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Abstract
We consider minimizing a smooth function subject to an equality constraint. We analyze a greedy
2-coordinate update algorithm, and prove that greedy coordinate selection leads to faster convergence
than random selection (under a Polyak-Łojasiewicz assumption). Our simple analysis exploits an
equivalence between the greedy 2-coordinate update and equality-constrained steepest descent in
the 1-norm. Unlike previous 2-coordinate analyses, our convergence rate is dimension independent.

1. Introduction

Coordinate descent (CD) is an iterative optimization algorithm where on each iteration we perform a
gradient descent step on a single variable. CD methods are appealing because they have a convergence
rate similar to gradient descent, but for some common objective functions the iterations have a much
lower cost. Thus, there is substantial interest in using CD as an optimization algorithm for training
machine learning models.
Coordinate descent with no constraints: Nesterov [9] considered CD with random choices of the
coordinate to update, and proved explicit non-asymptotic linear convergence rates for strongly-convex
functions with Lipschitz-continuous gradients. It was later shown that these linear convergence rates
can be achieved under a generalization of strong convexity called the Polyak-Łojsiewicz condition [3].
Further, it was shown that greedy selection of the coordinate to update can lead to faster rates than
randomized selection [10]. The faster greedy rates do not depend directly on the dimensionality of
the problem, and are a consequence of an equivalence between the greedy coordinate update and the
steepest descent update on all coordinates in the 1-norm.
Coordinate descent with separable constraints: CD is commonly used for optimization with
separable constraints, in the form of lower and/or upper bounds on each variable. Nesterov [9]
showed that the unconstrained rates of randomized CD can be achieved under these separable
constraints using a projected-gradient update of the coordinate. Richtárik and Takáč [11] generalize
this result to include a non-smooth but separable term in the objective function, using a proximal-
gradient update of the coordinate. These analyses justify using CD in various constrained and
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non-smooth settings, including least squares regularized by the 1-norm and support vector machines
where we regularize the bias term. Similar to the unconstrained case, Karimireddy et al. [4] show that
several forms of greedy coordinate selection lead to faster convergence rates than random selection
for problems with separable constraints and/or separable non-smooth terms.
Coordinate descent with an equality constraint: many problems in machine learning require us to
satisfy an equality constraint. The most common example is that discrete probabilities must sum
up to 1. Another common example is SVMs with an unregularized bias term. The (non-separable)
equality constraint cannot be maintained if we only update one coordinate on each iteration, but
it can be maintained if we update 2 variables on each iteration. Necoara et al. [6] analyze random
selection of the two coordinates to update, while Fang et al. [2] discuss randomized selection with
tighter rates. The LIBSVM package [1] uses a greedy 2-coordinate update for fitting SVMs without
regularizing the bias. LIBSVM uses greedy coordinate selection since for the SVM problem greedy
and random selection have similar iteration costs. But despite LIBSVM being perhaps the most
widely-used CD method of all time, current analyses of greedy 2-coordinate updates [13] do not lead
to faster rates than random selection.

Our contribution: we give a new analysis for a particular greedy 2-coordinate update for
optimizing a smooth function an equality constraint. The analysis is based on an equivalence
between the greedy update and equality-constrained steepest descent in the 1-norm. This leads to a
dimension-independent analysis of greedy selection showing that it can converge substantially faster
than random selection.

2. Optimization with an Equality, Greedy 2-Coordinate Updates, and Proof Outline

We consider the problem of minimizing a twice-differentiable function f subject to a simple linear
equality constraint,

min
x∈Rn

f(x), subject to
n∑

i=1

xi = γ, (1)

where n is the number of variables and γ is a constant. On iteration k the 2-coordinate descent
method chooses a coordinate ik and a coordinate jk and updates these two coordinates using

xk+1
ik

= xkik + δk, xk+1
jk

= xkjk − δk,

for a scalar δk (the other coordinates are unchanged). We write this update for all coordinates as

xk+1 = xk + dk, (2)

where dki = δk, dkj = −δk, and dkm = 0 for m ̸= i and m ̸= j. If the iterate xk satisfies the
constraint, then this update maintains the constraint.

To choose the coordinate to update, the greedy rule chooses the coordinates to maximize the
difference in their partial derivatives,

ik ∈ argmax
i

∇if(x
k), jj ∈ argmin

j
∇jf(x

k). (3)

At the solution of the problem we must have partial derivatives being equal, and intuitively this
greedy choice updates the coordinates that are furthest above/below the average partial derivative. We
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can also derive this choice as the minimizer among a set of 2-coordinate quadratic approximations to
the function

argmin
i,j

{
min

dij |di+dj=0
f(xk) +∇ijf(x

k)Tdij +
1

2α
∥dij∥2

}
, (4)

for a step size α — see Appendix A.1. This is a special case of the Gauss-Southwell-q (GS-q) rule
of Tseng and Yun [13].

We assume that the gradient of f is Lipschitz continuous, and our analysis will depend on a
quantity we call L2. The quantity L2 bounds the change in the 2-norm of the gradient with respect to
any two coordinates i and j under a two-coordinate update of any x of the form in (2).

∥∇ijf(x+ d)−∇ijf(x)∥ ≤ L2∥d∥. (5)

Note that L2 is less than or equal to the Lipschitz constant of the gradient of f . Our analysis will
focus on the case of δk = − 1

2L(∇ikf(x
k)−∇jkf(x

k)), resulting in an update to the coordinates of

xk+1
ik

= xkik −
1

2L2
(∇ikf(x

k)−∇jkf(x
w)),

xk+1
jk

= xkjk −
1

2L2
(∇jkf(x

k)−∇ikf(x
w)).

(6)

However, we note that our analysis also applies if we choose δk to maximally decrease f .
Our analysis relies on the following properties related to the 1-norm:

1. For vectors dk of the form given above, we have ∥dk∥21 = 2∥dk∥22,

∥dk∥21 = (|δk|+|−δk|)2 = (δk)2+(δk)2+2|δk|·|δk| = 4(δk)2 = 2((δk)2+(−δk)2) = 2∥dk∥22.

2. If a twice-differentiable function’s gradient satisfies the 2-coordinate Lipschitz continuity
assumption (5) with constant L2, then the full gradient is Lipschitz continuous in the 1-norm
with constant L1 = L2/2 (see Appendix B).

3. Applying the 2-coordinate update (6) is an instance of applying steepest descent over all
coordinates in the 1-norm.

4. For a function satisfying the proximal-PL inequality, we can measure the proximal-PL inequal-
ity in the 1-norm.

The next section outlines the latter components, and we use these to give a simple proof for the
greedy 2-coordinate algorithm in Section 4.

3. Connections to the 1-Norm

In this section we outline the connection between the greedy update and steepest descent in the
1-norm, and then we discuss the proximal-PL condition.
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3.1. Steepest Descent in the 1-Norm

Now we show that steepest descent in the 1-norm can also lead to sparse update directions. In
particular, we show that steepest descent in the 1-norm always admits at least one solution which
updates only two coordinates. Crucially, this implies that the best two-coordinate update makes as
much progress in the 1-norm as any full-coordinate update.

Steepest descent in the 1-norm, subject to the equality constraint, takes steps in the direction d
that minimizes the following model of the objective:

d ∈ argmin
d∈Rn|dT 1=0

∇f(x)Td+
1

2α
||d||21, (7)

where α is the step size. This is a convex optimization problem for which strong duality holds.
Introducing a dual variable λ ∈ R, we obtain the Lagrangian

L(d, λ) = ∇f(x)Td+
1

2α
||d||21 + λ(dT 1).

The subdifferential with respect to d and λ yields necessary and sufficient optimality conditions for a
steepest descent direction,

∇dL(d, λ) = ∇f(x) +
1

2α
g + λ1 = 0 (for some subgradient g ∈ ∂||d||21)

∇λL(d, λ) = dT 1 = 0.

The second condition is simply feasibility of d, while from the first we obtain,

2α(−∇f(x)− λ1) ∈ ∂||d||21 =⇒ α(−∇f(x)− λ1) ∈ ||d||1sgn(d), (8)

where element m of sgn(d) is 1 if dm is positive, −1 if dm is negative, and can be any value in [−1, 1]
if dm is 0. The following lemma shows that these conditions are always satisfied by a two-coordinate
update.

Lemma 1 Let α > 0. Then at least one steepest descent direction with respect to the 1-norm has
exactly two non-zero coordinates. That is,

min
d∈Rn|dT 1=0

∇f(x)Td+
1

2α
||d||21 = min

i,j

{
min

dij∈R2|di+dj=0
∇ijf(x)

Tdij +
1

2α
||dij ||21

}
. (9)

See Appendix A.2 for the proof. Lemma 1 allows us to relate the progress of a block-coordinate
update on just two coordinates to the progress made by a full-coordinate steepest descent step. This
will be a key step in our analysis of the GS-q method. However, first we introduce the proximal-PL
inequality in the 1-norm, which is our main technique for lower bounding the sub-optimality of an
iterate in terms of the squared 1-norm..

3.2. Proximal-PL Inequality in the 1-Norm

The proximal-PL condition was introduced to allow simpler proofs for various constrained and
non-smooth optimization problems [3]. The proximal-PL condition is normally defined based on the
2-norm and non-smooth functions. Below, we define a variant where distances are measured in the
1-norm and we include the equality constraint explicitly.
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Definition 2 A function f , that is L1-Lipschitz with respect to the 1-norm and has a summmation
constraint on its parameters, satisfies the proximal-PL condition in the 1-norm if for a positive
constants µ1 we have

1

2
D(x, L1) ≥ µ1(f(x)− f∗), (10)

for all x satisfying the equality constraint, where f∗ is the constrained optimum function value and
where

D(x, α) = −2α min
{y |yT 1=0}

[
⟨∇f(x), y − x⟩+ α

2
||y − x||21

]
. (11)

It follows from the equivalence between norms that summation-constrained functions satisfying the
proximal-PL condition in the 2-norm will also satisfy the above proximal-PL condition in the 1-norm.
In particular, if µ2 is the proximal-PL constant in the 2-norm, then we have µ2

n ≤ µ1 ≤ µ2 (see
Appendix C). Functions satisfying these conditions include any strongly-convex function f , as well
as relaxations of this such as functions of the form f = g(Ax) for a strongly-convex g and a matrix
A (in this case f may not be strongly-convex) [3].

4. Convergence Result

We now combine the previously-stated results to give a convergence rate for the greedy 2-coordinate
method.

Theorem 3 Let f be a twice-differentiable function whose gradient is 2-coordinate-wise Lipschitz (4)
and restricted to the set where xT 1 = γ. If this function satisfies the proximal-PL inequality in the
1-norm (10) for some positive µ1, then the 2-coordinate update (6) with the greedy GS-q rule (3)
satisfies:

f(xk)− f(x∗) ≤
(
1− 2µ1

L2

)k

(f(x0)− f∗). (12)

Proof Starting from the descent lemma applied to the function restricted to the coordinates ik and
jk that we update, we have

f(xk+1) ≤ f(xk) +∇f(xk)Td+
L2

2
∥d∥2

= f(xk) + min
i,j

{
min

dij∈R2|di+dj=0
∇ijf(x

k)Tdij +
L2

2
∥dij∥2

}
(GS-q rule)

= f(xk) + min
i,j

{
min

dij∈R2|di+dj=0
∇ijf(x

k)Tdij +
L2

4
∥dij∥21

}
(∥d∥21 = 2∥d∥2)

= f(xk) + min
i,j

{
min

dij∈R2|di+dj=0
∇ijf(x

k)Tdij +
L1

2
∥dij∥21

}
(L1 = L2/2)

= f(xk) + min
d|dT 1=0

{
∇f(xk)Td+

L1

2
∥d∥21

}
(Lemma 1)
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Now subtracting f∗ from both sides and using the definition of D we get

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− 1

2L1
D(xk, L1)

= f(xk)− f(x∗)− µ1

L1
(f(xk)− f∗) (proximal PL)

= f(xk)− f(x∗)− 2µ1

L2
(f(xk)− f∗)

=

(
1− 2µ1

L2

)
(f(xk)− f∗)

Applying the inequality recursively completes the proof.

5. Comparison to Randomized Selection

If we sample the two coordinates ik and jk from a uniform distribution, then it is known that the
2-coordinate descent method satisfies [12]

E[f(xk)]− f(x∗) ≤
(
1− µ2

n2L2

)k

(f(x0)− f∗). (13)

A similar result for a more-general problem class was shown by Necoara and Patrascu [7]. This is
substantially slower the rate we show for the greedy 2-coordinate descent method. This rate is slower
even in the extreme case where µ1 is similar to µ/n, due to the presence of the n2 term.

Necoara and Patrascu [7] also show that faster rates than (13) under the additional assumption
that we know coordinate-wise Lipschitz constant values (and give faster non-uniform sampling
strategies). It is also possible to derive faster rates for problems were f is separable [2, 6, 8], but
this restricts the applicability of the result. Finally, unlike the convergence rates shown for random
coordinate selection, we note that the linear convergence rate shown in this work for the greedy
2-coordinate method avoids requiring a direct dependence on the problem dimension.

6. Extension to Bound Constraints

In this work we only considered a single equality constraint. But in machine learning where we
have a single equality constraint, we typically also have bound constraints on the variables. This
includes our motivating problems of optimizing over the probability simplex, or optimizing SVMs
with an unregularized bias. The first versions of LIBSVM used a variation on the Gauss-Southwell-q
for the case of bound constraints an a linear equality. Unfortunately, our proof technique does not
directly apply if we add bound constraints. This is because with bound constraints and an equality
constraint the steepest descent direction in the 1-norm may update more than two coordinates. We are
exploring whether ideas like those of Karimireddy et al. [4] will allow us to use this simple analysis
this more-general setting.
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Appendix A. Additional proofs

A.1. Greedy GS-q Rule for Summation Constraints

For the optimization problem (1), the GS-q rule selects the optimal block b, by solving the following
minimization problem:

b = argmin
b

min
db|db1+db2=0

⟨∇bf(x), db⟩+
1

2α
||db||2, (14)

where db is the descent direction. First let us fix b and solve for db.

Solving for db. The Lagrangian of (14) is,

L(db, λ) = ⟨∇bf(x), db⟩+
1

2α
||db||2 + λ(db1 + db2).

Taking the gradient with respect to db gives,

∇dbL(db, λ) = ∇bf(x) +
1

α
db + λ1.

Setting the gradient equal to 0 and solving for db gives,

db = −α(∇bf(x) + λ1). (15)

From our constraint, db1 + db2 = 0, we get

0 = −α (∇1f(x) + λ+∇2f(x) + λ) ,

λ = −1

2
⟨∇bf(x), 1⟩.

Substituting in (15) we get,

db = −α

(
∇bf(x)−

1

2
⟨∇bf(x), 1⟩1

)
. (16)

That is, [
d1
d2

]
=

α

2
(∇1f(x)−∇2f(x))

[
−1
1

]
.

Now, we plug in the optimal db from (16) in (14) and solve for b.

8
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Solving for b. After substituting the optimal db, (14) becomes,

argmin
b

−α

〈
∇bf(x), (∇bf(x)−

1

2
⟨∇bf(x), 1⟩1)

〉
+

α

2
||(∇bf(x)−

1

2
⟨∇bf(x), 1⟩1)||2

≡ argmin
b

−||∇bf(x)||2 +
⟨∇bf(x), 1⟩

2
⟨∇bf(x), 1⟩+

1

2
||∇bf(x)||2 −

1

2
⟨∇bf(x), 1⟩⟨∇bf(x), 1⟩+

1

8
(⟨∇bf(x), 1⟩)2⟨1, 1⟩

≡ argmin
b

−1

2
||∇bf(x)||2 +

1

4
(⟨∇bf(x), 1⟩)2

≡ argmin
b

−∇1f(x)
2 −∇2f(x)

2 +
1

2
(∇1f(x) +∇2f(x))

2

≡ argmax
b

1

2
||∇bf(x)||2 −∇1f(x)∇2f(x)

≡ argmax
b

1

2
(∇1f(x)−∇2f(x))

2)

≡ argmax
b

|∇1f(x)−∇2f(x)|. (17)

Therefore, q-2-GCD chooses two coordinates b = {i, j} that are farthest apart. That is, coordinates
with maximum and minimum gradient values of f .

i = argmax
i

∇if(x), j = argmin
j

∇jf(x). (18)

A.2. Proof to Lemma 1

The proof follows by constructing a solution to the steepest descent problem in Eq. 7 which only has
two non-zero entries. Let i = argmaxi∇if(x) and j = argminj ∇jf(x). Our proposal solution is
d such that di = −δ, dj = δ for some δ ∈ R and dk,k ̸=i,j = 0. Clearly d satisfies the sum-to-zero
constraint required for feasibility.

Now we check that (8) is satisfied by every coordinate of d. The definition of the 1-norm implies
||d||1 = 2δ, while sgn(di) = −1, sgn(dj) = 1 and sgn(dk) ∈ [−1, 1] follow by construction. Thus,
for d to be a steepest descent direction we must have the following:

−α∇if(x) + λ = −2δ (19)

−α∇jf(x) + λ = 2δ (20)

−α∇kf(x) + λ ∈ 2δ[−1, 1]. (21)

Solving for λ in (19) and substituting in (20) we get,

λ = α∇if(x)− 2δ (22)

δ =
α

4
(∇if(x)−∇jf(x)). (23)

Therefore we get [
di
dj

]
=

α

4
(∇if(x)−∇jf(x))

[
−1
1

]
. (24)

9
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It remains only to show that (21) is satisfied by d. Using the value of λ in the constraint yields,

−α∇kf(x) + α∇if(x)− 2δ ∈ 2δ[−1, 1].

Now, substituting the value for δ in (21) gives

−2∇kf(x) +∇if(x)+∇jf(x) ∈ (∇if(x)−∇jf(x))[−1, 1],

−2∇kf(x) +∇if(x)+∇jf(x) ≤ |∇if(x)−∇jf(x)|.

As ∇kf(x) is between ∇if(x) and ∇jf(x), we can write it as θ∇if(x) + (1− θ)∇jf(x).

−2(θ∇if(x) + (1− θ)∇jf(x)) +∇if(x) +∇jf(x) ≤ |∇if(x)−∇jf(x)|
(1− 2θ)(∇if(x)−∇jf(x)) ≤ |∇if(x)−∇jf(x)|,

which holds because (1− 2θ) ∈ [−1, 1].
We have shown that a two-coordinate update d satisfies the sufficient conditions to be a steepest

descent direction in the 1-norm. Substituting d back into the expression for steepest descent gives

min
d∈Rn|dT 1=0

∇f(x)Td+
1

2α
||d||21 = ∇ijf(x)

Tdij +
1

2α
||dij ||21

≥ min
i,j

{
min

di,j∈R2|di+dj=0
∇ijf(x)

Tdij +
1

2α
||dij ||21

}
.

Since the reverse inequality follows trivially, we deduce that

min
d∈Rn|dT 1=0

∇f(x)Td+
1

2α
||d||21 = min

i,j

{
min

di,j∈R2|di+dj=0
∇ijf(x)

Tdij +
1

2α
||dij ||21

}
,

as claimed.

Appendix B. Relating Lipschitz Constants

Proposition 4 Suppose f is twice differentiable and

max
d

{
d⊤∇2f(x)d : ⟨d, 1⟩ = 0, supp(d) = 2, ∥d∥1 ≤ 1

}
≤ L1. (25)

for any x such that ⟨x, 1⟩ = a. Then f satisfies the following inequality:

f(x+ d) ≤ f(x) + ⟨∇f(x), d⟩+ L1

2
∥d∥21, (26)

for any such x and any d such that ⟨d, 1⟩ = 0.

Proof Consider the optimization problem

max
d

{
d⊤∇2f(x)d : ⟨d, 1⟩ = 0, ∥d∥1 ≤ 1

}
. (27)

This is a convex maximization problem over a polyhedral constraint set; standard results from convex
optimization imply that at least one maximizer of (27) occurs at an extreme point of the constraint set

D = {d : ⟨d, a⟩ = 0, ∥d∥1 ≤ 1} .

10
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We now show that all extreme points of D contain exactly two non-zero entries.
Let de be any extreme point of D and suppose by way of contradiction that de has at least three

non-zero entries. Denote these entries as d1, d2, d3. Since at least one entry of de must negative and
one must be positive, we may assume without loss of generality that d1, d2 > 0 and d3 < 0.

Let ϵ > 0 and define d′e = de + e1ϵ− e2ϵ. For ϵ sufficiently small ϵ it holds that d1 + ϵ > 0 and
d2 − ϵ > 0 so that

(d1 + ϵ) + (d2 − ϵ) + d3 = d1 + d2 + d3

and

|d1 + ϵ|+ |d2 − ϵ|+ |d3| = (d1 + ϵ) + (d2 − ϵ) + d3

= d1 + d2 + d3.

Thus, d′e ∈ D. Repeating this argument for d′′e = de − e1ϵ+ e2ϵ, we obtain d′′e ∈ D and

de =
1

2
d′e +

1

2
d′′e ,

which contradicts that de is an extreme point of D. Thus, every extreme point of D has at exactly
two non-zero entries.

Returning to our argument, we see that (27) is maximized at de, where supp(de) = 2. Thus,

max
d

{
d⊤∇2f(x)d : ⟨d, 1⟩ = 0, ∥d∥1 ≤ 1

}
= max

d

{
d⊤∇2f(x)d : ⟨d, 1⟩ = 0, supp(d) = 2, ∥d∥1 ≤ 1

}
≤ L1.

The result is now easily obtained using a Taylor expansion and the intermediate value theorem.

Proposition 5 The constant L1 in (25) is exactly equal to L2
2 .

Proof Let d ∈ Rn such that supp(d) = 2 and ⟨d, 1⟩ = 0. WLOG, suppose that the two non-zero
entries of d are d1 and d2. Observe that ⟨d, 1⟩ = 0 implies d1 = −d2. Using these facts, we obtain

∥d∥21 = d21 + d22 + 2|d1||d2|
∥d∥21 = d21 + d22 + |d1||d1|+ |d2||d2|
∥d∥21 = 2∥d∥22.

Thus, ∥d∥1 =
√
2∥d∥2 and

max
d

{
d⊤∇2f(x)d : ⟨d, 1⟩ = 0, supp(d) = 2, ∥d∥2 ≤ 1

}
= 2max

d

{
d⊤∇2f(x)d : ⟨d, 1⟩ = 0, supp(d) = 2, ∥d∥1 ≤ 1

}
≤ 2L1.

11
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which implies L2 ≤ 2L1. Similarly, we have

max
d

{
d⊤∇2f(x)d : ⟨d, 1⟩ = 0, supp(d) = 2, ∥d∥1 ≤ 1

}
=

1

2
max

d

{
d⊤∇2f(x)d : ⟨d, 1⟩ = 0, supp(d) = 2, ∥d∥2 ≤ 1

}
≤ L2

2
.

This completes the proof.

Appendix C. Relationship Between Proximal-PL Constants

Lemma 6 Suppose that F (x) = f(x) + g(x) satisfies the proximal-PL inequality in the ℓ2-norm
with constants L2, µ2. Then F also satisfies the proximal-PL inequality in the ℓ1-norm with constants
L1 and µ1 ∈ [µ2/n, µ2].

Proof Proximal-PL inequality in the ℓ2-norm implies

F (x)− F (x∗) ≤ −L2

µ2
min
y

{
⟨∇f(x), y − x⟩+ L2

2
∥y − x∥22 + g(y)− g(x)

}
≤ −L2

µ2
min
y

{
⟨∇f(x), y − x⟩+ L2

2n
∥y − x∥21 + g(y)− g(x)

}
≤ −L2L1n

L2µ2
min
y

{
⟨∇f(x), y − x⟩+ L1

2
∥y − x∥21 + g(y)− g(x)

}
= −L1n

µ2
min
y

{
⟨∇f(x), y − x⟩+ L1

2
∥y − x∥21 + g(y)− g(x)

}
,

where the last inequality follows from Karimireddy et al. [5][Lemma 9] with the choice of β = L2
L1n

,
h(y) = ⟨∇f(x), y − x⟩+ g(y)− g(x), and V (y) =

√
L2/2n∥y − x∥1. Note that β ∈ (0, 1] since

L2n ≥ L1 and h(x) = V (x) = 0 so that the conditions of the lemma are satisfied. We conclude that
proximal-PL inequality holds with µ1 ≥ µ2/n.

We establish the reverse direction similarly; starting from proximal-PL in the ℓ1-norm,

F (x)− F (x∗) ≤ −L1

µ1
min
y

{
⟨∇f(x), y − x⟩+ L1

2
∥y − x∥21 + g(y)− g(x)

}
≤ −L1

µ1
min
y

{
⟨∇f(x), y − x⟩+ L1

2
∥y − x∥22 + g(y)− g(x)

}
≤ −L1L2

L1µ1
min
y

{
⟨∇f(x), y − x⟩+ L2

2
∥y − x∥22 + g(y)− g(x)

}
= −L2

µ1
min
y

{
⟨∇f(x), y − x⟩+ L2

2
∥y − x∥22 + g(y)− g(x)

}
,

where now we have used the same lemma with V (y) =
√
L1/2∥y − x∥2 and β = L1

L2
, noting that

β ∈ (0, 1] since L1 ≤ L2. This shows that µ2 ≥ µ1, which completes the proof.
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