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Abstract
Decentralized optimization is a key setting toward enabling data privacy and on-device learning
over networks. Existing research primarily focuses on distributing the objective function across
n nodes/clients, lagging behind the real-world challenges such as i) node availability—not all n
nodes are always available during the optimization—and ii) slow information propagation (caused
by a large number of nodes n).
In this work, we study Decentralized Stochastic Gradient Descent (D-SGD) with node subsam-
pling, i.e. when only s (s ≤ n) nodes are randomly sampled out of n nodes per iteration. We
provide the theoretical convergence rates in smooth (convex and non-convex) problems with het-
erogeneous (non-identically distributed data) functions. Our theoretical results capture the effect
of node subsampling and choice of the topology on the sampled nodes, through a metric termed
the expected consensus rate. On a number of common topologies, including ring and torus, we
theoretically and empirically demonstrate the effectiveness of such a metric.

1. Introduction

Decentralized stochastic optimization methods have advantages over their centralized counterpart
like cheap per iteration communication cost, data locality, and communication efficiency, and thus
have attracted a lot of attention. [5] introduced a convergence analysis to unify a large variety
of decentralized Stochastic Gradient Descent (SGD) methods, covering the scenarios that all n
nodes/clients actively compute gradient updates in each iteration and exchange updates via arbi-
trary communication topologies. [8] studied the convergence rate for a completely different setting,
where only one worker will be selected in each iteration for gradient update and only communicate
with another node.

However, these decentralized learning settings may not meet the requirements from the real-
world constraints: not all workers are always available in every iteration, while the case in [8]
is too extreme. As the first attempt to model the decentralized learning challenges with realistic
constraints, we consider a relaxed setting, namely decentralized learning with node sampling, in
which in each iteration, only s ≤ n nodes are randomly sampled out of n nodes for gradient update
and update synchronization.

Our main contributions are

• We propose a unified algorithmic framework to capture the realistic decentralized learning
scenarios, where only s out of n workers are sampled per iteration for gradient computa-
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tion and decentralized communication. Such framework covers synchronous and pairwise
gossip updates on time-varying network topology, as well as a large variety of decentralized
SGD methods on various communication topologies that are developed separately in various
communities.

• We provide convergence rates for the proposed framework, for smooth (convex and non-
convex) problems on heterogeneous (non-identically distributed data) and homogeneous (i.i.d.
) data settings.

• We empirically verify the tightness of our theoretical results on strongly convex functions
and explain the impact of noise and data diversity on the convergence. When the noise level
is small and node sampling is applied, random rings and random torus provide much better
convergence rates compared to fixed rings and fixed torus.

• We further identify the influence of communication topology on the convergence rate, which
can be represented by the expected consensus rate. We additionally provide a theorem with
weak assumptions (i.e. symmetry and doubly stochasticity of the mixing matrix) to measure
the expected consensus rate of various topologies, including the time-varying topologies. The
tightness of these theoretical results is empirically justified by our experiments.

2. Related Work

[5] provides a unified convergence analysis that covers a large variety of decentralized SGD meth-
ods, yet does not cover the realistic scenario of node sampling. Moreover, some works provide
convergence analysis for individual decentralized SGD methods of their choices. [8] gives the con-
vergence rate of its proposed asynchronous decentralized parallel SGD algorithm (AD-PSGD). [15]
provides a convergence rate for its SGD with a matching decomposition sampling algorithm. [3]
provides a tight bound for the FedAvg algorithm [10], and also its proposed Stochastic Controlled
Averaging (Scaffold) method. Also, [2, 9, 12] study the problem client sampling, which is orthogo-
nal to the problem we study as the impact of communication topology does not take into account.

To the best of our knowledge, while convergence rates of different algorithms have been ana-
lyzed individually, there has not been a convergence analysis that covers a large variety of decen-
tralized SGD methods which are developed separately in various communities and takes account of
node sampling. Here we provide a framework for such convergence analysis, which covers convex
and non-convex problems and also heterogeneous and iid-data settings.

3. A Unified Framework for Decentralized Learning with Client Sampling

We study the distributed stochastic optimization problem following the setting in [5]:

f! := min
x∈Rd

!
f(x) :=

1

n

n"

i=1

fi(x)

#
, (1)

where the components fi : Rd → R are distributed among n nodes and are given in the stochastic
form: fi(x) := Eξi∼Di

Fi(x, ξi), where Di denotes the distribution of ξi over parameter space Ωi

on node i. We do not make any assumptions about the distributions Di.
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Preliminaries and Assumptions We define X(t) :=
$
x
(t)
1 , . . . ,x

(t)
n

%
∈ Rd×n, and X̄(t) :=

&
x̄(t), . . . , x̄(t)

'
≡ X(t) 1

n11
⊤. Our theoretical results rely on assumptions about the smoothness

and convexity of fi, Fi, and the data’s noise and variance, which are included in the Appendix C.
The gossip averaging protocol can be compactly written in matrix notation, with N (t)

i :=

{j : w(t)
ij > 0} denoting the neighbors of node i at iteration t: X(t+1) = X(t)W (t)⇐⇒x

(t+1)
i =

(
j∈N (t)

i

w
(t)
ij x

(t)
j , where the mixing matrix W (t) ∈ [0, 1]n×n encodes the network structure at time

t and the averaging weights (nodes i and j are connected if w(t)
ij > 0). Our scheme shows great

flexibility as the mixing matrices can change over iterations and can be selected from the (changing)
distributions.

Definition 1 (Mixing matrix) A symmetric (W =W⊤) doubly stochastic (W1= 1, 1⊤W = 1⊤)
matrix W ∈ [0, 1]n×n.

3.1. Decentralized (Gossip) SGD

This section introduces the generalized decentralized SGD framework that accommodates the case
that s (s ≤ n) workers are sampled out of n workers to update gradients and communicate in each
iteration. This is adapted from the algorithm in [5].

Similar to existing works [6, 7, 14] our proposed method allows only decentralized communi-
cations. That is, the exchange of information (through gossip averaging) can only occur between
connected nodes (neighbors). The algorithm is outlined in Algorithm 1.

Algorithm 1: Decentralized SGD with Node Sampling

Input: X(0), number of sampled nodes per iteration s, stepsizes {ηt}T−1
t=0 , number of iterations

T , mixing matrix distributions W(t) for t ∈ [0, T ]
for t in 0 . . . T do

Sample s workers S(t) out of n workers
Sample W (t) ∼ W(t)

for i in S(t) do
Sample ξ

(t)
i , compute g

(t)
i := ∇Fi(x

(t)
i , ξ

(t)
i )

x
(t+ 1

2
)

i = x
(t)
i − ηtg

(t)
i ⊲ stochastic gradient updates

x
(t+1)
i :=

(
j∈N t

i
w

(t)
ij x

(t+ 1
2
)

j ⊲ gossip averaging
end

end

In each iteration in Algorithm 1, a new mixing matrix W (t) is sampled from a possibly time-
varying distribution W(t), t ∈ {0, . . . , T}. For randomized gossip averaging with a randomly
sampled mixing matrix W ∼ W it holds

EW

))XW − X̄
))2
F
≤ (1− p)

))X − X̄
))2
F
, (2)

for a value p ≥ 0 (related to the spectrum of EW⊤W ), that is, the averaging step brings the values
in the columns of X ∈ Rd×n closer to their row-wise average X̄ := X · 1

n11
⊤ in expectation [1].
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Random ring and torus After a set of s nodes S is selected, with fixed ring/torus topology, the
ring/torus remains the same at different iterations. However, with random ring/torus topology, each
possible connection has equal probability. For example, three different rings with the same S are
shown in Figure 1.
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Figure 1: 3 possible random rings when S = 1, 2, 3, 4, 5 and n = 6.

4. Theoretical Results and Empirical Justification

4.1. Theoretical Results

In this section, we introduce our convergence results and justify that it can recover the baseline [5]
for the case of s = n (i.e. w/o client sampling).

Theorem 2 For any target accuracy ε > 0 and Algorithm 1 with mixing matrices e.g. in (2), there
exists a (constant) stepsize (potentially depending on ε) such that the accuracy can be reached after
at most the following number of iterations T .
Non-Convex: Under Assumption 2 and Assumption 5, it holds 1

T+1

(T
t=0 E

))∇f(x̄(t))
))2
2
≤ ε after

T := O
*
σ̂2 + (1− s

n)ζ̂
2

sε2
+

n

s

ζ̂2
+
(M + 1) + σ̂

√
p

pε3/2
+

+
(P + 1)(M + 1)

pε

,
Lr0

iterations. If we in addition assume convexity and µ > 0,
Strongly-Convex: Similarly, it holds

(T
t=0

wt
WT

(E f(x̄(t))− f!) + µE ‖x̄(T+1) − x!‖2 ≤ ε after1

T := Õ
*

σ̄2

µsε
+ (1− s

n
)
ζ̄2

µsε
+

√
L(ζ̄ +

√
pσ̄)

µp
√
ε

-
n

s
+

n

s

L

µp
log

.
1

ε

/,

iterations, for positive weights wt and r0 := f(x0)− f! denote the initial errors.

We also show that our result recovers [5] when s = n in Appendix F.

4.2. Empirical Justification of Theoretical Results

In this section, we verify that the numerical performance of decentralized stochastic optimization al-
gorithms coincides with the rates predicted by theory, focusing on the strongly convex case for now.

1. Õ/Ω̃-notation hides constants and polylogarithmic factors.
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Figure 2: Convergence of 1
n

(n
i=1

))x(t)
i − x!

))2
2

to target accuracy ε = 10−5 for the same problem
difficulty (σ̄2 = 100, ζ̄2 = 10), and different topologies on n = 25, s = 9, 16, 25 nodes,
d = 50. Stepsizes were tuned to be the same for all experiments.

We consider a distributed least squares objective with fi(x) :=
1
2 ‖Aix− bi‖22, for fixed Hes-

sian A2
i = i2

n · Id and sample each bi ∼ N (0, ζ̄2/i2Id) for a parameter ζ̄2, which controls the simi-
larity of the functions and coincides with the parameter in Assumption 4. We control the stochastic
noise σ̄2 by adding Gaussian noise to every stochastic gradient.

Discussion Our convergence rate with convex fi(x) is:

Õ
*

σ̄2

µsε
+ (1− s

n
)
ζ̄2

µsε
+

√
L(ζ̄ +

√
pσ̄)

µp
√
ε

-
n

s
+

n

s

L

µp
log

.
1

ε

/,

When the noise level is high. We can see from Figure 2 that the difference in topology does
not have a significant influence on the convergence rate and that increasing the number of sampled
nodes reduces the number of iterations until convergence, as expected from the theoretical analysis.

Furthermore, when σ̄2 = 100, ζ̄2 = 10, the convergence rate is dominated by Õ
0

σ̄2

µsε + (1− s
n)

ζ̄2

µsε

1
,

and therefore is expected to be proportional to t(s) =
0
σ̄2

s + (1− s
n)

ζ̄2

s

1
when other parameters

remain the same. This is validated by experimental results in Figure 6 and Figure 7 in Appendix G.

When the noise level is low. Here we consider the extreme case of σ̄2 = ζ̄2 = 0, where topologies
should have a more significant influence on the convergence rate. This is illustrated by experimental
results in Figure 8 in Appendix G, where we can see that fixed ring and torus need more iterations
to reach the error ε = 10−5 compared to random ring and torus. However, random rings and torus
have similar numerical performances to the centralized topology. Therefore, we guess that fixed
ring and torus have significantly larger, i.e. worse expected consensus rate compared to random ring
and grid. We verify this hypothesis experimentally in section 5.

5. Expected Consensus Rate of Sampled Time-varying Topology

In our experiments in Figure 8 in subsection 4.2, we have seen that random ring and torus topologies
achieve similar convergence rates as centralized topology but have a much smaller communication
cost for both sub-sampled cases and all n nodes/clients update cases. While it’s always been proven
that in all n nodes/clients update cases random rings and toruses achieve a better convergence rate
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and expected consensus rate than fixed rings and toruses, in this section, we theoretically and em-
pirically prove that this also stands true in sub-sampled cases.

Recall the definition of expected consensus rate (1 − p) in (2). Here we provide a formula to
calculate (1− p) for cases with or without node samplings.

Lemma 3 (Expected Consensus Rate)
The consensus rate decrease over T steps can be bounded by:

EW

)))))X
T2

t=1

Wt − X̄

)))))

2

F

≤ |λ2(E [W TW ] )|T
))(X − X̄)

))2
F

(3)

where Wt is the mixing matrix W at step t. When T = 1,

EW

))XW − X̄
))2
F

≤ |λ2(E [W TW ] )|
))(X − X̄)

))2
F

(4)

E is taken over the distributions W ∼ W . We set the expected consensus rate (1−p) = |λ2(E [W TW ] )|.

Using Lemma 3, we further derive lemmas of consensus rate for sub-sampled centralized topol-
ogy, sub-sampled random ring topology, and sub-sampled centralized topology. We present the
proof for random ring topology in Appendix H as an example.

Theorem 4 (Expected Consensus Rate of Sub-sampled Centralized Topology) When s nodes
are randomly sampled out of n nodes each time and communicate with each other using central-
ized/random ring/random torus topology, the expected consensus rate is

1− p =

3
445

446

n−s
n−1 , with centralized topology;
1− 2s

3(n−1) , with random ring topology;

1− 4s
5n − 12s

25n(n−1) , with random torus topology.

We then experimentally validate Theorem 4. We consider the case where in each step, a set S of
s (i.e. 2 ≤ s ≤ (n−1)) workers are sampled out of n nodes and communicate with each other with
centralized, ring, or torus topology. For or random ring topology, the case where n = 25, d = 50
and the case where n = 13, d = 20 is shown in Figure 3. For 2D random torus topology, the case
where n = 100, d = 100 and the case where n = 144, d = 200 are both shown in Figure 3. For
centralized topology, the case where n = 25, d = 50 and the case where n = 13, d = 20 is shown
in Figure 5 in Appendix A.

6. Conclusion

We present a framework for the analysis of decentralized SGD methods with node sampling and
provide convergence guarantees. Our results show that with the presence of node sampling, decen-
tralized SGD methods can achieve linear speedup in the number of workers n and the convergence
rate does only weakly depend on the graph topology, the number of local steps, or the data hetero-
geneity when the noise level is high. With node sampling, the effect of those parameters becomes
more pronounced when the noise is small, and especially function diversity can hamper the conver-
gence of decentralized SGD methods.
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Figure 3: Expected consensus rate and average consensus rate of the random ring, fixed ring, ran-
dom torus, and fixed torus when sampling s(2 ≤ s < n) nodes out of n nodes during
each update. It’s easy to see that the expected consensus rate serves as a tight upper bound
for the average consensus rate, which validates the correctness of our theory.

To quantify the influence of communication topology on the convergence rate, we additionally
provide a theorem with weak assumptions (i.e. symmetry and doubly stochasticity of the mixing
matrix) to measure the expected consensus rate of various topologies, including the time-varying
topologies. The tightness of these theoretical results on the centralized, random ring, and random
torus topologies are empirically justified by our experiments. We also show that the random ring
and torus topology achieve much better consensus rates compared to their fixed counterparts.
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Appendix: Decentralized Stochastic Optimization with Client Sampling

The appendix is organized as follows: In Section A In Section B, Algorithm 1 is rewritten in
matrix notation as Algorithm 2 and gives a sketch of the proof using this new notation. In Section C
we state a few auxiliary technical lemmas, before giving all details for the proof of the theorem in
Sections D and E. We also provide a discussion to show that our results recover the results of [5] in
F. We conclude the appendix in Section G by presenting additional numerical results that confirm
the tightness of our theoretical analysis in the strongly convex case.

We also provide proof of the expected consensus rate formula, i.e. Theorem 4 for random ring
topology. The expected consensus rate formula for centralized and random torus topologies follows
similarly.

Appendix A. Additional experiments for consensus rate

we validate our theoretical expected consensus rate derived in section 5 on a few examples, including
fixed full/broken ring, alternating full/broken ring, and centralized.

Here we introduce our experimental settings:

• Initialization. X is initialized using normal initialization.

• Notations: We denote the initial X as X0, and X0
7T

t=1(Wt) as Xn. In other words, Xn

denotes the X0 after T steps of consensus decrease.

• One step consensus rate. In experiments, we calculate the one-step consensus rates as
‖XWt−X̄‖2

F

‖(X−X̄)‖2

F

. Lemma 3, Equation 4 can also be written as
E‖XtWt−X̄‖2

F

E‖(X−X̄)‖2

F

≤ (1 − p) =

|λ2(E [W T
t Wt] )|. In the following section, we compare the experimental one-step consensus

rate with the expected consensus rate (1− p).

• Average consensus rate. Equation 3 in Lemma 3 can also be written as

L
8999:

E
)))X

7L
l=1(Wt)− X̄

)))
2

F

E
))(X − X̄)

))2
F

≤ (1− p) = |λ2(E [W T
t Wt] )|.

Therefore, we calculate the average consensus rate as
T
;

E‖X !T
t=1(Wt)−X̄‖2

F

E‖(X−X̄)‖2

F

, and compare it

with the expected consensus rate (1− p).

• Selection of T . In each of our example, after a number of steps U , Xt = X̄ , the consensus

distance
))Xt − X̄

)) =
))XtWt − X̄

)) = 0, (t ≥ U), and ‖Xt−X̄‖
‖XtWt−X̄‖ = 1. Therefore, when

calculating the average consensus rate, we set 3
4U ≤ T ≤ U for the accuracy.

For all examples, we calculate the theoretical expected consensus rate (1 − p) using Lemma
Theorem 3, Equation 4, and the experimental average consensus rate. We further compare the
average consensus rate and proved that it is close to and smaller than the corresponding expected
consensus rate, as shown in Table 1.
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topology expected consensus rate average consensus rate
alternating full rings 0.33 0.22
fixed full ring 0.44 0.43
alternating broken rings 0.78 0.68
fixed broken ring 1 0.94

Table 1: Comparison between expected consensus rate and average consensus rate for examples.

Two Alternating Full Rings and Broken Rings. Here we show that Lemma Theorem 3 cap-
tures the improvement brought by alternating between two different full rings or alternating broken
rings over their fixed counterparts in Table Table 1. Alternating full rings indicates alternating be-
tween topology 4(a) and 4(a) with equal probability, while fixed full ring indicates sticking to 4(a).
Similarly, alternating broken rings indicates alternating between topology 4(c) and 4(c) with equal
probability, while fixed broken ring indicates sticking to topology 4(c).

Furthermore, with the random ring, a bigger s leads to a better consensus rate, yet with fixed
rings, a bigger s doesn’t necessarily lead to a better consensus rate. We explain that for fixed rings
when s is small, there are more possible S thus more chances for different nodes to have direct
communication.

(a) Full ring 1 (b) Full ring 2 (c) Broken ring 1 (d) Broken ring 2

Figure 4: Topologies of full and broken rings

Figure 5: Expected consensus rate and average consensus rate of centralized topology when sam-
pling s(2 ≤ s < n) nodes out of n nodes each round.
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Appendix B. Proof of Theorem 2

B.1. Matrix Notation for Decentralized SGD

We rewrite the Algorithm with node sampling using the following matrix notation, extending the
definition used in the main text:

X(t) :=
$
x
(t)
1 , . . . ,x(t)

n

%
∈ Rd×n,

X̄(t) :=
$
x̄(t), . . . , x̄(t)

%
∈ Rd×n,

∂F (X(t), ξ(t),S(t)) :=
$
. . . , 0,∇Fi1(x

(t)
i1
, ξ(t)n ), 0, . . . , 0,∇Fi2(x

(t)
i2
, ξ(t)n ), 0, . . .

%
∈ Rd×n,

∂f(X(t),S(t)) :=
$
. . . , 0,∇fi1(x

(t)
i1
), 0, . . . , 0,∇fi2(x

(t)
i2
), 0, . . . , 0,∇fi3(x

(t)
i3
), 0, . . .

%
∈ Rd×n.

(5)

where nonzero entries exist only for i ∈ S .

Algorithm 2: Decentralized SGD with Node Sampling

Input: X(0), number of sampled nodes per iteration s, stepsizes {ηt}T−1
t=0 , number of iterations

T , mixing matrix distributions W(t) for t ∈ [0, T ]
for t in 0 . . . T do

Sample s workers S(t) out of n workers
Sample W (t) ∼ W(t)

X(t+ 1
2
) = X(t) − ηt∂F (X(t), ξ(t),S(t)) ⊲ stochastic gradient updates

X(t+1) = X(t+ 1
2
)W (t) ⊲ gossip averaging

end

B.2. Proof Sketch—Combining Consensus Progress (Gossip) and Optimization Progress
(SGD)

In this section, we sketch the proof for Theorem 2. As a first step in the proof, we will derive an
upper bound on the expected progress, measured as distance to the optimum, rt = E

))x̄(t) − x!
))2

for the convex cases, and function suboptimality rt = E f(x̄(t))−f! in the non-convex case. These
bounds will have the following form:

rt+1 ≤ (1− aηt)rt − bηtet + cη2t + ηtBΞt , (6)

with Ξt =
1
n Et

(n
i=1

)))x(t)
i − x̄(t)

)))
2

and

• for strongly convex case rt = E
))x̄(t) − x!

))2, et = f(x̄(t))− f(x!), a = µ
2 , b = 1, c = σ̄2

n ,
B = 3L (Lemma 16);

• for the non-convex case rt = E f(x̄(t)) − f!, et =
))∇f(x̄(t))

))2
2
, a = 0, b = 1

4 , c = Lσ̂2

n ,
B = L2 (Lemma 19).
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We will then bound the consensus distance Ξt as detailed in Section D; Lemmas 17 and 20 by a
recursion of the form

Ξt ≤
0
1− p

2

1
Ξt−1 +

p

64
Ξt−1 +Dη2t−1et−1 +Aη2t−1, (7)

for convex cases A = s
n(4σ̄

2 + 9
p ζ̄

2) , D = s
n
34
p L (Lemma 17) and for non-convex case A =0

σ̂2 + 2(3p +M)ζ̂2
1

, D = 2P n
s (

3
p +M) (Lemma 20).

Next, we simplify this recursive equation (7) using Lemma 21 and some positive weights
{wt}t≥0 (see Lemma 21 for the definition of the weights wt) to

B ·
T"

t=0

wtΞt ≤ b

2
·

T"

t=0

wtet + 64AB
1

p
·

T"

t=0

wtη
2
t , (8)

where again Ξt =
1
n Et

(n
i=1

)))x(t)
i − x̄(t)

)))
2
.

Then we combine (6) and (8). Firstly rearranging (6), multiplying by wt and dividing by ηt, we
get

bwtet ≤
(1− aηt)

ηt
wtrt −

wt

ηt
rt+1 + cwtηt +BwtΞt ,

Now summing up and dividing by WT =
(T

t=0wt,

1

WT

T"

t=0

bwtet ≤
1

WT

T"

t=0

.
(1− aηt)wt

ηt
rt −

wt

ηt
rt+1

/
+

c

WT

T"

t=0

wtηt +
1

WT
B

T"

t=0

wtΞt

(8)
≤ 1

WT

T"

t=0

.
(1− aηt)wt

ηt
rt −

wt

ηt
rt+1

/
+

c

WT

T"

t=0

wtηt +
1

2WT

T"

t=0

wtet +
64BA

WT

τ

p

T"

t=0

wtη
2
t ,

Therefore,

1

2WT

T"

t=0

bwtet ≤
1

WT

T"

t=0

.
(1− aηt)wt

ηt
rt −

wt

ηt
rt+1

/
+

c

WT

T"

t=0

wtηt +
64BA

WT

τ

p

T"

t=0

wtη
2
t

(9)

Finally, to solve this main recursion (9) and obtain the final convergence rates of Theorem 2, we
will use the following Lemmas, which will be presented in Section E:

• Lemma 22 for strongly convex case when a > 0.

• Lemma 23 for non-convex cases as a = 0.

B.3. How the Proof of Theorem 2 Follows

In this section we summarize how the proof of Theorem 2 follows from the results that we establish
in Sections D and E below. Note that for convex cases we require both fi and Fi to be convex as in
Lemma 17.

12
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Proof [Proof of Theorem 2, strongly convex case] The proof follows by applying the result of
Lemma 22 to the equation (9) (obtained with Lemmas 16, 17, 21) with rt = E

))x̄(t) − x!
))2,

et = f(x̄(t)) − f(x!), a = µs
2n , b =

0
3
2
s
n − 2s2

3n2

1
, c = s

n2 (3σ̄
2 + 8(1 − s

n)ζ̄
2), d = 10L

p , A =

s
n(4σ̄

2 + 9
p ζ̄

2), B =
0

9s
4n + s2

6n2

1
L, D = s

n
34
p L. It is only left to show that chosen weights wt

stepsizes ηt in Lemma 22 satisfy conditions of Lemmas 16, 17, 21. It is shown in Proposition 14
that {ηt} is 4

p -slow decreasing and {wt} is 8
p -slow increasing (condition in Lemma 21). Moreover

the stepsize ηt := η < 1
d is smaller than conditions on ηt in Lemmas 16, 17, 21.

Proof [Proof of Theorem 2, non-convex case] applying the result of Lemma 23 to the equation (9)
(obtained with Lemmas 19, 20, 21) with rt = E f(x̄(t)) − f!, s

n

))∇f(x̄(t))
))2
2
, a = 0, b = 1

4 ,

c = L s
n
σ̂2

n + L s2

n2
2
s (1 −

s
n)ζ̂

2, d = 32L

-
2max{P, 1}

0
6τ
p +M

1
τ
p , A =

0
σ̂2 + 2(3p +M)ζ̂2

1
,

B = s
nL

2, D = 2P n
s (

3
p +M). Weights wt stepsizes ηt chosen in Lemma 23 satisfy conditions of

Lemmas 19, 20, 21, as shown in Proposition 14.

Appendix C. Technical Preliminaries

C.1. Assumptions

Assumptions on the objective function f For all our theoretical results we assume that f is
smooth.

Assumption 1 (L-smoothness) Each function Fi(x, ξ) : Rd×Ωi → R, i ∈ [n] is differentiable for
each ξ ∈ supp(Di) and there exists a constant L ≥ 0 such that for each x,y ∈ Rd, ξ ∈ supp(Di):

‖∇Fi(y, ξ)−∇Fi(x, ξ)‖ ≤ L ‖x− y‖ . (10)

Sometimes it will be enough to just assume smoothness of fi instead.

Assumption 2 (L-smoothness) Each function fi(x) : Rd → R, i ∈ [n] is differentiable and there
exists a constant L ≥ 0 such that for each x,y ∈ Rd:

‖∇fi(y)−∇fi(x)‖ ≤ L ‖x− y‖ . (11)

Remark 5 Clearly, Assumption 2 is more general than Assumption 1. Moreover, for convex F (y, ξ)
Assumption 1 implies Assumption 2 [11].

For some of the derived results, we need in addition convexity. Specifically, µ-convexity for a
parameter µ ≥ 0.

Assumption 3 (µ-convexity) Each function fi : Rd → R, i ∈ [n] is µ-(strongly) convex for con-
stant µ ≥ 0. That is, for all x,y ∈ Rd:

fi(x)− fi(y) +
µ

2
‖x− y‖22 ≤ 〈∇fi(x),x− y〉 . (12)

13
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Assumptions on the noise We now formulate our assumptions on the noise.

Assumption 4 (Bounded noise at the optimum) Let x! = argmin f(x) and define

ζ2i := ‖∇fi(x
!)‖22 , ζ̄2 := 1

n

(n
i=1 ζ

2
i . (13)

Further, define

σ2
i := Eξi ‖∇Fi(x

!, ξi)−∇fi(x
!)‖2

2 , (14)

and similarly as above, σ̄2 := 1
n

(n
i=1 σ

2
i . We assume that σ̄2 and ζ̄2 are bounded.

Here, σ̄2 measures the noise level, and ζ̄2 the diversity of the functions fi. If all functions are
identical, fi = fj , for all i, j, then ζ̄2 = 0.

For the non-convex case—where a unique x! does not necessarily exist—we generalize As-
sumption 4 to:

Assumption 5 (Bounded noise) We assume that there exists constants P , ζ̂ such that ∀x ∈ Rd,
1
n

(n
i=1 ‖∇fi(x)‖22 ≤ ζ̂2 + P ‖∇f(x)‖22 , (15)

and constants M , σ̂ such that ∀x1, . . .xn ∈ Rd

Ψ ≤ σ̂2 + M
n

(n
i=1 ‖∇fi(xi)‖22 , (16)

where Ψ := 1
n

(n
i=1 Eξi ‖∇Fi(xi, ξi)−∇fi(xi)‖2

2.

We see that Assumption 4 is weaker than Assumption 5 as it only needs ho hold for xi = x!.

C.2. Implications of the assumptions

Proposition 6 One step of gossip averaging with the mixing matrix W (def. 1) preserves the aver-
age of the iterates, i.e.

XW
11⊤

n
= X

11⊤

n
.

Proposition 7 (Implications of the smoothness Assumption 1) If for functions Fi(x, ξ) Assump-
tion 1 holds, then it also holds that

Fi(x, ξ) ≤ Fi(y, ξ) + 〈∇Fi(y, ξ),x− y〉+ L

2
‖x− y‖22 , ∀x,y ∈ Rd, ξ ∈ Ωi (17)

If functions fi(x) = Eξ Fi(x, ξ), then

fi(x) ≤ fi(y) + 〈∇fi(y),x− y〉+ L

2
‖x− y‖22 , ∀x,y ∈ Rd (18)

Moreover, if in addition, Fi are convex functions, then

‖∇fi(x)−∇fi(y)‖2 ≤ L ‖x− y‖2 , ∀x,y ∈ Rd, (19)

‖∇g(x)−∇g(y)‖22 ≤ 2L (g(x)− g(y)− 〈x− y,∇g(y)〉) , ∀x,y ∈ Rd, (20)

where g(x) is either Fi or fi.

Proposition 8 (Implications of the smoothness Assumption 2) From Assumption 2 it follows that

fi(x) ≤ fi(y) + 〈∇fi(y),x− y〉+ L

2
‖x− y‖22 , ∀x,y ∈ Rd . (21)

14
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C.3. Useful Inequalities

Lemma 9 For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd

)))))

n"

i=1

ai

)))))

2

≤ n

n"

i=1

‖ai‖2 . (22)

Lemma 10 For given two vectors a,b ∈ Rd

2 〈a,b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2 , ∀γ > 0 . (23)

Lemma 11 For given two vectors a,b ∈ Rd

‖a+ b‖2 ≤ (1 + α) ‖a‖2 + (1 + α−1) ‖b‖2 , ∀α > 0 . (24)

This inequality also holds for the sum of two matrices A,B ∈ Rn×d in the Frobenius norm.

Remark 12 For A ∈ Rd×n, B ∈ Rn×n

‖AB‖F ≤ ‖A‖F ‖B‖2 . (25)

C.4. τ -slow Sequences

Definition 13 (τ -slow sequences [13]) The sequence {at}t≥0 of positive values is τ -slow decreas-
ing for parameter τ > 0 if

at+1 ≤ at, ∀t ≥ 0 and, at+1

.
1 +

1

2τ

/
≥ at, ∀t ≥ 0 .

The sequence {at}t≥0 is τ -slow increasing if {a−1
t }t≥0 is τ -slow decreasing.

Proposition 14 (Examples)

1. The sequence {η2t }t≥0 with ηt =
a

b+t , b ≥
32
p is 4

p -slow decreasing.

2. The sequence of constant stepsizes {η2t }t≥0 with ηt = η is τ -slow decreasing for any τ .

Appendix D. Descent Lemmas and Consensus Recursions

In this section, according to our proof sketch we derive descent (6) and consensus recursions (8) for
both convex and also non-convex cases.

D.1. Convex Cases

We require both fi and Fi to be convex. We do not need Assumption 3 to hold for all x,y ∈ Rd and
we could weaken it to hold only for x = x! and for all y ∈ Rd.

15
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Proposition 15 (Mini-batch variance with node sampling) Let functions Fi(x, ξ) , i ∈ [n] be
L-smooth (Assumption 1) with bounded noise at the optimum (Assumption 4). Then for any xi ∈
Rd, i ∈ [n] and x̄ := 1

n

(n
i=1 xi it holds

ES(t),ξ
(t)
i

<

=
)))))
"

i∈S
∇fi(x

(t)
i )−

"

i∈S
∇Fi(x

(t)
i , ξ

(t)
i )

)))))

2
>

?
2

≤ 3s
0
L2 ‖xi − x̄‖2 + 2L (f(x̄)− f(x!)) + σ2

i

1
.

Proof

ES(t),ξ
(t)
i

)))))
"

i∈S
(∇fi(xi)−∇Fi(xi, ξi))

)))))

2

= ES(t),ξ
(t)
i

"
i∈S

‖∇fi(xi)−∇Fi(xi, ξi)‖2

= sE
i(t),ξ

(t)
i

‖∇fi(xi)−∇Fi(xi, ξi)‖2

≤ 3sE
i(t),ξ

(t)
i

0)))∇Fi(x
(t)
i , ξ

(t)
i )−∇Fi(x̄, ξi)

)))
2

+ ‖∇Fi(x̄, ξi)−∇Fi(x
!, ξi)‖2 + ‖∇Fi(x

!, ξi)−∇fi(x
!)‖2

1

(10),(20),(14)
≤ 3s

.
L2

)))x(t)
i − x̄

)))
2
+ 2L

0
f(x̄(t))− f(x!)

1
+ σ̄2

/

where we used that E ‖Y − a‖2 = E ‖Y ‖2 − ‖a‖2 ≤ E ‖Y ‖2 if a = EY .

Lemma 16 (Descent lemma for convex cases) Under Assumptions 1, 3, 4 and Equation 2, the
averages x̄(t) := 1

n

(n
i=1 x

(t)
i of the iterates of Algorithm with the stepsize ηt ≤ 1

12L satisfy

E
ξ
(t)
1 ,...,ξ

(t)
n

‖x̄(t+1) − x!‖2 ≤
0
1− µs

2n
ηt

1)))x̄(t) − x!
)))
2
+ η2t

s

n2
(3σ̄2 + 8(1− s

n
)ζ̄2)

− ηt

.
3

2

s

n
− 2s2

3n2

/0
f(x̄(t))− f!

1

+ ηt

.
9s

4n
+

s2

6n2

/
LE

i(t),ξ
(t)
i

)))x̄(t) − x
(t)
i

)))
2
,

(26)

Proof Because all mixing matrices preserve the average (Proposition 6), we have

E
ξ
(t)
i

)))x̄(t+1) − x!
)))
2

= ES(t),ξ
(t)
i

)))))x̄
(t) − x! − ηt

n

"

i∈S
∇fi(x

(t)
i )

))))) +
ηt
n

"

i∈S
∇fi(x

(t)
i )− ηt

n

"

i∈S
∇Fi(x

(t)
i , ξ

(t)
i )2

+ 2
ηt
n
ES(t),ξ

(t)
i

@A
x̄(t) − x! − ηt

n

"

i∈S
∇fi(x

(t)
i ),

"

i∈S
∇fi(x

(t)
i )−

"

i∈S
∇Fi(x

(t)
i , ξ

(t)
i )

BC

where i ∈ [n]. The last term is zero in expectation, as E
ξ
(t)
i

∇Fi(x
(t)
i , ξ

(t)
i ) = ∇fi(x

(t)
i ). The

second term is estimated using Proposition 15.

16
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The first term can be written as:

ES(t),ξ
(t)
i

<

=
)))))x̄

(t) − x! − ηt
n

"

i∈S
∇fi(x

(t)
i )

)))))

2
>

?

=
)))x̄(t) − x!

)))
2
+

η2t
n2

ES(t),ξ
(t)
i

)))))
"

i∈S
∇fi(x

(t)
i )

)))))

2

D EF G
=:T1

− 1

n
2ηtES(t),ξ

(t)
i

A
x̄(t) − x!,

"

i∈S
∇fi(x

(t)
i )

B

D EF G
=:T2

.

We can estimate

T1 ≤ s2ES(t),ξ
(t)
i

)))(∇fi(x
(t)
i )−∇fi(x̄

(t)) +∇fi(x̄
(t))−∇fi(x

!) +∇fi(x
!))

)))
2

(22),(24)
≤ ES(t),ξ

(t)
i

<

=2s2
)))∇fi(x

(t)
i )−∇fi(x̄

(t))
)))
2
+ 4s2

)))∇fi(x̄
(t))−∇fi(x

!)
)))
2
+ 4

)))))
"

i∈S
∇fi(x

!)

)))))

2
>

?

(19),(20)
≤ s2

.
2L2Ei(t)

)))x(t)
i − x̄(t)

)))
2
+ 8L

0
f(x̄(t))− f(x!)

1/
+ 4

)))))
"

i∈S
∇fi(x

!)

)))))

2

Using the property of sampling without replacement, we have

Er−1

)))))
1

S

"

i∈S
∇fi(x)

)))))

2

≤ 2(1− S
N )

1

SN

"

i

‖∇fi(x)‖2 + Er−1 ‖∇f(x)‖2

where ∇f(x) = E 1
S

(
i∈S ∇fi(x) .

4
1

N2

)))))
"

i∈S
∇fi(x

!)

)))))

2

≤ S2

N2
8(1− S

N )
1

SN

"

i

‖∇fi(x
!)‖2 + 4Er−1 ‖∇f(x!)‖2 = 8

S
N2

(1− S
N )ζ̄2

And for the remaining T2 term:

− 1

ηt
ES(t),ξ

(t)
i

T2 = −2sE
i(t),ξ

(t)
i

$H
x̄(t) − x

(t)
i ,∇fi(x

(t)
i )

I
+

H
x
(t)
i − x!,∇fi(x

(t)
i )

I%

(18),(12)
≤ −2sE

i(t),ξ
(t)
i

!
fi(x̄

(t))− fi(x
(t)
i )− L

2

)))x̄(t) − x
(t)
i

)))
2
+ fi(x

(t)
i )− fi(x

!) +
µ

2

)))x(t)
i − x!

)))
2
#

(24)
≤ s

!
−2

0
f(x̄(t))− f(x!)

1
+ (L+ µ)E

i(t),ξ
(t)
i

)))x̄(t) − x
(t)
i

)))
2
− µ

2

)))x̄(t) − x!
)))
2
#
,

Putting everything together, and using that µ ≤ L and ηt ≤ 1
12L we get the statement of the lemma.
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Lemma 17 (Recursion for consensus distance) Under Assumptions 1, 3, 4 and Equation 2, if in
addition functions Fi are convex and if stepsizes ηt ≤ p

10L , then

Ξt ≤
0
1− p

2
+

s

n

p

4

1
Ξt−1 +

s

n

34

p
Lη2t−1 E

0
f(x̄(t−1))− f(x!)

1
+

s

n
(4σ̄2 +

9

p
ζ̄2)η2t−1

where Ξt =
1
n E

(n
i=1

)))x(t)
i − x̄(t)

)))
2

is a consensus distance.

Proof Unrolling X(t) up to X(t−1) using lines 3–4 of the Algorithm 2,

nΞt = E
)))X(t−1)W (t−1) − ηt−1∂F (X(t−1), ξ(t−1),S(t−1))W (t−1) − (X̄(t−1) − ηt−1∂F̄ (X(t−1), ξ(t−1),S(t−1)))

)))
2

F

= E
)))X(t−1)W (t−1) − X̄(t−1) − ηt−1(∂f(X

(t−1),S(t−1))W (t−1) − ∂f̄(X(t−1),S(t−1)))
)))
2

F

+ η2t−1 E
JJJ
JJJ
0
∂F (X(t−1), ξ(t−1),S(t−1))− ∂f(X(t−1),S(t−1))

1
W (t−1)

− (∂F̄ (X(t−1), ξ(t−1),S(t−1))− ∂f̄(X(t−1),S(t−1)))
JJJ
JJJ
2

F

where we used that E ∂F (X(t−1), ξ(t−1),S(t−1)) = ∂f(X(t−1),S(t−1)) and that ξ(t−1) is indepen-
dent of the rest.
Taking β = p

2 and using (2) to bound the first term we get that

nΞt ≤
0
1 +

p

2

1
(1− p)E

)))X(t−1) − X̄(t−1)
)))
2

F
+

3

p
η2t−1 E

)))∂f(X(t−1),S(t−1))W (t−1) − ∂f̄(X(t−1),S(t−1))
)))
2

F

+ η2t−1 E
JJJ
JJJ
0
∂F (X(t−1), ξ(t−1),S(t−1))− ∂f(X(t−1),S(t−1))

1
W (t−1)

− (∂F̄ (X(t−1), ξ(t−1),S(t−1))− ∂f̄(X(t−1),S(t−1)))
JJJ
JJJ
2

F

≤
0
1− p

2

1
E
)))X(t−1) − X̄(t−1)

)))
2

F
+

3

p
η2t−1 E

)))∂f(X(t−1),S(t−1))
)))
2

FD EF G
:=T1

+ η2t−1 E
)))∂F (X(t−1), ξ(t−1),S(t−1))− ∂f(X(t−1),S(t−1))

)))
2

FD EF G
:=T2

,

Estimating separately the last two terms, and using the notation ±a = a− a = 0 ∀a,

T1 = E
)))∂f(X(t−1),S(t−1))± ∂f(X̄(t−1),S(t−1))± ∂f(X!,S(t−1))

)))
2

F

= 3s

.
Ei

)))
0
∇fi(x

(t−1)
i )−∇fi(x̄

(t−1))
1)))

2

2
+ Ei

)))
0
∇fi(x̄

(t−1)
i )−∇fi(x

!)
1)))

2

2
+ Ei ‖∇fi(x

!)‖22
2

2

/

(10),(20),(13)
≤ 3s

.
L2 Ei

)))x(t−1)
i − x̄(t−1)

)))
2

2
+ 2LEi

0
fi(x̄

(t−1))− fi(x
!)
1
+ ζ̄2

/

18
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T2 ≤ 4ES

!"

i∈S

)))
0
∇Fi(x

(t−1)
i , ξ(t−1)

n )−∇Fi(x̄
(t−1), ξ(t−1)

n ) +∇fi(x
(t−1)
i )−∇fi(x̄

(t−1)), i(t−1))
1)))

2

2

+
"

i∈S

)))
0
∇Fi(x̄

(t−1), ξ(t−1)
n )−∇Fi(x

!, ξ(t−1)
n )

1)))
2

2
+
"

i∈S

)))
0
∇fi(x̄

(t−1))−∇fi(x
!)
1)))

2

2

+
"

i∈S

)))
0
∇Fi(x

!, ξ(t−1)
n )−∇fi(x

!)
1)))

2

2

#

(22),(20)
≤ 4s

.
4L2 E

)))x(t−1)
i − x̄(t−1)

)))
2

2
+ 4LE

0
fi(x̄

(t−1))− fi(x
!)
1
+ σ̄2

/

Putting back estimates for T1 and T2and using that ηt ≤ p
10L we arrive to the statement of the

lemma.

D.2. Non-convex case

Here we derive descent recursive equation (6) and recursion for consensus distance (7) for the non-
convex case.

Proposition 18 (Mini-batch variance with node sampling) Let functions Fi(x, ξ) , i ∈ [n] be
L-smooth (Assumption 1) with bounded noise as in Assumption 5. Then for any xi ∈ Rd, i ∈ [n]
and x̄ := 1

n

(n
i=1 xi it holds

Et+1

)))))
1

n

"

i∈S

0
∇Fi(x

(t)
i , ξ

(t)
i )−∇fi(x

(t)
i )

1)))))

2

2

≤ s

n

*
σ̂2

n
+

2M

n2
L2

n"

i=1

)))x(t)
i − x̄(t)

)))
2
+

2M

n

)))∇f(x̄(t))
)))

,

(27)

Proof

Et+1

)))))
1

n

"

i∈S

0
∇Fi(x

(t)
i , ξ

(t)
i )−∇fi(x

(t)
i )

1)))))

2

2

(16)
≤ s

n

*
σ̂2

n
+

M

n2

n"

i=1

)))∇f(x
(t)
i )±∇f(x̄(t))

)))
2
,

(22)
≤ s

n

*
σ̂2

n
+ 2

M

n2

n"

i=1

)))∇f(x
(t)
i )−∇f(x̄(t))

)))
2
+ 2

M

n2

n"

i=1

)))∇f(x̄(t))
)))
2

2

,

(11)
≤ s

n

*
σ̂2

n
+

2M

n2
L2

n"

i=1

)))x(t)
i − x̄(t)

)))
2
+

2M

n

)))∇f(x̄(t))
)))
2

2

,

Lemma 19 (Descent lemma for non-convex case) Under Assumptions 2, 5 and Equation 2, the
averages x̄(t) := 1

n

(n
i=1 x

(t)
i of the iterates of Algorithm 1 with the constant stepsize η ≤ 1

4L(M+1+2p)
satisfy

Et+1 f(x̄
(t+1))

≤ f(x̄(t)) +
s

n

ηL2

n

n"

i=1

)))x(t)
i − x̄(t)

)))
2

2
− s

n

η

4

)))∇f(x̄(t))
)))
2
+ Lη2

s

n

σ̂2

n
+ Lη2

s2

n2

2

s
(1− s

n
)ζ̂2

(28)
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Proof Because all mixing matrices preserve the average (Proposition 6) and function f is L-smooth,
we have

Et+1 f(x̄
(t+1)) = Et+1 f

*
x̄(t) − η

n

"

i∈S
∇Fi(x

(t)
i , ξ

(t)
i )

,

≤ f(x̄(t))− Et+1

A
∇f(x̄(t)),

η

n

"

i∈S
∇Fi(x

(t)
i , ξ

(t)
i )

B

D EF G
:=T1

+Et+1
L

2
η2

)))))
1

n

"

i∈S
∇Fi(x

(t)
i , ξ

(t)
i )

)))))

2

2D EF G
:=T2

To estimate the second term, we add and subtract
(

i∈S ∇fi(x̄
(t)).

T1 ≤ Et+1 −η
s

n

)))∇f(x̄(t))
)))
2

2
+

η

2

s

n

)))∇f(x̄(t))
)))
2

2
+

η

2n

s

n

n"

i=1

)))
0
∇fi(x̄

(t))−∇fi(x
(t)
i )

1)))
2

2

(23),γ=1;(22)
≤ −η

2

s

n

)))∇f(x̄(t))
)))
2
+

η

2n

s

n
L2

n"

i=1

)))x̄(t) − x
(t)
i

)))
2

2

For the last term, add and subtract 1
n

(
i∈S ∇fi(x

(t)
i ),

T2 = Et+1

)))))
1

n

"

i∈S

0
∇Fi(x

(t)
i , ξ

(t)
i )−∇fi(x

(t)
i )

1)))))

2

2

+ Et+1

)))))
1

n

"

i∈S
∇fi(x

(t)
i )

)))))

2

2

Proposition 18
≤ s

n

*
σ̂2

n
+

2M

n2
L2

n"

i=1

)))x(t)
i − x̄(t)

)))
2
+

2M

n

)))∇f(x̄(t))
)))
2

2

,
+

s2

n2
Et+1

)))))
1

s

"

i∈S
∇fi(x

(t)
i )

)))))

2

2D EF G
:=T3

The inequality derived from sampling from replacement property (D.1) for the convex case only
holds when x is independent of i. However, x(t)

i in T3 is dependent on i. We therefore transform T3

to Et+1

))1
s

(
i∈S ∇fi(x̄)

))2
2
, where x̄(t) is independent on i:

T3 =

)))))
1

s

"

i∈S

0
∇fi(x

(t)
i )− fi(x̄

(t))
1
+

1

s

"

i∈S
∇fi(x̄

(t))

)))))

2

2

(24)
≤ 2E

)))))
1

s

"

i∈S

0
∇fi(x

(t)
i )− fi(x̄

(t))
1)))))

2

2D EF G
:=T4

+2E

)))))
1

s

"

i∈S
∇fi(x̄

(t))

)))))

2

2D EF G
:=T5

T4

(22)
≤ ES

1

s2
s
"

i∈S

)))
0
∇fi(x

(t)
i )− fi(x̄

(t))
1)))

2

2

(11)
≤ 1

n
L2

n"

i=1

)))x(t)
i − x̄(t)

)))
2

2
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Using sampling without replacement,

T5 = E

)))))
1

s

"

i∈S
∇fi(x̄

(t))−∇f(x̄(t)) +∇f(x̄(t))

)))))

2

2

≤ E
.
1− s− 1

n− 1

/ K
1
n

(n
i=1∇fi(x̄

(t))2
L
−∇f(x̄(t))2

s
+
)))∇f(x̄(t))

)))
2

(15)
≤ E

2

s

0
1− s

n

1.
ζ2 + P

)))∇f(x̄(t))
)))
2

2

/
+
)))∇f(x̄(t))

)))
2

=
2

s

0
1− s

n

1
ζ2 +

.
2

s
(1− s

n
)P + 1

/)))∇f(x̄(t))
)))
2

2

Combining this,

T2 ≤
s

n

*
σ̂2

n
+

2M

n2
L2

n"

i=1

)))x(t)
i − x̄(t)

)))
2
+

2M

n

)))∇f(x̄(t))
)))

,

+
s2

n2

*
2

n
L2

n"

i=1

)))x(t)
i − x̄(t)

)))
2

2
+

4

s

0
1− s

n

1
ζ2 + 2

.
2

s
(1− s

n
)P + 1

/)))∇f(x̄(t))
)))
2

2

,

When s = n, the first term becomes
.

σ̂2

n + 2M
n2 L

2
(n

i=1

)))x(t)
i − x̄(t)

)))
2
+ 2M

n

))∇f(x̄(t))
))
/

, the

second term becomes 2
nL

2
(n

i=1

)))x(t)
i − x̄(t)

)))
2

2
, the third term becomes 0, the last term becomes

2
))∇f(x̄(t))

))2
2
. Therefore, the T2 for s = n case in [5] is recovered.

When s
n = 1, T1 for s = n case in [5] is also recovered.

Putting back estimations and using that η ≤ 1
4L(M+1+2p) we arrive to the statement of this lemma.

Lemma 20 (Recursion for consensus distance) Under Assumptions 2, 5 and Equation 2, if in
addition functions Fi are convex and if stepsizes ηt ≤ p

2L

M
1

2(3+pM) , then

Ξt ≤
0
1− p

4

1
EΞt−1 + 2P (1− p)(

3

p
+M)η2t−1

)))∇f(x̄(t−1))
)))
2

2
+ (1− p)

.
σ̂2 + 2(

3

p
+M)ζ̂2

/
η2t−1

(29)

where Ξt =
1
n E

(n
i=1

)))x(t)
i − x̄(t)

)))
2

is a consensus distance.

Proof Using matrix notation (5), for t ≥ 1, nΞt = E
))X(t) − X̄(t)

))2
F

. Unrolling X(t) up to X(t−1)

using lines 3–4 of the Algorithm 2,

nΞt = E
)))X(t−1)W (t−1) − X̄(t−1) − ηt−1(∂f(X

(t−1),S(t−1))W (t−1) − ∂f̄(X(t−1),S(t−1)))
)))
2

F

+ η2t−1 E

JJJJJ

JJJJJ

0
∂F (X(t−1), ξ(t−1),S(t−1))− ∂f(X(t−1),S(t−1))

1
W (t−1)

− (∂F̄ (X(t−1), ξ(t−1),S(t−1))− ∂f̄(X(t−1),S(t−1)))

JJJJJ

JJJJJ

2

F
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Taking β = p
2 , we then have 1 + 1

β < 3
p , further using (2) to bound the first term we get that

nΞt ≤
0
1 +

p

2

1
(1− p)E

)))X(t−1) − X̄(t−1)
)))
2

F
+

3

p
η2t−1 E

)))∂f(X(t−1))
)))
2

F

+ η2t−1 E
)))∂F (X(t−1), ξ(t−1))− ∂f(X(t−1))
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2

F

≤
0
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1
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)))X(t−1) − X̄(t−1)

)))
2

F
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3

p
η2t−1 E

)))∂f(X(t−1))
)))
2

FD EF G
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+ η2t−1 E
)))∂F (X(t−1), ξ(t−1))− ∂f(X(t−1))

)))
2

FD EF G
:=T2

,

where we used that
)))X(t)W −X

(t)
))) =

))X(t)(W − 1
n11

⊤)
)) ≤

))X(t)
)) from [4].

From Assumption 5, T2 =
(n

i=1 Eξi ‖∇Fi(xi, ξi)−∇fi(xi)‖2
2 ≤ nσ̂2 +M

(n
i=1 ‖∇fi(xi)‖22.

Estimating T ,

T
(24)
≤ 2

)))∂f(X(t−1))− ∂f(X̄(t−1))
)))
2

F
+ 2

)))∂f(X̄(t−1))
)))
2

F

(11),(15)
≤ 2L2

)))X(t−1) − X̄(t−1)
)))
2

F
+ 2nζ̂2 + 2Pn

)))∇f(x̄(t−1))
)))
2

2

Putting back estimate for T and using that ηt ≤ p
2L

M
1

2(3+pM) we arrive to the statement of this
lemma.

D.3. Simplifying the Consensus Recursion

In Lemmas 17, 20 we obtained the consensus recursive equation (7) for both convex and non-convex
cases. In this section we simplify it to be able to easily combine it later with (6).

Lemma 21 If non-negative sequences {Ξt}t≥0, {et}t≥0 and {ηt}t≥0 satisfy (7) for some constants
0 < p ≤ 1, A,D ≥ 0, moreover if the stepsizes {η2t }t≥0 is 8

p -slow decreasing sequence (Defi-
nition 13), and if {wt}t≥0 is 16

p -slow increasing non-negative sequence of weights, then it holds
that

B

T"

t=0

wtΞt ≤
b

2

T"

t=0

wtet +
16

p
AB

T"

t=0

wtη
2
t ,

for some constant B > 0 with the constraint that stepsizes ηt ≤ 1
8

M
pb
DB .

Proof Set H = 1− p
4 and recursively substituting every Ξt with Ξt−1 we get

Ξt ≤ HΞt−1 +Dη2t−1et−1 +Aηt−1 ≤ H2Ξt−2 +D

t−1"

j=t−2

Ht−1−jη2j ej +A

t−1"

j=t−2

Ht−1−jη2j
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Unrolling Ξt recursively up to 0 we get,

Ξt ≤ D

t−1"

j=0

Ht−1−jη2j ej +A

t−1"

j=0

Ht−1−jη2j

Now using that η2t is 4
p -slow decreasing, i.e. η2j ≤ η2t

K
1 + p

8

Lt−j ,
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4
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D
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4
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≤ 4
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0
1− p

8

1t−j
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Now averaging Ξt with weights wt,
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using that wt is 8
p -slow increasing sequence, i.e. wt ≤ wj

K
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Lt−j and ηt ≤ 1
8

M
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DB ,
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Then we have

B

T"

t=0

wtΞt ≤
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(
b

4
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p
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b
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Appendix E. Solving the Main Recursion (9)

E.1. a > 0 (strongly convex case)

Lemma 22 If non-negative sequences {rt}t≥0, {et}t≥0 satisfy (9) for some constants a, b, p >
0, c, A,B, then there exists a constant stepsize ηt = η < 1

d such that for weights wt = (1−aη)−(t+1)

and WT :=
(T

t=0wt it holds:

1

2WT

T"

t=0

betwt + arT+1 ≤ Õ
.

c

aT
+

BA

a2T 2

1

p
+ r0d exp

!
−a(T + 1)

d

#/
,

where Õ hides polylogarithmic factors. [5]

23



DECENTRALIZED STOCHASTIC OPTIMIZATION WITH CLIENT SAMPLING

Applying Lemma Theorem 22,

1

2WT

T"

t=0

etwt +
µ

2
rT+1 ≤

1

b

*
1

2WT

T"

t=0

betwt + 2arT+1

,

≤ Õ
.

σ̄2

µTs
+ (1− s

n
)
ζ̄2

µTs
+

L(ζ̄2 + pσ̄2)

µ2T 2p2
(
n

s
) +

n

s
r0d exp

!
−a(T + 1)

d

#/

Thus, the final rate of convergence:

Õ
*

σ̄2

µsε
+ (1− s

n
)
ζ̄2

µsε
+

√
L(ζ̄ +

√
pσ̄)

µp
√
ε

-
n

s
+

n

s

L

µp
log

.
1

ε

/,

Lemma 23 If non-negative sequences {rt}t≥0, {et}t≥0 satisfy Lemma 19 and Lemma 21 with a =
0, b > 0, c, A,B ≥ 0, then there exists a constant stepsize ηt = η < 1

d such that for weights
{wt = 1}t≥0 it holds that [5]:

1

(T + 1)

T"

t=0

et ≤ O
*
2

.
cr0

T + 1

/ 1
2

+ 2

.
BAτ

p

/1/3. r0
T + 1

/ 2
3

+
dr0

T + 1

,
.

Utilizing Lemma 23 and choosing d = O
0
L
p

+
(P + 1)(M + 1)

1
, the final convergence rate:

O
*
σ̂2 + (1− s

n)ζ̂
2

sε2
+

n

s

ζ̂2
+

(M + 1) + σ̂
√
p

pε3/2
+

+
(P + 1)(M + 1)

pε

,
Lr0

Appendix F. Discussion

Our rates recover the results of [5] for both convex and non-convex cases, by setting s = n.

Results for convex fi(x). The convergence rate we derived for convex fi(x):

Õ
*
σ̄2

µs
ε+ (1− s

n
)
ζ̄2

µsε
+

√
L(ζ̄ +

√
pσ̄)

µp
√
ε

-
n

s
+

n

s

L

µp
log

.
1

ε

/,
.

The convergence rate in [5] for convex fi(x):

Õ
*
σ̄2

µn
ε+

√
L(ζ̄τ + σ̄

√
pτ)

µp
√
ε

+
Lτ

µp
log

1

ε

,
.

When s = n and τ = 1 (since we assumed there is no delay in our analysis), these two
convergence rates are identical.
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Results for non-convex fi(x). The convergence rate we derived for non-convex fi(x) is

O
*
σ̂2 + (1− s

n)ζ̂
2

s
ε2 +

n

s

ζ̂2
+

(M + 1) + σ̂
√
p

pε3/2
+

+
(P + 1)(M + 1)

pε

,
Lr0 ,

while the convergence rate in [5] for convex case:

O
*
σ̂2

n
ε2 +

ζ̂
√
M + 1 + σ̂

√
p

pε3/2
+

+
(P + 1)(M + 1)

pε

,
· Lr0

By setting s = n and τ = 1, these two convergence rates are the same.

Appendix G. Additional Experiments

Setup. We consider three common network topologies, ring, 2-d torus and fully-connected graph
and use the Metropolis-Hasting mixing matrix W , i.e. wij = wji = 1

deg(i)+1 = 1
deg(j)+1 for

{i, j} ∈ E. For each set of σ̄2 and ζ̄2, we tune the step size for all these three topologies to reach
the desired target accuracy ε with the fewest number of iterations.

Figure 6: Convergence of 1
n

(n
i=1

))x(t)
i −x!

))2
2

to target accuracy ε = 10−5 for σ̄2 = 100, ζ̄2 = 10,
and centralized topology on n = 25 nodes, s = 9, 16, 25, d = 50. Stepsizes are the same
for all experiments. We refer to iterations taken to reach ε = 10−5 as ce(s), where s
denotes the number of nodes sampled out of n per iteration.

Appendix H. Theorem of Expected Consensus Rate for Sub-sampled Ring Topology

Here we use the Equation 4 to derive the expected consensus rate for random ring topology in
Theorem 4. The proofs for centralized and random torus follow similarly.

In the random ring topology, the randomness is not only in choosing a set S of s workers but
also in how to connect the s workers in S to be a ring. Here, we consider the case where every
possible way of connecting S to a ring is of equal probability.

Here we derive the formula for E [W TW ] when S is fixed, i.e. we take expectation over
possible ways to connect s workers to be a ring. When s = 2, 3, ring topology is the same as
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Figure 7: Ratios between theoretical convergence rate and numerical performances.

Figure 8: Convergence of 1
n

(n
i=1

))x(t)
i − x!

))2
2

to target accuracy ε = 10−5 for σ̄2 = ζ̄2 = 0, and
different topologies on n = 25 nodes, s = 9, 16, 25, d = 50. Stepsizes are the same for
all experiments.

centralized topology. Therefore, in the discussion in this section, we only concern with the case
where s ≥ 4.

When s = 4, E [W TW ] is invariant to how nodes are connected. However, when s ≥ 5,
E [W TW ] does depend on how nodes are connected. According to the matrix multiplication for-
mula,

(W T
t Wt)(ij) =

n"

k=1

(W T
t )(ik)(Wt)(kj) =

n"

k=1

(Wt)(ki)(Wt)(kj)

where (Wt)n×n, 1 ≤ i, j ≤ n and if both node k and node m are sampled,

(Wt)km =

N
1
3 , if node m and node k are connected;
0, if node m and node j are not connected.
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Assuming i and j are both sampled, we summarized that

(W T
t Wt)(ij) =

3
444444444444445

444444444444446

1
3 , if i = j;
2
9 , if i ∕= j, node i and j are connected

directly;
1
9 , if i ∕= j, node i and j are both

connected to the same node;
0, if i ∕= j, node i and j are neither

connected directly nor both
connected to the same node.

(30)

The reason is listed as the following,

• If i = j, (W T
t Wt)(ii) =

(n
k=1(Wt)

2
ki =

1
3 , since each node is connected to itself and 2 other

nodes, i.e. there are three k s.t. Wki =
1
3 .

• If i ∕= j AND node i and node j are connected directly, (W T
t Wt)(ij) =

(n
k=1(Wt)ki(Wt)kj =

2
9 , since (Wt)ki(Wt)kj =

1
3 when k = i or k = j. There are no other nodes connected to both

i and j, otherwise, there would be a ring formed by three nodes, which violates that s ≥ 5.

• If i ∕= j AND node i and node j are not connected directly but are both connected to a node,
(W T

t Wt)(ij) =
(n

k=1(Wt)ki(Wt)kj =
1
9 , since there is one and only one node connected to

both i and j. There are no other nodes connected to both i and j, otherwise, there would be a
ring formed by four nodes, which violates that s ≥ 5.

• If i ∕= j AND node i and node j are neither connected directly nor both connected to a node,
(W T

t Wt)(ij) =
(n

k=1(Wt)ki(Wt)kj = 0.

Then we derive the probability of each condition in Equation 30.
We state that when connecting s nodes to be a ring, there are (s − 1)!/2 possible rings if we

consider a clockwise connection the same as a counter-clockwise connection, i.e. we consider
1 → 2 → 3 → 4 → 5 and 1 → 5 → 4 → 3 → 2 as the same ring. We fix a node as the starting
point, and the (s − 1)! permutations of other nodes include the clockwise and counter-clockwise
connection versions of all possible rings.

When a node i and j are connected, there are (s − 2)! possible rings, which is the number of
permutations of nodes except for nodes i and j. Node i and j can be seen as one node, yet in this
case, clock-wise and counter-clockwise connections would be different, since · · · → i → j → · · ·
and · · · → j → i → · · · would be different.

Therefore, the possibility of node i and j connected directly is (s−2)!
(s−1)!/2 = 2

(s−1) .
When a node i and j are connected to a common node k, there are also (s− 2)! possible rings,

which is (the number of permutations of nodes except for i, j, and k) ×(s − 2). Node i, j, and k
can be seen as one node, and clock-wise and counter-clockwise connections are still different, so
the number of permutations is (s− 3)!. There are (s− 2) possible choices for k.

Therefore, the possibility of node i and j connected to a common node is also (s−2)!
(s−1)!/2 = 2

(s−1) .
We validated this on two examples. In the example of S = {1, 2, 3, 4, 5, 6}, (the prob of node

1 and 2 connected directly) = (the prob of node 1 and 2 connected to the same node) = 2
5 = 2

n−1 .
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In the example of S = {1, 2, 3, 4, 5}, (the prob of node 1 and 2 connected directly) = (the prob of
node 1 and 2 connected to the same node) = 1

2 = 2
n−1 .

Therefore, we can summarize that, when i ∕= j and both node i and node j are selected to be in
S ,

(W TW )(ij) =

3
445

446

2
9 , with probability 2

(s−1) ;
1
9 , with probability 2

(s−1) ;

0, with probability1− 4
(s−1) .

Thus,

E(W T
t Wt)(ij) =

3
44445

44446

2
3(s−1) if i ∕= j, i, j ∈ S;
1
3 if i = j, i, j ∈ S;
0 if i ∕= j, i or j /∈ S;
1 if i = j, i /∈ S.

The probability of a node i being selected is s
n , the probability of having node i and node j both

selected is s(s−1)
n(n−1) . Therefore, the expectation of a diagonal element is 1

3×
s
n+1×

K
1− s

n

L
= 1− 2s

3n ;

the expectation of a non-diagonal element is 2
3(s−1) ×

s(s−1)
n(n−1) =

2
3(s−1) ×

s(s−1)
n(n−1) =

2s
3n(n−1) .

Therefore, the expected consensus rate of sub-sampled random ring topology is 1 − p = 1 −
2s
3n − 2s

3n(n−1) = 1− 2s
3(n−1) .
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