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Abstract
Weight decay is one of the most widely used forms of regularization in deep learning, and has been
shown to improve generalization and robustness. The optimization objective driving weight decay
is a sum of losses plus a term proportional to the sum of squared weights. This paper argues that
stochastic gradient descent (SGD) may be an inefficient algorithm for this objective. For neural
networks with ReLU activations, solutions to the weight decay objective are equivalent to those of a
different objective in which the regularization term is instead a sum of products of ℓ2 (not squared)
norms of the input and output weights associated each ReLU. This alternative (and effectively
equivalent) regularization suggests a novel proximal gradient algorithm for network training. Theory
and experiments support the new training approach, showing that it can converge much faster to the
sparse solutions it shares with standard weight decay training.

1. Introduction

Weight decay is the most prevalent form of explicit regularization in deep learning, which corresponds
to regularizing the sum of squared weights in the model. It has been shown to improve the gener-
alization performance of deep neural networks [1, 17, 41] and even plays a role in making models
more robust [8, 28]. This paper argues that weight decay regularization can be equivalently and more
effectively incorporated into training via shrinkage and thresholding. Moreover, the new training
algorithms produce better solutions with more desirable properties compared to standard weight
decay (see initial result in Fig. 1 and 2). Weight decay can produce solutions with similar qualities,
but only after an inordinate number of training epochs. This may explain why characteristics like
sparsity are not associated with weight decay training. Shrinkage and thresholding converges to such
solutions much faster.

To gain some intuition into the connection between weight decay and thresholding let us consider
a key aspect of most neural networks. Deep architectures include many types of processing steps, but
the basic neuron or unit is common in almost all. Consider a single unit of the form vσ(wTx+ b),
where σ is a fixed activation function and v,w, b denote its trainable output, input, and bias weights.
This single unit is homogeneous if vσ(wTx + b) = αvσ(α−1(wTx + b)) for all α > 0. Weight
decay regularization of this unit corresponds to adding a term proportional to 1

2

(
∥w∥22 + ∥v∥22) to

the optimization objective. Among all the equivalent representations of the unit, it is easy to verify
that α2 = ∥w∥2/∥v∥2 produces the smallest regularization term by the AM-GM inequality. Thus, at
a minimum of the objective we have 1

2

(
∥w∥22 + ∥v∥22) = ∥w∥2∥v∥2. This simple fact is understood

[9, 26], albeit perhaps not widely. The form ∥w∥2∥v∥2 (coined as ℓ2-PATH-NORM ) is reminiscent
of ℓ1-type regularization functions, such as the lasso and group lasso regularizers.
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In this paper, we propose to replace the weight decay term with the effectively equivalent
proximal operation that corresponds to a shrinkage and thresholding step for each homogeneous unit.
Theory (Sec. 3) and experiments (Sec. 5) have shown this leads to solutions that are sparser, have
smaller Lipschitz constants, and are more robust than solutions based on weight decay training.
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Figure 1: Comparison between Weight Decay and our proposed proximal algorithm for ℓ2-PATH-
NORM on (left) weight decay objective (dashed line) and test accuracy convergence (solid line),
(middle) the histogram of local Lipschitz constant on test dataset, and (right) number of active
neurons. Please refer to Appendix C.2 for detailed experiments setup.

Figure 2: Decision Boundary of a network trained for binary classifier with Weight Decay (left) and
our proposed proximal algorithm for ℓ2-PATH-NORM (middle) after the same amount of training
iterations. Both algorithm eventually converge to the same function (right). The white line is
the decision boundary while the red and blue lines represent 90% confidence. Please refer to
Appendix C.2 for detailed experiments setup.

2. Related Works

It has been well-understood that weight decay helps improve the robustness and generalization of
the trained model [17, 20]. Lines of work have focused on theoretically analyzing the equivalent
form of weight decay: [9] was the first work to highlight an equivalence between weight decay
and lasso on the output weights of a neural network. Later [25, 26] proved that for a shallow,
single output network, training the network with squared ℓ2 regularization on all the weights (i.e.
weight decay) is equivalent to regularizing with the ∥w∥2∥v∥1 norm in the (w,v) homogeneous
units. [29, 30] demonstrated regularizing the shallow neural network with ∥w∥2∥v∥1 will lead to
finite width neural network which are the optimal solution to learning problems in second-order
Radon-domain Bounded Variation RBV2 function space. Furthermore they demonstrate how the
∥w∥2∥v∥1 “path regularizer" is indeed the natural norm for the functions in RBV2. This result was
later generalized for the deep neural network case in [31]. In [32] they also used the equivalent form
of weight decay to understand the minimum norm required to fit any function to an infinitely wide
univariate shallow network. More recently, [6] used this equivalence to utilize convex geometry in
understanding the optimal solution for neural networks trained with weight decay. Based on the
rescaling equivalence on homogeneous units, [35] proposed an algorithm to iteratively minimize the
sum of squared weights for the weight decay objective. Another property of weight decay is that
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it encourages sparse structure, as confirmed in [14]. [5, 38] also indicate weight decay explicitly
promotes low-rank solution for parallel network. However, the sparse structure is not fully revealed
when training with weight decay for finite iterations. Our proposed algorithm, on the other hand,
directly exploits the sparse structure with a weight decay equivalent form of regularization. Other
recent works propose related forms of regularization, and argue that these are sometimes better than
weight decay: In [24] introduced the “path regularizer", a generalization of the regularizer in [26] for
deep neural networks and showed how it can lead to solutions that generalize better and are more
robust [4, 15]. Similarly, [21] utilize the homogeneity of ReLU neural network and proposed “scale
shift invariant” algorithm. Proximal gradient type of algorithm has been proposed for 1-path-norm in
[18], where they focus on the ∥w∥1∥v∥1 norm of a homogeneous unit (w,v) in shallow networks.

3. Training Neural Networks with Weight Decay

Let W denote the weights of a multilayer neural network. Most standard “training" algorithms fit
neural networks to data by minimizing an objective of the form

Fλ(W ) := L(W ) +
λ

2
R(W )

where L(W ) is a loss function on the training data, R(W ) is the sum of squared weights, and λ ≥ 0.
When minimized by gradient descent methods, R(W ) leads to the common practice known as
“weight decay." We will call Fλ(W ) the weight decay objective and λ the weight decay parameter.

The neural network may have a general architecture (fully connected, convolutional, etc) and may
involve many types of units and operations (e.g., nonlinear activation functions, pooling/subsampling,
etc). This paper focuses on those units in the architecture that are homogeneous. A function σ is
homogeneous if it satisfies σ(αx) = ασ(x) for any α > 0. For example, the popular Rectified
Linear Unit (ReLU), Leaky ReLU and PReLU are homogeneous. Consider a neuron with input
weights w ∈ Rp and output weights v ∈ Rq. The neuron produces the mapping x 7→ v σ(wTx).
Because σ is homogeneous, v σ(wTx) = αv σ(α−1wTx), for every α > 0. The following Neural
Balance Theorem provides an important characterization of representations with the minimum sum
of squared weights.

Theorem 1 (Neural Balance Theorem) Let f be a function represented by a neural network and
consider a representation of f with the minimum sum of squared weights. Then the weights satisfy
the following balancing constraints. Let w and v denote the input and output weights of any
homogeneous unit in this representation. Then ∥w∥2 = ∥v∥2.
Proof Assume there exists a representation f with minimum sum of squared weights, but does not
satisfy the constraint for a certain unit. Because the homogeneous unit is homogeneous, its input
and output weights, w and v, can be scaled by α > 0 and 1/α, respectively, without changing the
function. The solution to the optimization minα>0 ∥αw∥22 + ∥α−1v∥22 is α =

√
∥v∥2/∥w∥2. Thus,

we can rescale the input and output weights to meet the constraint while preserving f yet reducing
the sum of squared weights, contradicting the beginning assumption in the proof.

Remark 2 Versions of Neural Balance Theorem (NBT) and its consequences have been discussed in
the literature [9, 24, 25, 27, 30–32], but usually in the setting of fully connected ReLU architectures.
We note here that NBT holds for any architecture (fully connected, convolutional, pooling layers,
etc.) and every homogeneous unit in the architecture.
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Theorem 1 tells us that the norms of the input and output weights of each homogeneous unit must
be equal to each other at a minimum of Fλ (see Appendix A.1 for further discussion). To illustrate a
key implication of this, consider a neural network with L layers of homogeneous neurons. Let wi,k

and vi,k denote the input and output weights of the ith neuron in the kth layer. Theorem 1 shows
that a global minimizer of the weight decay objective Fλ with any λ > 0 must satisfy the balancing
constraints of the theorem. At a global minimum the ith neuron in the kth layer contributes the term
1
2

(
∥wi,k∥22+∥vi,k∥22

)
= ∥wi,k∥2∥vi,k∥2 to the overall sum of squares R(W ). Therefore, at a global

minimum of Fλ

R(W ) =
1

2

n1∑
i=1

∥wi,1∥22 +
1

2

nL∑
i=1

∥vi,L∥22 +
L∑

k=1

nk∑
i=1

∥wi,k∥2 ∥vi,k∥2 (1)

nk is the number of neurons in the kth layer. The expression accounts for the fact that certain
weights may appear twice (associated with the input/output of two different neurons). Though we
mainly discuss in the multi-layer perceptron regime, Theorem 1 also applied to convolutional neural
network, as presented in Appendix A.2. Note that ∥w∥2∥v∥2 is the Lipschitz constant of the function
v σ(wTx), which shows that weight decay encourages solutions that are Lipschitz smooth (detailed
proof in Appendix A.3).

4. A New Algorithm for Minimizing the Weight Decay Objective

In this section we propose a new neural network training algorithm. It exploits the fact that a global
minimizer to the weight decay objective is related to a sum of norm-products, as shown in Eqn. (1).
The following expression for the sum of squared weights will be helpful in deriving the new algorithm.
Again consider a neural network with homogeneous neurons and L layers. Since the inputs weights
of a neuron in layer k involve the output weights of neurons in the preceding layer k − 1, we will
associate the weights with odd number layers: R(W ) =

∑⌊L/2⌋
j=1

∑
i

(
∥wi,2j−1∥22 + ∥vi,2j−1∥22

)
+

c
∑

i ∥vi,L∥22, where c = 0 if L is even and 1 if L is odd. Each weight appears only once in the
expression above, which is convenient for optimization. Theorem 1 implies for any weights that
minimize Fλ we have

R(W ) = 2

⌊L/2⌋∑
j=1

n2j−1∑
i=1

∥wi,2j−1∥2 ∥vi,2j−1∥2 + c

nL∑
i=1

∥vi,L∥22 (2)

Theorem 3 For any weights W let R̃(W ) :=
∑⌊L/2⌋

j=1

∑
i ∥wi,2j−1∥2 ∥vi,2j−1∥2 + c

2

∑
i ∥vi,L∥22.

Then the solutions to minW L(W )+ λ
2R(W ) and minW L(W )+λR̃(W ) are equivalent. Specifi-

cally, a minimizer of the first optimization is a minimizer of the second, and a minimizer of the second
minimizes the first (after possibly rescaling the weights so ∥wi,2j−1∥2 = ∥vi,2j−1∥2 for each term).

The proof is presented in Appendix A.4. The product ∥wi,j∥2 ∥vi,j∥2 is sometimes called the
path-norm of the neuron. So we will call the objective

Gλ(W ) := L(W ) + λR̃(W )

the path-norm objective, where again R̃(W ) =
∑⌊L/2⌋

j=1

∑
i ∥wi,2j−1∥2 ∥vi,2j−1∥2 + c

2

∑
i ∥vi,L∥22.

Theorem 3 shows that minimizing Gλ is equivalent to minimizing the weight decay objective Fλ. Our
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new neural network training algorithm is designed to minimize the Gλ. The key observation is that
the product terms ∥w∥2 ∥v∥2 are non-smooth, which means that minimizers may be sparse. In fact,
as λ increases fewer and fewer terms (neurons) will be nonzero. This is remarkable, since the sparsity
of solutions is not apparent from simple inspection of the original weight decay objective, as indicate
in Fig. 1 (right). The product terms are reminiscent of group lasso regularization terms. Proximal
gradient descent methods have been widely applied to this (group) lasso type of regularization
schemes in the linear/convex cases [7, 10, 12, 40]. This motivates us to the following Algorithm 1.
In the algorithnm, we project each w to the unit sphere, which is also equivalent with the proximal

operator of the indicator function ∞ · 1{∥w∥2 ̸= 1} =

{
0 if ∥w∥2 = 1

∞ o.w.
. Shown in [3], with mild

assumptions on gradient noise and proper learning rate scheduler beyond T , when running nonstop,
the objective value evaluated at every step of our Algorithm 1 converges. Moreover, every limit point
of the iterates {W k}∞k=1 is composite critical almost surely. The algorithm is presented as a full
batch gradient step, but can be easily modified to SGD/mini-batch style algorithms.

Algorithm 1 ℓ2-PATH-NORM Proximal Optimization of Gλ as discussed in Thm. 3
Input: loss functions L, learning rate γ > 0, weight decay parameter λ > 0, total number of iterations T .
for t = 1, 2, ..., T do

for j = 1, 2, ..., ⌊L/2⌋ do
For each homogeneuous unit i in (2j − 1, 2j) coupled layer:
Update homogeneous input weights:
update based on batch gradient: y ← wt−1

i,2j−1 − γ ∂L(W )

∂wt−1
i,2j−1

|W t−1 .

project to have unit norm: wt
i,2j−1 ← argmin∥w∥2=1 ∥w − y∥2 = y

∥y∥2
.

Update homogeneous output weights:
update based on batch gradient: z ← vt−1

i,2j−1 − γ ∂L(W )

∂vt−1
i,2j−1

|W t−1 .

apply proximal operator: vt
i,2j−1 ← Prox2(z) with Prox2(z)i =

{
0 ||z||2 ≤ λ · γ
zi − λ · γ zi

||z||2 o.w.
.

end for
end for

As indicated in Eqn. 2, we may have weights associated to non-homogeneous units: {vi,L}nL
i=1.

Standard weight decay will be applied to these additional weights. Algorithm 1 can also be applied
to convolutional neural networks, where we treat each channel of a given convolutional layer as an
1-homogeneous unit (see details in Appendix B.1). Motivated by the homogeneity of layers and
Theorem 1, we also apply a layer-wise balancing procedure (described in Appendix B.2) to ensure
the total ℓ2-PATH-NORM among each coupling of layers to be equal at every iteration.

5. Experimental Results

In this section, we will present experimental results to support the following claims: Proximal
algorithm for ℓ2-PATH-NORM provides a) faster convergence b) better generalization c) sparser
solutions than weight decay.

For simplicity, we use MLP-d-n for d fully-connected feedforward layers, each with n neurons.
MLP-d-n factorized indicates each layer of MLP-d-n is factorized into 2 linear layers, with hid-
den neurons to be n as well. Our proximal algorithm is evaluated on the following task: (Task
1) MNIST [19] subset on factorized MLP-3-400, (Task 2) MNIST on MLP-6-400, (Task 3) CI-
FAR10 [16] on VGG19 [34], (Task 4) SVHN on VGG19, (Task 5) MNIST on MLP-3-800. For
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MNIST subset, we randomly subsample 100 images per class. Please refer to details of the experi-
ment settings in Appendix C.1. The detail of applying Algorithm 1 to convolutional neural networks
such as VGG19 is discussed in Appendix B.1.
5.1. Generalization on Test Data and Corrupted Data

Performance on the unseen dataset, or dataset sampled from other distribution, measures the gen-
eralization ability of the model. Following the experimental design in [11, 33, 41], the following
modification of the data and label are investigated: i) True labels: the original dataset without
modification. ii) Corrupted dataset: for MNIST, we train on an unmodified dataset, then eval-
uate the average accuracy across different types of corruption on the MNIST-C dataset [22]. For
CIFAR10, we train on unmodified dataset, then evaluate the average accuracy across different types
of corruption on the CIFAR10-C dataset [13]. iii) Partially corrupted labels: the label of training
image is corrupted to be uniform random class with probability p. We train on this modified dataset,
and report the result on unmodified dataset.

In this section, we present the result of (Task 1) on modification i, ii, and iii; result of (Task
2) on modification i and ii; result of (Task 3) on modification i and ii; and result of (Task 4) on
modification i in Table 1. For each experiment, we did a grid search on the hyper-parameter choice of
λ and learning rate, and pick the best set of parameter based on the validation accuracy. The details
of hyper-parameter search is in Appendix C.1. Notice that although we did not explicitly prune the
model, our proposed ∥w∥2∥v∥2 proximal algorithm inherently enforce the sparse structure: in the
Table 1, we calculate the structural sparsity of the model, namely the percentage of the active units in
the grouped layers, and the result confirm our proximal method can naturally prune the model to
have some level of sparsity. We also investigate the efficiency of finding the structural sparse solution
when explicitly enforce the model to prune, and present the result in Appendix C.3.
Table 1: Generalization result for different modification on weight decay, proximal algorithm for
∥w∥2∥v∥2. Numbers are highlighted if the gap between weight decay and proximal algorithm is at
least the sum of both standard errors. Structural sparsity of the model is in the parentheses.

Task Modification Weight Decay ∥w∥2∥v∥2 Proximal

1

True labels 90.87± 0.1 (100%) 91.46± 0.11 (99.92± 0.14%)
Corrupted data 64.86± 0.37 (100%) 65.52± 0.65 (99.92± 0.14%)
Corrupted labels (p = 0.3) 81.125± 0.44 (100%) 81.87± 0.42 (100%)
Corrupted labels (p = 0.7) 47.82± 1.57 (100%) 55.27± 0.95 (100%)

2 True labels 98.29± 0.03 (100%) 98.21± 0.07 (98.3± 0.78%)
Corrupted data 71.54± 0.22 (100%) 72.65± 0.44 (99.95± 0.04%)

3 True labels 90.41± 0.1 (100%) 90.79± 0.06 (48.29± 10.68%)
Corrupted data 60.78± 0.17 (100%) 60.71± 0.26 (60.34± 7.69 %)

4 True labels 94.68± 0.12 (100%) 95.51± 0.12 (44.02± 14.03%)

6. Conclusion and Future Work

This work shows that proximal gradient algorithms may offer advantages in neural network training
compared to standard weight decay. There are several directions for possible future work, including
investigating alternative formulations of the proximal gradient method that treat all homogeneous
units in the same manner (rather than grouping weights into disjoint sets) and adaptive learning rate
procedures like those used in other proximal gradient methods.
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Appendix A. Supplementary of Theory

A.1. Discussion on the Theorem 1

At minimum sum of squared weights, Theorem 1 state that each homogeneous unit in the function f
have equivalent ℓ2 norm for the input and output weights of the unit:

∥w∥2 = ∥v∥2

Note that the balancing constraint is a necessary, but not a sufficient condition for the minimum sum
of squared weights representation. In details, there are different equivalence of function:

Definition 4 (Rescaling Equivalence) Function f with weights Wf and g with weights Wg are
rescaling equivalent if Wf = s(Wg) where s(·) is the scaling operator on the homogeuous units in
weights W .

This rescaling equivalence is the main force we leverage for finding the effectively equivalent norm.

Definition 5 (Functional Equivalence) Function f with weights Wf and g with weights Wg are
functional equivalent if ∀x, f(x) = g(x).

It is clear from the definition that rescaling equivalence implies functional equivalence, but the
reverse is not true. With this definition, we will properly state the relation of balancing constraint and
minimum representation as follows (also discussed in [35]):
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Remark 6 For function f with weights W , the minimum norm up to rescaling equivalence may not
be the minimum representation up to functional equivalence. So the minimum sum of squared weights
representation implies balancing constraint, however balancing constraint doesn’t necessarily imply
minimum norm representation.

We are not aware of the algorithm to find the minimum sum of squared weights representation.
However up to rescaling equivalence, [35] proposed an iterative algorithm to minimize the sum
of squared weights, which requires C cycles to converge. The number of cycles after each SGD
step is an hyperparameter, by default they set to 1. If set to C, which means constraint the norm to
be balanced for every homogeneous units after each SGD step, from our experiment findings, the
algorithm converge to worse solution compared to without this constraint.

A.2. Extension of Theorem 1 to Convolutional Layers

Let ⃝∗ denote the sliding-window convolutional operator, where for any two-dimensional tensors
X,Y and Z, we have Zi,j = (X ⃝∗ Y )i,j =

∑
a∈[L1],b∈[L2]

Xa,bYi+a,j+b with L1 and L2 denoting
the width and height of X . A convolutional homogeneous unit then takes the following form with
one hidden channel

µ(x) =

vj ⃝∗ σ
 ∑

i∈[C1]

wi ⃝∗ xi


j∈[C2]

where x, w and v are three-dimensional tensors and with slight abuse of notation σ(·) is applied
element-wise. x takes the channel first notation, where the first dimension indexes number of
channels while the last two dimensions indexes width and height. Both x and w have channel size
C1 while v has channel size C2. Below, we restate the equivalence from Theorem 1 for convolutional
units:

Theorem 7 (Convolutional Neural Network Balance Theorem) Let f be a function represented by
a neural network and consider a representation of f with the minimum sum of squared weights.
Furthermore, let vec(·) denote the vectorize operator of a tensor. Then the weights satisfy the
following balancing constraints. Let w and v denote the input and output weights of any convolutional
homogeneous unit µ(x) = [vj⃝∗σ(

∑
i∈[C1]

wi⃝∗xi)]j∈[C2] in this representation. Then ∥vec(w)∥2 =
∥vec(v)∥2.

We also note that one can take a channel-wise homogeneous pooling operation on the hidden
channel, i.e., a homogeneous unit of the form µ(x) = [vj ⃝∗ P(σ(

∑
i∈[C1]

wi ⃝∗ xi))]j∈[C2], where
P is some homogeneous pooling function such as max pooling or average pooling. Due to the
homogeneity of the pooling layer, the above results still hold for these homogeneous units with
pooling layers. This suggests we can apply the argument across blocks in a convolutional network.

A.3. Proof for Lipschitz constant bound

As indicated in Sec. 3, at the global minimum of Fλ, we can write the weight decay objective
as Eqn. (1). This shows that increasing the weight decay parameter λ penalizes the average of
the norm-products ∥w∥2∥v∥2. This observation provides insight into the effects of weight decay
regularization: Let η(x) := v σ(wTx) be a homogeneous neuron with input weights w ∈ Rp and
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output weights v ∈ Rq, and assume that σ is 1-Lipschitz. Hölder’s inequality implies that for all
x,x′ ∈ Rm,

∥η(x)− η(x′)∥2 ≤ ∥w∥2 ∥v∥2 ∥x− x′∥2 .

which shows ∥w∥2∥v∥2 is a bound on the Lipschitz constant of η. Thus, weight decay regularization
encourages solutions in which the individual unit functions have small Lipschitz constants on average,
a property known to be related to generalization and robustness.

A.4. Proof for Theorem 3

Restate the Theorem 3 Here.

Theorem For any weights W let R̃(W ) :=
∑⌊L/2⌋

j=1

∑
i ∥wi,2j−1∥2 ∥vi,2j−1∥2 + c

2

∑
i ∥vi,L∥22.

Then the solutions to minW L(W )+ λ
2R(W ) and minW L(W )+λR̃(W ) are equivalent. Specifi-

cally, a minimizer of the first optimization is a minimizer of the second, and a minimizer of the second
minimizes the first (after possibly rescaling the weights so ∥wi,2j−1∥2 = ∥vi,2j−1∥2 for each term).

Proof Suppose that Ŵ is a solution to minW L(W ) + λR̃(W ), but there exists a W such that

L(Ŵ ) +
λ

2
R(Ŵ ) > L(W ) +

λ

2
R(W ) .

Theorem 1 shows that R(W ) = 2R̃(W ), which contradicts the claim that Ŵ is a solution to
minW L(W )+λR̃(W ). Next let W be a solution to minW L(W )+ λ

2R(W ), but suppose it does
not minimize L(W ) + λR̃(W ). Then there exists a Ŵ such that

L(W ) + λR̃(W ) > L(Ŵ ) + λR̃(Ŵ ) .

If necessary, rescale the weights Ŵ so that ∥ŵi,2j−1∥2 = ∥v̂i,2j−1∥2 for each term in R̃(W ); this
does not affect the value of L(Ŵ ). Then R(Ŵ )/2 = R̃(Ŵ ), which shows that L(W )+ λ

2R(W ) >

L(Ŵ ) + λ
2R(Ŵ ), contradicting the assumption that W is a solution to the first optimization.

Appendix B. Supplementary of Algorithm

B.1. Homogeneous Units are Everywhere

In the paper we mainly discuss the theorem and algorithm related to the multi-layer perceptron,
but the identification of homogeneous units is not limited to multi-layer perceptron. In this section,
we formally identify the homogeneous units in common neural network architectures: multi-layer
perceptron (MLP) and convolutional neural network (CNN).

Multi-layer Perceptron (MLP). A multi-layer perceptron fMLP(x;W ) : X → Y with M linear
layers takes the following recursive parameterization

fMLP(x;W ) = WL

[
1
hL

]
hk+1 = σ

(
W k

[
1
hk

])
, ∀k ∈ [L− 1] and h1 = x.

12



PROXIMAL GRADIENT TRAINING ALGORITHMS FOR NEURAL NETS

Here, the linear layers are parameterized by weights W = {W k ∈ Rnk+1×nk}Lk=1, where nk is
the dimension of the (k − 1)-th hidden layer, n1 is the input dimension, and nL+1 is the output
dimension. The activation function σ(x) = max{0, x} is applied element-wise.

Let W̃ denote the matrix of W with its first column removed, Wi and W:,i denote the i-th row
and column of W , respectively. Consider for every two layers, we have

W̃ k+1σ

(
W k

[
1
hk

])
=

nk∑
i=1

W̃ k+1
:,i σ

(
W k

i

[
1
hk

])

as part of the computation for hk+2. Therefore, for every two consecutive layers with weights W 2j−1

and W̃ 2j where j ∈
[
⌊L2 ⌋

]
, we identify n2j−1 homogeneous units — one for each hidden neuron.

In our experiments, for regular multi-layer perceptron, we use exactly this coupling scheme, where
every two layers are combined and viewed as n2j−1 homogeneous units.

Factorized MLP. Multi-layer perceptron can be equivalent factorized as shown in [37]. The
linear layers are parameterized by weights W = {W k ∈ Rnk+1×nk}Lk=1, where nk is the dimension
of the (k − 1)-th hidden layer. For each W k, we can further factorize it into W k = QkP k for
k ∈ {2, 3, · · · , L− 1}, where P k ∈ R(nk+1−1)×nk , Qk ∈ Rnk+1×(nk+1−1), and

Q1 = W 1 PL = WL

Here the bias term is not required for the factorization. Now let gk = P k

[
1
hk

]
∈ Rnk+1 , and let P̃

denote the matrix of P with its first column removed, then W̃ = QP̃ has the first column removed.
We have part of the computation for hk+2 to be:

Qk+1P̃ k+1σ

(
QkP k

[
1
hk

])
= Qk+1gk+1

and

gk+1 = P̃ k+1σ
(
Qkgk

)
=

nk+1−1∑
i=1

P̃ k+1
:,i σ(Qk

i g
k)

where Qi and P:,i denote the i-th row and column of Q and P , respectively. Therefore, for every
consecutive layers with factorized weights Qk and P k+1, we identify nk+1 − 1 homogeneous units
— one for each hidden neuron.

Note that for fixed dimensions and number of layers, the class of factorized MLP is equivalent
with the class of the original MLPs with only activated layers. Furthermore, with a factorized MLP,
we bypass the issue of having to group even number of layers. Instead, we are able to optimize an
equivalent class of function and identify a homogeneous unit for each hidden neuron.

Convolutional neural networks. A 2D convolutional backbone network is a sequence of function
composition of convolutional and pooling layers that maps 3D tensors to 3D tensors. The output of a
backbone network is usually then flattened and passed through an MLP. We focus on an L layers
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convolutional backbone network here, which takes the following recursive parameterization

fCNN(x;W ) =

∑
j

WL
i,j ⃝∗ hLj

⊕ bLi


i∈[nL+1]

hk+1 =

Pk

σ

∑
j

W k
i,j ⃝∗ hkj

⊕ bki


i∈[nk+1]

, ∀k ∈ [L− 1] and h1 = x.

Here nk denotes the number of hidden/output channels and W = {(W k, Bk)}Lk=1 are the weights
parameterizing the neural network. Each layer weight W k is a four-dimensional tensor of dimensions
nk+1 × nk × l × l′ and bk ∈ RnL+1 . ⊕ is an element-wise addition operator which adds the later
scalar argument to the former tensor. Pk is a channel-wise pooling layer such as average pooling
and max pooling, or the identity function. Each hidden layer hk is then a three-dimensional tensor
of dimensions nk × l × l′. By substituting in one more recursive step and for any homogeneous
activation function σ, we get

hk+1 =

Pk

σ

∑
j

W k
i,j ⃝∗ Pk−1

σ

∑
j′

W k−1
j,j′

⃝∗ hk−1
j′

⊕ bkj

⊕ bki


i∈[nk+1]

= Pk

σ


∑

j

W k
i,j ⃝∗ Pk−1

σ

∑
j′

W k−1
j,j′

⃝∗ hj−1
j′

⊕ bkj

⊕ bki


i∈[nk+1]


 .

Therefore, for each j ∈ [nk], we have
[
W k

i,j ⃝∗ Pk−1
(
σ
((∑

j′ W
k−1
j,j′

⃝∗ hk−1
j′

)
⊕ bk−1

j

))]
i∈[nk+1]

as part of the computation. With the one-homogeneity of the channel-wise pooling layer Pk−1, we
can get an equivalent function by scaling

(
αW k−1

j,j′ , αbk−1
j

)
and 1

αW
k
i,j , we can therefore obtain a

homogeneous unit for every hidden channel j of the k-th layer hk.
Since the channel-wise pooling layer can be either identity, or max pooling, or average pool-

ing layer, we can group the convolutional layers across max/average pooling layers. Therefore,
for every two consecutive convolutional layer (possibly across the pooling layer), with weights(
W 2k−1

j,j′ , b2k−1
j

)
and W 2k

i,j , where k ∈ {1, 2, · · · , ⌊L2 ⌋}, we identify n2k−1 homogeneous units, one
for each channel.

B.2. Layer-wise Balancing Procedure

In this section, we present a layer-wise balancing procedure that enforces balancing constraints across
layers. This is motivated by the fact that the sums of ℓ2-PATH-NORM of every two consecutive layers
should be equal at the minimum norm solution. Below, we will first formally show this observation
as a corollary of Theorem 1 and then present the specific layer-wise balancing algorithm.

B.2.1. COROLLARY OF THEOREM 1: LAYER-WISE BALANCING

As indicated in Theorem 1, for the minimum sum of squared weight representation, the ℓ2 norm of
the input vector and output vector of the unit are the same. Thus for the coupling of (j − 1, j)-th
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layer, we have
nj−1∑
i=1

∥wi,j−1∥22 =
nj−1∑
i=1

∥vi,j−1∥22

and for the coupling of (j, j + 1)-th layer, we have
nj∑
i=1

∥wi,j∥22 =
nj∑
i=1

∥vi,j+1∥22

which indicate the j − 1, j and j + 1-th layer have the same amount of sum of squared weights.
Since j is arbitrary, it is easily verified that at the minimum norm representation, each layer share the
same amount of sum of squared weights. Now consider the (j, j + 1)-th and (k, k + 1)-th coupling
layer, we have

1

2

nj∑
i=1

∥wi,j∥22 + ∥vi,j+1∥22 =
1

2

nk∑
i=1

∥wi,k∥22 + ∥vi,k+1∥22

Again, as in Theorem 1 indicate, at minimum norm representation, we have ∥w∥2 = ∥v∥2, therefore
nj∑
i=1

∥wi,j∥2 ∥vi,j+1∥2 =
nk∑
i=1

∥wi,k∥2 ∥vi,k+1∥2

So the sum of the ℓ2-PATH-NORM per coupling of layers are the same for the minimum norm
solution. Our proposed proximal algorithm doesn’t naturally enforce this, so we will apply the
layer-wise balance procedure along the proximal algorithm, as indicated in the next section.

B.2.2. LAYER-WISE BALANCE ALGORITHM

In Algorithm 1, we consider bias term as part of the weight parameter, and thus calculate ℓ2-PATH-
NORM with the bias term added. However to apply layer-wise balance, we will consider only
regularizing the weight parameter, and leave the bias term for standard weight decaying.

Let W̃ denote the matrix of W with its first column removed, Wi and W:,i denote the i-th row
and column of W , respectively. For every group of layers j ∈ {1, 2, · · · , ⌊L2 ⌋}, we will obtain
equality in the following term

n2j−1∑
i=1

∥∥∥W̃ 2j−1
i

∥∥∥
2

∥∥∥W̃ 2j
:,i

∥∥∥
2

through the layer-wise balance procedure as indicated in Algorithm 2, and make sure the following
function is equivalent after adjustment:

W̃ 2j+2σ
(
W̃ 2j+1σ

(
W̃ 2jσ

(
W̃ 2j−1h2j−1 + b2j−1

)
+ b2j

)
+ b2j+1

)
where h2j−1 ∈ Rn2j−1 is the input to the (2j − 1)-th layer, b2j−1 = W 2j−1

:,1 , b2j = W 2j
:,1 and

b2j+1 = W 2j+1
:,1 are the bias terms for (2j − 1)-th, 2j-th and (2j + 1)-th layer respectively. In

practice, this layer-wise balance is processed after doing batch gradient update on the homogeneous
output weights, and before applying proximal operator.

For CNN backbone network, similar layer-wise balance procedure is applied on every group of
the layers with proper defined ℓ2-PATH-NORM norm as indicated in Sec. A.2. Since the convolution
operator is piece-wise linear in weights, the layer-wise balancing procedure still holds for adjusting
the 4D weight parameter in CNN.
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Algorithm 2 Layer-wise balance for ℓ2-PATH-NORM Proximal Optimization of (2) on each iteration

Input: The homogeneous output weights updated based on batch gradient W̃ 2j for j =
1, 2, · · · , ⌊L2 ⌋, and bias term {b1, b2, · · · , bL}
Note: After the proximal step for homogeneous input weights, we always have

∥∥∥W̃ 2j−1
i

∥∥∥
2
= 1,

thus this term is omitted in the calculation of ℓ2-PATH-NORM norm below.
Calculated the geometric mean of the ℓ2-PATH-NORM norm of each layer:

X =
⌊L
2 ⌋

√√√√√⌊L
2
⌋∏

j=1

(n2j−1∑
i=1

∥∥∥W̃ 2j
:,i

∥∥∥
2

)

for j = 1, 2, · · · , ⌊L2 ⌋ do
Calculate the scale α applied to layer 2j: αj = X/

∥∥∥W̃ 2j
∥∥∥
2

Update the output weight: W̃ 2j ← αj · W̃ 2j , where · is applied in an element-wise manner.
For the following block of function:

W̃ 2j+2 σ

W̃ 2j+1σ

W̃ 2jσ
(
W̃ 2j−1h2j−1 + b2j−1

)
︸ ︷︷ ︸

×αj

+ b2j

+ b2j+1


Adjust other parameter to maintain the equivalence of the neural network function:

b2j ← αj · b2j

b2j+1 ← αj · b2j+1

W̃ 2j+2 ← W̃ 2j+2/αj

αj+1 ← αj+1/αj

end for
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Appendix C. Supplementary of Experiments

C.1. Experiment Setup

In this section we will describe the dataset and network we use in our experiments. All our
experiments are conducted on Nvidia 3090 GPUs.

C.1.1. DATASETS

In this work, we demonstrate the performance of the proposed proximal algorithm for ℓ2-PATH-
NORM NORM on the following dataset:

a) MNIST [19] consist of 10 classes of hand-written digits, each class has 6000 training images
and 1000 test images. When training, we randomly split the dataset into 55000 training data, and
5000 validation data. We use the validation data to decide the hyper-parameters. Each image has
shape 28× 28. When training, we normalize the input data.

b) MNIST-C [22] is a robustness benchmark on MNIST dataset, which applies 15 standard corrup-
tion to the MNIST dataset, namely 1) shot noise, 2) impluse noise, 3) glass blur, 4) motion blur,
5) shear, 6) scale, 7) rotate, 8) brightness, 9) translate, 10) stripe, 11) fog, 12) spatter, 13) dotted
line, 14) zigzag, and 15) canny edge. When validate our result on MNIST-C dataset, we train
on clean MNIST dataset, and pick the best model based on clean validation set, then test its
performance on the corrupted MNIST-C dataset to measure the generalization.

c) CIFAR10 [16] has 10 classes of real images. Each class has 5000 training images and 1000
test images. When training, we randomly split 45000 images for training, and 5000 images for
validation. Each image has shape 32× 32. When training, we random crop, random horizontal
flip, and normalize the input data.

d) CIFAR10-C [13] is a robustness benchmark on CIFAR10 dataset, which applies 18 standard
corruption to the CIFAR10 dataset, namely 1) Gaussian noise, 2) shot noise, 3) impluse noise,
4) defocus blur, 5) frosted glass blur, 6) motion blur, 7) zoom blur, 8) snow, 9) frost, 10) fog,
11) brightness, 12) contrast, 13) elastic, 14) pixelate, and 15) JPEG. When validate our result on
CIFAR10-C dataset, we train on clean CIFAR10 dataset, and pick the best model based on clean
validation set, then test its performnce on the corrupted CIFAR10-C dataset.

e) SVHN [23] is the Street View House Numbers dataset, with 73257 digits for training, 26032
digits for testing. We randomly split 67257 images for training, and 6000 images for validation.
Each image has shape 32× 32. When training, we normalize the input data. We didn’t use the
additional dataset to boost the performance.

C.1.2. MODELS

In this work, we demonstrate the performance of the proposed proximal algorithm for ℓ2-PATH-
NORM NORM on the following models:

a) MLP-d-n model consist of d fully connected layers, each with n neurons. Details of the MLP-d-n
architecture is shown in Table 2.
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b) MLP-d-n factorized model consist of d fully connected layers, each with n neurons. For each
layer, we factorize it into two linear layers, with hidden neurons to be n as well. Details of the
MLP-d-n factorized architecture is shown in Table 2.

c) VGG19 is introduced in [34], which is widely used for computer vision task. Instead of 3
fully-connected layer as the classifier, to apply VGG19 on CIFAR10, we use 1 fully-connected
layer instead1. There are 16 convolutional layers. After every two or four convolutional layers,
there follows a max-pooling layer to reduce the feature map size by half.

In Sec. 5.1, we demonstrate the generalization result of weight decay and proximal algorithm for
∥w∥2∥v∥2 on:

(Task 1) MNIST subset on MLP-3-400 factorized

(Task 2) MNIST on MLP-6-400

(Task 3) CIFAR10 on VGG19

(Task 4) SVHN on VGG19

In Sec. C.3, we evaluate the ability to obtain sparse solution of weight decay, lasso and group
lasso on

(Task 5) MNIST on MLP-3-800

When evaluating the proximal algorithm for ∥w∥2∥v∥2, we need to couple the layers into groups.
We choose to factorize it, and thus evaluate the algorithm on:

(Task 5) MNIST on MLP-3-800 factorized

Table 2: The MLP architecture used in the experiments. For MLP-3-400, MLP-6-400, and MLP-3-
800 factorized, we group each coupling layer together. For MLP-3-800, we refer to each layer as a
group.

Parameter MLP-3-400 factorized MLP-6-400 MLP-3-800 MLP-3-800 factorized

Group 1

784×400 784×400 784×800 784×800
ReLU ReLU ReLU ReLU

400×400 400×400 800×800
ReLU

Group 2

400×400 400×400 800×800 800×800
ReLU ReLU ReLU ReLU

400×400 400×400 800×800
ReLU

Group 3

400×400 400×400 800×800 800×800
ReLU ReLU ReLU ReLU

400×10 400×10 800×10

Group 4 800×10

1. Code adapted from https://github.com/kuangliu/pytorch-cifar
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C.1.3. HYPER PARAMETER CHOICE

For generalization experiments in Sec. 5.1, we did grid search for the learning rate as well as the λ as
follows:

(Task 1) & (Task 2):

• learning rate: 0.003, 0.01, 0.03, 0.1, 0.3, 0.5

• λ: 0.00001, 0.00003, 0.0001, 0.0003, 0.001, 0.003, 0.01

(Task 3):

• learning rate: 0.01, 0.03, 0.1, 0.3

• λ: 0.00001, 0.00003, 0.0001, 0.0003, 0.001, 0.003, 0.01

(Task 4):

• learning rate: 0.03, 0.1, 0.3, 0.5

• λ: 0.0001, 0.0003, 0.001, 0.003

(Task 5):

• learning rate: 0.01, 0.03

• λ: 0.0001, 0.001, 0.003, 0.01

C.1.4. STANDARD ERROR CALCULATION

For each task, we run the grid search experiments on random seed 42, and pick the set of hyper
parameter (learning rate∗, λ∗) based on the best validation accuracy. Then for each task, we run with
(learning rate∗, λ∗) for another three times, with random seed 43, 44, and 45. Again in each run, the
test accuracy is picked based on the best validation accuracy. With four runs, we evaluate the mean
and standard error of the experiments, and present the result in the table.

C.2. Experiments Details for Figure 1 and 2

Left figure in Fig. 1. For the convergence figure on the left, we evaluate on the (Task 1) with
learning rate = 0.01, and λ = 0.0001. With same λ and learning rate, the proximal algorithm for
∥w∥2∥v∥2 finds better solution faster, and minimize the weight decay objective faster.

Middle figure in Fig. 1. For the histogram in the middle, we evaluate on the (Task 2). The models
we investigate have the best validation accuracy with learning rate= 0.1 and λ = 0.00003. To
measure the local Lipschitz constant for the unseen data, we compare the spectral norm of the
Jacobian (of the model with respect to the input) on all 10,000 MNIST test samples, and plot their
values in the histogram shown. We see that for the model trained with weight decay the spectral
norm of the Jacobian is generally larger than the model trained with our approach, indicating that
the proximal ∥w∥2∥v∥2 regularization leads to models with a lower local Lipschitz constant and
therefore more robust.
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Right figure in Fig. 1. For the sparsity figure on the right, we do experiment on a synthetic dataset
with spatial variants. To generate the dataset, we sample in uniform randomness 64 data point from
the following function:

f(x) =



sin (8πx) 0 < x ≤ 1

2

sin

(
32π

(
x− 1

2

))
1

2
< x ≤ 3

4

sin

(
8π

(
x− 3

4

))
3

4
< x ≤ 1

which has variant spatial frequency. The model used to fit the data is an one-hidden layer fully-
feedforward network, with 640 neurons, input dimension 1, and output dimension 1. We train with
weight decay, as well as ∥w∥2∥v∥2 proximal algorithm.

Consider i-th neuron with wi ∈ R input and vi ∈ R output, we count an neuron to be active if
|wi||vi| > 0.001. With this, we obtain the number of active neurons during the training time, and
plot the figure as shown. From the plot, we can see weight decay can also sparsify the model, though
with much slower speed compared to the ∥w∥2∥v∥2 proximal algorithm.

Fig. 2. The decision boundary figure is generated on the training task of fitting a 1-hidden-layer
shallow network to the data points presented in the figure. Fix the weight decay parameter λ to
be 0.0001 and learning rate to be 0.1, we run both algorithm for same amount of iterations (till
converge).

The choice of learning rate and weight decay parameter is arbitrary. In general, we found that
with same weight decay parameter (the same objective), larger learning rate will see the model getting
over-thresholding (for both algorithm), and thus turning sparse. The sparse structure may degrade
the performance. Many approaches [2, 39] adapt learning rate in proximal gradient algorithm, which
is a good direction for the future work.

C.3. Proximal Algorithm Finds Structural Sparse Solution Faster

Weight decay will eventually find sparse solution, however with an inordinate number of training
steps as indicate in Fig. 1 (right). Proximal algorithm helps accelerating the training process. To
demonstrate this, we perform experiments on (Task 5), and compare the sparse solution found by 1)
weight decay, 2) proximal algorithm for ℓ2-PATH-NORM ; as well as well-known regularizations that
enforce sparsity in the solution: 3) lasso [36], and 4) group lasso [40]. As the proximal algorithm
operates on each one homogeneous units (instead of weight parameter), in this section we mainly
focus on structural sparsity of the model.

For each experiments, we first prune the model in each training step (prune one unit if either its
input vector w or output vector v is zeroed out). After training and pruning for 30000 iterations, we
take the model checkpoint from iterations {5000, 10000, · · · , 30000}, set the unit to be inactive if
∥w∥2∥v∥2 < 10−5, and then train this sparse model for another 10000 iterations. Since different λ
and learning rate may lead to different level of sparsity, we try with learning rate in {0.01, 0.03},
and λ ∈ {0.0001, 0.001, 0.003, 0.01} for all method.

Performance of the sparse solution is presented in Fig. 3. For each sparsity level s, we present
the best solution with sparsity < s. Compared with proximal algorithm for ℓ2-PATH-NORM , weight
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Figure 3: Sparse solution found by 1) weight decay, 2) proximal algorithm for ℓ2-PATH-NORM , 3)
lasso, and 4) group lasso. We highlight the sparse solution of weight decay and ∥w∥2∥v∥2 proximal
algorithm, which solves the equivalent objective function. However weight decay couldn’t find as
sparse solution as the ℓ2-PATH-NORM proximal.

decay only finds solution of sparsity > 64%. Though the proximal algorithm doesn’t enforce sparsity,
it finds competitive solution as lasso, and outperform group lasso in the sparse regime.
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