i,j = B̂

(s)
H,i,j + Â

(s)
avg,,i,j

+ Õ(η2.5−β)
= (1− λiη)HB̂(s)

0,i,j + Â
(s)
avg,i,j + Õ(η1.5−β).
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Then we have

B̂
(s)
0,i,j = (1− λiη)sHB̂(0)

0,i,j + Â
(s)
avg,i,j

s−1∑
r=0

(1− λiη)rH + Õ(
s−1∑
r=0

(1− λiη)rHη1.5−β)

= (1− λiη)sHB̂(0)
0,i,j +

1− (1− λiη)sH
1− (1− λiη)H

Â
(s)
avg,,i,j

+ Õ(η1.5−β)

=
1− (1− λiη)sH
1− (1− λiη)H

Â
(s)
avg,,i,j

+ Õ(η1.5−β).

where the second equality uses (89) and the last inequality uses B̂
(0)
0 = x̂

(0)
avg,0∆ϕ̂(0) = 0. For

s ≥ R0, Â(s)
avg,i,j =

1−(1−λiη)H
λiKBloc

ηΣ0,i,j + Õ(η1.5−0.5β), which gives

B̂
(s)
0,i,j =

η

λiKBloc
Σ0,i,j + Õ(η1.5−β).

Therefore,

B̂
(s)
t,i,j =

(1− λiη)t
λiKBloc

ηΣ0,i,j + Õ(η1.5−β).

For s < R0, Â(s)
avg,,i,j

= Õ(η) and therefore, B̂(s)
t,i,j = Õ(η).

Lemma 59 (General formula for the elements of P⊥B̂
(s)
t P⊥ ) For 1 ≤ i ≤ m and 1 ≤ j ≤ m,

, B̂(s)
t,i,j = Õ(η1.5−β).

Proof Note that for 1 ≤ i ≤ m, λi > 0. By (85),

B̂
(s)
t+1,i,j = (1− λiη)B̂(s)

t,i,j + Õ(η2.5−β).

Hence,

B̂
(s)
t,i,j = (1− λiη)tB̂(s)

0,i,j + Õ(η1.5−β).

By (88),

B̂
(s+1)
0,i,j = B̂

(s)
H,i,j + Õ(η2.5−β)

= (1− λiη)HB̂(s)
0,i,j + Õ(η1.5−β)

= (1− λiη)sHB̂(0)
0,i,j + Õ(

s−1∑
r=0

(1− λiη)rHη1.5−β)

= (1− λiη)sHB̂(0)
0,i,j + Õ(η1.5−β)

= Õ(η1.5−β),

where the last inequality uses B̂(0)
0 = 0.
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Lemma 60 (General formula for P∥B̂
(s)
t ) For m < i ≤ d, B̂(s)

t,i,j = Õ(η1.5−β).
Proof Note that λi = 0 for m < i ≤ d. By (85) and (88),

B̂
(s)
t+1 = B̂

(s)
t + Õ(η2.5−β), B̂

(s)
0 = Õ(η2.5−β).

Therefore,

B̂
(s)
t = tÕ(η2.5−β) + B̂

(s)
0 = Õ(η1.5−β).

Having obtained the expressions for B̂(s)
t , Â(s)

t and Â
(s)
avg, we now provide explicit expressions

for the first and second moments of one round movements in the following two lemmas.

Lemma 61 The expectation of one round movement is

E[ϕ̂(s+1) − ϕ̂(s)] =

{
Hη2

2B ∂2Φ(ϕ̂(0))[Σ0 +Ψ(ϕ̂(0))] + Õ(η1.5−β), R0 < s < Rgrp

Õ(η), s ≤ R0

, (91)

where R0 := ⌈ 10
λmα

log 1
η ⌉.

Proof We first compute E[ϕ̂(s+1) − ϕ̂(s)]. By (65), we only need to compute P∥q̂
(s)
H by relating it

to these matrices. Multiplying both sides of (72) by P∥ gives

P∥q̂
(s)
t+1 = P∥q̂

(s)
t − ηP∥∇3L(ϕ̂(0))[B̂

(s)
t ]− η

2
P∥∇3L(ϕ̂(0))[Â

(s)
t ] + Õ(η2.5−β). (92)

Similarly, according to (78), we have

P∥q̂
(s+1)
0 = −P∥∂

2Φ(ϕ̂(0))[B̂
(s)
H ]− 1

2
P∥∂

2Φ(ϕ̂(0))[Â(s)
avg] + Õ(η1.5−β). (93)

Combining (92) and (93) yields

P∥q̂
(s)
H = −1

2
P∥∂

2Φ(ϕ̂(0))[Â(s−1)
avg ]− η

2
P∥∇3L(ϕ̂(0))[

H−1∑
t=0

Â
(s)
t ]

− ηP∥∇3L(ϕ̂(0))[

H−1∑
t=0

B̂
(s)
t ]− P∥∂

2Φ(ϕ̂(0))[B̂
(s−1)
H ] + Õ(η1.5−β).

(94)

By Lemmas 54, 57 and 55, for s ≤ R0 = ⌊ 10λα log 1
η ⌋, Â

(s)
t = Õ(η), Â(s)

avg = Õ(η) and B̂
(s)
t =

Õ(η). Therefore, E[ϕ̂(s+1) − ϕ̂(s)] = Õ(η). For s > R0, Â(s−1)
avg = Â

(s)
avg + Õ(η1.5−0.5β).

Substituting (94) into (65) gives

E[ϕ̂(s+1) − ϕ̂(s)] =
1

2
P⊥∂

2Φ(ϕ̂(0))[Â(s)
avg] + P⊥∂

2Φ(ϕ̂(0))[B̂
(s)
H ]︸ ︷︷ ︸

T1
T2︷ ︸︸ ︷

−ηP∥∇3L(ϕ̂(0))[
1

2

H−1∑
t=0

Â
(s)
t +

H−1∑
t=0

B̂
(s)
t︸ ︷︷ ︸

T3

] +Õ(η1.5−β).
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Below we compute T1 and T2 for s > R0 respectively. By Theorem 18,

P⊥∂
2Φ(ϕ̂(0))[P⊥Â

(s)
avgP∥] = P⊥∂

2Φ(ϕ̂(0))[P∥Â
(s)
avgP⊥] = 0,

P⊥∂
2Φ(ϕ̂(0))[P∥Â

(s)
avgP∥] = ∂2Φ(ϕ̂(0))[P∥Â

(s)
avgP∥].

By Theorem 19,

P⊥∂
2Φ(ϕ̂(0))[P⊥Â

(s)
avgP⊥] = 0.

Therefore, for s > R0,

P⊥∂
2Φ(ϕ̂(0))[Â(s)

avg] =
Hη2

2KBloc
∂2Φ(ϕ̂(0))Φ[Σ0,∥] + Õ(η1.5−0.5β),

where we apply Theorem 57. Similarly, for s > R0,

P⊥∂
2Φ(ϕ̂(0))[B̂

(s)
H ] = ∂2Φ(ϕ̂(0))[P∥B̂

(s)
H P∥] = Õ(η1.5−β),

where we apply Theorem 60. Hence,

T1 =
Hη2

2B
∂2Φ(ϕ̂(0))[Σ0,∥] + Õ(η1.5−β). (95)

We move on to show that

T2 =
Hη2

2B
∂2Φ(ϕ̂(0))[Σ0 −Σ0,∥ + (K − 1)Ψ(ϕ̂(0))]. (96)

Similar to the way we compute Â
(s)
t , Â(s)

avg and B̂
(s)
t , we compute T2 by splitting T3 into four

matrices and then substituting them into the linear operator −ηP∥∇3L(ϕ̂(0))[·] one by one. First,
we show that

−ηP∥∇3L(ϕ̂(0))[P⊥T3P⊥] =
Hη2

2B
∂2Φ(ϕ̂(0))[Σ0,⊥ + (K − 1)ψ(Σ0,⊥)]

+ Õ(η1.5−β),
(97)

where ψ(·) is interpreted as an elementwise matrix function here. By Lemmas 54 and 59, for
1 ≤ i ≤ m, 1 ≤ j ≤ m and s > R0,

Â
(s)
t,i,j = −

(
1− 1

K

)
(1− (λi + λj)η)

t

(λi + λj)Bloc
ηΣ0,i,j +

η

(λi + λj)Bloc
Σ0,i,j + Õ(η1.5−0.5β),

B̂
(s)
t,i,j = Õ(η1.5−β).
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Therefore,

H−1∑
t=0

Â
(s)
t,i,j = −

(
1− 1

K

)
1− (1− (λi + λj)η)

H

(λi + λj)2Bloc
Σ0,i,j +

Hη

(λi + λj)Bloc
Σ0.,i,j + Õ(η0.5−β)

=
Hη

K(λi + λj)Bloc
Σ0.,i,j

+

(
1− 1

K

)
Hη

(λi + λj)Bloc

[
1− 1− (1− (λi + λj)η)

H

Hη(λi + λj)

]
︸ ︷︷ ︸

T4

Σ0,i,j + Õ(η0.5−β).

H−1∑
t=0

B̂
(s)
t,i,j = Õ(η0.5−β),

Then we simplify T4. Notice that

(1− (λi + λi)η)
H = exp(−H(λi + λj)η)[1 +O(Hη2)]

= exp(−H(λi + λj)η) +O(η).

Therefore,

T4 = ψ((λi + λj)Hη) +O(η).

Substituting T4 back into the expression for
∑H−1

t=0 Â
(s)
t,i,j gives

H−1∑
t=0

Â
(s)
t,i,j =

Hη

K(λi + λj)Bloc
Σ0.,i,j +

(
1− 1

K

)
Hηψ((λi + λj)Hη)

(λi + λj)Bloc
Σ0,i,j + Õ(η0.5−β).

Combining the elementwise results, we obtain the following matrix form expression:

−ηP∥∇3L(ϕ̂(0))[P⊥T3P⊥] = −
Hη2

2B
P∥∇3L(ϕ̂(0))[VH0(Σ0,⊥ + (K − 1)ψ(Σ0,⊥))]

+ Õ(η1.5−β).

By Theorem 19, we have (97).
Secondly, we show that for s > R0,

− ηP∥∇3L(ϕ̂(0))[P⊥T3P∥ + P∥T3P⊥]

=
Hη2

B
∂2Φ(ϕ̂(0))[Σ0,⊥,∥ + (K − 1)ψ(Σ0,⊥,∥)] + Õ(η1.5−β),

(98)

where ψ(·) is interpreted as an elementwise matrix function here. By symmetry of Â
(s)
t ’s and

∇3L(ϕ̂(0)),

1

2
∇3L(ϕ̂(0))

[
H−1∑
t=0

P⊥Â
(s)
t P∥ +

H−1∑
t=0

P∥Â
(s)
t P⊥

]
= ∇3L(ϕ̂(0))

[
H−1∑
t=0

P⊥Â
(s)
t P∥

]
.
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Therefore, we only have to evaluate

∇3L(ϕ̂(0))

[
H−1∑
t=0

P⊥(Â
(s)
t + B̂

(s)
t )P∥ +

H−1∑
t=0

P∥B̂
(s)
t P⊥

]
.

To compute the elements of
∑H−1

t=0 P⊥(Â
(s)
t + B̂

(s)
t )P∥, we combine Lemmas 55 and 58 to obtain

that for 1 ≤ i ≤ m and m < j ≤ d,

H−1∑
t=0

Â
(s)
t,i,j =

H−1∑
t=0

1− (1− λiη)t
λiBloc

ηΣ0,i,j + Õ(η0.5−β)

=
Hη

λiBloc
Σ0,i,j −

1− (1− λiη)H
λ2iBloc

Σ0,i,j + Õ(η0.5−β)

=
Hη

λiBloc

(
1− 1− (1− λiη)H

λiHη

)
Σ0,i,j + Õ(η0.5−β)

=
Hη

λiBloc
ψ(λiHη)Σ0,i,j + Õ(η0.5−β),

and

H−1∑
t=0

B̂
(s)
t,i,j =

H−1∑
t=0

(1− λiη)t
λiKBloc

ηΣ0,i,j + Õ(η1.5−β),

=
1− (1− λiη)H

λ2iKBloc
Σ0,i,j + Õ(η0.5−β)

=
Hη

λiKBloc
Σ0,i,j −

Hη

λiKBloc

(
1− 1− (1− λiη)H

λiHη

)
Σ0,i,j + Õ(η0.5−β)

=
Hη

λiKBloc
Σ0,i,j −

Hη

λiKBloc
ψ(λiHη)Σ0,i,j + Õ(η0.5−β).

Therefore, the matrix form of
∑H−1

t=0 P⊥(Â
(s)
t + B̂

(s)
t )P∥ is

H−1∑
t=0

P⊥(Â
(s)
t + B̂

(s)
t )P∥ =

Hη

B
VH0

(
Σ0,⊥,∥ + (K − 1)ψ(Σ0,⊥,∥)

)
+ Õ(η0.5−β),

where ψ(·) is interpreted as an elementwise matrix function here. Furthermore, by Theorem 60,∑H−1
t=0 B̂

(s)
t = Õ(η0.5−β). Applying Theorem 18, we have (98). Finally, directly applying Theo-

rem 20, we have

−ηP∥∇3L(ϕ̂(0))[P∥T3P∥] = 0. (99)

Notice that ψ(Σ0,∥) = 0 where ψ(·) operates on each element. Combining (97), (98) and (99), we
obtain (96). By (95) and (96), we have (91).
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Lemma 62 The second moment of one round movement is

E[(ϕ̂(s+1) − ϕ̂(s))(ϕ̂(s+1) − ϕ̂(s))⊤] =

{
Hη2

B Σ0,∥ + Õ(η1.5−0.5β), R0 ≤ s < Rgrp

Õ(η), s < R0

,

where R0 := ⌈ 10
λmα

log 1
η ⌉.

Proof Directly apply Theorem 57 and Theorem 51 and we have the lemma.

With Lemmas 61 and 62, we are ready to prove Theorem 50.
Proof [Proof of Theorem 50.] We first derive E[∆ϕ̂(Rgrp)]. Recall that Rgrp = ⌊ 1

αηβ
⌋ = 1

Hη1+β +

o(1) where 0 < β < 0.5. By Theorem 61,

E[ϕ̂(Rgrp) − ϕ̂(0)] =

R0∑
s=0

E[ϕ̂(s+1) − ϕ̂(s)] +

Rgrp−1∑
s=R0+1

E[ϕ̂(s+1) − ϕ̂(s)]

=
η1−β

2B
∂2Φ(ϕ̂(0))[Σ0 +Ψ(ϕ̂(0))] + Õ(η1.5−2β) + Õ(η).

Then we compute E[∆ϕ̂(Rgrp)∆ϕ̂(Rgrp)⊤].

E


Rgrp−1∑

s=0

(ϕ̂(s+1) − ϕ̂(s))

Rgrp−1∑
s=0

(ϕ̂(s+1) − ϕ̂(s))

⊤


=

Rgrp−1∑
s=0

E[(ϕ̂(s+1) − ϕ̂(s))(ϕ̂(s+1) − ϕ̂(s))⊤] +
∑
s ̸=s′

E[(ϕ̂(s+1) − ϕ̂(s))]E[(ϕ̂(s′+1) − ϕ̂(s′))⊤]

=
η1−β

B
Σ0,∥ + Õ(η) + Õ(η1.5−1.5β),

where the last inequality uses E[(ϕ̂(s+1) − ϕ̂(s))]E[(ϕ̂(s′+1) − ϕ̂(s′))⊤] = Õ(η2).

J.10. Proof of Weak Approximation

We are now in a position to utilize the estimate of moments obtained in previous subsections to prove
the closeness of the sequence {ϕ(s)}⌊T/(Hη

2)⌋
s=0 and the SDE solution {ζ : t ∈ [0, T ]} in the sense of

weak approximation. Recall the SDE that we expect the manifold projection {Φ(θ̄(s))}⌊T/(Hη
2)⌋

s=0 to
track:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion

− 1
2B∇3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸

(b) drift-I

−K−1
2B ∇3L(ζ)[Ψ̂(ζ)]dt︸ ︷︷ ︸

(c) drift-II

)
, (100)

According to Theorem 18 and Theorem 19, the drift term in total can be written as the following
form:

(b) + (c) =
1

2B
∂2Φ(ζ)[Σ(ζ) + (K − 1)Ψ(ζ)].
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Then by definition of Pζ , (100) is equivalent to the following SDE:

dζ(t) =
1√
B
∂Φ(ζ)Σ1/2(ζ)dWt +

1

2B
∂2Φ(ζ) [Σ(ζ) + (K − 1)Ψ(ζ)] dt. (101)

Therefore, we only have to show that ϕ(s) closely tracks {ζ(t)} satisfying Equation (101). By The-
orem 14, there exists an ϵ3 neighborhood of Γ, Γϵ3 , where Φ(·) is C∞-smooth. Due to compactness
of Γ, Γϵ3 is bounded and the mappings ∂2Φ(·), ∂Φ(·), Σ1/2(·), Σ(·) and Ψ(·) are all Lipschitz in
Γϵ3 . By Kirszbraun theorem, both the drift and diffusion term of (101) can be extended as Lipschitz
functions on Rd. Therefore, the solution to the extended SDE exists and is unique. We further show
that the solution, if initialized as a point on Γ, always stays on the manifold almost surely.

As a preparation, we first show that Γ has no boundary.

Lemma 63 Under Assumptions 3.1 to 3.3, Γ has no boundary.

Proof We prove by contradiction. If Γ has boundary ∂Γ, WLOG, for a point p ∈ ∂Γ, let the
Hessian at p be diagonal with the form ∇2L(p) = diag(λ1, · · · , λd) where λi > 0 for 1 ≤ i ≤ m
and λi = 0 for m < i ≤ d .

Denote by xi:j := (xi, xi+1, · · · , xj) (i ≤ j) the (j − i + 1)-dimensional vector formed by
the i-th to j-th coordinates of x. Since ∂(∇L(p))

∂p1:m
= diag(λ1, · · · , λm) is invertible, by the implicit

function theorem, there exists an open neighborhood V of pm+1:d such that ∇L(v) = 0, ∀v ∈ V .
Then, L(v) = L(p) = minθ∈U L(θ) and hence V ⊂ Γ, which contradicts with p ∈ ∂Γ.

Therefore, Γ is a closed manifold (i.e., compact and without boundary). Then we have the following
lemma stating that Γ is invariant for (101).

Lemma 64 Let ζ(t) be the solution to (101) with ζ(0) ∈ Γ, then ζ(t) ∈ Γ for all t ≥ 0. In other
words, Γ is invariant for (101).

Proof According to Filipović [12] and Du and Duan [9], for a closed manifoldM to be viable for
the SDE dX(t) = F (X(t))dt+B(X(t))dWt where F : Rd → Rd and B : Rd → Rd are locally
Lipschitz, we only have to verify the following Nagumo type consistency condition:

µ(x) := F (x)− 1

2

∑
j

D[Bj(x)]Bj(x) ∈ Tx(M), Bj(x) ∈ Tx(M),

where D[·] is the Jacobian operator and Bj(x) denotes the j-th column of B(x).
In our context, since for ϕ ∈ Γ, ∂Φ(ϕ) is a projection matrix onto Tϕ(Γ), each column of

∂Φ(ϕ)Σ1/2(ϕ) belongs to Tϕ(Γ), verifying the second condition. Denote by P⊥(ϕ) := Id −
∂Φ(ϕ) the projection onto the normal space of Γ at ϕ. To verify the first condition, it suffices to
show that P⊥(ϕ)µ(ϕ) = 0. We evaluate

∑
j P⊥(ϕ)D[Bj(ϕ)]Bj(ϕ) as follows.∑

j

P⊥(ϕ)D[Bj(ϕ)]Bj(ϕ) =
1

B

∑
j

D[∂Φ(ϕ)Σ
1/2
j (ϕ)]∂Φ(ϕ)Σ

1/2
j (ϕ)

=
1

B
P⊥(ϕ)

∑
j

∂2Φ(ϕ)[Σ
1/2
j (ϕ), ∂Φ(ϕ)Σ

1/2
j (ϕ)]

= − 1

B
∇2L(ϕ)+∇3L(ϕ)[Σ∥(ϕ)], (102)
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where the last inequality uses Theorem 18. Again applying Theorem 18, we have

P⊥(ϕ)F (ϕ) = −
1

2B
∇2L(ϕ)+∇3L(ϕ)[Σ∥(ϕ)]. (103)

Combining (102) and (103), we can verify the first condition.

In order to establish Theorem 4, it suffices to prove the following theorem, which captures the
closeness of ϕ(s) and ζ(t) every Rgrp rounds.

Theorem 65 If ∥θ̄(0)−ϕ(0)∥2 = O(
√
η log 1

η ) and ζ(0) = ϕ(0) ∈ Γ, then forRgrp = ⌊ 1
αη0.75

⌋every

test function g ∈ C3,

max
n=0,··· ,⌊T/η0.75⌋

∣∣∣Eg(ϕ(nRgrp))− Eg(ζ(nη0.75))
∣∣∣ ≤ Cgη0.25(log 1

η )
b,

where Cg > 0 is a constant independent of η but can depend on g(·) and b > 0 is a constant
independent of η and g(·).

J.10.1. PRELIMINARIES AND ADDITIONAL NOTATIONS

We first introduce a general formulation for stochastic gradient algorithms (SGAs) and then specify
the components of this formulation in our context. Consider the following SGA:

xn+1 = xn + ηeh(xn, ξn),

where xn ∈ Rd is the parameter, ηe is the learning rate, h(·, ·) is the update which depends on
xn and a random vector ξn sampled from some distribution Ξ(xn). Also consider the following
Stochastic Differential Equation (SDE).

dX(t) = b(X(t))dt+ σ(X(t))dWt,

where b(·) : Rd → Rd is the drift function and σ(·) : Rd×d → Rd×d is the diffusion matrix.
Denote by PX(x, s, t) the distribution of X(t) with the initial condition X(s) = x.Define

∆̃(x, n) := X(n+1)ηe − x, where X(n+1)ηe ∼ PX(x, nηe, (n+ 1)ηe),

which characterizes the update in one step.
In our context, we view the movement of manifold projection over Rgrp := ⌊ 1

αη1−β ⌋(β ∈
(0, 0.5)) rounds as one update step. Hence the ϕ(nRgrp) corresponds to the discrete time random
variable xn corresponds to and ζ(t) corresponds to the continuous time random variable Xt. Ac-
cording to Theorem 48, we set

ηe = η1−β, b(ζ) =
1

2B
∂2Φ(ζ) [Σ(ζ) + (K − 1)Ψ(ζ)] , σ(ζ) =

1√
B
∂Φ(ζ)Σ1/2(ζ).

Due to compactness of Γ, b(·) and σ(·) are Lipschitz on Γ.
As for the update in one step, ∆̃(·, ·) is defined in our context as:

∆̃(ϕ, n) := ζ(n+1)ηe − ϕ, where ζ(n+1)ηe ∼ Pζ(ϕ, nηe, (n+ 1)ηe) and ϕ ∈ Γ.
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For convenience, we further define

∆(n) := ϕ̂((n+1)Rgrp) − ϕ̂(nRgrp), ∆̃(n) := ∆̃(ϕ̂(Rgrp), n),

b(n) : = b(ϕ̂(nRgrp)), σ(n) : = σ(ϕ̂(nRgrp)).

We use Cg,i to denote constants that can depend on the test function g and independent of ηe. The
following lemma relates the moments of ∆̃(ϕ, n) to b(ϕ) and σ(ϕ).

Lemma 66 There exists a positive constant C0 independent of ηe and g such that for all ϕ ∈ Γ,

|E[∆̃i(ϕ, n)]− ηebi(ϕ)| ≤ C0η
2
e , ∀1 ≤ i ≤ d,

|E[∆̃i(ϕ, n)∆̃j(x, n)]− ηe
d∑
l=1

σi,l(ϕ)σl,j(ϕ)| ≤ C0η
2
e , ∀1 ≤ i, j ≤ d,

E

[∣∣∣∣∣
6∏
s=1

∆̃is(ϕ, n)

∣∣∣∣∣
]
≤ C0η

3
e , ∀1 ≤ i1, · · · , i6 ≤ d.

The lemma below states that the expectation of the test function is smooth with respect to the initial
value.
Proof Noticing that (i) the solution to (101) always stays on Γ almost surely if its initial value ζ(0)
belongs to Γ , (ii) b(·) and σ(·) are C∞ and (iii) Γ is compact, we can directly apply Lemma B.3 in
[42] and Lemma 26 in [34] to obtain the above lemma.

The following lemma states that the expectation of g(ζ(t)) for g ∈ C3 is smooth with respect to
the initial value of the SDE solution.

Lemma 67 Let s ∈ [0, T ], ϕ ∈ Γ and g ∈ C3. For t ∈ [s, T ], define

u(ϕ, s, t) := Eζt∼Pζ(ϕ,s,t)[g(ζt)].

Then u(·, s, t) ∈ C3 uniformly in s, t.

Proof A slight modification of Lemma B.4 in [42] will give the above lemma.

J.10.2. PROOF OF THE APPROXIMATION IN OUR CONTEXT

For β ∈ (0, 0.5), define γ1 := 1.5−2β
1−β , γ2 := 1

1−β , and then 1 < γ1 < 1.5, 1 < γ2 < 2. We in-
troduce the following lemma which serves as a key step to control the approximation error. Specif-
ically, this lemma bounds the difference in one step change between the discrete process and the
continuous one as well as the product of higher orders.

Lemma 68 If ∥θ̄(0) − ϕ(0)∥2 = O(
√
η log 1

η ), then there exist positive constants C1 and b inde-

pendent of ηe and g such that for all 0 ≤ n < ⌊T/ηe⌋,
1.

|E[∆(n)
i − ∆̃

(n)
i | E(nRgrp)

0 | ≤ C1η
γ1
e (log 1

ηe
)b + C1η

γ2
e (log 1

ηe
)b, ∀1 ≤ i ≤ d,

|E[∆(n)
i ∆

(n)
j − ∆̃

(n)
i ∆̃

(n)
j | E(nRgrp)

0 | ≤ C1η
γ1
e (log 1

ηe
)b + C1η

γ2
e (log 1

ηe
)b, ∀1 ≤ i, j ≤ d.
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2.

E

[∣∣∣∣∣
6∏
s=1

∆
(n)
is

∣∣∣∣∣ | E(nRgrp)
0

]
≤ C2

1η
2γ1
e (log 1

ηe
)2b, ∀1 ≤ i1, · · · , i6 ≤ d,

E

[∣∣∣∣∣
6∏
s=1

∆̃
(n)
is

∣∣∣∣∣ | E(nRgrp)
0

]
≤ C2

1η
2γ1
e (log 1

ηe
)2b, ∀1 ≤ i1, · · · , i6 ≤ d.

Proof According to Appendix J.7, we have

E

[∣∣∣∣∣
6∏
s=1

∆
(n)
is

∣∣∣∣∣ | E(nRgrp)
0

]
= Õ(η3−3β).

Since γ1 < 1.5 and γ2 < 2, we can utilize Theorem 50 and conclude that there exist positive
constants C2 and b independent of ηe and g such that∣∣∣E[∆(n)

i − ηeb
(n)
i | E(nRgrp)

0 ]
∣∣∣ ≤ C2η

γ1
e (log 1

ηe
)b + C2η

γ2
e (log 1

ηe
)b,∀1 ≤ i ≤ d,

(104)∣∣∣∣∣E[∆(n)
i ∆

(n)
j − ηe

d∑
l=1

σ
(n)
i,l σ

(n)
l,j | E

(nRgrp)
0 ]

∣∣∣∣∣ ≤ C2η
γ1
e (log 1

ηe
)b + C2η

γ2
e (log 1

ηe
)b,∀1 ≤ i, j ≤ d,

(105)

E

[∣∣∣∣∣
6∏
s=1

∆
(n)
is

∣∣∣∣∣ | E(nRgrp)
0

]
≤ C2

2η
2γ1
e (log 1

ηe
)2b, ∀1 ≤ i1, · · · , i6 ≤ d. (106)

Combining (104) - (106) with Theorem 66 gives the above lemma.

Lemma 69 For a test function g ∈ C3, let ul,n(ϕ) := u(ϕ, lηe, nηe) = Eζt∼Pζ(ϕ,lηe,nηe)[g(ζt)]. If

∥θ̄(0) − ϕ(0)∥2 = O(
√
η log 1

η ), then for all 0 ≤ l ≤ n− 1 and 1 ≤ n ≤ ⌊T/ηe⌋,∣∣∣E[ul+1,n(ϕ̂
(lRgrp) +∆(l))− ul+1,n(ϕ̂

(lRgrp) + ∆̃(l+1)) | ϕ̂(lRgrp)]
∣∣∣ ≤ Cg,1(ηγ1e + ηγ2e ) log( 1

ηe
)b,

where Cg,1 is a positive constant independent of η and ϕ̂(lRgrp) but can depend on g.

Proof By Theorem 67, ul,n(ϕ) ∈ C3 for all l and n. That is, there exists K(·) ∈ G such that for all
l, n, ul,n(ϕ) and its partial derivatives up to the third order are bounded by K(ϕ).

By the law of total expectation and triangle inequality,∣∣∣E[ul+1,n(ϕ̂
(lRgrp) +∆(l))− ul+1,n(ϕ̂

(lRgrp) + ∆̃(l))] | ϕ̂(lRgrp)
∣∣∣

≤
∣∣∣E[ul+1,n(ϕ̂

(lRgrp) +∆(l))− ul+1,n(ϕ̂
(lRgrp) + ∆̃(l)) | ϕ̂(lRgrp), E(lRgrp)

0 ]
∣∣∣︸ ︷︷ ︸

A1

+ η100E[|ul+1,n(ϕ̂
(lRgrp) +∆(l))| | ϕ̂(lRgrp), Ē(lRgrp)

0 ]︸ ︷︷ ︸
A2

+ η100E[|ul+1,n(ϕ̂
(lRgrp) + ∆̃(l))| | ϕ̂(lRgrp), Ē(lRgrp)

0 ]︸ ︷︷ ︸
A3

.
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We first bound A2 and A3. Since ϕ̂(lRgrp) ∈ Γ, both ϕ̂(lRgrp) +∆(l) and ϕ̂(lRgrp) + ∆̃(l) belong to
Γ. Due to compactness of Γ and smoothness of ul+1,n(·) on Γ, there exist a positive constant Cg,2
such that A2 +A3 ≤ Cg,2η100.

We proceed to bound A1. Expanding ul+1,n(·) at ϕ̂(lRgrp) and by triangle inequality,

A(s)
1 ≤

d∑
i=1

∣∣∣∣E[∂ul+1,n

∂ϕi
(ϕ̂(lRgrp))

(
∆

(l)
i − ∆̃

(l)
i

)
| ϕ̂(lRgrp), E(lRgrp)

0

∣∣∣∣︸ ︷︷ ︸
B1

+
1

2

∑
1≤i,j≤d

∣∣∣∣E[∂2ul+1,n

∂ϕi∂ϕj
(ϕ̂(lRgrp))

(
∆

(l)
i ∆

(l)
j − ∆̃

(l)
i ∆̃

(l)
j

)
| ϕ̂(lRgrp), E(lRgrp)

0 ]

∣∣∣∣︸ ︷︷ ︸
B2

+ |R|+ |R̃|,

where the remaindersR and R̃ are

R =
1

6

∑
1≤i,j,p≤d

E[
∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ∆(l))∆

(l)
i ∆

(l)
j | ϕ̂(lRgrp), E(lRgrp)

0 ],

R̃ =
1

6

∑
1≤i,j,p≤d

E[
∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ̃∆̃(l))∆̃

(l)
i ∆̃

(l)
j ∆̃(l)

p | ϕ̂(lRgrp), E(lRgrp)
0 ],

for some θ, θ̃ ∈ (0, 1). Since ϕ̂(lRgrp) belongs to Γ which is compact, there exists a constant Cg,3
such that for all 1 ≤ i, j ≤ d, 0 ≤ l ≤ n− 1, 1 ≤ n ≤ ⌊T/ηe⌋,

|∂ul+1,n

∂ϕi
(ϕ̂(lRgrp))| ≤ Cg,3, |∂

2ul+1,n

∂ϕi∂ϕj
(ϕ̂(lRgrp))| ≤ Cg,3.

By Theorem 68,

B1 ≤ dCg,3C1(η
γ1
e + ηγ2e )(log 1

ηe
)b, B2 ≤

d2

2
Cg,3C1(η

γ1
e + ηγ2e )(log 1

ηe
)b.

Now we bound the remainders. By Cauchy-Schwartz inequality,∣∣∣∣E[ ∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ∆(l))∆

(l)
i ∆

(l)
j ∆(l)

p | ϕ̂(lRgrp), E(lRgrp)
0 ]

∣∣∣∣
≤
(
E

[(
∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ∆(l))

)2

| ϕ̂(lRgrp), E(nRgrp)
0

])1/2

×
(
E[(∆(l)

i ∆
(l)
j ∆(l)

p )2 | ϕ̂(lRgrp), E(nRgrp)
0 ]

)1/2
.

Since ϕ̂(lRgrp) and ϕ̂(lRgrp) + ∆(l) both belong to Γ which is compact, there exists a constant
Cg,4 such that for all 1 ≤ i, j, p ≤ d, 0 ≤ l ≤ n− 1 and 1 ≤ n ≤ ⌊T/ηe⌋,(

∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ∆(l))

)2
≤ C2

g,4.
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Combining the above inequality with Theorem 68, we have∣∣∣∣E[ ∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ∆(l))∆

(l)
i ∆

(l)
j ∆(l)

p | ϕ̂(lRgrp), E(lRgrp)
0 ]

∣∣∣∣ ≤ Cg,4C1η
γ1
e log( 1

ηe
)b.

Hence, for all 1 ≤ n ≤ ⌊T/ηe⌋, 0 ≤ l ≤ n− 1,

|R| ≤ d3

6
Cg,4C1η

γ1
e log( 1

ηe
)b.

Similarly, we can show that there exists a constant Cg,5 such that for all 1 ≤ n ≤ ⌊T/ηe⌋, 0 ≤ l ≤
n− 1,

|R̃| ≤ d3

6
Cg,5C1η

γ1
e log( 1

ηe
)b.

Combining the bounds on A1 to A3, we have the lemma.

Finally, we prove Theorem 65.
Proof For 0 ≤ l ≤ n, define the random variable ζ̂l,n which follows the distributionPζ(ϕ̂(lRgrp), l, n)

conditioned on ϕ̂(lRgrp). Therefore, P(ζ̂n,n = ϕ̂(nRgrp)) = 1 and ζ̂0,n ∼ ζnηe . Denote by
u(ϕ, s, t) := Eζt∼Pζ(ϕ,s,t)[g(ζt)] and Tl+1,n := ul+1,n(ϕ̂

(lRgrp)+∆(l), (l+1)ηe, nηe)−ul+1,n(ϕ̂
(lRgrp)+

∆̃(l), (l + 1)ηe, nηe).∣∣∣E[g(ϕ(nRgrp))]− E[g(ζ(nηe))]
∣∣∣

≤
∣∣∣E[g(ζ̂n,n)− g(ζ̂0,n) | E(nRgrp)

0 ]
∣∣∣+O(η100)

≤
n−1∑
l=0

∣∣∣E[g(ζ̂l+1,n)− g(ζ̂l,n) | E(nRgrp)
0 ]

∣∣∣+O(η100)
=

n−1∑
l=0

∣∣∣E[u(ϕ̂((l+1)Rgrp), (l + 1)ηe, nηe)− u(ζ̂l,l+1, (l + 1)ηe, nηe) | E(nRgrp)
0 ]

∣∣∣+O(η100)
=

n−1∑
l=0

∣∣∣E[Tl+1,n | E(nRgrp)
0 ]

∣∣∣+O(η100).
Noticing that E[Tl+1,n | E(nRgrp)

0 ] = E[E[Tl+1,n | ϕ̂(lRgrp), E(lRgrp)
0 ] | E(nRgrp)

0 ], we can apply
Theorem 69 and obtain that for all 0 ≤ n ≤ ⌊T/ηe⌋,∣∣∣E[g(ϕ(nRgrp))]− E[g(ζ(nηe))]

∣∣∣ ≤ nCg,1(ηγ1e + ηγ2e )(log 1
ηe
)b

≤ TCg,1(ηγ1−1
e + ηγ2−1

e )(log 1
ηe
)b.

Notice that ηγ1e + ηγ2e = η0.5−β + ηβ and T , Cg,1 are both constants that are independent of ηe. Let
β = 0.25 and we have Theorem 65.

Having established Theorem 65, we are thus led to prove Theorem 4.
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Proof [Proof of Theorem 4] Denote by scls = s0 + s1 = O(log 1
η ), which is the time the global

iterate θ̄(s) will reach within Õ(η) from Γ with high probability. Define ζ̃(t) to be the solution to
the limiting SDE (101) conditioned on E(scls)0 and ζ̃(0) = ϕ(scls). By Theorem 65, we have

max
n=0,··· ,⌊T/η0.75⌋

∣∣∣E[g(ϕ(nRgrp+scls))− g(ζ̃(nη0.75)) | ϕ(scls), E(scls)0 ]
∣∣∣ ≤ Cgη0.25(log 1

η )
b,

where Rgrp = ⌊ 1
αη0.75

⌋. Noticing that (i) g ∈ C3 (ii) b,σ ∈ C∞ and (iii) ζ(t), ζ̃(t) ∈ Γ, t ∈ [0,∞)

almost surely, we can conclude that given E(scls)0 ,

∥ζ(t)− ζ̃(t)∥2 = Õ(
√
η), ∀t ∈ [0, T ].

Then there exists positive constant b′ independent of η and g, and C ′
g which is independent of η but

can depend on g such that

max
n=0,··· ,⌊T/η0.75⌋

∣∣∣E[g(ϕ(nRgrp+scls))− g(ζ(nη0.75 + sclsHη
2))]
∣∣∣ ≤ C ′

gη
0.25(log 1

η )
b′ .

We can view the random variable pairs {(ϕ(nRgrp+scls), ζnη0.75+sclsαη) : n = 0, · · · , ⌊T/η0.75⌋} as
reference points and then approximate the value of g(ϕ(s)) and g(ζ(sHη2)) with the value at the
nearest reference points. By Lemmas 33 and 38, for 0 ≤ r ≤ Rgrp and 0 ≤ s ≤ Rtot − r,

E[∥ϕ(s+r) − ϕ(s)∥2] = Õ(η0.375).

Since the values of ϕ(s) and ζ are restricted to a bounded set, g(·) is Lipschitz on that set. Therefore,
we have the theorem.

Appendix K. Deriving the Slow SDE for Label Noise Regularization

In this this section, we formulate how label noise regularization works and derive the theoretical
results in Appendix E.

Consider training a model for C-class classification on dataset D = {(xi, yi)}Ni=1, where xi
denotes the input and yi ∈ [C] denotes the label. Denote by ∆C−1

+ the (C − 1)-open simplex. Let
f(θ;x) ∈ ∆C−1

+ be the model output on input x with parameter θ, whose j-th coordinate fj(θ;x)
stands for the probability of x belonging to class j. Let ℓ(θ;x, y) be the cross entropy loss given
input x and label y, i.e, ℓ(θ;x, y) = − log fy(θ;x).

Adding label noise means replacing the true label y with a fresh noisy label ŷ every time we
access the sample. Specifically, ŷ is set as the true label y with probability 1 − p and as any other
label with probability p

C−1 , where p is the fixed corruption probability. The training loss is defined as
L(θ) = 1

N

∑N
i=1 E[ℓ(θ;xi, ŷi)], where the expectation is taken over the stochasticity of ŷi. Notice

that given a sample (x, y),

E[ℓ(θ;x, ŷ)] = −(1− p) log fy(θ;x)−
p

C − 1

∑
j ̸=y

log fj(θ;x). (107)

By the property of cross-entropy loss, (107) attains its global minimum if and only if fj = p
C−1 ,

for all j ∈ [C], j ̸= y and fy = 1 − p. Due to the large expressiveness of modern deep learning
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models, there typically exists a set S∗ := {θ | fi(θ) = E[ŷi],∀i ∈ [N ]} such that all elements
of S∗ minimizes L(θ). Then, the manifold Γ is a subset of S∗. The following theorem relates
the noise covariance Σ(θ) := 1

N

∑
i∈[N ] E[(∇ℓ(θ;xi, ŷi)−∇L(θ)) (∇ℓ(θ;xi, ŷi)−∇L(θ))⊤]

to the hessian∇2L(θ) for all θ ∈ S∗.

Theorem 70 If f(θ;xi, ŷi) is C2-smooth on Rd given any i ∈ [N ], ŷi ∈ [C] and S∗ ̸= ∅, then for
all θ ∈ S∗, Σ(θ) = ∇2L(θ).

Proof Since L(·) is C2-smooth, ∇L(θ) = 0 for all θ ∈ S∗. To prove the above theorem, it
suffices to show that ∀i ∈ [N ], E[∇ℓ(θ;xi, ŷi)∇ℓ(θ;xi, ŷi)⊤] = ∇2L(θ). W.L.O.G, let y = 1 and
therefore for all θ ∈ S∗

f1(θ;x) = 1− p =: a1,

fj(θ;x) =
p

C − 1
=: a2, ∀j > 1, j ∈ [C].

Additionally, let h(x) := − log(x), x ∈ R+. The stochastic gradient ∇ℓ(θ;x, ŷ) follows the
distribution

∇ℓ(θ;x, ŷ) =
{
h′(a1)

∂f1
∂θ w.p. 1− p,

h′(a2)
∂fj
∂θ , w.p. p

C−1 ,∀j ∈ [C], j > 1.

Then the covariance of the gradient noise is

E[∇ℓ(θ;x, ŷ)∇ℓ(θ;x, ŷ)⊤] = (1− p)(h′(a1))2
∂f1(θ

∗)

∂θ∗

(
∂f1(θ

∗)

∂θ∗

)⊤

+
p(h′(a2))

2

C − 1

∑
j>1

∂fj(θ
∗)

∂θ∗

(
∂fj(θ

∗)

∂θ∗

)⊤
.

Now we compute the hessian.

∇2L(θ) = (1− p)h′(a1)
∂2f1
∂θ2

+
ph′(a2)

C − 1

∑
j>1

∂2fj
∂θ2︸ ︷︷ ︸

T

+ (1− p)h′′(a1)
∂f1
∂θ

(
∂f1
∂θ

)⊤
+
ph′′(a2)

C − 1

∑
j>1

∂fj
∂θ

(
∂fj(θ)

∂θ

)⊤
.

Since
∑

j∈[C] fi = 1,

∂2f1
∂θ2

= −
∑
j>1

∂2fj
∂θ2

. (108)

Also, notice that h′(x) = − 1
x . Therefore,

(1− p)h′(a1) =
ph′(a2)

C − 1
. (109)
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Substituting (108) and (109) into the expression of T gives T = 0, which simplifies∇2L(θ) as the
following form:

∇2L(θ) = (1− p)h′′(a1)
∂f1
∂θ

(
∂fj(θ)

∂θ

)⊤
+
ph′′(a2)

C − 1

∑
j>1

∂fj
∂θ

(
∂fj(θ)

∂θ

)⊤
.

Again notice that h′′(x) = h′(x) for all x ∈ R+. Therefore,∇2L(θ) = Σ(θ).

With the property Σ(θ) = ∇2L(θ), the limiting SDE (4) can be greatly simplified.

Corollary 71 (Slow SDE for Local SGD with label noise) ForC-class classification task with cross-
entropy loss, the slow SDE of Local SGD with label noise has the following form:

dζ(t) = − 1

4B
∇Γ

(
tr(∇2L(ζ)) + (K − 1) · tr(F (2Hη∇

2L(ζ)))
2Hη

)
dt, (110)

where F (x) :=
∫ x
0 ψ(y)dy and is interpreted as a matrix function in (110). Additionally, ∇Γf

stands for the gradient of a function f projected to the tangent space of Γ.

Proof Recall the general form of the slow SDE for Local SGD:

dζ(t) =
1√
B
∂Φ(ζ)Σ1/2(ζ)dW (t) +

1

2B
∂2Φ(ζ) [Σ(ζ) + (K − 1)Ψ(ζ)] dt, (111)

where Ψ(ζ) is defined in Definition 46. Since for ζ ∈ Γ, Σ(ζ) = ∇2L(ζ), then

∂Φ(ζ)Σ1/2(ζ) = 0. (112)

Now we show that

∂2Φ(ζ)[Σ(ζ)] = −∇Γtr(∇2L(ζ)). (113)

Since∇2L(ζ) = Σ(ζ), V∇2L(ζ)[Σ] = 1
2I . By Theorem 19,

∂2Φ(ζ)[Σ(ζ)] = −1

2
∂Φ(ζ)∇3L(ζ)[I] = −1

2
∇Γtr(∇2L(ζ)).

Finally, we show that

∂2Φ(ζ)[Ψ(ζ)] = −∇Γ
1

2Hη
tr(F (2Hη∇2L(ζ))). (114)

Define ψ̂(x) := xψ(x) = e−x − 1 + x. By definition of Ψ(ζ), when Σ(ζ) = ∇2L(ζ), Ψ(ζ) =
ψ̂(2ηH∇2L(ζ)), where ψ̂(·) is interpreted as a matrix function. Sinceψ(2ηH∇2L(ζ)) ∈ span{uu⊤ |
u ∈ T⊥

ζ (Γ)}, by Theorem 19,

∂2Φ(ζ)[Ψ(ζ)] = −1

2
∂Φ(ζ)trψ(2ηH∇2L(ζ)).

By the chain rule, we have (114). Combining (112),(113) and (114) gives the corollary.

We further have the following corollary as H goes to infinity.

75



WHY (AND WHEN) DOES LOCAL SGD GENERALIZE BETTER THAN SGD?

Lemma 72 As the number of local steps H goes to infinity, the slow SDE of Local SGD with label
noise (110)can be simplified as:

dζ(t) = − K

4B
∇Γtr(∇2L(ζ))dt. (115)

Proof We obtain the corollary by simply taking the limit. By L’Hospital’s rule,

lim
x→+∞

F (ax)

x
= lim

x→+∞

dF (ax)

dx
= lim

x→+∞
aψ(ax) = a.

Therefore,

lim
x→+∞

tr(F (2Hη∇2L(ζ)))
2Hη

= tr(∇2L(ζ)). (116)

Substituting (116) into (110)yields (115).

Appendix L. Experimental Details

In this section, we specify the experimental details that are omitted in the main text. Our experiments
are conducted on CIFAR-10 [31] and ImageNet [51]. Our implementation of ResNet-56 [18] and
VGG-16 [54] is based on the high-starred repository by Wei Yang 2 and we use the implementation
of ResNet-50 from torchvision 0.3.1. We run all CIFAR-10 experiments with Bloc = 128 on 8
NVIDIA Tesla P100 GPUs while ImageNet experiments are run on 8 NVIDIA A100 GPUS with
Bloc = 32. All ImageNet experiments are trained with ResNet-50.

We generally adopt the following training strategies. We do not add any momentum unless
otherwise stated. We follow the suggestions by Jia et al. [24] and do not add weight decay to the
bias and learnable parameters in the normalization layers. For all models with BatchNorm layers,
we go through 100 batches of data with batch size Bloc to estimate the running mean and variance
before evaluation. Experiments on both datasets follow the standard data augmentation pipeline in
He et al. [18] except the label noise experiments. Additionally, we use FFCV [32] to accelerate data
loading for ImageNet training.

Slightly different from the update rule of Local SGD in Section 1, we use the following sampling
scheme unless otherwise stated. At the beginning of every epoch, the whole training dataset is
shuffled and evenly partitioned into K shards. Each worker takes one shard and samples batches
without replacement. When all workers pass their own shard, the next epoch begins and the whole
dataset is reshuffled. An alternative view is that the workers always share the same dataset. For each
epoch, they perform local steps by sampling batches of data without replacement until the dataset
contains too few data to form a batch. Then another epoch starts with the dataset reloaded to the
initial state. This sampling scheme is standard in practice and is also adopted by Lin et al. [39] and
Goyal et al. [15].

2. https://github.com/bearpaw/pytorch-classification
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L.1. Post-local SGD Experiments in Section 1

CIFAR-10 experiments. We simulate 32 clients with B = 4096. We follow the linear scaling
rule and linear learning rate warmup strategy suggested by Goyal et al. [15]. We first run 250
epochs of SGD with the learning rate gradually ramping up from 0.1 to 3.2 for the first 50 epochs.
Resuming from the model obtained at epoch 250, we run Local SGD with η = 0.32. Note that
we conduct grid search for the initial learning rate among {0.005, 0.01, 0.05, 0.1, 0.15, 0.2} and
choose the learning rate with which parallel SGD (H = 1) achieves the best test accuracy. We also
make sure that the optimal learning rate resides in the middle of the set. The weight decay λ is
set as 5 × 10−4. As for the initialization scheme, we follow Lin et al. [39] and Goyal et al. [15].
Specifically, we use Kaiming Normal [17] for the weights of convolutional layers and initialize the
weights of fully-connected layers by a Gaussian distribution with mean zero and standard deviation
0.01. The weights for normalization layers are initialized as one. All bias parameters are initialized
as zero. We report the mean and standard deviation over 5 runs.

ImageNet experiments. We simulate 256 workers with B = 8192. We follow the linear scaling
rule and linear learning rate warmup strategy suggested by Goyal et al. [15]. We first run 100
epochs of SGD where the learning rate linearly ramps up from 0.5 to 16 for the first 5 epochs and
then decays by a factor of 0.1 at epoch 50. Resuming from epoch 100, we run Local SGD with
η = 0.16. Note that we conduct grid search for the initial learning rate among {0.05, 0.1, 0.5, 1}
and choose the learning rate with which parallel SGD (H = 1) achieves the best test accuracy. We
also make sure that the optimal learning rate resides in the middle of the set. The weight decay
λ is set as 1 × 10−4 and we do not add any momentum. The initialization scheme follows the
implementation of torchvision 0.3.1. We report the mean and standard deviation over 3 runs.

L.2. Experimental Details for Sections 2 and B.2

CIFAR-10 experiments. We use ResNet-56 for all CIFAR-10 experiments in the two sections.
We simulate 32 workers with B = 4096 and set the weight decay as 5 × 10−4. For Figure 2 (a)
and (b), we set η = 0.32, which is the same as the learning rate after decay in Figure 1 (a). For
Figure 2 (a), we adopt the same initialization scheme introduced in the corresponding paragraph in
Appendix L.1. For Figure 2 (b), (e) and Figure 3 (c), we use the model at epoch 250 in Figure 1 (a)
as the pre-trained model. Additionally, we use a training budget of 250 epochs for Figure 2 (e). In
Figure 3 (e), we use Local SGD with momentum 0.9, where the momentum buffer is kept locally
and never averaged. We run SGD with momentum 0.9 for 150 epochs to obtain the pre-trained
model, where the learning rate ramps up from 0.05 to 1.6 linearly in the first 150 epochs. Note that
we conduct grid search for the initial learning rate among {0.01, 0.05, 0.1, 0.15, 0.2} and choose the
learning rate with which parallel SGD (H = 1) achieves the highest test accuracy. We also make
sure that the optimal learning rate resides in the middle of the set. Resuming from epoch 150, we
run Local SGD H = 1 (i.e., SGD) and 24 with η = 0.16 and decay η by 0.1 at epoch 226. For
Local SGD H = 900, we resume from the model at epoch 226 of H = 24 with η = 0.016. We
report the mean and standard deviation over 3 runs for Figure 2 (a) (b) and Figure 3 (c), and over 5
runs for Figure 2 (e).

ImageNet experiments. We simulate 256 clients with B = 8192 and set the weight decay as
1× 10−4. In Figure 2 (d), both Local SGD and SGD start from the same random initialization. We
warm up the learning rate from 0.1 to 3.2 in the first 5 epochs and decay the learning rate by a factor
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of 0.1 at epochs 50 and 100. For Figure 2 (c) (f) and Figure 3 (d), we use the model at epoch 100 in
Figure 1 (b) as the pre-trained model. In Figure 2 (c), we set the learning rate as 0.16, which is the
same as the learning rate after epoch 100 in Figure 1 (b). Finally, in Figure 2 (f) and Figure 3 (d),
we report the mean and average over 3 runs.

L.3. Experiments on Reducing the Diffusion Term

CIFAR-10 experiments. The model we use is ResNet-56. We first run SGD with batch size
128 and learning rate η = 0.5 for 250 epochs to obtain the pre-trained model. The initialization
scheme is the same as the corresponding paragraph in Appendix L.1. Resuming from epoch 250
with η = 0.05, we run Local SGD with K = 16 until epoch 6000 and run all other setups for the
same number of iterations. We report the mean and standard deviation over 3 runs.

ImageNet experiments. We use the model at epoch 100 in Figure 1 (b) as the pre-trained model.
Resuming from epoch 100 with η = 0.032, we run Local SGD with K = 256 until epoch 250 and
run all other setups for the same number of iterations.

L.4. Local SGD with Label Noise Regularization

For the label noise experiments, we do not use data augmentation and use sampling with replace-
ment. We simulate 32 clients with B = 4096 and set the corruption probability as 0.1. Below we
list the training details for ResNet-56 and VGG-16 respectively.

ResNet-56. As for the model architecture, we replace the batch normalization layer in Yang’s
implementation with group normalization such that the training loss is independent of the sampling
order. We also use Swish activation [49] in place of ReLU to ensure the smoothness of the loss
function. We generate the pre-trained model by running label noise SGD with corruption probability
p = 0.1 for 500 epochs (6000 iterations). We initialize the model by the same strategy introduced in
the first paragraph pf Appendix L.1. Applying the linear warmup scheme proposed by Goyal et al.
[15], we gradually ramp up the learning rate η from 0.1 to 3.2 for the first 50 epochs and multiply
the learning rate by 0.1 at epoch 250. All subsequent experiments in Figure 5 (a) use learning rate
0.1. The weight decay λ is set as 5 × 10−4 . Note that adding weight decay in the presence of
normalization accelerates the limiting dynamics and will not affect the implicit regularization on
the original loss function [35].

VGG-16. We follow Yang’s implementation of the model architecture except that we replace max-
imum with average pooling and use Swish activation [49] to make the training loss smooth. We
initialize all weight parameters by Kaiming Normal and all bias parameters as zero. The pre-trained
model is obtained by running label noise SGD with total batch size 4096 and corruption probability
p = 0.1 for 6000 iterations. We use a linear learning rate warmup from 0.1 to 0.5 in the first 500
iterations. Resuming from the model obtained by SGD, we use learning rate η = 0.1. The weight
decay λ is set as zero.
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