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Abstract
Due to the ever-growing size of neural network models, there has been an emerging interest in
compressing (i.e., pruning) neural networks by sparsifying weights in a pre-trained neural network,
while maintaining the performance of the dense model as much as possible. In this work, we
focus on a neural network pruning framework based on local quadratic models of the loss function.
We present an optimization-based approach with an ℓ0-regression formulation, and propose novel
algorithms to obtain good solutions to the combinatorial optimization problem. In practice, our
basic (single-stage) approach, based on one local quadratic model approximation, is up to 103

times faster than existing methods while achieving similar accuracy. We also propose a multi-stage
procedure that outperforms other methods in terms of accuracy for a given sparsity constraint while
remaining computationally efficient. In particular, our approach results in a 98% sparse (i.e., 98%
of weights in the dense model are set to zero) MLPNet with 90% test accuracy (i.e., 3% reduction
in test accuracy compared to the dense model)—this is an improvement over the previous best
accuracy (55%).

1. Introduction

In the past decades, there have been great advancements in deep learning models [24, 29]. Many
neural network models that show excellent accuracy metrics have a huge number of parameters (e.g.
[10, 18])—resulting in increased costs during both the development and the deployment phases.
One approach to mitigate costs at the deployment phase is to prune or sparsify networks by re-
moving some parameters from a large pre-trained model—the goal being to obtain a network with
similar performance but with a smaller number of parameters. This makes storage and deployment
cheaper and easier, especially in resource-constrained environments. Pruning might also improve
the robustness of network models towards adversarial manipulation [32].

Related work Depending on how weights are pruned, pruning methods can be categorized as
magnitude-based pruning methods (e.g. [14, 15, 27]); impact-based pruning methods (e.g. [16, 22,
30]); optimization-based pruning methods (e,g. [1, 19, 35]), etc. The paper [6] provides a nice
survey of these approaches; see also [35] and references therein. In this paper, we focus on an opti-
mization based approach following a line of work that prunes the network based on local quadratic
models of the loss function L(w). This is obtained via the second-order Taylor expansion around
the pre-trained weights w̄ of the neural network, i.e.

L(w) = L(w̄) +∇L(w̄)⊤(w − w̄) +
1

2
(w − w̄)⊤∇2L(w̄)(w − w̄) +O(∥w − w̄∥3). (1)
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This line of work dates back to Optimal Brain Damage (OBD) by [22] and Optimal Brain Surgeon
(OBS) by [16], and has been recently studied in a series of interesting works [12, 30, 35].

Studies on this topic that precede the work of [35] consider pruning network weights with the
smallest (marginal) impact on the quadratic model, and potentially update the other weights. Dif-
ferent ways to approximate the Hessian matrix ∇2L(w̄) have been proposed, based on various
assumptions. OBD assumes the Hessian matrix to be diagonal and computes it efficiently by one
back propagation. This approach however does not account for possible interactions across different
weights. OBS extends this by assuming a general form for the Hessian matrix, and proposing the
use of the empirical Fisher matrix as an approximation to the Hessian. As networks become larger,
handling the (inverse) Hessian matrix becomes prohibitively difficult as its size scales with the
square of the dimension. Several approaches have been attempted to make this more manageable.
[11] proposes Layerwise OBS where pruning is done independently across each layer. WoodFisher
[30] assumes a block diagonal structure for the Hessian, and proposes to estimate it by the empirical
Fisher matrix, using only a subsample of all observations. They are able to prune neural networks
jointly up to 25M parameters. M-FAC [12] further improves the implementation of WoodFisher,
which can scale the pruning up to 25M without a block diagonal assumption.

All aforementioned approaches [11, 12, 16, 22, 30] prune weights based on their marginal im-
pact on the local quadratic model—this pruning is not based on a joint optimization criterion. It
appears that these approaches were used as minimizing the local quadratic model was considered
to be too expensive to be practical. Interestingly, a recent method CBS (Combinatorial Brain Sur-
geon [35]) formulates the pruning problem as a mixed-integer quadratic program (MIQP, [21]) and
proposes heuristics to obtain good solutions to the problem. This approach results in significant
improvements in terms of pruning performance by considering the joint effects of pruning multiple
weights simultaneously. However, the current CBS approach, which uses the same Hessian approx-
imation as WoodFisher, requires the storage and use of the full p × p (inverse) Hessian matrix, p
being the number of trainable parameters in the model. This limits the scalibility of the approach, in
terms of both the computational time and memory utilization, as p is often in the order of millions
and more (corresponding to a Hessian size p2 ≳ 1012).

Our approach In this work, we make use of a simple but important observation with which we
can avoid computing and storing the Hessian matrix to solve the MIQP problem. We propose a
reformulation of the problem into an ℓ0-constrained sparse linear regression problem with a data
matrix X ∈ Rn×p, where n ≲ 103 is the number of the sub-samples used in the empirical Fisher
information to approximate the Hessian. Compared to other state-of the-art approaches that consider
the full Hessian, our approach leads to a significant reduction in memory usage (up to 103 times)
without any approximation—this allows us to tackle large problems without resorting to block-
diagonal approximations (employed by earlier approaches to reduce memory usage).

We also propose to include a first-order term in the local quadratic approximation and a small
ridge regularization on w − w̄, as we see gains from including these terms under different circum-
stances. Furthermore, we propose a novel approach to minimize our ℓ0 regression reformulation,
leveraging active set strategies, an aggressive choice of step size, and various methods to polish
weights on the selected support. Our proposed approach leads to significant improvements over
iterative hard thresholding methods (IHT, [7]) commonly used in sparse learning literature. Our
framework can prune a network with 4.2M parameters to 80% sparsity (i.e., 0.84M nonzero param-
eters) in a minute.
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Since the local quadratic model approximates the loss function only in a small neighbourhood
(or trust-region) of the current solution [30], we propose a multi-stage algorithm along with a spar-
sity scheduler (from dense to sparse) where we update the local quadratic model during pruning (but
without retraining) and solve a more constrained problem in each stage. Our experiments show that
the resulting pruned models have a notably bigger accuracy compared to that from our single-stage
algorithm and other pruning approaches.

The optimization algorithms proposed here are motivated by a recent body of work on com-
binatorial optimization-based methods for sparse linear regression [4, 17, 26]. The problem we
consider here and our approach is different in several aspects. [17] focus on the unconstrained
ℓ0ℓ2-regularized regression problem as opposed to the ℓ0 constrained problem arising in the net-
work pruning problem. Second, the problem size p we consider in this work is in the magnitude of
millions, much larger than what is usually considered in prior works. In this work, to maintain suf-
ficiently accurate pruned models, we consider solutions that are much denser, with a few hundreds
of thousands of nonzeros. Finally, in the sparse learning literature in linear models, the optimization
process usually starts from a trivial solution with all zeros and gradually increases the number of
nonzeros through warm-start continuation. Here, on the contrary, we start from the current (dense)
pre-trained weights and apply a dense-to-sparse cardinality scheduler to gradually remove more
weights in our multi-stage algorithm.

Contributions Our contributions can be summarized as follows:
(a) We present a new optimization framework for network pruning based on a local quadratic

approximation. In contrast to earlier approaches, we use a first-order term and an extra ridge
term, which leads to improvements compared to other approaches without them.

(b) We reformulate the optimization problem into an ℓ0-constrained linear regression problem:
We ameliorate the pitfalls of storing a large dense Hessian as employed by current approaches,
resulting in a 102 ∼ 103 times smaller memory usage

(c) We propose novel algorithms to obtain good solutions to the sparse regression reformulation,
which leads to up to 1000 times runtime improvement compared to existing network pruning
algorithms

(d) Making use of (c), we propose a multi-stage approach with a dense-to-sparse sparsity schedul-
ing. Applying this approach to MLPNet yields a 98% sparse network with 90% test accuracy
(3% less than the dense one), which is a significant improvement over previous results.

Organization The rest of paper is organized as follows: In Section 2, we describe the prob-
lem setup of network pruning considered in this paper and state our optimization formulation. We
present in Section 3 our algorithmic framework for solving the network pruning problem, includ-
ing both single-stage and multi-stage approaches. In Section 4, we demonstrate the usefulness of
our framework in terms of computational time, memory usage and model performance, and con-
duct some ablation studies. Additional algorithm details and experimental details are provided in
Appendix A and B.

2. Problem Setup and Formulation

Problem setup Consider a neural network with a loss function L(w) = 1
N

∑N
i=1 ℓi(w). Here,

w ∈ Rp is the vector of trainable parameters, and N is the number of data points (samples). Given
a pre-trained weight vector w̄, our goal is to set some parameters to zero while maintaining the
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original model’s performance (e.g., accuracy) as much as possible. In mathematical terms, given
w̄ ≈ argminw L(w) and a target level of sparsity τ ∈ (0, 1), we hope to construct w ∈ Rp

that satisfies (a) (loss function after pruning is close to that before pruning) L(w) ≈ L(w̄); and
(b) (budget on number of nonzero weights after pruning) ∥w∥0 ≤ (1 − τ)p. Here, we focus on
one-shot pruning where no retraining or fine-tuning based on SGD is performed after pruning1 to
make it easier to compare our results with existing work, e.g. [30, 35].

Problem formulation. Following previous work [16, 22, 30, 35], the loss function can be locally
approximated around w̄ as (1). With this approximation, the network pruning problem can be
formulated as the following MIQP

min
w

f(w; w̄, g,H, λ) s.t. ∥w∥0 ≤ k, (2)

where k = ⌊(1−τ)p⌋ and f(w; w̄, g,H, λ) := g⊤(w−w̄)+0.5(w−w̄)⊤H(w−w̄)+(λ/2)∥w−w̄∥2
with λ ≥ 0 and certain choices of gradient and Hessian approximations g ≈ ∇L(w̄), H ≈ ∇2L(w̄).
In the MIQP (2), we minimize the quadratic approximation to make sure the pruned model remains
as close as possible to the dense model, while enforcing the sparsity constraint.

Ridge term and choices of λ. The performance of our final pruned model depends crucially on
the validity of the quadratic approximation of the loss function. This approximation is a local one,
and it is therefore important to ensure that the iterates (during the course of the algorithm) are close
enough to w̄. One way to ensure this is to include a squared ℓ2 penalty on w − w̄ (also known
as the ridge or Tikhonov regularization). In previous works on pruning using the local quadratic
approximations [16, 30, 35], such a penalty is not considered explicitly, but is used implicitly to
obtain an invertible Fisher matrix, by adding a small diagonal λI to the Fisher matrix2. Additional
investigation into the effect of λ is provided in Appendix B.2.1.

Choices of Hessian approximation H . Following previous works [16, 30], we approximate
the Hessian matrix by the empirical Fisher information matrix, using n samples. This leads to
a low-rank expression of H = (1/n)

∑n
i=1∇ℓi(w̄)∇ℓi(w̄)⊤ = (1/n)X⊤X ∈ Rp×p, where

X = [∇ℓ1(w̄), . . . ,∇ℓn(w̄)]⊤ ∈ Rn×p. As shown later, H is never computed in our approach
as we only require X . Previous works have noted that it is sufficient to use a few hundred to one
thousand samples to estimate the Hessian—this aligns with what we observe in our studies.

Choices of gradient approximation g. Most of the previous works assume that the pre-trained
weights w̄ are a local optimum of L, and thus take the gradient g = 0. However, the gradient
of the loss function of a pre-trained neural network may not be zero in practice due to the use of
early stopping (or approximate optimization) [33]. Also, it might be more beneficial to prune the
local quadratic model computed at a general reference point (where gradient is not zero) — this
is an approach we follow in our multi-stage procedure. Therefore, we propose to approximate the
gradient by the stochastic gradient, using the same samples for estimating the Hessian. That is
g = (1/n)

∑n
i=1∇ℓi(w̄) = (1/n)X⊤e ∈ Rp, where e ∈ Rn is a vector of all ones. As we discuss

in Appendix B.2.2, this first order term needs to be properly scaled, especially when taking losses
as averages from batches of size more than one. In the WoodTaylor approach [30], this scaling issue
is handled by tuning the dampening factor λ. We instead propose scaling the first order term as the
inverse of the batch size (See Appendix B.2.2 for more details).

1. The procedure of iteratively pruning and then fine-tuning using SGD is called gradual pruning—see for eg [30].
2. The λ in previous work is usually taken in the range [10−6, 10−4].
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ℓ0-regression formulation. With these approximations of g and H ,we can now formulate the
MIQP (2) into the following ℓ0-constrained ridge regression problem:

min
w

Q(w) :=
1

2
∥y −Xw∥2 + nλ

2
∥w − w̄∥2, s.t. ∥w∥0 ≤ k, (3)

for y = Xw̄ − e ∈ Rn and X ∈ Rn×p. Note that our algorithmic framework also applies to (3)
with a general y and X , and in particular to the case without a first-order term (i.e. g = 0) by taking
y = Xw̄ instead. Crucially, the regression formulation (3) does not require us to compute or store
the full Hessian matrix H ∈ Rp×p, and as we will show in the next section, we only need to operate
on the matrix X throughout our algorithm, which is the source of substantial gains in terms of both
memory consumption and runtime.

3. Algorithmic Framework for Solving problem (3)

In this section, we present main ideas of our proposed algorithms for solving the ℓ0-constrained
regression problem (3), with additional details presented in Appendix A. Our primal goal is to
develop efficient algorithms that converge rapidly, as in practice the scale of the network could be
too big (p ∼ 106) to be well optimized.

Single-stage methods We design first-order algorithms based on the framework of iterative hard
thresholding (IHT, [4, 7]), together with several novel strategies and tricks to accelerate conver-
gence:
• IHT with aggressive stepsize: The traditional choices of stepsize of IHT is either too conserva-

tive or even hard to compute. We propose a novel step size scheme which yield significantly more
aggressive step size (about 10 times), based on the fact that the line search objective is a piecewise
quadratic function and the optimal stepsize on each piece can be computed exactly. We detail the
ideas and algorithms in Appendix A.1.

• Refining on the support: IHT algorithm does quite well in identifying a good support. After the
support is identified, we propose to use following methods to refine the solution on the support
to further decrease the objective: (i) Coordinate descent (CD, [3, 28]); (ii) Back solve based on
Woodbury formula [25]. The details about our refining (or polishing) strategies are provided in
Appendix A.2 and A.4.

• Active set updates: To further reduce the O(np) iteration-complexity of IHT, we propose to use
the active set strategy, which has turned out to be an effective tool in several other contexts [5, 8,
17]. The algorithm details can be found in Appendix A.3.

Multi-stage procedure The above single-stage methods are quite fast and memory-efficient, and
they can achieve comparable results of model performance compared to the existing methods. In
addition to these methods, we propose a multi-stage procedure where we update and solve local
quadratic models sequentially. Furthermore, to ensure the validity of the local quadratic approxi-
mation, we use a dense-to-sparse scheduler on the sparsity constraint and take a small sparsity step
in each stage (see Algorithm 1 for more details).

4. Experimental Results

In this section, we compare our methods with several previous pruning methods on different pre-
trained networks. The existing methods we consider are MP (magnitude pruning [27]), WF (Wood-
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Algorithm 1 Multi-stage pruning
Require: Pre-trained weights w̄, target number of nonzeros k, number of stages m.

1: Initialization: Construct a decreasing sparse mesh k1, k2, . . . , kf = k; w0 = w̄
2: for t = 1, 2, . . . , f do
3: Update y and X in (3) based on current solution wt−1

4: Obtain a solution wt to Problem (3) with w̄ = wt−1 and k = kt using single-stage approach
5: end for

Fisher [30]) and CBS (Combinatorial Brain Surgeon [35]). The pre-trained networks are MLP-
Net (30k parameters) trained on MNIST [23], ResNet20 ([18], 200k parameters) trained on CI-
FAR10 [20], and MobileNetV1 (4.2M parameters) trained on ImageNet [9]. All these networks are
considered in [35]. More details for reproducibility are provided in Appendix B.1.

Runtime comparison [30, 35] note that using more samples tend to have better accuracy, which
is also something that we notice in our experiments. However, most prior approaches become
computationally expensive as n becomes big. Here, we compare the runtime of our approach to that
of M-FAC [12], a well optimized and more efficient implementation of Woodfisher [30]. As shown
in Figures 1a and 1b, our algorithm offers significant speedups. Note that as is reported in [12],
M-FAC is at least 100 times faster than WoodFisher; as for CBS, it takes a few hours on average to
prune the MobileNetV1 network in contrast to less than one minute using our approach. This means
our methods achieve up to 1,000 times faster runtime compared to WoodFisher and CBS.

Comparison of model performance Table 1 compares the test accuracies of MLPNet, Resnet20
and MobileNetV1 pruned to different sparsity levels. Our single-stage method achieves compara-
ble results to other state-of-the-art approaches with much less time consumption. The multi-stage
method stated in Algorithm 1 outperforms other methods by a large margin, especially with a high
sparsity rate.

Other results In addition to the above results, we conduct several ablation studies in Appendix B.2.
In Appendix B.2.1, we explore the effects of the ridge term on the out-of-sample accuracy. We pro-
vide in Appendix B.2.2 a heuristic strategy to determine the scaling factor of the first-order term,
along with several experiments to verify the effectiveness of the first order term together with this
strategy. The importance of choosing appropriate sparsity schedules in the multi-stage approach is
illustrated in Appendix B.2.3.

5. Conclusion and Ongoing/Future Work

In summary, we propose an efficient network pruning approach based on an ℓ0-constrained regres-
sion problem and novel combinatorial optimization techniques. Compared to the existing methods,
our single-stage methods achieve comparable results and run significantly faster with much less
memory usage. Built upon the single-stage methods, our multi-stage method can make further large
improvements in the model accuracy.

As future work, it would be interesting to test our framework on larger problems, such as
ResNet50 (25M parameters, [18]) and BERT (110M parameters, [10]). Additionally, we are looking
into the setting of gradual pruning like [30].
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Figure 1: Runtime comparison between our single-stage approach and M-FAC. The error bar represents the
standard error over 4 runs. Iterative method and Direct method are two of our single-stage approaches. See
Algorithm 4 and Algorithm 5 in Appendix A for detailed descriptions.

Network Sparsity MP WF CBS Our method (single stage) Our method (multi-stage)

MLPNet
on MNIST
(93.97%)

0.5 93.93 94.02 93.96 93.97 (±0.03) 95.97 (±0.05)
0.6 93.78 93.82 93.96 93.94 (±0.02) 95.93 (±0.04)
0.7 93.62 93.77 93.98 93.80 (±0.01) 95.89 (±0.06)
0.8 92.89 93.57 93.90 93.59 (±0.03) 95.80 (±0.03)
0.9 90.30 91.69 93.14 92.46 (±0.04) 95.55 (±0.03)
0.95 83.64 85.54 88.92 88.09 (±0.24) 94.70 (±0.06)
0.98 32.25 38.26 55.45 46.25 (±0.85) 90.73 (±0.11)

ResNet20
on CIFAR10

(91.36%)

0.3 90.77 91.37 91.35 91.37 (±0.04) 91.25 (±0.08)
0.4 89.98 91.15 91.21 91.19 (±0.05) 91.20 (±0.05)
0.5 88.44 90.23 90.58 90.6 (±0.07) 91.04 (±0.09)
0.6 85.24 87.96 88.88 89.22 (±0.19) 90.78 (±0.12)
0.7 78.79 81.05 81.84 84.12 (±0.38) 90.38 (±0.10)
0.8 54.01 62.63 51.28 57.9 (±1.04) 88.72 (±0.17)
0.9 11.79 11.49 13.68 15.6 (±1.79) 79.32 (±1.19)

MobileNetV1
on ImageNet

(71.95%)

0.3 71.60 71.88 71.88 71.87 (±0.01) 71.86 (±0.02)
0.4 69.16 71.15 71.45 71.50 (±0.02) 71.61 (±0.02)
0.5 62.61 68.91 70.21 70.42 (±0.02) 70.99 (±0.04)
0.6 41.94 60.90 66.37 67.30 (±0.03) 69.54 (±0.01)
0.7 6.78 29.36 55.11 59.40 (±0.09) 66.42 (±0.03)
0.8 0.11 0.24 16.38 29.78 (±0.18) 47.45 (±0.25)

Table 1: The pruning performance (model accuracy) of various methods on MLPNet, Resnet20 and Mo-
bileNetV1. As to the performance of MP, WF and CBS, we adopt the results reported in [35]. We take 5 runs
for our single-stage and multi-stage approaches, and report the mean and standard error (in the brackets). The
accuracy of dense models (without pruning) are provided in the leftmost column. The best accuracy numbers
(within 0.01 difference) are highlighted in bold.
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Appendix A. Algorithmic details

A.1. IHT with aggressive stepsize

IHT algorithm Our optimization framework relies on the IHT algorithm to identify the support
as well as make descent steps. Each step of the IHT algorithm takes a gradient step with step size τ
from the current iterate and then projects it onto the cardinality constraint set by hard thresholding.

Specifically, for any vector x, let Ik(x) denote the indices of k components of x that have the
largest absolute value, and the hard thresholding operator Pk is defined such that Pk(x) = y has

yi =

{
xi, if i ∈ Ik(x),
0, otherwise

IHT applied to problem (3) renders the following updating formula

wt+1 = HT(wt, k, τ) := Pk

(
wt − τ∇Q(wt)

)
= Pk

(
wt − τ(X⊤(Xy − wt) + nλ(wt − w̄))

)
,

(4)
where τ > 0 is a stepsize to be determined. The computation of HT(wt, k, τ) involves only the
matrix-vector multiplications between X (or its transpose) and a vector, which has a total compu-
tation cost of O(np). This is a significant reduction compared to the O(p2) cost of using the full
Hessian matrix as [30, 35] do.

Challenges of stepsize choice The choice of the step size τ is a big challenge here. In theory,
setting τ as the constant 1/L in (4) is a common choice in the literature to ensure the convergence
to a stationary solution [4, 17], where L is the Lipschitz constant of the gradient of Q(w). i.e.,
∥∇Q(α)−∇Q(β)∥ ≤ L∥α−β∥ for all α, β ∈ Rp. Since Q is a quadratic objective, this quantity L
is given by L = nλ+∥X∥2op, where ∥X∥op is the operator norm of X , i.e., the leading singular value
of X . In practice, when p is large, this quantity could be very large, leading to very conservative
updates, sometimes negligible. Moreover, the computation of L itself may involve a few power
iterations or randomized SVD algorithm, which could be as costly as several iterations of IHT
updates. Another approach is through line search, e.g. [2]. The basic idea is to try different values
of τ to find the best τ that makes the objective descent as steep as possible. This requires multiple
evaluations of the quadratic. We observe that updates given by vanilla line search methods are still
conservative and consequently the support of the iterates does not change most of time.

Our novel scheme To this end, we present a novel scheme to determine a much more aggressive
stepsize. We notice, from the definition of Pk, that g(τ) := Q

(
Pk

(
wt − τ∇Q(wt)

))
is a univariate

piecewise quadratic function, and the goal of line search is to find a value τ that makes g as small as
possible. Furthermore, denote by τc the largest value of τ ′ such that the hard thresholding based on
τ ∈ [0, τ ′] does not change the support, i.e. Ik(wt) = Ik(wt − τ∇Q(wt)), ∀τ ∈ [0, τ ′]. Then we
know that over τ ∈ [0, τc], g(τ) is a quadratic function, and let τm denote the minimizer of g(τ) over
[0, τc]. If τm < τc, then we use τ = τm as stepsize; otherwise, we performe a line search by setting
τ ← γτ (γ > 1) starting from τc to determine the stepsize with steepest descent. Algorithm 2
summarizes the above procedure. Intuitively, this helps avoid the redundant line search steps on the
quadratic piece of g(τ) over [0, τc], which results in a more aggressive step size.

In terms of overall complexity, it is not hard to see that τc can be computed in O(p) after we
obtain the gradient ∇Q(wt); and the cost of computing τm is the same as the quadratic objective
evaluation, which is already required by the line search.

11



NETWORK PRUNING AT SCALE: A DISCRETE OPTIMIZATION APPROACH

Finally, we note that during the course of line search, it is always possible to find the piece of
the quadratic function to which the current stepsize τ belongs, say [τl, τu], and calculate the optimal
stepsize over that piece with small extra costs to further improve the line search. But we find it
unnecessary in practice as usually the line search procedure terminates in few steps.

Algorithm 2 A novel scheme to determine the stepsize τ

Require: wt, k, γ > 1
1: Set τc as the largest value such that Ik(wt) = Ik(wt − τ ′∇Q(wt)), ∀τ ′ ∈ [0, τc].
2: Compute

τm = argmin
τ ′∈[0,τc]

g(τ ′) := Q
(
Pk

(
wt − τ ′∇Q(wt)

))
(5)

3: if τm < τc then
4: τ ← τm.
5: else
6: gbest ← g(τc), and τ ← τc.
7: while gbest > g(γτ) do
8: gbest ← g(γτ), and τ ← γτ .
9: end while

10: end if

A.2. Cyclic coordinate descent

Although IHT does well in identifying and updating the support, in experiments we see that it makes
slow progress in decreasing the objective. To this end, in order to decrease the objective faster, we
use cyclic coordinate descent (CD, [3, 28]) with full minimization in every nonzero coordinate to
refine the solution on the support. CD-type methods are widely used for solving huge-scale opti-
mization problems in statistical learning, especially those problems with sparsity structure, due to
their inexpensive iteration updates and capability of exploiting problem structure, such as Lasso [13]
and L0L2-regularized regression [17].

Our cyclic CD updates each nonzero coordinate (with others fixed) as per a cyclic rule, and skips
any coordinate with zero value to avoid violating the ℓ0 constraint. With a feasible initialization wt

and a coordinate i in the support of wt, wt+1
i is obtained by optimizing the i-th coordinate (with

others fixed) through:

wt+1
i = CDUpdate(wt, i) := argmin

w∈R
Q
(
wt
1, . . . , w

t
i−1, w, w

t
i+1, . . . , w

t
p

)
. (6)

Calculating CDUpdate(wt, i) requires the minimization of an univariate quadratic function with
time cost O(n).

Cyclic CD enjoys a fast convergence rate [3, 28]. However, the quality of the resulting solution
is limited and depends highly on the initial solution, as CD cannot modify the support of a solution.
For a better performance in terms of both quality and efficiency, in practice we adopt a hybrid
updating rule that combines IHT and cyclic CD. In each iteration, we perform several rounds of
IHT updates and then apply cyclic CD to refine the solution on the support. This approach is
summarized in Algorithm 3.
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Algorithm 3 IHT with CD: IHT-CD(w0, k, tHT, tCD)

Require: w0, k, tHT, tCD
1: for t = 0, 1, . . . do
2: w ← wt

3: for t = 1, . . . , tHT do
4: w ← HT(w, k, τ) ▷ Time complexity O(np)
5: end for
6: for τ = 1, . . . , tCD do
7: for i ∈ supp(w) do
8: w ← CDUpdate(w, i) ▷ Time complexity O(n)
9: end for

10: end for
11: wt+1 ← w
12: end for

A.3. Active set updates

Previous works [5, 8, 17] have shown success of using the active set strategies in various contexts.
We use such approaches as well to make our algorithm more efficient. In our problem setting, the
active set strategy works as follows: an initial active set (of length equal to a multiple of the required
sparsity k, e.g. 2k) is selected based on the magnitude of the initial solution. In each iteration, we
restricts the update of Algorithm 3 to the current active set A. After convergence, we perform IHT
updates on the full vector to search for a better solution w with supp(w) ̸⊆ A. The algorithm
terminates if such w does not exist, otherwise we update A ← A ∪ supp(w) and the process is
repeated. Algorithm 4 gives a detailed illustration of the active set method, with Algorithm 3 as the
inner solver (potentially the inner solver can be replaced with any solver, e.g. Algorithm 5 in later
section). In our experiments, such strategy works really well on small or middle-sized problems
(p ∼ 105) and sparse problems (k ≪ p).

Algorithm 4 Active set with IHT: AS-IHT(w0, k, tHT, tCD,A0)

Require: w0, k, tHT, tCD, and an initial active set A0

1: for m = 0, 1, . . . do
2: wm+1/2|Am ← IHT-CD(wm|Am , k, tHT, tCD) restricted on Am

3: Find τ via line search such that wm+1 ← HT(wm+1/2, k, τ) satisfies
4: (i) Q(wm+1) < Q(wm+1/2) (ii) supp(wm+1) ̸⊆ Am

5: if such τ does not exist then
6: break
7: else
8: Am+1 ← Am ∪ supp(wm+1)
9: end if

10: end for
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A.4. Backsolve via Woodbury formula

As p and k become larger, the active set method becomes more costly. Hence, we propose a back-
solve approach that further reduces the complexity, at the cost of a slightly worse solution. The
backsolve approach calculates the optimal solution exactly on a restricted set. We first apply IHT
updates a few number of times to get an initial feasible solution w, and then restrict the problem (3)
to the set S := supp(w). Under the restriction, problem (3) reduces to a quadratic problem without
ℓ0 constraint and it’s minimizer reads

w∗
S = (nλIk +X⊤

S XS)
−1(nλw̄S +X⊤

S yS), (7)

where XS ∈ Rn×k is a submatrix of X with columns only in S. By exploiting the low-rank struc-
ture of X⊤

S XS and utilizing Woodbury formula [25], (7) can be computed in O(n2k) operations.
Specifically, one can compute (7) using matrix-vector multiplications involving only XS (or its
transpose) and one matrix-matrix multiplication via

w∗
S = (nλ)−1[Ik −X⊤

S (nλIk +XSX
⊤
S )−1XS ] · (nλw̄S +X⊤

S yS)

= w̄S + (nλ)−1X⊤
S yS − (nλ)−1X⊤

S (nλIk +XSX
⊤
S )−1XS(nλw̄S +X⊤

S yS). (8)

The backsolve method is stated in Algorithm 5.

Algorithm 5 Backsolve: BackSolve(w0, k, tHT)

Require: w0, k, tHT.
1: for t = 1, . . . , tHT do
2: w ← HT(w0, k, τ) ▷ Time complexity O(np)
3: end for
4: S ← supp(w)
5: wS ← (nλIk +X⊤

S XS)
−1(nλw̄S +X⊤

S yS), using (8) ▷ Time complexity O(n2k)

We note that prior works [16, 30, 35] also use the formula, but do not exploit the problem
structure to reduce the runtime and memory consumption.

A.5. Stratified block-wise approximation

We describe in this subsection a block approximation strategy, whereby we only consider limited-
size blocks on the diagonal of the Hessian matrix and ignore off-diagonal parts. Given a disjoint
partition {Bi}ci=1 of {1, 2, . . . , p} and assume blocks of size B1 × B1, . . . , Bc × Bc along the
diagonal, problem (3) can then be decomposed into the following subproblems (1 ≤ i ≤ c)

min
w∈R|Bi|

1

2
∥yi −XBiw∥2 +

nλ

2
∥w − w̄Bi∥2, s.t. ∥w∥0 ≤ ki, (9)

where yi = XBiw̄Bi − e and
∑c

i=1 ki = k determines the sparsity in each block. The difference
in the selection of {ki}ci=1 will greatly affect the quality of the solution. We observe in experiments
that the best selection strategy is to first apply magnitude pruning (or other efficient heuristics) to
get a feasible solution w, and then set ki = | supp(w) ∩ Bi|, ∀1 ≤ i ≤ c. Algorithm 4 states the
block-wise approximation algorithm, with Algorithm 5 as the inner solver for each subproblem.
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In our experiment, we adopt the same strategy to employ the block-wise approximation as in
the prior work [30, 35]. We regard the set of variables that corresponds to a single layer in the
network as a block and then subdivide these blocks uniformly such that the size of each block does
not exceed a given parameter Bsize.

We clarify that the introduction of block-wise approximation is for the sake of solution quality
rather than efficiency. This differs to previous works [30, 35]. In fact, solving (9) for i = 1, . . . , c
requires operations of the same order as solving (3) directly. On the other side, we observe in
our experiments that adopting block-wise approximation will increase the accuracy of the pruned
MobileNetV1 network dramatically (from 0.2% to near 30% at sparsity level 0.8).

Algorithm 6 Back solve with block approximation
Require: w0, k, tHT, a disjoint partition {Bi}ci=1 of {1, 2, . . . , p}.

1: Obtain a feasible solution via magnitude pruning w ← Pk(w
0).

2: for i = 1, 2, . . . , c do
3: Determine sparsity level ki = | supp(w) ∩Bi|
4: wBi ← BackSolve(wBi , ki, tHT)
5: end for

Appendix B. Experiment details

B.1. Experimental setup

All experiments were carried on a computing cluster. Experiments for MLPNet and ResNet20 were
run on an Intel Xeon Platinum 8260 machine with 20 CPUs; experiments for MobileNetV1 were
run on an Intel Xeon Gold 6248 machine with 40 CPUs and one GPU.

MLPNet Architecture The considerd MLPNet has three linear layers of architecture 3072 →
40→ 20→ 10, following [35].

Algorithmic setting We adopt the active set strategy with IHT and CD update (Algorithm 4) to
prune MLPNet and ResNet20. We also set Algorithm 4 as the inner solver in Algorithm 1 for these
two networks. For MobileNet, we utilize the direct back solve method with block approximation
(Algorithm 6) as the single-stage approach. We employ the same block-wise approximation as in
the prior work [30, 35], see Section A.5 for details. We choose Algorithm 5 as the inner solver when
performing multi-stage approach (Algorithm 1) on the MobileNet. For all multi-stage approaches,
we use 15 stages.

Fisher sample size and mini-batch size We report in Table 2 the Fisher sample size n and the
mini-batch size m used for gradient evaluation in Hessian approximation (i.e., in Hessian approxi-
mation, each ∇ℓi(w̄) is replaced by the average gradient of a mini-batch of size m). Note that for
MLPNet and ResNet20, WF, CBS as well as our method make use of the same amount of gradi-
ents; while for MobileNet, our method performs 16,000 gradient evaluations, which is much less
compared to WF and CBS as they require 960,000 gradient evaluations.

Hyper-parameters For each network and each sparsity level, we run our single-stage and multi-
stage methods with ridge value λ ranging from [10−5, 103] and number of IHT iterations (if Algo-
rithm 4 is applied) ranging from [5, 500]. We also try single-stage algorithm with/without the first
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Model
MLPNet Resnet20 MobileNet

sample batch sample batch sample batch

WF [30] & CBS[35] 1000 1 1000 1 400 2400
Our method 1000 1 1000 1 1000 16

Table 2: Comparisons of the Fisher sample size n and the mini-batch size m used for gradient evaluation in
Hessian approximation on MLPNet, ResNet20 and MobileNet.

order term. We report in Table 1 the best model accuracy over all possible hyper-parameter combi-
nations. For Resnet20, we use the same block approximation used by CBS, by taking a block for
each layer. As for MobileNetV1, we use a block size of 2000, as this yields the best results.

B.2. Implementation details and ablation study

B.2.1. RIDGE TERM

We study the effect of the ridge term and display some experimental results in Figure 2. We observe
from Figure 2b that without a ridge term, the distance between w̄ and the pruned weight w becomes
larger as algorithm processes. As larger distance leads to poorer local quadratic approximation, the
performance of model without the ridge term starts to decrease after dozens of iterations, as shown
in Figure 2a. Figure 2c demonstrates some additional evidence on the effectiveness of ridge term
in improving the accuracy. We conclude from these figures that including a ridge term is of great
importance in getting stable models with high performance.
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Figure 2: Effect of the ridge term. We apply Algorithm 4 to prune MLPNet and report the results. In Figure
2a and 2b, the network is pruned to a 98% sparsity level.

B.2.2. FIRST-ORDER TERM AND THE SCALING FACTOR

It has been shown in recent works [30, 31] that the empirical Fisher matrix H = (1/n)X⊤X has a
high cosine similarity with the true Hessian, and is therefore a good approximation up to a scaling
factor, i.e., there exists α > 0 such that H ≈ α∇2L(w̄). For scale-independent applications, e.g.,
MIQP considered in (2) without the first order term, the empirical Fisher matrix H could be regarded
as a good and cheap estimation of the Hessian. On the other side, Figure 3b indicates that we have
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to estimate the scaling factor α when the first order term is involved (in this case the problem is no
longer scale-independent), otherwise the model yields poor results..

Using the code provided by [34], we can compute an estimate of the scaling factor α using

α =
Trace(H)

Trace(∇2L(w̄))
. (10)

However, the computation cost of Trace(∇2L(w̄)) is not negligible. As shown in Figure 3a, we
observe in our experiments that α as estimated by (10) is close to 1/m, where m is the mini-batch
size used for gradient evaluation in Hessian approximation. Hence, we set α = 1/m as a heuristic
scaling factor in our experiments. Figure 3b and 3c demonstrate the advantage of using scaled first
order term over incorrect scaling and not using first order term.
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Figure 3: Effect of using scaled first order term. All the results are averaged over 5 runs of pruning MLPNet
to 95% sparsity rate. We utilize our multi-stage approach with Algorithm 4 as the inner solver.

B.2.3. SPARSITY SCHEDULE IN MULTI-STAGE PROCEDURE

We observe in our experiments that the performance of the multi-stage algorithm depends highly on
the choice of the sparsity mesh k1 ≥ k2 ≥ · · · ≥ kf = k. We compare in this section test accuracies
between two different schedules: (i) an exponential mesh (kt − kt−1 ∼ 1

2t ) and (ii) a linear mesh
(kt − kt−1 ∼ 1). As shown in Figure 4a, the exponential mesh takes smaller steps as the sparsity
level increases, whereas the linear schedule takes constant steps.

Figure 4b plots the training loss of the two schedules in each stage. We see from the figure that
the performance of the linear mesh drops dramatically in the last few iterations, around the sparsity
level 0.766. Taking small stepsizes in high sparsity levels allows the exponential mesh to maintain
a good accuracy in the challenging sparsity levels, achieving good performance.
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Figure 4: Effect of different sparsity schedules on model accuracy. We utilize our multi-stage approach with
Algorithm 4 as the inner solver for pruning MLPNet to 90% sparsity rate.
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