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Abstract
The extragradient method has recently gained a lot of attention, due to its convergence behavior
on smooth games. In games, the eigenvalues of the Jacobian of the vector field are distributed on
the complex plane, exhibiting more convoluted dynamics compared to minimization. In this work,
we take a polynomial-based analysis of the extragradient with momentum for optimizing games
with cross-shaped spectrum on the complex plane. We show two results: first, the extragradient
with momentum exhibits three different modes of convergence based on the hyperparameter setup:
when the eigenvalues are distributed (i) on the real line, (ii) both on the real line along with
complex conjugates, and (iii) only as complex conjugates. Then, we focus on the case (ii), i.e.,
when the spectrum of the Jacobian has cross-shaped structure, as observed in training generative
adversarial networks. For this problem class, we derive the optimal hyperparameters and show that
the extragradient with momentum achieves accelerated convergence rate.

1. Introduction

Background. Following [4, 17], we define the n-player differentiable game as a family of twice
continuously differentiable losses ℓi : Rdi → R, for i = 1, . . . , n. The player i controls the param-
eter w(i) ∈ Rdi . We denote the concatenated parameters by w = [w(1), . . . , w(n)] ∈ Rd, where d =∑n

i=1 di. For this problem, a Nash equilibrium satisfies w(i),⋆ ∈ argminw(i)∈Rdi ℓi
(
w(i), w(¬i),⋆),

where the notation ·(¬i) denotes all indices except for i. We also define the vector field of the game
v as the concatenation of the individual gradients, and its associated Jacobian ∇v respectively as:

v(w) = [∇w(1)ℓ1(w), . . . ,∇w(n)ℓn(w)]
⊤, and ∇v(w) =

 ∇2
w(1)ℓ1(w) . . . ∇w(n)∇w(1)ℓ1(w)

...
...

∇w(1)∇w(n)ℓn(w) . . . ∇2
w(n)ℓ1(w)

 .

Unfortunately, finding Nash equilibria for general games is impractical to solve [17, 28].1 Instead,
we focus on finding a stationary point of the vector field v, since a Nash equilibrium is always a

* Authors after JLK are listed in alphabetical order.
1. Finding Nash equilibira can be refomulated as a nonlinear complementarity problem, which is PPAD hard [7, 17].
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stationary point of the gradient dynamics. That is, we want to solve:

Find w⋆ ∈ Rd such that v(w⋆) = 0. (1)

Related work. The above game formulation is strictly more general than minimization, and in-
cludes many problems such as saddle-point problems [25], bilinear games [18, 20], and variational
inequality problems [9, 29]. For minimization, the vector field v and the Jacobian ∇v are, respec-
tively, the gradient and the Hessian of the objective function. The Hessian is a symmetric matrix,
so its eigenvalues lie on the real line; the ratio of the largest and the smallest eigenvalues is the
condition number. It is now a common wisdom in numerical linear algebra and optimization theory
how the notion of condition number characterizes the difficulty of a (strongly convex) minimization
problem [23]. In conjunction with provable lower bounds within various function classes [22], an
algorithm, whose attainable upper bound on the convergence rate matches the lower bound of its
function class, is considered “opimal” for that function class [23, 24].

Differentiable games, on the other hand, have much more convoluted dynamics, as the eigen-
values of the Jacobian at the solution are distributed over the complex plane [4, 19]. To address
this, recent line of work proposes new algorithms with better upper bounds on the convergence rate
[8, 10, 11, 19–21, 26]. Vast majority of the aforementioned literature proves convergence based
on two approaches: either (i) bounding the real part of the eigenvalues of the (submatrices of) Ja-
cobian, or (ii) the magnitude. However, such approaches do not fully exploit the distribution of
eigenvalues of the Jacobian, resulting in loose bounds [3]. Simply put, the notion of lower bounds,
and subsequently that of optimal algorithms, is not well established for optimizing games.

To understand the difficulty of a differentiable game, [3] proposed a geometric interpretation
of the conditioning of a game via the notion of spectral shape, defined as the set containing all
eigenvalues of the Jacobian. Specifically, let MK be the set of matrices A whose spectrum, denoted
by Sp(A), belong to a set K on the complex plane with positive real part:

MK := {A ∈ Rd×d : Sp(A) ⊂ K ⊂ C+}.

When K is “simple” (e.g., a real line segment or a disc on the complex plane), [3] characterizes the
lower bound and the optimality of some first-order methods [1].

This work. We consider a more specific class of games, where the distribution of the eigenvalues of
the Jacobian can be modeled via (shifted) cross-shape on the complex plane. That is, we consider
the following spectrum model:

Sp(∇v(w)) ∈ S⋆ = [µ,L] ∪ {a+ bi ∈ C : a = c′ > 0, b ∈ [−c, c]}. (2)

In (2), the first set can be thought of as a segment on the real line, similarly to the case of minimizing
µ-strongly convex and L-smooth functions. The second set has a fixed real component (c′ > 0),
along with imaginary components symmetric across the real line, as the Jacobian is real.

This is a strict generalization of the purely imaginary interval [−bi, bi] commonly considered in
the bilinear games literature [3, 18, 20]. While many recent papers on bilinear games cite generative
adversarial networks (GANs) [12] as a motivation, the work in [5, Figure 4] empirically shows that
the spectrum of GANs is not contained in the imaginary axis. Instead, we note that the cross shape
spectrum assumption above would include some of the observed GAN spectra.

In this work, we focus on solving (1) for games with Jacobian eigenvalue structure in (2). We
use the extragradient with momentum, which we expound in the next section.
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Notation. We denote the spectrum of a matrix A by Sp(A), and its spectral radius by ρ(A) :=
max{|λ| : λ ∈ Sp(A)}. R(z) and I(z) respectively denote the real and the imaginary part of a
complex number z.

2. Algorithm

Extragradient with momentum via Chebyshev polynomials. To solve (1) for games with Jaco-
bian eigenvalue structure in (2), we focus on the the extragradient method with momentum (EGM):

(EGM) wt+1 = wt − hv(wt − γv(wt)) +m(wt − wt−1), (3)

where h is the step size, γ is the extrapolation step size, and m is the momentum parameter. The
extragradient (EG) method (without momentum) was first proposed in [16] for saddle point prob-
lems, and recently got popularized due to its convergence behavior for some class of differentiable
games such as bilinear games, for which the standard gradient method diverges [2, 3, 11]. For com-
pleteness, we remind the gradient method (GD) and the gradient method with momentum (GDM):

(GD) wt+1 = wt − hv(wt), and (GDM) wt+1 = wt − hv(wt) +m(wt − wt−1). (4)

We take a polynomial based approach to analyze EGM. Such analysis was used in [3, 14, 15, 27]. On
that end, we use the following lemma [3, 6], which connects first-order methods with polynomials,
when the vector field satisfies v(w) = Aw + b:

Lemma 1 There exists a real polynomial pt of degree at most t satisfying

wt − w⋆ = pt(A)(w0 − w⋆), (5)

where pt(0) = 1, and v(w⋆) = Aw⋆ + b = 0.

By taking norms, (5) further implies ∥wt−w⋆∥2 = ∥pt(A)(w0−w⋆)∥2, from which a convergence
rate can be obtained. As EGM in (3) is a first-order method [1, 3], we can study the associated
residual polynomial. We summarize this in the following theorem:

Theorem 2 (Residual polynomials of EGM) Consider the extragradient with momentum in (3).
Its associated residual polynomial is:

P̃0(λ) = 1, P̃1(λ) = 1− hλ(1−γλ)
1+m , and P̃t+1(λ) = (1 +m− hλ(1− γλ))P̃t(λ)−mP̃t−1(λ).

Further, let Tt(·) and Ut(·) be the Chebyshev polynomials of the first and the second kind respec-
tively. Then, the above expression simplifies to:

Pt(λ) = mt/2
(

2m
1+mTt(σ(λ)) +

1−m
1+mUt(σ(λ))

)
with σ(λ) = 1+m−hλ(1−γλ)

2
√
m

, (6)

where we refer to the term σ(λ) as the link function.

As can be seen in (6), the link function for EGM is quadratic with respect to λ, which is different
from the link function of GDM. We write below the residual polynomial for GDM, expressed in
terms of the Chebyshev polynomials:

PGDM
t (λ) = mt/2

(
2m
1+mTt(ξ(λ)) +

1−m
1+mUt(ξ(λ))

)
with ξ(λ) = 1+m−hλ

2
√
m

. (7)

3



MOMENTUM EXTRAGRADIENT IS OPTIMAL FOR GAMES WITH CROSS-SHAPED SPECTRUM

Notice that the Chebyshev polynomial-based expressions of EGD in (6) and that of GDM in (7)
are identical except for the link functions σ(λ) and ξ(λ), which enter Tt(·) and Ut(·) as arguments.
This difference in link functions is crucial, as the Chebyshev polynomials behave very differently
based on the domain, as shown in the following lemma:

Lemma 3 ([13]) Let z be a complex number. The sequence
(∣∣∣ 2m

1+mTt(z) +
1−m
1+mUt(z)

∣∣∣)
t⩾0

grows

exponentially in t for z /∈ [−1, 1], while in that interval they are bounded as the following:

|Tt(z)| ⩽ 1 and |Ut(z)| ⩽ t+ 1. (8)

Therefore, we are interested in the case where the set of step sizes and momentum parameters lead
to |σ(λ)| ⩽ 1, so that we can use the bound in (8). We call the set of hyperparameters such that the
image of the link function is in [−1, 1] as the robust region.

Three modes of the extragradient with momentum. Within the robust region, we can compute
the worst-case convergence rate as follows:

rt := max
λ∈S⋆

|Pt(λ)| ⩽ mt/2

(
2m
1+m max

λ∈S⋆
|Tt(σ(λ))|+ 1−m

1+m max
λ∈S⋆

|Ut(σ(λ))|
)

(8)
⩽ mt/2

(
2m
1+m + 1−m

1+m(t+ 1)

)
⩽ mt/2(t+ 2), (9)

where the last inequality uses 0 < m < 1. Note that by definition rt denotes the worst-case conver-
gence rate. To get the asymptotic rate, we take the limit supremum of the 2t-th root2 of rt:

lim sup
t→∞

2t
√
rt = lim sup

t→∞

(
mt/2(t+ 2)

) 1
2t

= 4
√
m. (10)

Recall that the Chebyshev polynomial expressions of EGD in (6) and that of GDM3 are identical
except for the link functions. Hence, the convergence rate in (9) applies to both EGM and GDM, as
long as the link functions |σ(λ)| and |ξ(λ)| are bounded by 1.

Yet, due to the difference in link functions, the robust region of EGM and GDM are drastically
different. Specifically, due to the quadratic link function of EGM in (6), the robust region becomes
more flexible; in particular, this link function can still satisfy the upper bounds (8) in Lemma 3 for a
subset of complex values, resulting in the convergence rate of (9). Hence, compared to GDM whose
link function is linear in λ and so can only satisfy (8) for a subset of real values, EGM enjoys the
convergence rate in (9) for a much wider set of λ values.

The robust region of EGM can be described with the four extreme points below:

σ−1(−1) = 1
2γ ±

√
1

4γ2 − (1+
√
m)2

hγ and σ−1(1) = 1
2γ ±

√
1

4γ2 − (1−
√
m)2

hγ . (11)

Depending on the choice of hyperparameters, the above four extreme points can be distributed
differently on three different modes, which we summarize in the following theorem:

2. The reason why we take the 2t-th root of rt is to normalize by the number of vector field computations.
3. Asymptotically, GDM enjoys

√
m convergence rate instead of the 4

√
m of EGM, as it uses a single vector field

computation per iteration instead of the two.
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Figure 1: Blue points represent input arguments to the link function in (6) that outputs the range in [−1, 1].
Left: Case 1; Middle: Case 2; Right: Case 3. Red solid color is the real and the imaginary axes.

Theorem 4 Consider the extragradient with momentum in (3), expressed with the Chebyshev poly-
nomials as in (6). Then, the robust region summarized in (11) have the following three modes:

1. If h
4γ ⩾ (1 +

√
m)2, then σ−1(−1) and σ−1(1) are all real numbers;

2. If (1−
√
m)2 ⩽ h

4γ < (1 +
√
m)2, then σ−1(−1) are complex, and σ−1(1) are real;

3. If (1−
√
m)2 > h

4γ , then σ−1(−1) and σ−1(1) are all complex numbers.

We empirically verify Theorem 4 in Figure 1. Note that the hyperparameters are set up so that each
case in Theorem 4 is covered.

3. Optimal parameters and convergence rates

Optimal parameters for cross-shaped game problem. We focus on solving (1) for games with
cross-shaped Jacobian eigenvalue structure as in (2). Therefore, in the remainder of the paper, we
focus on the second case of Theorem 4, which is illustrated in the middle pannel of Figure 1.

We now connect the cross-shaped spectrum model in (2) and the robust region of EGM described
with four extra points in (11). As we focus on the second case of Theorem 4, the hyperparameters
satisfy the condition (1 −

√
m)2 ⩽ h

4γ < (1 +
√
m)2. In this case, we can write the robust region

of EGM as follows:

σ−1([−1, 1]) =

[
1
2γ −

√
1

4γ2 − (1−
√
m)2

hγ , 1
2γ +

√
1

4γ2 − (1−
√
m)2

hγ

]⋃
[

1
2γ −

√
1

4γ2 − (1+
√
m)2

hγ , 1
2γ +

√
1

4γ2 − (1+
√
m)2

hγ

]
.

(12)

Here, the first interval lies on R, as the square root term is real; conversely, in the second interval,
the square root term is imaginary, with fixed real component: 1

2γ .
The optimal parameters of EGM in terms of the worst-case convergence rate for this problem

occurs when the robust region in (12) and the spectrum model in (2) coincide. This condition can
be summarized to the following three equalities:

1
2γ −

√
1

4γ2 − (1−
√
m)2

hγ = µ, 1
2γ +

√
1

4γ2 − (1−
√
m)2

hγ = L, and

√
(1+

√
m)2

hγ − 1
4γ2 = c. (13)

Based on (13), we can compute the optimal hyperparameters, summarized in the next theorem:
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Theorem 5 (Optimal hyperparameters for EGM) Consider solving (1) for games where the Ja-
cobian has cross-shaped spectrum as in (2). For this problem, the optimal hyperparameters for the
extragradient with momentum in (3) can be set as follows:

h = 16(µ+L)

(
√

4c2+(µ+L)2+
√
4µL)2

, γ = 1
µ+L , and m =

(√
4c2+(µ+L)2−

√
4µL√

4c2+(µ+L)2+
√
4µL

)2

.

Recalling (10), we immediately get the asymptotic convergence rate from Theorem 5. Further, this
formula can be simplified the ill-conditioned regime, where τ := µ

L approaches 0:

4
√
m =

(√
4c2+(µ+L)2−

√
4µL√

4c2+(µ+L)2+
√
4µL

) 1
2

=

(√
(2c/L)2+(1+τ)2−2

√
τ√

(2c/L)2+(1+τ)2+2
√
τ

) 1
2

=
τ→0

1− 2
√
τ√

(2c/L)2+1
+ o(

√
τ). (14)

We see that EGM achieves accelerated convergence rate: 1−O(
√

µ/L) as long as c = O(L).
A special case of the spectrum model in (2) is when the length of the first set and the second

equals; i.e., when c = L−µ
2 . In this setting, the optimal hyperparameters of EGM in Theorem 5

further simplify, as we summarize in the next corollary:

Corollary 6 Consider the same setting as Theorem 5. Further, assume that c = L−µ
2 . Then, the

optimal hyperparameters for the extragradient with momentum in (3) can be set as follows:

h = 8(µ+L)

(
√

µ2+L2+
√
2µL)2

, γ = 1
µ+L , and m =

(√
µ2+L2−

√
2µL√

µ2+L2+
√
2µL

)2

.

Again, from Corollary 6, we can immediately get the asymptotic convergence rate via (10), which
can be interpreted further in the ill-conditioned regime where τ → 0:

4
√
m =

(√
µ2+L2−

√
2µL√

µ2+L2+
√
2µL

) 1
2

=
τ→0

1−
√
2
√
τ + o(

√
τ) ≈ 1−

√
2
√

µ
L . (15)

Comparison with other methods. In [2], GD and EG4 are interpreted as the fixed-point iterations
of operators FGD

h and F EG
h respectively representing each method, and the local convergence rate is

obtained by bounding the spectral radius of the Jacobian of the operators under certain assumptions.
We make the comparison for the simplified setting when c = L−µ

2 in (2); we leave the general case
with any c for future work. We summarize the relevant theorems from [2, 11] below:

Theorem 7 ([2, 11]) Let w⋆ be a stationary point of v. Denote by σ⋆ the spectrum of ∇v(w⋆) for
notational brevity. Further, assume the eigenvalues of ∇v(w⋆) all have positive real parts. Then,

1. For the gradient method with step size h = minλ∈σ⋆ ,

(GD) ρ(∇FGD
h (w⋆))2 ⩽ 1− min

λ∈σ⋆
R(1/λ) min

λ∈σ⋆
R(λ). (16)

2. For the extragradient method with step size h = (4maxλ∈σ⋆ |λ|)−1, it satisfies:

(EG) ρ(∇F EG
h (w⋆))2 ⩽ 1− 1

4

(
minλ∈σ⋆ R(λ)
maxλ∈σ⋆ |λ| +

minλ∈σ⋆ |λ|2
maxλ∈σ⋆ |λ|2

)
. (17)

Since our spectrum model in (2) satisfies the condition that the eigenvalues of ∇v(w⋆) all have pos-
itive real parts, we can obtain the convergence rate of GD and EG, based on Theorem 7. With our
(simplified) spectrum model with c = L−µ

2 , it follows that minλ∈σ⋆ R(λ) = µ, and minλ∈σ⋆ R(1/λ) =

4. In this work, it is assumed that same step size h is used for both the main and the extrapolation step sizes.
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1/L. Similarly, for EG, it follows that minλ∈σ⋆ R(λ) = µ,maxλ∈σ⋆ |λ| = L, and maxλ∈σ⋆ |λ|2 =
L2. Furthermore, minλ∈σ⋆ |λ|2 = µ2 if L ⩾ (

√
2+1)µ, and minλ∈σ⋆ |λ|2 = (L−µ)2/2 otherwise.

Thus, the convergence rates of GD and EG in (16) and (17) respectively satisfy:

ρ(∇FGD
h (w⋆))2 ⩽ 1− µ

L , and ρ(∇F EG
h (w⋆))2 ⩽

1− 1
4

(
µ
L + µ2

16L2

)
if L ⩾ (

√
2 + 1)µ

1− 1
4

(
µ
L + (L−µ)2

16L2

)
otherwise.

We see that both GD and EG have non-accelerated convergence rate, unlike (14) and (15).

4. Conclusion

In this work, we focused on finding a stationary point of games. Via polynomial-based analysis,
we showed the extragradient with momentum converges in three different modes of eigenvalue
structure of the game Jacobian, depending on the hyperparameters. Then, we focused on a more
specific problem class, where the eigenvalues of the game Jacobian are distributed in the complex
plane with a cross-shape. For this problem class, we obtained the optimal hyperparameters for the
momentum extragradient method, which enjoys an accelerated linear asymptotic convergence rate.
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[10] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien.
A variational inequality perspective on generative adversarial networks. arXiv preprint
arXiv:1802.10551, 2018.

[11] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel
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Appendix A. Proofs

A.1. Proof for Theorem 2

DERIVATION OF THE FIRST PART

Proof We want to find the residual polynomial P̃t(A) of the extragradient with momentum (EGM)
in (3). That is, we want to find

wt − w⋆ = P̃t(A)(w0 − w⋆), (18)

where {wt}t=0 is the iterates generated by EGM, which is possible by Lemma 1, as EGM is a
first-order method [3]. We now prove this is by induction.
Base case. For t = 0, P̃0(A) is a degree-zero polynomial, and hence equals I, which denotes the
identity matrix. Thus, w0 − w⋆ = I(w0 − w⋆) holds true.
Induction step. As the induction hypothesis, assume P̃t satisfies (18). Also, since we are looking
for a stationary point, it holds that v(w⋆) = 0. Further, as v is linear by the assumption of Lemma 1,
it holds that v(w) = A(w − w⋆). Applying this to EGM, we have:

wt+1 = wt − hv(wt − γv(wt)) +m(wt − wt−1)

= wt − hv(wt − γA(wt − w⋆)) +m(wt − wt−1)

= wt − hA(wt − γA(wt − w⋆)− w⋆) +m(wt − wt−1)

= wt − hA(wt − w⋆) + hγA2(wt − w⋆) +m(wt − wt−1)

= wt − hA(I− γA)(wt − w⋆) +m(wt − wt−1).

Subtracting w⋆ on both sides, we have:

wt+1 − w⋆ = wt − w⋆ − hA(I− γA)(wt − w⋆) +m(wt − wt−1)

= (I− hA(I− γA)) (wt − w⋆) +m(wt − w⋆ − (wt−1 − w⋆))

= (I− hA(I− γA)) P̃t(A)(w0 − w⋆) +m(P̃t(A)(w0 − w⋆)− P̃t−1(A)(w0 − w⋆))

= (I+mI− hA(I− γA)) P̃t(A)(w0 − w⋆)−mP̃t−1(A)(w0 − w⋆)

= P̃t+1(A)(w0 − w⋆),

where in the third equality, we used the induction hypothesis in (18).

DERIVATION OF THE SECOND PART IN (6)

Proof We show Pt = P̃t for all t via induction.
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Base case.

P1(λ) = mt/2

(
2m

1 +m
T1(σ(λ)) +

1−m

1 +m
U1(σ(λ))

)
= mt/2

(
2m

1 +m
σ(λ) +

1−m

1 +m
· 2 · σ(λ)

)
= mt/2

(
2σ(λ)

1 +m

)
= 1− hλ(1− γλ)

1 +m
= P̃1(λ).

Induction step. As the induction hypothesis, assume that Pt = P̃t for t. We want to show this
holds for t+ 1.

Pt+1 = m(t+1)/2

[
2m

1 +m
Tt+1(σ(λ)) +

1−m

1 +m
Ut+1(σ(λ))

]
= m(t+1)/2

[
2m

1 +m

(
2σ(λ)Tt(σ(λ))− Tt−1(σ(λ))

)
+

1−m

1 +m

(
2σ(λ)Ut(σ(λ)− Ut−1(σ(λ)))

)]
= 2σ(λ) ·m1/2 ·mt/2

(
2m

1 +m
Tt(σ(λ)) +

1−m

1 +m
Ut(σ(λ))

)
︸ ︷︷ ︸

Pt(λ)

−m ·m(t−1)/2

(
2m

1 +m
Tt−1(σ(λ)) +

1−m

1 +m
Ut−1(σ(λ))

)
︸ ︷︷ ︸

Pt−1(λ)

= 2σ(λ) ·
√
m · P̃t(λ)−m · P̃t−1(λ)

= (1 +m− hλ(1− γλ))P̃t(λ)−mP̃t−1(λ),

where in the second to last equality we use the induction hypothesis.

A.2. Proof of Lemma 3

Proof for Lemma 3 can be found in [13].

A.3. Proof of Theorem 4

Proof We analyze each case separately.

Case 1: There are two square roots:
√

1
4γ2 − (1−

√
m)2

hγ and
√

1
4γ2 − (1+

√
m)2

hγ . The second one is
real if:

1

4γ2
⩾

(1 +
√
m)2

hγ
=⇒ hγ

4γ2
=

h

4γ
⩾ (1 +

√
m)2,

which implies the first is real, as (1 +
√
m)2 ⩾ (1−

√
m)2.
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Case 3: There are two square roots:
√

1
4γ2 − (1−

√
m)2

hγ and
√

1
4γ2 − (1+

√
m)2

hγ . The first one is
complex if:

1

4γ2
<

(1−
√
m)2

hγ
=⇒ hγ

4γ2
=

h

4γ
< (1−

√
m)2,

which implies the second is complex, as (1 +
√
m)2 ⩾ (1−

√
m)2.

Case 2: This case follows automatically from the above two cases.

A.4. Proof of Theorem 5

Proof We recall the conditions in (13) below:

1

2γ
−

√
1

4γ2
− (1−

√
m)2

hγ
= µ, (19)

1

2γ
+

√
1

4γ2
− (1−

√
m)2

hγ
= L, and (20)√

(1 +
√
m)2

hγ
− 1

4γ2
= c. (21)

First, by adding (19) and (20), we get:

1

γ
= µ+ L =⇒ γ =

1

µ+ L
. (22)

Plugging (22) back into (19), we have:

1

2γ
−

√
1

4γ2
− (1−

√
m)2

hγ
= µ

µ+ L

2
− µ =

√(
µ+ L

2

)2

− (1−
√
m)2(µ+ L)

h(
L− µ

2

)2

=

(
µ+ L

2

)2

− (1−
√
m)2(µ+ L)

h

(1−
√
m)2(µ+ L)

h
=

(
µ+ L

2

)2

−
(
L− µ

2

)2

= µL

h =
(1−

√
m)2(µ+ L)

µL
. (23)
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Plugging (22) and (23) into (21), we have:√
(1 +

√
m)2

hγ
− 1

4γ2
= c√

(1 +
√
m)2 · µL

(1−
√
m)2

−
(
µ+ L

2

)2

= c

(1 +
√
m)2 · µL

(1−
√
m)2

= c2 +

(
µ+ L

2

)2

=
4c2 + (µ+ L)2

4

(1 +
√
m)2

(1−
√
m)2

=
4c2 + (µ+ L)2

4µL

(1 +
√
m)

√
4µL = (1−

√
m)

√
4c2 + (µ+ L)2

√
m(

√
4c2 + (µ+ L)2 +

√
4µL) =

√
4c2 + (µ+ L)2 −

√
4µL

√
m =

√
4c2 + (µ+ L)2 −

√
4µL√

4c2 + (µ+ L)2 +
√
4µL

. (24)

Finally, to simplify (23) further, from (24), we have:

1−
√
m =

4
√
µL√

4c2 + (µ+ L)2 +
√
4µL

.

Hence, from (23),

h =
(µ+ L)(1−

√
m)2

µL
=

16µL(µ+L)

(
√

4c2+(µ+L)2+
√
4µL)2

µL
=

16(µ+ L)

(
√
4c2 + (µ+ L)2 +

√
4µL)2

. (25)

A.5. Proof of Corollary 6

Proof This result can be obtained either by plugging in c = L−µ
2 to (24) and (25), or by using the

same technique as the proof of Theorem 5.
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