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Abstract
In this paper, we derive an algorithm that learns a principal subspace from sample entries, can
be applied when the approximate subspace is represented by a neural network, and hence can be
scaled to datasets with an effectively infinite number of rows and columns. Our method consists
in defining a loss function whose minimizer is the desired principal subspace, and constructing a
gradient estimate of this loss whose bias can be controlled.

1. INTRODUCTION

Learning compact representations of data while minimizing information loss is at the heart of ma-
chine learning. A common approach for doing so is to learn a d-dimensional principal subspace that
explains most of the variation in the data, what is known as principal component analysis (PCA).
For small datasets, PCA can be accomplished by computing the singular value decomposition of the
relevant data matrix. For sufficiently large datasets, however, this approach is impractical and one
must instead turn to a stochastic or sample-based procedure.

Streaming PCA algorithms learn an approximate principal subspace by sampling columns from
the data matrix Ψ and performing an incremental update that moves their approximation closer to
the true subspace [e.g. 18, 19, 26, 31]. Central to these methods is the computation of the inner
product between a full matrix column and the approximate subspace as well as a step to normalize
the basis vectors parametrizing this subspace, making these methods most suited to problems where
there are relatively few matrix rows. Another line of work learns the principal subspace as the
by-product of a low-rank linear regression problem. In this case, the learner forms a product Φwt
where Φ encodes the approximate subspace and wt is a per-column weight vector; the aim is to
minimize the Euclidean distance between Φwt and the column Ψt [22, 34, 35]. This approach has
been effective for learning state representations in reinforcement learning [7, 10, 17], but can only
handle a small number of columns, owing to the need to store an explicit weight vector for each.

In this paper, we propose a fully sample-based algorithm which exhibits the best of these two
classes of approaches. Rather than maintain the weight vector wt in memory, we instead estimate it
on-the-fly from samples – effectively making the weight vector implicit. We use the weight vector
estimate to construct a gradient of a suitable loss function, on which we perform stochastic gradient
descent in order to determine an approximation to the d-dimensional principal subspace. Key to our
approach is the derivation of the gradient in terms of Danskin’s theorem. Although the naive plug-
in gradient fails to be an unbiased estimate and can perform quite poorly in practice, an unbiased
estimate is obtained by constructing two independent weight vector estimates. These estimates
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are derived from a technique known as the LISSA [2] that produces a sequence of asymptotically-
unbiased estimators of the inverse covariance matrix (Φ>Φ)†. Based on its origins, we call the
result the Danskin-LISSA algorithm.

In Section 4, we show that our algorithm can recover the principal subspace of synthetic matrices
and of MNIST images, while only observing a small subset of the data matrix at each update. We
further demonstrate the effectiveness of our method for representation learning in reinforcement
learning, specifically by learning a neural network-based approximation to the principal subspace
of the successor measure [8] in the Puddle World domain [36].

2. BACKGROUND

2.1. Problem Statement

We consider a collection of column functions {ψt ∈ RS}t∈T where T is an index set, and where
each ψt maps row indices to real values. We assume that the column indices and the row indices are
drawn i.i.d from a distribution λ on T and ξ on S respectively 1. For a given integer d ∈ N and a
row representation φ : S → Rd, we define the representation loss

L(φ) = E
t∼λ

[
min
wt∈Rd

E
s∼ξ

[
(φ(s)>wt − ψt(s))2

]]
. (1)

The representation loss describes the approximation error incurred by fitting the column function
ψt with the d-dimensional linear approximation φ(s)>wt, on average over draws from λ. Here, we
are interested in determining a d-dimensional representation φ that minimises L(φ) among all such
representations.

For now, let us consider the case in which S and T are of finite sizes S and T , respectively. In
this case, we may write Φ ∈ RS×d for the feature matrix whose rows are

(
φ(s)

)
s∈S and Ψ ∈ RS×T

for the data matrix whose columns are
(
ψt
)
t∈T . If additionally W ∈ Rd×T is a weight matrix,

then finding the function φ that minimizes Equation 1 is equivalent to jointly minimizing the loss
L(Φ,W ) over Φ and W , where

L(Φ,W ) = ‖Ξ1/2(ΦW −Ψ)Λ1/2‖2F . (2)

Here, Ξ ∈ RS×S (resp. Λ ∈ RT×T ) is a diagonal matrix with entries {ξ(s) : s ∈ S} (resp.
{λ(t) : t ∈ T }) on the diagonal. For a given Φ, we write

W ∗Φ ∈ arg min
W∈Rd×T

L(Φ,W ) L(φ) = L(Φ,W ∗Φ). (3)

From standard linear algebra, in closed form we have

W ∗Φ = (Φ>ΞΦ)†Φ>ΞΨ. (4)

Note that this expression does not depend on the column distribution Λ. We will use this matrix
form to derive a gradient-based algorithm in the next section.

Equation 2 describes a weighted low-rank approximation problem [34]. Its solutions are the set
of matrices Φ whose columns span the d-dimensional subspace of left singular vectors of Ψ. If in
addition the columns of Ψ have mean zero, this corresponds to determining the subspace spanned
by the d principal components of Ψ. Consequently, in the finite case our objective is to find a state
representation whose implied feature matrix has columns that span this subspace.

1. We assume that ξ(s) > 0 for all row indices s ∈ S and that λ(t) > 0 for all column indices t ∈ T .
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3. PCA FROM SAMPLES

We assume access to a model from which we may repeatedly sample row indices according to the
distribution ξ and the values taken on at those row indices by column functions sampled from λ. We
are interested in the setting in which it is undesirable or impossible to sample the entire collection
of column functions for a given state, or an entire column function all at once. This is different
from the setting that approaches such as Oja’s method [31] or the recent EigenGame [18] have
considered for their experiments, which in matrix terms assume that it is possible to sample entire
rows or columns from Ψ (for a longer discussion on prior work, see Section C).

Let us begin by expressing the gradient of the loss function L(Φ,W ). In matrix form, this is

∇ΦL(Φ,W ) = 2Ξ(ΦW −Ψ)ΛW>, ∇WL(Φ,W ) = 2Φ>Ξ(ΦW −Ψ)Λ (5)

When the number of columns T is small, finding an optimal φ can be accomplished by optimiz-
ing the loss function L(Φ,W ) using a nested or two-timescale optimization procedure based on
unbiased estimates of these gradients. For example, the pair of update rules

φ(s)← φ(s)− α(φ(s)>wt − ψi(s))wt, wt ← wt − βφ(s)(φ(s)>wt − ψi(s)) (6)

finds an optimal representation φ under suitable conditions on the step-sizes α and β. This is
because the loss L(Φ,W ) is convex in W when Φ is fixed and the two-timescale algorithm allows
us to approximately run gradient descent on the objective we care about.

When T is large (or infinite), however, it is may be expensive (or impossible) to store a separate
weight vector for each column. Instead, we rely on a form of the gradient of the loss L(φ) in which
the weight vector is implicit.

Lemma 1 Let β > 0 and W ∗Φ = (Φ>ΞΦ + βI)−1Φ>ΞΨ . The loss L : RS×d → R defined by

L(Φ) = min
W∈Rd×T

(
‖Ξ1/2(ΦW −Ψ)Λ1/2‖2F + β‖W‖2F

)
is continuously differentiable, with gradient∇ΦL(Φ) = 2Ξ(ΦW ∗Φ −Ψ)ΛW ∗Φ

>

The idea is to use an instantaneous estimate of W ∗Φ to update the row representation in the
negative direction of the (estimated) gradient of L(φ). As we will see, such an estimate can be
obtained by sampling as little as a single column and a small number of rows. In effect, given a
sample row index s our goal is to obtain a gradient estimate ĝ(s) such that

φ(s)← φ(s)− αĝ(s) (7)

should converge to an optimal representation under suitable conditions on the time-varying step-
size α. In Subsection 4.3, we will discuss how Equation 7 can be applied to learn parametrized row
representations such as those described by neural networks.

Before describing our approach, it is worth noting that the procedure that naively estimates W ∗Φ
from a subset of rows and columns results in a biased gradient estimate. That is, suppose we are
given the sample row indices s, s′, s1, . . . sn and sample column t. If we write Φ̂ for the matrix
whose rows are φ(s1), . . . , φ(sn) and construct the empirical covariance matrix Ĉ = Φ̂>Φ̂, then we
find that the estimate

ĝNAIVE(s) = ŵt
(
φ(s)>ŵt − ψt(s)

)
ŵt = Ĉ†φ(s′)ψt(s

′) (8)

is not an unbiased estimate of∇φ(s)L(Φ). In fact, the bias can be quite substantial when n is small,
as we empirically show in Section 4.
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3.1. An Improved Gradient Estimate

One issue with the estimate of Equation 8 is that the estimated weight vector ŵt is itself a largely
biased estimate of the optimal weight vector for column t (that is, the tth column of W ∗Φ, W ∗Φ,t).
Conversely, unbiasedness is obtained if ŵt satisfies

E[ŵt] = W ∗Φ,t,

and if the term ŵ>t is an independent, also unbiased estimate of W ∗Φ,t
> in Lemma 1. To reduce

the bias of the naive estimate, we will construct two low-biased estimates of the inverse covariance
matrix (Φ>Φ)†, Ĉ and Ĉ ′, from which we derive two independent weight estimates ŵt and ŵ′t.

Before we explain how to obtain these estimates, let us describe our algorithm at a high level.
We begin by drawing three row indices s, s′, s′′ and a column index t. We then construct the two
weight estimates and then the gradient estimate

ŵt = Ĉφ(s′)ψt(s
′) ŵ′t = Ĉ ′φ(s′′)ψt(s

′′), ĝDL(s) = ŵ′t
(
φ(s)>ŵt − ψt(s)

)
(9)

which uses two LISSA estimators [2] to construct independent weight estimates by application of
Danskin’s theorem. In effect, using two separate weight estimates effectively allows us to estimate
the outer product W ∗Φ,t

(
W ∗Φ,t

)> appearing in Lemma 1 with a very low bias and hence obtain a
gradient estimate that is overall low-biased, up to a multiplicative factor that we fold into the step-
size parameter.

Theorem 2 Let es ∈ RS denote a basis vector. Given two independent unbiased estimates Ĉ and
Ĉ ′ of the inverse covariance, for s ∼ ξ, the gradient estimate ĝDL(s) given in Equation (9) satisfies

E[esĝDL(s)>] = Ξ(ΦW ∗Φ −Ψ)ΛW ∗Φ
>.

Note that the estimate ĝDL(s) does not require the set of columns T to be finite. As such, our
procedure can also be used to learn the principal components of infinite sets of columns; we will
demonstrate this point in Subsection 4.3.

We derive the procedure which, given access to a stream of sample row representations
(
φ(sj)

)∞
j=1

,
asymptotically produces an unbiased estimate of the optimal weight vector for a given column t in
Appendix A and provide a detailed presentation of our algorithm in Appendix B.

4. EXPERIMENTS

We now conduct an empirical evaluation demonstrating that the Danskin-LISSA algorithm de-
scribed in Section 3 recovers the d-dimensional principal subspace of different types of data: syn-
thetic matrices, MNIST images [27] and the successor measure for the modified PuddleWorld do-
main [36]. In all cases, we measure convergence using the normalized subspace distance [37] be-
tween Φ and the principal subspace of Ψ: 1− 1

d ·Tr
(
FdF

>
d PΦ

)
∈ [0, 1]. Here, Fd are the top-d left

singular vectors of Ψ and PΦ = (Φ>Φ)†Φ> is the orthogonal projector onto the column space of Φ.
For simplicity, we takeM = N = J in all experiments. The parameter κ = κ0/maxs∈s1:J ‖φ(s)‖22,
where κ0 is a hyperparameter, is computed from the sampled feature vectors but we note that it can
also be estimated online by a running average.
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Figure 1: Subspace distance over the course of training LISSA for different dimensions (Left,
L = 25) and for different total number of samples per update (Right, d = 10) on
synthetic matrices with a spectrum decaying linearly and exponentially, averaged over
30 seeds. Shaded areas represent 95% confidence intervals.
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Figure 2: (Left) Training curves for LISSA on MNIST (d = 16) that updates only a subset of pixels
at a time. ∗: see main text. (Right) Reconstruction on MNIST test images. First row
show samples from test images. Second are images reconstructed from the true principal
components of Ψ and third row are images reconstructed from the principal components
learnt by Danskin-LISSA (N = 64). Reconstruction MSE errors for true components
and Danskin-LISSA are 21.46 and 21.53 respectively.

4.1. Synthetic Matrices

To begin, we consider a random matrix Ψ ∈ R50×50 whose entries are sampled from a standard
normal distribution and We follow the experimental protocol from Gemp et al. [18] (See Appendix).

Figure 1, left illustrates that the Danskin-LISSA algorithm successfully recovers the d-dimensional
principal subspace given sufficiently many training steps, with smaller values of d being easier to
learn for the exponentially decaying spectrum (results for d > 25 are given in the appendix). How-
ever, we see that learning the subspace spanned by a representation of dimension d = 25 is easier
than d = 1 for linearly decaying spectrum. Figure 1 right demonstrates that empirically, it is possi-
ble to obtain a reasonable approximation of the principal subspace even for a very smaller number
of samples (J = 1 being the extreme), despite our theoretical expectation of a biased covariance
estimate. As described in Section 3, the Danskin-LISSA approach stems from a combination of
several algorithmic concepts (two independent estimates of the weight vectors, LISSA procedure).
To understand better their relative importance in the performance of the Danskin-LISSA algorithm,
we compare it to two sample-based baselines which have access to the same amount of information
and memory (See Appendix). Figure 4 illustrates the bias-reducing advantage of the LISSA covari-
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Figure 3: (Left) The Puddle World domain [36], with the shaded area indicating regions where the
agent moves slowly. In our experiments, each grid cell is associated with a column of the
implied data matrix. (Right) Subspace distance as a function of the dimension d after 108

gradient steps for three methods: Danskin-LISSA, Explicit, and the Large Batch baseline.

ance estimator, in particular in the low-sample regime. The naive method, which constructs a single
weight estimate, has high bias and underperforms compared to both of these methods.

4.2. MNIST Dataset

We now consider learning the principal subspace from the MNIST training dataset with the Danskin-
LISSA algorithm. Figure 2 shows that it is possible to effectively learn the principal subspace of
this data even while updating as few as 32 pixels (rows) at a time; naturally, using more samples
per step results in improved learning speed. As a point of comparison, we provide the subspace
distance obtained by Eigengame [18], a state-of-the-art method that performs PCA by sampling full
columns (images) at a time. To quantify the goodness of the representation learnt on the MNIST
training set, we use it to reconstruct MNIST images on the test set. Figure 2, right, shows that the
MNIST digits reconstructed from the subspace learnt by Danskin-LISSA qualitatively look similar
to the images reconstructed from the true principal components of the training set and achieve a
similar reconstruction error.

4.3. Learning the Successor Measure

In reinforcement learning (RL), the successor representation [13] encodes an agent’s future tra-
jectories from any given state in terms of the vistation frequency to various states. Of immediate
relevance, it is often used as a building block in representation learning for RL, in particular by
directly learning its principal subspace [6, 29, 30]. Its extension to continuous state spaces is called
the successor measure [8], and is naturally described by an infinite dimensional matrix. Our last
experiment illustrates how the Danskin-LISSA algorithm can be used to approximate the principal
subspace of the successor measure of the Puddle World domain [36].

Compared to the experiments of the previous sections, we parametrize the representation by a
neural network. We are interested in understanding the degree to which this neural network can be
trained to approximate the d-dimensional principal subspace of the successor measure.

To gain an understanding of the effectiveness or our method, we compare it with two other
gradient-based methods commonly used in reinforcement learning. As the name indicates, the
Explicit method maintains a weight vector wi for each column and relies on the pair of updates
from Equation 6, similar to the method used by Bellemare et al. [7]. Note that we present this
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method only for completeness, as it is not applicable to an infinite number of columns and may
otherwise carry an impractically large memory cost. The Large Batch method, on the other hand,
estimates the weight vector wi using φ and Ψ evaluated at center of each of the 10,000 grid cells
(close in spirit to the Naive method of Section 4.1).

Figure 3, right compares the final subspace distance of these three algorithms for various values
of d. We find that the performance of the Danskin-LISSA algorithm degrades gracefully as d is
increased, while the Large Batch method is only practical for small values of d. In part, this is
explained by the fact that even with such a large batch, there is a residual bias in the latter method’s
covariance estimate. The poor performance of the Explicit method is explained by the fact that a
single column is updated at any given time, resulting in stale weight vectorswi. Although in practice
this can be mitigated by updating multiple columns at once, the result illustrates an important pitfall
with the use of an explicit weight vector.

5. DISCUSSION & CONCLUSION

In this paper, we presented an algorithm that learns principal components of very large or infinite
dimensional matrices by stochastic gradient descent. Our experiments on synthetic matrices and
MNIST images demonstrate that indeed the method converges towards their top principal subspace.
Our analysis on the Puddle World domain also reveals that our algorithm works well when repre-
senting states with a neural network. In deep reinforcement learning (RL), training a network on
supervised auxiliary predictions results in its representation corresponding to the principal com-
ponents of this set of tasks, assuming the network is other unconstrained [7]. Incorporating the
Danskin-LISSA procedure within a deep RL architecture may provide performance improvements
by incorporating more knowledge about the world into the network’s representation.
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Appendix A. Estimate of the Weight Vector W ∗
Φ,t

Central to our procedure is an estimate Ĉ of the inverse covariance matrix (Φ>ΞΦ)†. We construct
this estimate by embedding what is known as the LISSA estimator [2, originally used to estimate the
Hessian inverse]. Our algorithm is parameterised by two scalars, κ and J , which trade off estimator
variance with sample complexity. All proofs can be found in Appendix E

To begin, consider an arbitrary matrix Φ ∈ RS×d and denote ‖·‖op the spectral norm. For any
κ < ‖Φ>ΞΦ‖−1

op , the Moore-Penrose pseudo-inverse of (Φ>ΞΦ)† has a Neumann series expansion
of the form

(Φ>ΞΦ)† = κ
∞∑
i=0

(I − κΦ>ΞΦ)i. (10)

Here, κ is a scaling parameter that ensures the convergence of the series. Denoting Sj the first j
terms of the above series, we have that

Sj = κI + (I − κΦ>ΞΦ)Sj−1.

We use this observation to build an estimator of (Φ>ΞΦ)† with access to a finite number of samples
from S .

Definition 3 (LISSA estimator) Let Φ ∈ RS×d be a feature matrix. Let s1:J = {s1, s2, ..., sJ} be
J i.i.d. row indices sampled from ξ. Let κ0 ∈ (0, 2) and κ = κ0 sups1:J ‖φ(si)‖−2

2 . The j-LISSA
estimator ∆̂j is recursively given by

∆̂0 = κI

∆̂j = κI + (I − κφ(sj)φ(sj)
>)∆̂j−1, 0 < j 6 J. (11)

Lemma 4 (Bias of LISSA) For κ < sups1:J 2‖φ(si)‖−2
2 , the bias of ∆̂j with respect to (Φ>ΞΦ)†

is given by

bias(∆̂j) = −(Φ>ΞΦ)†(I − κΦ>ΞΦ)j+1

In particular, this bias asymptotically vanishes, in the sense that

lim
j→∞

bias
(
∆̂j

)
= 0.

Appendix B. Algorithm Based on LISSA

Provided that we use the LISSA procedure twice to construct two independent estimates ŵt, ŵ′t
of the optimal weight vector W ∗Φ,t, it is straightforward to demonstrate that ĝDL(s) (Equation (9))
becomes an unbiased estimate of the gradient of the loss L(Φ) as J →∞; furthermore, for finite J
its biased is controlled in the sense of Theorem 2. We may then perform gradient descent with this
estimate, adjusting the sth row of the matrix Φ according to

φ(s)← φ(s)− αĝDL(s), (12)

11
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where α ∈ [0, 1) is a suitable step size. Based on our derivation, we call this procedure the Danskin-
LISSA algorithm. In practice, it is usually desirable to update φ for N > 1 rows at once and use
M > 1 samples to estimate ŵi and ŵ′i; we give this more general form in Algorithm 1. Note that
while larger values of J are desirable in order to reduce estimation bias, larger values of M and
N contribute to reducing the variance of the gradient estimate ĝDL and speeding up the learning
process.

An important case is when the row representation φ is given by a mapping that is parametrized
by a collection of weights θ, for example a neural network. In this case, Equation 12 should be
replaced by an update rule that adjusts the weights θ. In practice, this can be done by determining
the Jacobian ∂φ

∂θ of φ with respect to the weights θ, and applying the update

θ ← θ − α∂φ
∂θ
ĝDL(s).

An alternative particularly suited to automatic differentiation frameworks [1, 9, 32], is to define a
loss function whose gradient corresponds to ∂φ

∂θ ĝDL(s). One can verify that the sample loss function
1
2

(
`(ŵt + ŵ′t)− `(ŵt)− `(ŵ′t)

)
`(w) =

(
φ(s)>SG(w)− ψt(s)

)2
satisfies this requirement, where SG denotes the stop-gradient operation (in the sense that∇θSG(w) =
0). Additionally, the recursion in Equation 11 can be implemented efficiently by first computing the
vector-matrix product φ(sj)

>)∆̂j−1 and then taking the outer product of the result with φ(sj).

Algorithm 1 Danskin-LISSA
1: Parameters: Dimension d ∈ N+, J,M,N ∈ N+, α, κ0 ∈ (0, 2)
2: repeat
3: Sample independent rows s1:N , s

′
1:M , s

′′
1:M ∼ ξ

4: Sample a column t ∼ λ
5: Ĉ ← LISSA(κ0, J)
6: Ĉ ′ ← LISSA(κ0, J)
7: wt = Ĉ

∑M
k=1 φ(s′k)ψt(s

′
k)

8: ŵ′t = Ĉ ′
∑M

k=1 φ(s′′k)ψt(s
′′
k)

9: ĝ2LISSA(sk) = ŵ′t
(
φ(sk)

>ŵt − ψt(sk)
)

10: φ(sk)← φ(sk)− αĝDL(sk) for k = 1, . . . , N
11: until satisfied

While for any finite value of J , the LISSA estimator ∆̂j is not an unbiased estimate, Theorem 4
establishes that its bias can be made arbitrarily small with enough samples. In our experiments, we
will show that this results in substantially better convergence compared to a naive estimate of the
covariance matrix.

In Theorem 3, the parameter κ controls the rate of convergence of the full Neumann series:
larger values of κ result in faster convergence, requiring fewer samples to obtain an estimate that
has little bias with regards to the inverse covariance matrix. However, larger values of κ (κ is
bounded above as per Theorem 3) also produce estimators that have higher variance. Although here
we consider the simplest setting in which a single sample is used at each iteration j in Equation (11),
the variance of the estimator can of course be reduced by using several samples per iteration.

12
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Appendix C. RELATED WORK

Streaming PCA. Oja [31] and Krasulina [26] proposed the original streaming PCA algorithms.
They approximate the top eigenvector of a matrix through a stochastic approximation of the power
method. Tang [37] extends this method to other principal components but requires explicit normal-
ization. Amid and Warmuth [3] extends it without the need to explicitly performing orthonormal-
ization after each gradient step at the cost of a batch having to be of size 1.

Pfau et al. [33] recovers the subspace spanned by the top eigenfunctions of symmetric infinite
dimensional matrices by parametrizing them with neural networks and performing gradient descent
on a kernel-based loss. It is itself a generalization of slow feature analysis [38] in the tabular setting.
Deng et al. [15] extends the objective from Gemp et al. [18] to the function space and propose
an algorithm to learn the top d-eigenfunctions of symmetric matrices by representing them with
d neural networks. To find the principal subspace of a general infinite dimensional matrix Ψ, the
approaches above require computing eigenfunctions of ΨΨT , which requires full row access to Ψ.
By contrast, our method can recover the principal subspace of any infinite dimensional matrix using
samples entries from rows of Ψ.

Low-rank matrix completion. In this setting, we observe a subset of entries from a data matrix
and aim to find a low-rank matrix that matches these observations [34]. Matrix factorization is a
common technique to solve this problem where the matrix of interest is expressed as a product ΦW .
It can be solved efficiently by standard optimization algorithms [35]. Hardt [20], Jain et al. [21] rely
on alternating minimization over the representation and weight matrices and guarantee convergence
towards the true matrix. Other methods perform gradient descent [28, 39] or stochastic gradient
descent [14, 16, 22]. Keshavan and Oh [23], Keshavan et al. [24] minimize simultaneously over the
representation Φ and the weights W by gradient descent. Dai and Milenkovic [11] first solves the
inner optimization problem and find the optimal weight matrix W and then takes a gradient step
on the outer optimization problem, with respect to the representation matrix Φ. The Grassmannian
Rank-One Subspace Estimation (GROUSE) algorithm [5] is a stochastic manifold gradient descent
algorithm for tracking subspaces from incomplete data which was recently shown to be equivalent to
Oja’s algorithm [4]. In comparison, we propose an optimization procedure which performs gradient
descent on the representation matrix Φ only and where the weight matrixW ∗Φ is expressed implicitly,
as a function of Φ.

Appendix D. Proofs for Section 2

Proposition 5 Denote GLd(R) the set of d× d invertible matrices. Assume rank(Ψ) <∞. Write
Ψ = FΣB as the SVD of Ψ. For an integer ` ∈ {1, ..., S}, let F` ∈ RS×` be the matrix containing
the first ` columns of F (sorted by decreasing singular value). For a fix d ∈ {1, ..., S},

arg min
Φ∈RS×d

min
W∈Rd×T

‖ΦW −Ψ‖2F = {Φ ∈ RS×d | ∃M ∈ GLd(R),Φ = FdM} (13)

Proof For a fixed Φ ∈ RS×d and if Φ is full rank, the unique solution of ‖ΦW − Ψ‖2F is given
by W ∗Φ = (ΦTΦ)−1ΦTΨ. When Φ is orthonormal, we have W ∗Φ = ΦTΨ. Moreover, (ΦΦTΨ) 6
min((Φ), (ΦTΨ)) = min(d,min(d, r)) = d. By the Eckart-Young Theorem, the best rank−d
approximation of Ψ with respect to the Frobenius norm is given by FdFT

d Ψ = Fd(F
T
d Ψ). By

identification, Φ(ΦTΨ) = Fd(F
T
d Ψ) and Φ = Fd is a solution.

13
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As we can turn the basis Φ for (Fd) into any other basis Φ′ = ΦR with R ∈ Rd×d an invertible
matrix, the set of solutions for Φ is {FdR,R ∈ Rd×d invertible}

Appendix E. Proofs for Section 3

Lemma 6 Let β > 0 and W ∗Φ = (Φ>ΞΦ + βI)−1Φ>ΞΨ . The loss L : RS×d → R defined by

L(Φ) = min
W∈Rd×T

(
‖Ξ1/2(ΦW −Ψ)Λ1/2‖2F + β‖W‖2F

)
is continuously differentiable, with gradient∇ΦL(Φ) = 2Ξ(ΦW ∗Φ −Ψ)ΛW ∗Φ

>

Proof The proof is similar to the one of Danskin’s theorem [12]. By linear algebra, the unique
minimizer W ∗Φ in Equation (??) is given by Equation (??), which is itself differentiable with respect
to Φ. By the chain rule, we have

∇ΦL(Φ) = ∇ΦL(Φ,W ∗Φ) +

(
∂W ∗Φ
∂Φ

)> ∂

∂W ∗Φ
L(Φ,W ∗Φ). (14)

Now, since W ∗Φ is defined as the (unconstrained) minimizer of L(Φ,W ∗Φ), its gradient with respect
to the second argument vanishes at W ∗Φ, and so second term is zero. The result then follows from
the definition of∇ΦL(Φ,W ) in Equation (5).

Let Ξ = Es∼ν [ese
T
s ] and Λ = Et∼Λ[ete

T
t ].

Lemma 7 The j-LISSA estimator ∆̂j is an unbiased estimator of the partial Neumann series de-
fined in Equation (10). That is, given j samples s1:j = {s1, s2, ..., sj} drawn i.i.d. from ξ, we have
that

E
s1:j∼ξ

[∆̂j ] = κ

j∑
i=0

(I − κΦ>ΞΦ)i

Proof By induction.

E[∆̂0] = E[κI] = κI and κ
0∑
i=0

(I − κΦTΞΦ)i = κI

Es1∼ξ[∆̂1] = Es1∼ξ[κI + (I − κφs1φTs1)κI] = κI + κ(I − κΦTΞΦ) as E[φiφ
T
i ] = ΦTΞΦ

and κ
1∑
i=0

(I − κΦTΞΦ)i = κI + κ(I − κΦTΞΦ)

14
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Let’s suppose that Es1:j−1∼ξ[∆̂j−1] = κ
∑j−1

i=0 (I − κΦTNΦ)i. Then,

Es1:j∼ξ[∆̂j ] = Es1:j [κI + (I − κφsjφTsj )∆̂j−1]

= κI + Es1:j [(I − κφsjφTsj )∆̂j−1]

= κI + Esj∼ξ[I − κφsjφ
T
sj ]Es1:j−1∼ν [∆̂j−1]

= κI + (I − κΦTNΦ)κ

j−1∑
i=0

(I − κΦTNΦ)i

= κ

j∑
i=0

(I − κΦTNΦ)i

Hence, the conclusion.

Lemma 8 (Bias of LISSA) For κ < sups1:J 2‖φ(si)‖−2
2 , the bias of ∆̂j with respect to (Φ>ΞΦ)†

is given by

bias(∆̂j) = −(Φ>ΞΦ)†(I − κΦ>ΞΦ)j+1

In particular, this bias asymptotically vanishes, in the sense that

lim
j→∞

bias
(
∆̂j

)
= 0.

Proof

bias(∆̂j) = E(∆̂j)− (ΦTΞΦ)−1

= κ

j∑
i=0

(I − κΦTΞΦ)i − (ΦTΞΦ)−1 by Theorem 7

= κ(I − (I − κΦTΞΦ))−1(I − (I − κΦTΞΦ)j+1)− (ΦTΞΦ)−1 using the closed form of a geometric series

= −(ΦTΞΦ)−1(I − κΦTΞΦ)j+1

Theorem 2 Let es ∈ RS denote a basis vector. Given two independent unbiased estimates Ĉ and
Ĉ ′ of the inverse covariance, for s ∼ ξ, the gradient estimate ĝDL(s) given in Equation (9) satisfies

E[esĝDL(s)>] = Ξ(ΦW ∗Φ −Ψ)ΛW ∗Φ
>.

Proof By definition,

ĝDL(s) = ŵ′i
(
φ(s)>ŵi − ψi(s)

)
Plugging in ŵi = Ĉφ(s′)ψi(s

′) and ŵ′i = Ĉ ′φ(s′′)ψi(s
′′), we have

ĝDL(s)> =
(
φ(s)>Ĉφ(s′)ψi(s

′)− ψi(s)
)
(Ĉ ′φ(s′′)ψi(s

′′))>

15
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Now taking the expectation,

Es,s′,s′′,s1:n,s′1:n,i[esĝDL(s)>] = Es,s′,s′′,s1:n,s′1:n,i
[
es
(
φ(s)>Ĉφ(s′)ψi(s

′)− ψi(s)
)
(Ĉ ′φ(s′′)ψi(s

′′))>
]

= Es,i
[
es
(
φ(s)>Es1:n [Ĉ]Es′ [φ(s′)ψi(s

′)]− ψi(s)
)
(Es′1:n [Ĉ ′]Es′′ [φ(s′′)ψi(s

′′)])>
]

= Es,i
[
es
(
e>s ΦEs1:n [Ĉ]Es′ [ΦTes′e

T
s′Ψei]− e>s Ψei

)
(Es′1:n [Ĉ ′]Es′′ [ΦTes′′e

T
s′′Ψei])

>
]

= Es,i
[
ese
>
s

(
ΦEs1:n [Ĉ]Es′ [ΦTes′e

T
s′Ψ]−Ψ

)
eie

T
i Es′′ [ΨTes′′e

T
s′′Φ](Es′1:n [Ĉ ′])>

]
= Esese>s

(
ΦEs1:n [Ĉ]ΦTEs′ [es′eTs′ ]Ψ−Ψ

)
Ei[eieTi ]ΨTEs′′ [es′′eTs′′ ]ΦEs′1:n [Ĉ ′]

= Ξ
(
ΦEs1:n [Ĉ]ΦTΞΨ−Ψ

)
Λ(ΨTΞΦ(Es′1:n [Ĉ ′])>)

where in the last line, we used the fact that Ξ = Es∼ν [ese
T
s ] and Λ = Et∼Λ[ete

T
t ]. Now, given two

unbiased estimators Ĉ and Ĉ ′, we have

Es1:n [Ĉ] = (ΦΞΦ>)† and Es′1:n [Ĉ ′] = (ΦΞΦ>)†

It then follows that

Es,s′,s′′,s1:n,s′1:n,i[esĝ
>
DL(s)] = Ξ

(
Φ(ΦΞΦ>)†ΦTΞΨ−Ψ

)
Λ(ΨTΞ)Φ(ΦΞΦ>)†

= Ξ
(
Φ(ΦΞΦ>)†ΦTΞΨ−Ψ

)
Λ((ΦΞΦ>)†ΦTΞΨ)T

= Ξ(ΦW ∗Φ −Ψ)ΛW ∗Φ
>

∝ ∇ΦL(Φ)

Appendix F. Additional Experimental Results

F.1. Synthetic matrices

In order to study our algorithm’s behaviour under different conditions, we follow Gemp et al. [18]
and set the matrix’s singular values from 1000 to 1 linearly or exponentially We initialize Ψ ∈
R50×50 randomly from a normal distribution. We compute its SVD such that Ψ = FΣB. Let
Σlinear = (1, ..., 1000) and Σexp = (100, ..., 103). We rescale the matrix Ψ such that Ψlinear =
FΣlinearB and Ψexp = FΣexpB. The matrix Φ ∈ RS×d is also initialized randomly from a standard
normal distribution. We sweeped over the step size α and chose α = 0.001 which was working
well in all the synthetic experiments. We used the SGD otpimizer but found that there was not a
big performance difference with the Adam otpimizer [25] in most of these synthetic experiments.
In Figure 6, we also sweeped over the hyperparameter κ0 and found that κ0 = 1.9 was performing
well across dimensions and for both linear and exponential spectra. We selected the parameter
κ0 = 1.9 from a hyperparameter sweep (Figure 6 compares performance for different values of
κ0, in particular illustrating how κ0 > 2 fares poorly, according to our theory). We trained the
Danskin-LISSA method for 106 time steps. As a complement to Figure 1, we show in Figure 5
the training curves of the Danskin-LISSA algorithm for a broader range of dimensions d. For the
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Figure 4: Subspace distance (d = 10) after 106 training steps according to the method used to
estimate the loss gradient. Here, the x axis represents the total number of row samples L
from the Φ matrix (L = 2J + 2M + N for the Danskin methods, J + M + N for the
naive method). Shaded areas represent 95% confidence intervals. Note that because we
are sampling with replacement, L = 250 still differs from the gradient given in Lemma 1.
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Figure 5: Subspace distance over the course of training LISSA for different dimensions on synthetic
matrices with a spectrum decaying linearly and exponentially, averaged over 30 seeds.
The total number of samples used is 50. Shaded areas represent 95% confidence intervals.

exponential spectrum, when d > 25, larger dimensions are easier to learn. This is the opposite trend
to the behavior found when d 6 25 where smaller dimensions are easier to learn. For the linearly
decaying spectrum, when d > 25, larger dimensions are easier to learn which is also the same trend
as what we observed for d 6 25.

In Figure 4, the first baseline uses the naive gradient estimator described in Section 3. The
second uses two separate weight estimates, following the derivation from Danskin’s theorem, but
uses the inverse of the empirical covariance matrix rather than the LISSA procedure used in the
Danskin-LISSA method – accordingly, we call this the Danskin-Empirical method.

F.2. MNIST

We represent the data as a matrix Ψ ∈ R784×60000 where each column is a 28 × 28 sample image
(flattened to size 784) of one of the ten possible digits and from which the mean image has been
subtracted. To accelerate learning speed we use the second-order Adam optimizer [25]. We per-

17



A NOVEL STOCHASTIC GRADIENT DESCENT ALGORITHM FOR LEARNING PRINCIPAL SUBSPACES

0.5 0.9 1.0 1.5 1.9 2.0 5.0
0

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

lo
ss

Exponential Spectrum
 d = 1

0.5 0.9 1.0 1.5 1.9 2.0 5.0
0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Exponential Spectrum
 d = 10

0.5 0.9 1.0 1.5 1.9 2.0 5.0
0

0.0

0.1

0.2

0.3

Exponential Spectrum
 d = 25

0.5 0.9 1.0 1.5 1.9 2.0 5.0
0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

lo
ss

Linear Spectrum
 d = 1

0.5 0.9 1.0 1.5 1.9 2.0 5.0
0

0.0

0.1

0.2

0.3

0.4

Linear Spectrum
 d = 10

0.5 0.9 1.0 1.5 1.9 2.0 5.0
0

0.0

0.1

0.2

0.3

Linear Spectrum
 d = 25

Figure 6: Subspace distance after 106 training steps of the LISSA algorithm for different κ0
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Figure 7: First 10 principal components of the successor measure of the Puddle World domain.

formed a sweep over the step-size α and found that α = 0.005 worked best for 128 and 64 pixels.
α = 0.01 performed best for 32 pixels. We trained the Danskin-LISSA algorithm for 2.5 × 106

steps.
In Figure 2 right, denoting Ψtest ∈ R784×10000 the test dataset and Φ ∈ R784×d a representation

learnt from the training set, the reconstructed images on the test set are given by PΦΨtest where PΦ

denotes the orthogonal projector onto the column space of Φ.

F.3. Puddle World

In our version of this environment, traversing puddles requires more time, resulting in asymmetric
successor measure; details of the environment and the reinforcement learning framework are given
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below. Here, s ∈ [0, 1]2 corresponds to a particular two-dimensional state in the environment. For
a collection of sets X = {X ⊂ [0, 1]2} to be described below, we define the successor measure as

Ψ(s,X) =
∑
t>0

γt P (St ∈ X |S0 = s) , γ ∈ (0, 1)

The successor measure describes the expected, discounted number of visits to the set X when the
agent begins in state s and moves randomly. We take γ = 0.99. We take the collection X to be
the set of non-overlapping cells of a 100 × 100 grid (illustrated by Figure 3). For computational
reasons, we assign the same value of Ψ(·, X) to all states within a grid cell; this value is computed
by 1, 000 truncated Monte-Carlo rollouts from a start state sampled uniformly at random within a
cell. This produces a 10, 000 × 10, 000 matrix which we treat as ground truth for measuring the
accuracy of our predicted subspace. All three methods use Adam [25] to optimize a two-layer MLP
with 512 hidden units and ReLU activations. We take J = M = N = 50 for Danskin-LISSA and
N = 250 for the two other methods. The step size α was tuned for each method according to a
small hyperparameter sweep and after 108 gradient steps averaged across 5 runs.

A Puddle World [36] is a square arena, with x, y both in [0, 1]. It has a continuous state space
and a discrete action space. There are four actions (up, down, left, right) that move the agent by
0.05 in each of the corresponding directions. A random gaussian noise with standard deviation
0.01 is also added to transitions in both directions. For our experiments, we used the same puddle
configuration found in [36]. This configuration contains two puddles. The first puddle lies between
the points (0.1, 0.75) and (0.45, 0.75) with a radius of 0.1. The second puddle lies between the
points (0.45, 0.4) and (0.45, 0.8), also with a radius of 0.1. While the original Puddle World gives
negative rewards for being in a puddle, our puddles instead cause a slowing affect by a factor of 0.5.
That is, when in a puddle, the agent only moves by 0.025 in each direction. The puddles compound,
meaning that in the area where the two puddles overlap the agent will only move a distance of
0.0125. We chose to use slowing puddles because our task is reward-agnostic, and the successor
measure task that we chose would capture the dynamics of the slowing puddles. We visualize in
Figure 7 the top-10 principal components of the successor measure of Puddle World, demonstrating
that they are non-trivial.

The successor measure was computed using 1000 Monte Carlo rollouts from each starting grid
cell, truncated after 700 steps. We used a discount factor γ = 0.99. We subtracted the row sums to
center-mean each column of the ground truth matrix Ψ ∈ R104×104 .

For each of the methods, we performed a sweep of learning rates and optimizers (between Adam
and SGD) and found that Adam with a learning rate of 10−4 worked well across the board. We ran
each method for 100 million gradient steps. For Danskin-LISSA, we kept κ fixed at 1.9, which we
found worked well in our previous experiments. Danskin-LISSA used a batch size of 50 for each
of its 5 batches, while Large Batch and Explicit used a main batch size of 250 to ensure that each
method saw the same number of samples. To compute φ(s) we used a two hidden-layer MLP with
512 hidden units per layer.

Appendix G. Limitations

For simplicity, in this paper we assumed that all samples used in computing a given gradient es-
timate are drawn independently. In practice, samples are naturally expensive and it may appear
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undesirable to require a total of N + 2J + 2M for a single gradient estimate. However, one can im-
prove on this state of affairs by permuting the order in which samples from the batch are presented,
constructing different gradient estimates from these permutations, and noting that the average of
multiple unbiased estimates remains unbiased (and generally has lower variance).
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