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Abstract
We give polynomial time algorithms for escaping from high-dimensional saddle points under a
moderate number of constraints. Given gradient access to a smooth function f : Rd → R we show
that (noisy) gradient descent methods can escape from saddle points under a logarithmic number
of inequality constraints. This constitutes progress (without reliance on NP-oracles or altering the
definitions to only account for certain constraints) on the main open question of the breakthrough
work of Ge et al. [16] who showed an analogous result for unconstrained and equality-constrained
problems. Our results hold for both regular and stochastic gradient descent.

1. Introduction

Achieving convergence of gradient descent to an (approximate) local minimum is a central question
in non-convex optimization for machine learning. In recent years, breakthrough progress starting
with the work of Ge et al. [16] has led to a flurry of results in this area (see e.g. Carmon and Duchi
[9, 10], Carmon et al. [11], Du et al. [14], Jin et al. [19, 20, 21], Mokhtari et al. [23], Staib et al.
[31]), culminating in almost optimal bounds [34]. However, despite this success a key open question
of [16] still remains unanswered – can gradient methods efficiently escape from saddle points in
constrained non-convex optimization? In fact, even basic linear inequality constraints still remain
an obstacle: “Dealing with inequality constraints is left as future work” Ge et al. [16]1. This is due
to the NP-hardness of the related copositivity problem [24], which corresponds to the case when
the number of constraints is linear in the dimension. In this paper, we make progress on this open
question in the case when the number of constraints depends moderately on the dimension.

Consider a feasible set defined by k linear inequality constraints: S = {x ∈ Rd | Ax ≤ b},
where A ∈ Rk×d and b ∈ Rk. Let Bd(x, r) be a d-dimensional closed ball of radius r centred at x.
We write B(x, r) when the dimension is clear from the context and drop the first parameter when
x = 0. Our goal is to minimize the objective function f : Rd → R over S, i.e. minx∈S f(x). We first
introduce standard assumptions of boundedness and smoothness. A function f is bounded if it takes
values in [−1, 1] which can always be achieved by rescaling.

Assumption 1 (Smoothness) The objective function f satisfies the following properties:
1. (First order) f has an L-Lipschitz gradient (f is L-smooth): ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,
∀x,y ∈ Rd.

2. (Second order) f has a ρ-Lipschitz Hessian: ∥∇2f(x)−∇2f(y)∥ ≤ ρ∥x− y∥, ∀x,y ∈ Rd.

1. Using Lagrangian multipliers, equality constraints can be seen as reducing the dimension of the otherwise unconstrained
problem.
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Definition 1 (Local minimum) For S ⊆ Rd, let f : Rd → R. A point x⋆ is a local minimum of f
in S if and only if there exists r > 0 such that f(x) ≥ f(x⋆) for all x ∈ S ∩ B(x⋆, r).

Since finding a local minimum is NP-hard even in the unconstrained case (see e.g. Anandkumar
and Ge [3] and the references within), the notion of a local minimum is typically relaxed, a natural
relaxation being the following:

Definition 2 (Approximate local minimum) For S ⊆ Rd and f : Rd → R a point x⋆ is a
(δ, r)-approximate local minimum if f(x) ≥ f(x⋆)− δ for all x ∈ S ∩ B(x⋆, r).

For smooth functions, a common approach is to instead define stationary points in terms of the
gradient and the eigenvalues, which, as shown below, is motivated by the Taylor expansion of f :

Definition 3 ([21, 25]) A point x is an ε-second-order stationary point (ε-SOSP) if ∥∇f(x)∥ < ε
and λmin(∇2f(x)) > −√ρε, where λmin denotes the smallest eigenvalue of the Hessian.

When applying this definition to the constrained case, eigenvectors and eigenvalues are not
well-defined, since, even when an escaping direction exists, there might be no eigenvectors inside
the feasible set. Moreover, for f(x) = −1

2∥x∥2 and any compact feasible set, the Hessian is −I at
any point with λmin(−I) = −1. Hence an ε-SOSP doesn’t exist according to the Definition 3, even
though a local minimum exists. In fact, Definition 3 arises from the Taylor expansion, which justifies
the choice of

√
ρϵ as the bound on the smallest eigenvalue. If the function has a ρ-Lipschitz Hessian:∣∣∣∣f(x+ h)− f(x)− h⊤∇f(x)− 1

2
h⊤∇2f(x)h

∣∣∣∣ ≤ ρ

6
∥h∥3.

To guarantee that the discrepancy between the function and its quadratic approximation is small
relative to δ (from Definition 2), a natural choice of r is 3

√
δ/ρ, which bounds the discrepancy with

Θ(δ). Therefore, based on the quadratic approximation, one can distinguish a (δ, r)-approximate
local minimum from not a (cδ, r)-approximate local minimum for c < 1. By setting this r and
selecting ε = 3

√
δ2ρ, we have

√
ρε = 3

√
δρ2 and for any h ∈ B(x, r) (see Appendix A):

f(x+ h)− f(x) ≥ h⊤∇f(x) + 1

2
h⊤∇2f(x)h− ρ

6
∥h∥3 ≥ −2δ.

Using the ball radius discussed above we arrive at the following version of Definition 2:

Definition 4 (Approximate SOSP) For S ⊆ Rd, let f : Rd → R be a twice-differentiable function
with a ρ-Lipschitz Hessian. A point x⋆ is a δ-second-order stationary point (δ-SOSP) if for r = 3

√
δ/ρ:

inf
x∈S∩B(x⋆,r)

f(x) ≥ f(x⋆)− δ

1.1. Our Results

Our results hold for stochastic gradient descent (SGD) under the following standard assumption:

Assumption 2 Access to a stochastic gradient oracle g(x):
1. (Unbiased expectation) E[g(x)] = ∇f(x).
2. (Variance) E[∥g(x)−∇f(x)∥2] ≤ σ2.
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Our main result is the following theorem which quantifies the complexity of finding an approxi-
mate SOSP under a moderate number of linear inequality constraints, showing that this problem is
solvable in polynomial time for k = O(log d). We refer to a function as (L, ρ)-smooth if it satisfies
Assumption 1 and simply second-order smooth if both smoothness parameters are constant.

Theorem 5 (Theorem 8) Let S be a set defined by an intersection of k linear inequality constraints.
Let f be a second-order smooth bounded function. Given access to a stochastic gradient oracle
satisfying Assumption 2, there exists an algorithm which for any δ > 0 finds a δ-SOSP in Õ(1δ (d

32k+
d2σ2

δ4/3
)) time using Õ(1δ (d+

d3σ2

δ4/3
)) stochastic gradient oracle calls. In the deterministic gradient case

(σ = 0), the time complexity is Õ(d
32k

δ ) and the number of gradient oracle calls is Õ(dδ ).

The exponential dependence of time complexity on k in our results (not required in the oracle
calls) is most likely unavoidable due to the following hardness result, which implies that when
k = d then the complexity of this problem can’t be polynomial in d under the standard hardness
assumptions.

Remark 6 (Matrix copositivity [24]) For a quadratic function f(x) = xTMx subject to con-
straints xi ≥ 0 for all i, it is NP-hard to decide whether there exists a solution with f(x) > 0.

1.2. Related Work

Related results in convex optimization are covered in Boyd and Vandenberghe [7], Bubeck et al. [8].
Among related results in non-convex optimization here we only focus on the algorithms which only
use gradient information.

Unconstrained optimization Recall that an ϵ-first-order stationary point (ϵ-FOSP) is defined
so that ∥∇f(x)∥ ≤ ϵ. Analyses of convergence to an ε-FOSP are a cornerstone of non-convex
optimization (see e.g. classic texts Bertsekas [5], Nocedal and Wright [26]). Quantitative analysis
of convergence to an ϵ-SOSP (Definition 3) started with the breakthrough work by Ge et al. [16]
further refined in Carmon and Duchi [9, 10], Jin et al. [19, 20, 21] and most recently in Zhang
and Li [34], who show an almost optimal bound. Due to the prevalence of SGD in deep learning,
stochastic methods have attracted the most attention (see Allen-Zhu [1], Allen-Zhu and Li [2], Fang
et al. [15], Tripuraneni et al. [32], Xu et al. [33], Zhou and Gu [35], Zhou et al. [36] for the case
of Lipschitz gradients and Daneshmand et al. [13], Ge et al. [16] for non-Lipschitz gradients). For
an in-depth summary of the previous work on unconstrained non-convex optimization we refer the
reader to Jin et al. [21].

Constrained optimization The case of equality constraints is typically reducible to the uncon-
strained case by using Lagrangian multipliers (see e.g. Ge et al. [16]). However, the general con-
strained case is substantially more challenging since even the definitions of stationarity require a
substantial revision. For first-order convergence a rich literature exists, covering projected gradient,
Frank-Wolfe, cubic regularization, etc (see e.g. Mokhtari et al. [23] and the references within). For
second-order convergence, the landscape of existing work is substantially sparser due to NP-hardness
(Remark 6, [24]). A large body of work focuses on achieving convergence using various forms of
NP-oracles (see e.g. Bian et al. [6], Cartis et al. [12], Haeser et al. [17], Mokhtari et al. [23], Nouiehed
and Razaviyayn [27]), while another approach is to define stationarity in terms of tight constraints
only [4, 22].
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Relationship with other definitions of SOSP As discussed in Remark 6, second-order constrained
optimization is NP-hard due to the hardness of the matrix copositivity problem. Definitions of
constrained SOSP in the previous work fall into two categories: 1) definitions that only consider
active constraints (“active constraints only” definitions), 2) definitions that preserve the NP-hardness
of the problem and rely on NP-oracles to achieve polynomial-time convergence:

1. (“Active constraints only”) In Avdiukhin et al. [4], Lu et al. [22] definitions analogous to
Definition 3, and the second-order conditions are given with respect to the set of active (i.e.
tight for the current iterate) constraints. This allows bypassing the NP-hardness since the point
at which the hardness of the copositivity problem applies now becomes a stationary point by
definition.

2. (NP-hard) In the results relying on NP-oracles (e.g. [6, 17, 23, 27]) the complexity is shifted
to solving black-box quadratic optimization problems of a certain type. A key advantage of
these types of approaches is that they can handle an arbitrary number of constraints and hence
promising in certain machine learning applications.

What is currently lacking in the state of the art is a quantitative analysis of the complexity of
convergence to a second-order stationary point, which shows full dependence on both the dimension
and accuracy while defining stationarity with respect to the full set of constraints, instead of just
active constraints only2. Our goal in Theorem 5 is to address this gap and give such an analysis.

2. Main Result

We address the NP-hardness of the copositivity problem by focusing on the case of a moderate
number of constraints and arguing that it can be addressed using gradient-based methods. In order to
streamline the presentation, we first focus in Section 2.1 on the key challenge of escaping from a
saddle point in a corner defined by the constraints when the underlying function is simply quadratic
(see details in Section B). This is already enough to capture some of the key contributions. Our
general result is presented in Section 2.2, while more technical details and the full algorithm are
given in Appendix C.

2.1. Quadratic corner saddle point

In this simplified scenario, we consider the case when the function is quadratic without a linear
term, and the saddle point is located in the corner of the constrained space. The NP-hardness comes
from the fact that the point we aim to find can lie in the intersection of an arbitrary subset of
constraints. By doing an exhaustive search over this set of constraints (Algorithm 1) and enforcing
them throughout the search process we are able to reduce to a setting similar to the equality-
constrained case (Algorithm 2). We show different subsets of constraints enforced by the algorithm

2. While unpublished manuscripts ([18] and [28], relying on [18] as a subroutine) do contain related results, our work
differs in a number of important aspects. [18] and [28] require access to the exact gradient and Hessian. We only
assume access to the stochastic gradient oracle. Furthermore, [18] assumes access to matrix diagonalization. However,
the diagonalization can only be found approximately, which compromises the stability of this approach, especially
with respect to the linear term transformations. Our approach handles this issue by appropriate perturbation and using
known results for matrix diagonalization. Finally, compared with [18], our main contribution is focused on solving a
substantially different problem. While [18] find a global minimum of a quadratic problem, we find an approximate
local minimum of an arbitrary smooth non-convex function.
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(a) Feasible set with two inequality constraints:
x ≤ 0, y ≤ 0.
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(b) Active constraint y = 0 (green) with no
escape direction.
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(c) Active constraint x = 0 (green) with
an escape direction (0,−1). As shown in
Lemma 15, out of two escape directions
(0,−1) and (0, 1) in this constraint, at least
one (0,−1) (blue) lies in the feasible set,
and is found by the algorithm.
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(d) When no constraints are active, the algo-
rithm finds red directions (negative eigen-
vectors) outside the feasible set. Note that
escape directions with no active constraints
exist (blue). Lemma 15 guarantees that we
find them in some constrained space (Fig-
ure 1(c)).

Figure 1: Escaping quadratic saddle for function f(x, y) = (
√
3
2 x+ 1

2y)
2 − (−1

2x+
√
3
2 y)2 under

constraints x, y ≤ 0. f is a composition of g(x, y) = x2 − y2 and rotation by π/6

in an example in Figure 1. The key challenge is making this argument formal and arguing that this
process converges to a constrained approximate SOSP as in Definition 4. This relies on performing a
robust analysis of the properties of the points which lead to the hardness of copositivity. In particular,
we show that after we guess the set of constraints correctly, the problem reduces to finding the
smallest eigenvector (Lemma 14). An exact error analysis of the eigenvector process (Lemma 15,
Lemma 16) is then required to complete the proof of the main theorem for this case.
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Theorem 7 (Quadratic Corner Saddle Point Escape) Let δ, r > 0. Let f(x) = 1
2x

⊤Mx with
λ|max|(M) ≤ L and let S = {x | Ax ≤ 0} be defined by k linear inequalies. If minx∈B(r)∩S f(x) <
−δ, then there exists an Algorithm which with probability at least 1− ξ finds a point x ∈ S ∩ B(r)
with f(x) < −Ω(δ) using O

(
Lr2k2k

δ log 1
ξ

)
deterministic gradient oracle calls.

The full proof of Theorem 7 is presented in Appendix B.

2.2. General case

In the algorithm for the general case, we address the assumptions made in the quadratic corner saddle
point case, while also handling the stochasticity in the gradient. The latter part is standard and is
handled via variance reduction in Appendix C.3. The full algorithm iterates the escape subroutine
(Algorithm 3) until an escaping point is found. The escape subroutine first approximates the Hessian
matrix using the gradient oracle and then performs an exhaustive search over the set of active
constraints at the escaping point in a way similar to the quadratic corner case. After the correct
subset of constraints is fixed, the current iterate needs to be projected on this set of constraints, which
also necessitates a recomputation of various related parameters. When this is done, Algorithm 4
(analogous to Algorithm 2 from the quadratic corner case) finds an escape direction for the resulting
quadratic function.

The algorithm tries to find an escaping direction within a ball of radius r = 3
√

δ/ρ (from
Definition 4), where the function is well approximated by a quadratic one (by the smoothness
assumption, as discussed above). However, compared with the previous section, the function can
have a non-negligible linear term – either due to the gradient or as a result of projection on the affine
plane – which significantly complicates the algorithm and analysis. We consider the following cases:

Case 1. When the linear term is very large, then either the optimum lies on the boundary of the
feasible set S (which is not possible in the case when we guessed the active constraints correctly)
or the linear term dominates the quadratic term and is sufficient to escape from a saddle point.
In particular, this case covers the situation when the objective is sensitive to the change in the
argument (the quadratic term is not sensitive due to the smoothness condition, which bounds its
largest eigenvalue).

Case 2. When the optimum lies in the interior of the ball of radius r, none of the constraints are
active, and hence we can find the unique unconstrained critical point directly: we find a point where
the gradient is zero, which only requires solving a linear system.

Case 3. When the optimum lies on the boundary of the ball of radius r, the only active constraint
is c(y) = ∥y − x∥2 − r2 = 0. By KKT conditions, for y to be the minimizer, there must exist µ
such that ∇f(y) = µ∇c(y). We show that for each µ, there exists a unique y(µ) satisfying the
condition above, and only for O(d) values of µ, y(µ) lies on the boundary of the ball, resulting in
O(d) candidate solutions.

To find these candidates, we first diagonalize the matrix using an orthogonal transformation. This
gives a quadratic function whose critical points on the boundary of the ball can be found explicitly
(up to the required precision) as roots of certain polynomials. Here we note that the diagonalization
performed in this case is the most computationally expensive step in the algorithm, resulting in
polynomial dependence on the dimension. We formalize our main result in the following theorem:

Theorem 8 Let S = {x | Ax ≤ b} be a set defined by an intersection of k linear inequality
constraints. Let f satisfy Assumptions 1 and 2 and let minx∈S f(x) = f⋆. Then there exists an

6
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algorithm which for δ > 0 finds a δ-SOSP in Õ(f(x0)−f⋆

δ d3(2k + σ2

δ4/3
)) time using Õ(f(x0)−f⋆

δ (d+
d3σ2

δ4/3
)) stochastic gradient oracle calls.

Next, we outline the proof of Theorem 8. If x is not a δ-SOSP, our algorithm finds a point
y ∈ S ∩ B(x, r) which significantly decreases function value: f(y) < f(x)− Ω(δ). Therefore, if
x0 is the initial point, our algorithm requires O(f(x0)−f⋆

δ ) iterations.
As we show in Appendix C.1, we can consider a quadratic approximation of the objective. By

guessing which constraints are active at the minimizer x⋆ and enforcing these constraints, we restrict
the function to some affine subspace A. By parameterizing A, we eliminate enforced constraints,
and, since the rest of the constraints are not active at x⋆, we need to optimize a quadratic function in
the intersection of a ball and linear inequality constraints. The full proof is presented in Appendix C.

In conclusion, we prove that, given a logarithmic number of constraints, it’s possible to escape
from constrained saddle points in polynomial time using stochastic gradient oracles.
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Appendix A. Notation and Standard Facts

Notation For a set S let IntS be its interior and ∂S be its boundary. For x ∈ Rd and S ⊆ Rd,
ProjS(x) = argminy∈S ∥x−y∥ is the projection of x on S. For a square matrix M with eigenvalues
λ1 ≤ . . . ≤ λd, we denote λmin(M) = λ1 and λ|max|(M) = max(|λ1|, |λd|). For S = {x ∈ Rd |
Ax ≤ b} and x ∈ S, we say that i-th constraint is active at x if A⊤

i x = bi, where Ai is the i-th row
of A. Õ notation hides polylogarithmic dependence on all parameters, including error probability.

Fact 9 (Efficient projection on a polyhedron) For an arbitrary point x ∈ Rd and a set S = {x ∈
Rd | Ax ≤ b} – an intersection of k linear inequality constraints, we can find a projection of x onto
S in time poly(d).

Fact 10 (Convergence of power iteration) Let M ∈ Rd×d be a PSD matrix with largest eigen-
value λ|max|. Let a sequence {xt}∞t=0 in Rd be defined according to the power iteration: x0 ∼
N (0, I) and xt+1 = Mxt. Then for δ < λ|max| we have x⊤

T MxT

∥xT ∥2 > δ with probability 1 − O(ξ)

after T = O
(
log(dδ)−log(ξ(λ|max|−δ))

log λ|max|/δ

)
iterations.

Proof If λi < δ, the corresponding component of the vector decreases exponentially with the rate of
at least δ/λ|max| and is eventually dominated by the component corresponding to λ|max|. This leaves
us only with components corresponding to λi ≥ δ, finishing the proof.

Let λ1, . . . , λd be the eigenvalues of M and let e1, . . . , ed be the corresponding eigenvectors.
Then x0 =

∑d
i=1⟨x0, ei⟩ei and xT =

∑d
i=1⟨x0, ei⟩λT

i ei. Hence,

x⊤
TMxT

∥xT ∥2
=

∑d
i=1⟨x0, ei⟩2λ2T

i λi∑d
i=1⟨x0, ei⟩2λ2T

i

=

∑d
i=1⟨x0, ei⟩2(λi/λ|max|)

2Tλi∑d
i=1⟨x0, ei⟩2(λi/λ|max|)2T

= δ +

∑d
i=1⟨x0, ei⟩2(λi/λ|max|)

2T (λi − δ)∑d
i=1⟨x0, ei⟩2(λi/λ|max|)2T

.

It suffices to show that the numerator in the last term is non-negative. Clearly, in the summation, the
terms with λi ≥ δ are positive and the terms with λi < δ are negative. Hence, we must lower-bound
⟨x0, ei⟩2 when λi ≥ δ and upper-bound ⟨x0, ei⟩2 when λi < δ. Since x0 ∼ N (0, I), the following
holds for all i ∈ [d]:

• With probability 1−O(ξ/d), |⟨x0, ei⟩| ≥ ξ/d.
• With probability 1−O(ξ/d), |⟨x0, ei⟩| ≤ log d/ξ.

By the union bound, these inequalities hold for all i with probability 1 − O(ξ). For i such that
λi = λ|max|, we have

⟨x0, ed⟩2(λi/λ|max|)
2T (λ|max| − δ) ≥ (ξ/d)2(λ|max| − δ).

For all i such that λi < δ, we have:

⟨x0, ei⟩2(λi/λ|max|)
2T (λi − δ) ≥ −δ(δ/λ|max|)

2T log2 d/ξ.
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Since there are at most d such terms, to guarantee that
∑d

i=1⟨x0, ei⟩2(λi/λ|max|)
2T (λi − δ) ≥ 0, it

suffices to have:
(ξ/d)2(λ|max| − δ) ≥ dδ(δ/λ|max|)

2T log2 d/ξ,

which holds when

T ≥
log

(
dδ

(λ|max|−δ)(
d/ξ)2 log2 d/ξ

)
2 log λ|max|/δ

= O

(
log(dδ)− log(ξ(λ|max| − δ))

log λ|max|/δ

)
.

Fact 11 (Coordinate-wise median trick) Let ξ(1), . . . , ξ(n) be independent random variables in
Rd sampled from the same distribution with mean E[ξ(i)] = µ and variance E[∥ξ(1) − µ∥2] ≤ σ2. If
ζ is a coordinate-wise median of ξ1, . . . , ξn, then

Pr[∥ζ − µ∥ > 2σ] ≤ d · e−Ω(n).

Proof The proof idea is to apply the median trick to each coordinate separately. For each ξ(i) we
have:

E[∥ξ(i) − µ∥2] = E[
d∑

j=1

(ξ
(i)
j − µj)

2] =
d∑

j=1

E[(ξ(i)j − µj)
2].

For each coordinate j, let σ2
j = E[(ξ(i)j − µj)

2]. Using Chebyshev’s inequality, we have:

Pr[(ξ
(i)
j − µj)

2 ≥ 4σ2
j ] ≤

1

4
.

Let Xi,j be random variables such that Xi,j = 1 if (ξ(i)j − µj)
2 ≥ 4σ2

j and Xi,j = 0 otherwise.
From the above inequality, we have E[

∑n
i=1Xi,j ] ≤ n

4 . Since X1,j , . . . , Xn,j are bounded and
independent, by the Chernoff bound we have:

Pr[

n∑
i=1

Xi,j >
n

2
] = e−Ω(n).

Hence, for any j, with probability 1− e−Ω(n) at most half of Xi,j are 1. Therefore, at least half of
ξ
(1)
j , . . . , ξ

(n)
j lie in [µj − σj , µj + σj ], and hence the same holds for their median ζj . Taking the

union bound over all coordinates, with probability 1− d · e−Ω(n) we have:

∥ζ − µ∥2 =
d∑

j=1

(ζj − µj)
2 ≤

d∑
j=1

4σ2
j ≤ 4σ2.
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Appendix B. Quadratic Corner Saddle Point Case

We introduce the key ideas of the analysis in a simplified setting when: 1) the function f is quadratic,
2) the gradient is small, 3) the current iterate is located in a corner of the constraint space. Intuitively,
this represents the key challenge of the constrained saddle escape problem since its NP-hardness
comes from the hardness of the matrix copositivity problem in Remark 6 (i.e. the function is exactly
quadratic and has no gradient at the current iterate which lies in the intersection of all constraints).
We refer to this setting as the Quadratic Corner Saddle Point problem defined formally below. By
shifting the coordinate system, w.l.o.g. we can assume that the saddle point is 0 and f(0) = 03. If 0
is a (δ, r)-QCSP (as defined below), the objective can be decreased by δ within a ball of radius r.

Definition 12 (Quadratic Corner Saddle Point) Let S = {x | Ax ≤ 0}. For δ, r > 0 and
function f(x) = 1

2x
⊤Mx, we say that a point 0 is a:

• (δ, r)-Quadratic Corner Saddle Point ((δ, r)-QCSP) if minx∈B(r)∩S f(x) < −δ.
• (δ, r)-boundary QCSP if minx∈B(r)∩∂S f(x) < −δ.

Algorithm 1: HOUDINIESCAPECORNER: Escaping from a corner for a quadratic function

input :Starting point x, feasible set S = {y | A(y − x) ≤ 0 ∈ Rk}
parameters: δ and r from definition of (δ, r)-QCSP for I ∈ 2[k] – every subset of constraints do

1 // Optimize in A
2 A ← {y | A⊤

i (y − x) = 0 for i ∈ I}, where Ai is the i-th row of A
3 y← FINDINSIDECORNER(x,A)
4 if y ∈ S and f(y) < f(x)− δ

2 then
5 return y

6 return ⊥

Algorithm 2: FINDINSIDECORNER(x,A)
input :Corner x, affine subspace A with x ∈ A
parameters: δ and r from Definition 12, step size η = 1

L , number of iterations T = Õ(Lr
2

δ )
1 Sample ξ ∼ N (0, I), x0 ← ProjA(x+ ξ)
2 for t = 0, . . . , T − 1 do
3 // Power method step
4 xt+1 ← ProjA(xt − η(∇f(xt)−∇f(x)))
5 e← r xT−x

∥xT−x∥
6 return x+ e

In this section, we show how to escape from a (δ, r)-QCSP, namely we prove the following
Theorem:

Theorem 13 (Theorem 7 restated) Let δ, r > 0. Let f(x) = 1
2x

⊤Mx with λ|max|(M) ≤ L and
let S = {x | Ax ≤ 0} be defined by k linear inequalities. If 0 is a (δ, r)-QCSP, then Algorithm 1 with

3. Algorithms 1 and 2 don’t require saddle point x to be 0. All the statements are trivially adapted for the case when x is
not 0

14



HOUDINI: ESCAPING FROM MODERATELY CONSTRAINED SADDLES

probability at least 1− ξ finds a point x ∈ S ∩ B(r) with f(x) < −Ω(δ) using O
(
Lr2k2k

δ log 1
ξ

)
deterministic gradient oracle calls.

For the rest of the section, we assume that 0 is a (δ, r)-QCSP, i.e. minx∈S∩B(r) f(x) < −δ. We
consider two cases depending on whether 0 is a (δ, r)-boundary QCSP.

Case 1: 0 is a (δ, r)-boundary QCSP. For a subset of inequality constraints I ⊆ [k] we define
the subspace where these constraints are active: AI = {x | A⊤

i x = 0 for all i ∈ I}. Let I be a
maximal4 subset of constraints such that minx∈AI∩B(r) f(x) < −δ. If P is a projection operator on
AI , it suffices to optimize g(x) := f(Px) = 1

2x
⊤(PMP)x. Therefore, we reduced the original

problem to minimizing a different quadratic form in the same feasible set. For any i ∈ I , A⊤
i Px ≤ 0

holds trivially, since A⊤
i y = 0 for any y ∈ A, and hence constraints from I can be ignored. If a

constraint not from I is active in Px, then f(Px) ≥ −δ, since I is a maximal subset of constraints
with minx∈AI∩B(r) < −δ. Therefore, this reduces Case 1 to Case 2.

Case 2: 0 is not a (δ, r)-boundary QCSP. In this case, we show that any x ∈ B(r) with f(x) < −δ
must lie in S, and for f(x) = 1

2x
⊤Mx it suffices to find the eigenvector corresponding to the smallest

eigenvalue of M. We first show that there exists an eigenvector that improves the objective.

Lemma 14 Let f(x) = 1
2x

⊤Mx and S be a closed linear cone. If 0 is not a (δ, r)-boundary QCSP
for δ, r > 0, then the following statements are equivalent:

1. 0 is (δ, r)-QCSP, i.e. minx∈S∩B(r) f(x) < −δ.
2. There exists an eigenvector e of M such that e ∈ IntS ∩ ∂B(r) and f(e) < −δ.

Proof
2) =⇒ 1) follows trivially by definition of (δ, r)-QCSP.
1) =⇒ 2). We show that minimizer x⋆ lies in ∂(B(r)), and, since it’s a local minimum, by the
method of Lagrangian multipliers, we show∇f(x⋆) = λx⋆ for some λ, where∇f(x⋆) = Mx⋆.

Let x⋆ be the minimizer of f on S ∩ B(r). Then x⋆ ∈ ∂B(r), since otherwise, we can rescale
the minimizer to be on the boundary. I.e. for y = r

∥x⋆∥x
⋆ we have f(y) = r2

∥x⋆∥2 f(x
⋆) < f(x⋆).

Furthermore, y ∈ S since x⋆ ∈ S and S is a linear cone, and y ∈ ∂B(r) since ∥y∥ = r.
From the above reasoning we have that x⋆ ∈ S ∩ ∂B(r), and by the assumption of the lemma

we have f(x⋆) < −δ. Since

min
x∈∂S∩∂B(r)

f(x) ≥ min
x∈∂S∩B(r)

f(x) ≥ −δ,

the minimizer x⋆ lies in IntS ∩ ∂B(r). Since x⋆ ∈ ∂B(r), it satisfies the constraint g(x⋆) =
∥x⋆∥2 − r2 = 0, and by the method of Lagrangian multipliers we must have∇f(x⋆) = λ∇g(x⋆) or
equivalently Mx⋆ = λx⋆ for some λ. Therefore, x⋆ is an eigenvector of M and f(x⋆) < −δ.

Finding an exact eigenvector might be impossible. Hence, we show that finding x ∈ B(r) with
f(x) < −δ suffices, since either x or −x are in S.

Lemma 15 Let f(x) = 1
2x

⊤Mx and S be a closed linear cone. For δ, r > 0 and x̂ ∈ ∂B(r), if the
following conditions hold, then either x̂ ∈ S or −x̂ ∈ S:

4. As we don’t know I, Algorithm 1 tries all subsets of constraints.
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1. 0 is a (δ, r)-QCSP, i.e. minx∈S∩B(r) f(x) < −δ,
2. 0 is not a (δ, r)-boundary QCSP, i.e. minx∈∂S∩B(r) f(x) ≥ −δ,
3. f(x̂) < −δ.

Proof We know that there exists an eigenvector e ∈ S with f(e) < −δ. If both x̂ and −x̂ don’t
belong to S, we consider an arc on ∂B(r) connecting e and x̂ (or −x̂, see below). We will show
that for any point x on the arc, f(x) < −δ, and, since the arc intersects with ∂S, this contradicts
assumption that 0 is not a (δ, r)-boundary QCSP.

For contradiction, assume that both −x̂ and x̂ don’t belong to S. From Lemma 14 we know that
there exists an eigenvector e with f(e) < −δ and e ∈ S ∩ ∂B(r). Either x̂⊤e ≥ 0 or −x̂⊤e ≥ 0,
and w.l.o.g. we assume x̂⊤e ≥ 0. Consider an arc between x̂ and e on ∂B(r):

U = {αx̂+ βe | α, β ≥ 0} ∩ ∂B(r).

Since U is a connected set, x̂ /∈ S and e ∈ S, there exists x ∈ U ∩ ∂S. Since x = αx̂ + βe for
some α, β ≥ 0, we have:

1

2
x⊤Mx =

1

2
(αx̂+ βe)⊤M(αx̂+ βe)

=
1

2
α2x̂⊤Mx̂+ αβe⊤Mx̂+

1

2
β2e⊤Me.

By our assumption, 1
2 x̂

⊤Mx̂ < −δ and 1
2e

⊤Me < −δ. Since x̂⊤e ≥ 0 and e is an eigenvector of e
with eigenvalue at most f(e)

∥e∥2/2
= −2δ

r2
, we have

αβe⊤Mx̂ < −2δ

r2
αβe⊤x̂,

where we used that all terms are non-negative. Finally, using ∥x̂∥ = ∥e∥ = ∥αx̂+ βe∥ = r:

1

2
x⊤Mx < − δ

r2
(α2∥x̂∥2 + 2αβe⊤x̂+ β2∥e∥2)

= − δ

r2
∥αx̂+ βe∥2

= −δ,

contradicting our assumption that 0 is not a (δ, r)-boundary QCSP.

Finding x ∈ B(r) with f(x) < −δ might be difficult if minx∈B(r) f(x) is very close to −δ.
Instead we aim to find x ∈ B(r) with f(x) < −(1 − ε)δ for a constant ε ∈ (0, 1). As we show
next, such a point can be found in polynomial time using the power method applied to the matrix
I − M

L . Since λ|max|(M) ≤ L, all eigenvalues of I − M
L are between 0 and 2. Since there exists an

eigenvector e ∈ ∂B(r) of M with 1
2e

⊤Me < −δ, we have λmin(M) < −2δ
∥e∥2 = −2δ

r2
, and hence the

largest eigenvalue of I−M
L is at least 1− λmin(M)

L ≥ 1+ 2δ
Lr2

. Finding x with 1
2x

⊤Mx < −(1−ε)δ

is equivalent to finding x with x⊤(I − M
L )x ≥ (1 + 2(1−ε)δ

Lr2
)∥x∥2, and the power method achieves

this in O(log d+ Lr2

εδ ) iterations (see Lemma 16). Finally, we show that Algorithm 2 emulates the
power method on matrix I − M

L .
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Lemma 16 Let δ, r > 0, x ∈ Rf and ε ∈ (0, 1). Let f(y) = 1
2(y − x)⊤M(y − x) with

λ|max|(M) ≤ L. Let A be an affine subspace of Rd such that x ∈ A. If miny∈A∩B(x,r) f(y) < −δ,
then Algorithm 2 with η = 1

L with probability 1−O(ξ) finds y ∈ A∩∂B(x, r) with f(y) ≤ −(1−ε)δ
after T = O

(
Lr2

εδ log
(
Lrd
ξεδ

))
iterations5.

Proof We show that Algorithm 2 performs a power iteration on matrix I − ηPMP, where P is the
projection operator on linear subspace corresponding to A. We show that λmin(PMP) corresponds
to λ|max|(I − ηPMP). Finally, we use Fact 10 to establish the convergence rate.

By shifting the coordinate system so that x becomes 0, we instead optimize function g(y) =
1
2y

⊤My on set B(r) ∩ A0, where A0 = {y − x | y ∈ A} is the linear subspace parallel to A. Let
P ∈ Rd×d be the projection operator on A0. Then for any y ∈ A0 we have y = Py and for any
y ∈ Rd we have ProjA0

(y) = Py. Defining yt = xt − x, we have:

yt+1 = xt+1 − x

= Proj
A

(xt − η(∇f(xt)−∇f(x)))− x (Algorithm 2, Line 4)

= Proj
A0

(xt − x− η(∇f(xt)−∇f(x))) (Proj
A

(y)− x = Proj
A0

(y − x))

= P(xt − x− ηM(xt − x)) (∇f(x) = Mx and Proj
A0

(y) = Py)

= yt − ηPMyt (Definition of yt)

= yt − ηPMPyt (Pyt = yt since, by induction, yt ∈ A0)

= (I − ηPMP)t+1y0.

Therefore, Algorithm 2 performs a power iteration for matrix B = I−ηPMP. Since λ|max|(PMP) ≤
λ|max|(M) ≤ L and η = 1

L , all eigenvalues of B lie in [0, 2], and its largest eigenvalue is
1− ηλmin(PMP).

Since there exists e with ∥e∥ = r and h(e) < −δ, we have

λmin(PMP) ≤ − f(e)
∥e∥2/2

< −2δ

r2
,

which implies λ|max|(B) = 1+ 2δ
Lr2

. Our goal is to find y ∈ ∂B(r) with f(y) < −(1−ε)δ, meaning

y⊤(PMP)y

∥y∥2 < −(1− ε)
2δ

r2
,

which is equivalent to
y⊤By

∥y∥2 > 1 + (1− ε)
2δ

Lr2
.

5. This is the only statement in this section where we consider a non-zero saddle point, due to its non-trivial role in
Algorithm 2

17
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By Fact 10, with probability 1−O(ξ) we find such y after the following number of iterations:

T = O

 log d− log(ξε 2δ
Lr2

)

log 1+2δ/Lr2

1+(1−ε)·2δ/Lr2


= O

 log
(
Lrd
ξεδ

)
log

(
1 + εδ

Lr2

)


= O

(
Lr2

εδ
log

(
Lrd

ξεδ

))
.

Rescaling y so that ∥y∥ = r finishes the proof.

We now prove Theorem 7. First, by exhaustive search we guess a maximal subset of active
constraints I such that subspace AI formed by these linear constraints has x ∈ B(r) ∩ S with
f(x) < δ. Using Algorithm 2, we find y ∈ B(r) ∩ AI with f(y) < −(1 − ε)δ. Then y ∈ S by
Lemma 16, since I is a maximal subset of constraints with an escape direction.

Definition 17 A set S is a linear cone if x ∈ S implies αx ∈ S for all α ≥ 0.

If S is a linear cone, then scaling a vector preserves its belonging to S. In particular, S = {x | Ax ≤
0} is a linear cone.

Theorem 18 (Theorem 7 restated) Let δ, r > 0. Let f(x) = 1
2x

⊤Mx with λ|max|(M) ≤ L and
let S = {x | Ax ≤ 0} be defined by k linear inequality constraints. If x is a (δ, r)-QCSP, then
Algorithm 1 with probability at least 1 − ξ finds a point x ∈ S ∩ B(r) with f(x) < −Ω(δ) using
Õ
(
Lr2k2k

δ

)
deterministic gradient oracle calls.

Proof
For I ⊆ [k], we define AI = {x | A⊤

i x = 0, i ∈ I}. By induction, we’ll prove the following:
for any I ∈ [k], if Algorithm 1 didn’t find point x with f(x) < −(1 − |I|+1

k ε)δ after executing
Algorithm 2 on all sets AĨ such that I ⊆ Ĩ ⊆ [k], then

min
x∈AI∩S∩B(r)

f(x) ≥ −
(
1− |I|

k
ε

)
δ.

Basically, we have a subroutine which can return 1− ε approximation, and, since this approximation
factor may accumulate with each additional active constraint, we instead use approximation 1− ε

k
for every set of constraints.

We fix I and assume that the statement holds for all Ĩ such that I ⊊ Ĩ ⊆ [k]. By induction
hypothesis, if for all such Ĩ we didn’t find point x with f(x) < −(1− |I|+2

k ε)δ, then

min
x∈AĨ∩S∩B(r)

f(x) ≥ −(1− |I|+ 1

k
ε)δ

for all such Ĩ. If

min
x∈AI∩S∩B(r)

f(x) < −(1− |I|
k
ε)δ,

18
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then, since on the boundary we have

min
I⊊Ĩ⊆[k]

min
x∈AĨ∩S∩B(r)

f(x) ≥ −(1− |I|+ 1

k
ε)δ,

by Lemma 15 and Lemma 16 we can find x ∈ AI ∩ S ∩ B(r) with f(x) < −(1− |I|+1
k ε)δ using

Õ
(
Lkr2

εδ

)
gradient computations. Hence, if the algorithm didn’t find such x, then, as required:

min
x∈AI∩S∩B(r)

f(x) ≥ −(1− |I|
k
ε)δ.

Since there 2k possible subsets of constraints, the total number of gradient oracle calls is Õ
(
Lkr22k

εδ

)
.

Appendix C. Algorithm and Proofs for General Case

In this section, we present Algorithms 3 and 4 and show that they can escape from a saddle point.
Algorithm 3 computes a quadratic approximation of the function in all affine subspaces, defined by
all possible intersections of active constraints. For each affine subspace, it calls Algorithm 4 as a
subroutine, which tries to find an escape direction in this subspace.

C.1. Algorithm 3: Quadratic approximation

We first focus on the Lines 1-8 of Algorithm 3. The goal is to build a quadratic approximation
of the objective with some additional properties (see below). To simplify the presentation, w.l.o.g.
by shifting the coordinate system, we assume that the current saddle point is 0 and consider the
quadratic approximation of the function: f(x) = 1

2x
⊤∇2f(0)x+ x⊤∇f(0). Since f is ρ-Lipschitz

and r = 3
√

δ/ρ, in B(r) the quadratic approximation deviates from f by at most δ
6 (see derivation

before Definition 4). For a small value ξ (to be specified later), we instead analyze a noisy function
f ′(x) = 1

2x
⊤Mx+ x⊤v, where (all lines refer to Algorithm 3):

1. M = H+ γI (Line 8), where H is an approximation of the Hessian (Line 5) and γ is small
uniform noise, which guarantees that M is non-degenerate with probability 1.

2. v = g+ ζ (Line 7), where g is an approximation of the gradient and ζ is small Gaussian noise,
which guarantees that all coordinates of v are sufficiently separated from 0 w.h.p. Additionally,
with probability 1, linear systems of the form (M− µI)x = v with rank(M− µI) < d don’t
have any solutions, simplifying the analysis.6

We show that f ′ is a good approximation of f , and first, we need to show that H and g are good
approximations of the Hessian and the gradient respectively. For the gradient, we use algorithm
VRSG from Line 1, which w.h.p. estimates the gradient with precision σ̃ using Õ(σ

2

σ̃2 ) stochastic
gradient oracle calls (see Appendix C, Lemma 20). For the Hessian, since the i-th column of∇2f(0)

is by definition limτ→0
∇f(τei)−∇f(0)

τ , using a sufficiently small τ and approximating ∇f(τei)
and ∇f(0) using VRSG, we find good approximation of ∇2f(x). By selecting parameters as in
Algorithm 3 and by guaranteeing that noises ζ and γ are bounded, we show the following result:

6. This also holds in the subspaces, see proof of Theorem 26).
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Algorithm 3: HOUDINIESCAPE(x, S, δ): Escaping from a saddle point

input :Saddle point x, feasible set S = {y | Ay ≤ b ∈ Rk}, δ from definition of δ-SOSP
output :u ∈ S ∩ B(x, r) with f(u) < f(x)− δ

3 , or reports that x is a δ-SOSP
parameters: r = 3

√
δ/ρ (Definition 4), noise parameter ξ

1 Let VRSG(x, σ̃) be an algorithm that returns g such that ∥g(0) −∇f(x)∥ ≤ σ̃ w.h.p.
// Compute H - approximate Hessian

2 θ ← Θ( r√
d
), σ̃ ← Θ(ρr

2

d )

3 g(0) ← VRSG(x, σ̃)

4 for e1, . . . , ed – the standard basis in Rd do gi ← VRSG(x+ θei, σ̃) ;

5 Let H ∈ Rd×d whose i-th column is gi−g(0)

θ

// f(x+ h) ≈ f(x) + h⊤v + 1
2h

⊤Mh

6 Sample ζ ∼ N (0, ξ δ
r
√
d
· I), γ ∼ U [−ξ, ξ]

7 v← VRSG(x,Θ(δ/r)) + ζ
8 M← H+ γI

9 for I – every subset of constraints do
10 A ← {y | A⊤

i x = bi, i ∈ I}, where Ai is the i-th row of A // Optimize in A
11 p← ProjA(x) // Ball center in A
12 if ∥p− x∥ > r then continue;

// Optimization of g(y) = 1
2y

⊤M⊥y + y⊤v⊥ in S⊥ ∩ BdimA(r⊥)

13 r⊥ ←
√

r2 − ∥p− x∥2
14 Let O ∈ Rd×dimA be an orthonormal basis of A
15 S⊥ ← {y | A(p+Oy) ≤ b} // y ∈ S⊥ guarantees that p+Oy ∈ S

16 M⊥ ← O⊤MO

17 v⊥ ← O⊤(v +M(p− x))

18 u← FINDINSIDE(x, δ,p,O, (M⊥,v⊥), (r⊥, S⊥)) // Algorithm 4
19 if u ̸= ⊥ then return u;

20 report that x is a δ-SOSP
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Algorithm 4:
FINDINSIDE(x, δ,p,O, (M⊥,v⊥), (r⊥, S⊥))

input :x – saddle point, δ from definition of δ-SOSP, p – projection of x on A (affine subspace
corresponding to active constraints), O – orthonormal basis of A,
g(y) = 1

2y
⊤M⊥y+ y⊤v⊥ – objective in RdimA, S⊥ ∩B(r⊥) – feasible set in RdimA

output :p+Oy such that y ∈ S⊥ ∩ B(r⊥) and f(p+Oy) < f(x)− Ω(δ), if it exists.

// Case 1: Large gradient
1 Let y← argminy∈S⊥∩B(r⊥) y

⊤v⊥

2 if f(p+Oy) < f(x)− δ
3 then return p+Oy ;

// Case 2: Solution is in IntB(r⊥)
3 Let y← −M−1v

4 if y ∈ S⊥ ∩ B(r⊥) and f(p+Oy) < f(x)− δ
3 then return p+Oy ;

// Case 3: Solution is in ∂B(r⊥)
// Matrix diagonalization

5 Let Q be an orthogonal matrix and Λ = diag(λ1, . . . , λdimA) be such that
∥Q⊤ΛQ−M⊥∥ ≤ δ

10r2

// Rotation of the linear term
6 Let ṽ← Qv⊥ and ṽi be its i-th coordinate

// ỹ from Line 9 must have norm r

7 Let {µ}j be approximate real solutions of
∑d

i=1
ṽ2i

(µ−λi)2
= r2⊥

8 for each µj do
9 Let ỹ be a vector such that its i-th coordinate is ỹi ← ṽi

µj−λi

// Correction of approximate solutions
10 y← ProjS⊥∩B(r⊥)(Q

⊤ỹ)

11 if f(p+Oy) < f(x)− δ
3 then return p+Oy ;

return ⊥ // No solution in affine subspace A
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Lemma 19 Let f satisfy Assumptions 1 and 2. Let f ′(x) = f(0) + x⊤v + 1
2x

⊤Mx, where v and
M are as in Algorithm 3. For δ > 0, r = 3

√
δ/ρ we have ∥f ′(x)− f(x)∥ < δ

2 for all x ∈ B(r) w.h.p.

Reducing Case x⋆ ∈ ∂S to Case x⋆ ∈ IntS. We now elaborate on Lines 13-17 of Algorithm 3.
The goal is, as in Section B, to reduce the case x⋆ ∈ ∂S to the case x⋆ ∈ IntS. If x⋆ ∈ ∂S,
then there exist a non-empty set I of constraints active at x⋆. Then we work in affine subspace A
where constraints from I are active. We parameterize A: if p = ProjA(x) and O ∈ Rd×dimA is an
orthonormal basis of A, then any point in A can be represented as p+Oy for y ∈ RdimA. Defining
g(y) = f ′(p+Oy), since

g(y) = 1/2(p+Oy)⊤M(p+Oy) + (Oy)⊤p

= 1/2 · y⊤(O⊤MO)y + y⊤(O⊤Mp+O⊤v) + const,

minimizing f ′ in A ∩ S ∩ B(r) is equivalent to minimizing g in S⊥ ∩ B(r⊥) (Lines 13-17), where:
1. S⊥ is a set of points y ∈ RdimA such that p+Oy ∈ S, namely S⊥ = {y | Ai(p+Oy) ≤

bi, i /∈ I}. Hence, S⊥ is defined by linear inequalities, similarly to S.
2. r⊥ is a radius such that condition y ∈ B(r⊥) is equivalent to p+Oy ∈ B(r). Since p is the

projection of 0 on A, we have O⊤p = 0, and hence ∥p+Oy∥2 = ∥p∥2 + ∥Oy∥2. Since O
is an orthonormal basis of A, ∥Oy∥ = ∥y∥, and hence r⊥ =

√
r2 − ∥p∥2.

For y⋆ such that x⋆ = p+Oy⋆, no constraints from S⊥ are active, and hence x⋆ ∈ IntS⊥.

C.2. Algorithm 4: Escaping when y⋆ ∈ IntS⊥

In this section, we find minimizer y⋆ of function g(y) = 1
2y

⊤M⊥y + y⊤v⊥ + C in S⊥ ∩ B(r⊥),
while assuming that y⋆ ∈ IntS⊥. Since the solutions we find can be approximate, we have to
guarantee that the objective is not too sensitive to the change of its argument. It suffices to guarantee
that ∥v∥ is bounded, since for any y ∈ B(r⊥) and perturbation h there exists τ ∈ [0, 1] such that:

|g(y)− g(y + h)| = |(∇g(y + τh))⊤h|
≤ (∥∇g(0)∥+ L∥y + τh∥)∥h⊥∥
≤ (∥v∥+ L(r⊥ + ∥h∥))∥h∥,

where we used that the objective is L-smooth and hence ∥∇g(y + τh)∥ ≤ ∥∇g(0)∥+ L∥y + τh∥.
We consider the situation when ∥v⊥∥ is large as a separate case. Otherwise, for y⋆, there are only
two options: either y⋆ ∈ IntB(r⊥) or y⋆ ∈ ∂B(r⊥). Algorithm 4 handles these cases, as well as the
case when ∥v∥ is large, separately.

Case 1: ∥v⊥∥ is large (Lines 1-2). If ∥v⊥∥ is large and we can find y with small y⊤v⊥, the
linear term alone suffices to improve the objective. We show that, if such y doesn’t exist, then g(y⋆)
requires y⋆ ∈ ∂S⊥, which contradicts that y⋆ ∈ IntS⊥. Below we assume that ∥v⊥∥ is bounded.

Case 2: y ∈ IntB(r⊥) (Lines 3-4). In this case, y⋆ is an unconstrained critical point of g, and
hence it must satisfy ∇g(y) = 0, implying M⊥y + v⊥ = 0 which gives the unique solution
y = −M−1

⊥ v⊥. since M is a perturbed matrix, so is M⊥, and hence M⊥ is non-degenerate with
probability 1. It remains to verify that y ∈ B(r⊥) ∩ S⊥ and y decreases the objective by Ω(δ).
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Case 3: y ∈ ∂B(r⊥) (Lines 5-11). Since the only active constraint at y⋆ is c(y) = 1
2(∥y∥2−r2⊥) =

0, by the KKT conditions, any critical point must satisfy∇g(y) = µ∇c(y) for some µ ∈ R, which
is equivalent to M⊥y + v⊥ = µy. Hence, for any fixed µ, y must be a solution of linear system
(M⊥ − µI)y = −v⊥. When M⊥ − µI is degenerate (i.e. µ is an eigenvalue of M⊥), due to
perturbation of v⊥, the system doesn’t have any solution with probability 1. It leaves us with the case
when M⊥ − µI is non-degenerate, when there exists a unique solution y(µ) := −(M⊥ − µI)−1v⊥.

Diagonalization. Dependence of (M⊥ − µI)−1 on µ is non-trivial, but for a diagonal M⊥,
the inverse can be found explicitly. Hence, we perform diagonalization of M⊥: we find orthogonal
Q and diagonal Λ such that ∥M⊥ − Q⊤ΛQ∥ < ε (Line 5) in time O(d3 log 1/ε) [30]. Setting
ε = O(δ/r2⊥), we guarantee that the function changes by at most O(δ) in B(r⊥). The function
y(µ) = −(Q⊤ΛQ− µI)−1v⊥ can be written as Qy(µ) = −(Λ− µI)Qv⊥, and hence we work
with rotated vectors ỹ(µ) := Qy(µ) and ṽ := Qv⊥ (Line 6).

Finding candidate µ. Since ỹ(µ) = −(M⊥ − µI)−1ṽ, for the i-th coordinate of ỹ(µ) we have
ỹi(µ) =

ṽi
µ−λi

(Line 9). Since we are only interested in y(µ) ∈ ∂B(r⊥) and Q is an orthogonal matrix,

we must have (Line 7): ∥y(µ)∥2 = ∥ỹ(µ)∥2 =
∑d

i=1 ỹi(µ)
2 = r2⊥, and hence

∑
i

ṽ2i
(µ−λi)2

= r2⊥.

After multiplying the equation by
∏

i(µ − λi)
2, we get an equation of the form p(µ) = 0, where

p is a polynomial of degree 2d. We find roots µ1, . . . , µ2d of the polynomial in time O(d2 log d ·
log log 1/ε) [29], where ε is the required root precision. For each i, we compute y(µi) and verify
whether it lies in B(r⊥) ∩ S⊥ and improves the objective by −Ω(δ).

Precision. Since the roots of the polynomial are approximate, when µ is close to λi, even a small
perturbation of µ can strongly affect yi(µ) = ṽi

µ−λi
. We solve this as follows: since ∥ỹ(µ)∥ = r⊥,

for each i we must have |ỹi(µ)| ≤ r⊥, implying |µ− λi| ≥ |ṽi|
r⊥

. Therefore, µ must be sufficiently
far from any λi, where the lower bound on the distance depends on r⊥ ≤ 3

√
δ/ρ and on |ṽi|. By

adding noise to v (Line 7 of Algorithm 3), we guarantee that the noise is preserved in ṽ so that each
coordinate is sufficiently separated from 0 w.h.p. This is formalized in Appendix C, Lemma 24.

C.3. Proof of correctness

Algorithm 5: V RSG(x, σ̃): Variance Reduced Stochastic Gradient
parameters: stochastic gradient descent variance σ, error probability ε
output :g such that ∥g −∇f(x)∥ < σ̃ with probability at least 1− ε

1 if σ = 0 then return∇f(x);
2 K ← 2σ2

σ̃2 , M ← O(log d/ε)
3 for i = 1, . . . ,M do
4 Sample gi,1, . . . ,gi,K – independently sampled stochastic gradients of f at x
5 mi ← 1

K

∑K
j=1 gi,j

6 return the coordinate-wise median of m1,m2, . . . ,mM

Lemma 20 Let stochastic gradient oracle satisfy Assumption 2. Then for any σ̃ > 0, Algorithm 5
returns a vector g with ∥g−∇f(x)∥ < σ̃ with probability 1−O(ε) using O(1+ σ2

σ̃2 log
d
ε ) stochastic

gradient oracle calls.
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Proof Since the stochastic gradients are sampled independently and E∥gi,j −∇f(x)∥2 ≤ σ2 by
Assumption 2, for each i we have

E∥mi −∇f(x)∥2 = E∥ 1
K

k∑
j=1

gi,j −∇f(x)∥2 ≤
σ2

K
=

σ̃2

2
.

Applying Fact 11 to m1, . . . ,mM , we have ∥g −∇f(x)∥ < σ̃ with probability

1− d · e−Ω(M) = 1− d · e−Ω(log d/ε) = 1−O(ε).

Lemma 21 (Lemma 19) Let f satisfy Assumptions 1 and 2. Let f ′(x+h) = f(x)+h⊤v+ 1
2h

⊤Mh,
where v and M are as in Algorithm 3. For δ > 0, r = 3

√
δ/ρ we have ∥f ′(x+ h)− f(x+ h)∥ < δ

2
for all h ∈ B(r) w.h.p.

Proof Recall that v and M are noisy estimations of the gradient and the Hessian (below we reiterate
how they are computed). By the Taylor expansion of f , we have

f(x+ h) = f(x) + h⊤∇f(x) + 1

2
h⊤∇2f(x)h+ ϕ(h),

where ϕ(h) = O(∥h∥3). To bound |f ′(x+ h)− f(x+ h)|, we analyze difference between f and
f ′ for linear, quadratic and higher-order terms separately. Namely, we bound |h⊤∇f(x) − h⊤v|,
|12h⊤∇2f(x)h− 1

2h
⊤Mh|, and |ϕ(h)| with δ

6 each.

Higher-order terms Since f has a ρ-Lipschitz Hessian, we have |ϕ(h)| ≤ ρr3

6 ≤ δ
6 for r = 3

√
δ/ρ.

Linear terms Recall that v = g + ζ, where g = VRSG(x, O(δ/r)) and ζ ∼ N (0, ξ δ
r
√
d
· I) for

some small ξ. By Lemma 20, ∥g −∇f(x)∥ < O(δ/r) w.h.p. By choosing the appropriate constants,
with probability 1−O(ε) we have

∥v −∇f(x)∥ = ∥g −∇f(x)∥+ ∥ζ∥ ≤ δ

12r
+ ξ

δ

r
log

1

ε
≤ δ

6r
,

where we selected ξ ≤ 1
12 log

−1 1
ε . Using this bound, for all h ∈ B(r) we have:

|h⊤∇f(x)− h⊤v| ≤ r∥v −∇f(x)∥ < δ

6

Quadratic terms Recall that M = H+ γI , where γ ∼ U [−ξ, ξ] and H is as in Algorithm 3: for
{ei} – the standard basis in Rd, θ = Θ( δ

ρr2
) and σ̃ = Θ( δ2

ρr2
), the i-th column of H is gi−g(0)

θ with

gi = VRSG(x+ θei, σ̃) and g(0) = VRSG(x+ θei, σ̃). For all h ∈ B(r) we have:

|1
2
h⊤Mh− 1

2
h⊤∇2f(x)h| ≤ |1

2
h⊤(H−∇2f(x))h|+ |γ|

2
∥h∥2.
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The second term is bounded by selecting a sufficiently small γ (i.e. a sufficiently small ξ), and hence
it remains to bound the second term. Let wi be the difference between ∇f(x+θei)−∇f(x)

θ and its
stochastic estimate:

wi =
(gi − g(0))− (∇f(x+ θei)−∇f(x))

θ
.

Since gi and g(0) are within distance σ̃ of the true gradients, we have ∥wi∥ = O
(
σ̃
θ

)
. Since

∇2f(x)ei is the i-th column of∇2f(x), we have:

gi − g(0)

θ
−∇2f(x)ei

= wi +
∇f(x+ θei)−∇f(x)

θ
−∇2f(x)ei

= wi +

∫ 1

τ=0
(∇2f(x+ τθei)−∇2f(x))dτ · ei

= wi + ui,

where ∥ui∥ = O(ρθ) since∇2f is ρ-Lipschitz. Therefore, for any h ∈ B(r) we have

(H−∇2f(x))h =
d∑

i=1

hi(wi + ui),

and hence:

|h⊤(H−∇2f(x))h| = |
d∑

i=1

hi(wi + ui)
⊤h|

≤
d∑

i=1

|hi| · ∥wi + ui∥ · ∥h∥

= O

(
∥h∥1(

σ̃

θ
+ ρθ)∥h∥

)
= O

(√
dr2(

σ̃

θ
+ ρθ)

)
,

where the third line follows from ∥wi∥ = O( σ̃θ ) and ∥ui∥ = O(ρθ)). Hence, it suffices to choose θ
so that: √

dr2ρθ = Θ(δ) ⇐⇒ θ = Θ(
δ√
dρr2

) = Θ(
r√
d
),

where we used r = 3
√

δ/ρ. Similarly, we choose σ̃ so that:

√
dr2

σ̃

θ
= Θ(δ) ⇐⇒ σ̃ = Θ(

δθ√
dr2

) = Θ(
ρr2

d
).

Lemma 22 Let δ, r > 0. Let f(x) = 1
2x

⊤Mx+ x⊤v + C, with the following conditions satisfied:
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• λmax(M) ≤ L

• (Large linear term) ∥v∥ ≥ 4(Ldr + (C+δ)d
r )

• For x⋆ = argminx∈S∩B(r) f(x) we have f(x⋆) < −δ

Then either (x⋆)⊤v < − r
8d∥v∥ or x⋆ ∈ ∂S.

Remark 23 As we show in the proof of Lemma 24, if ∥v∥ ≥ Ldr+ (C+δ)d
r and x⋆ /∈ ∂S, the linear

term alone is sufficient to sufficiently improve the function, and the quadratic term is negligible.

Proof For contradiction, assume that (x⋆)⊤v ≥ − r
4d∥v∥ and x⋆ ∈ IntS. We show that we can

perturb x⋆ so that the point still lies in B(r) ∩ S and the objective decreases. We consider two cases:
when x⋆ ∈ IntB(r), we can simply move in the direction of −v. When x⋆ ∈ ∂B(r), we rely on the
fact that (x⋆)⊤v < − r

8d∥v∥, which guarantees that small change in direction −v requires a small
change in the orthogonal direction.

Case 1: x⋆ ∈ IntB(r). Let x⋆ = αv + w, where w ⊥ v. Since x⋆ ∈ Int(B(r) ∩ S), for a
sufficiently small ε we have x⋆ − εv ∈ B(r) ∩ S, and then:

f(x⋆ − εv)

=
1

2
(x⋆ − εv)⊤M(x⋆ − εv) + (x⋆ − εv)⊤v + C

= f(x⋆)− ε(x⋆)⊤Mv + ε2
1

2
v⊤Mv − ε∥v∥2

≤ f(x⋆) + ε(rL∥v∥ − ∥v∥2) +O(ε2)

< f(x⋆),

contradicting the fact that x⋆ is the minimizer.

Case 2: x⋆ ∈ ∂B(r). Let x⋆ = −αv + w, where w ⊥ v. Since (x⋆)⊤v ≥ − r
8d∥v∥, we have

α ≤ r
8d∥v∥ , and hence ∥w∥ ≥ r

2 and α∥v∥ ≤ ∥w∥
4d . We’ll construct x′ such that x′ ∈ B(r), x′ is

arbitrarily close to x⋆, and, since x⋆ ∈ IntS, we also have x′ ∈ IntS. Let x′ = −(α+ε)v+(1−θ)w
for ε > 0. To have x′ ∈ B(r), it suffices to guarantee that ∥x′∥ ≤ ∥x⋆∥, meaning:

(α+ ε)2∥v∥2 + (1− θ)2∥w∥2 ≤ α2∥v∥2 + ∥w∥2

⇐⇒ (2αε+ αε2)∥v∥2 ≤ θ(2− θ)∥w∥2,

and hence for x⋆ ∈ ∂B(r) it suffices to select θ = 2αε∥v∥2
∥w∥2 . Since θ = O(ε), ∥x′ − x⋆∥ = O(ε),

and hence we can select x′ arbitrarily close to x⋆, which guarantees x′ ∈ S. It remains to show that
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f(x′) < f(x⋆). Using θ = 2αε∥v∥2
∥w∥2 ≤ ε

2d
∥v∥
∥w∥ :

f(x′) = f(−(α+ ε)v + (1− θ)w)

=
1

2
(−(α+ ε)v + (1− θ)w)⊤M(−(α+ ε)v

+ (1− θ)w) + ((α+ ε)v + (1− θ)w)⊤v + C

= f(x⋆) +
1

2
(−εv − θw)⊤M(−εv − θw)

+ (−εv − θw)⊤Mx⋆ + (−εv − θw)⊤v

≤ f(x⋆) + (ε+
ε

2d
)∥v∥Lr +O(ε2)− ε∥v∥2(ε− ε

2d
)

< f(x⋆).

Lemma 24 For δ, r, θ > 0, let S = {x | Ay ≥ b} and let f(x) = 1
2x

⊤Mx + x⊤v + C satisfy
the following conditions:

1. λ|max|(M) ≤ L,
2. (M− µI)y = −v has no solutions for all µ such that rank(Λ− µI) < d,
3. |ṽi| ≥ θ for all i, where ṽ = Qv and Q is an orthogonal matrix defined in Line 5 of

Algorithm 4.
Let x⋆ = argminy∈S∩B(r) f(x) and assume that f(x⋆) < −δ and x⋆ ∈ IntS. Then Algorithm 4
finds x ∈ S ∩ B(r) such that f(x) < −(1− ε)δ in time Õ(d3).

Remark 25 In the statement above, we select θ sufficiently small so that adding random noise to
∇f(0) guarantees that condition 3 is satisfied w.h.p. Condition 2 is not required, but it’s easy to
satisfy and simplifies the analysis.

Proof As outlined in Section 2.2, we analyze the cases from Algorithm 3 separately. We consider the
situation when ∥v∥ is large as a separate case, since in this case the function is sensitive to the change
of its argument. Otherwise, for x⋆, there are only two options: either x⋆ ∈ IntB(r) or x⋆ ∈ ∂B(r).

Case 1: Large ∥v∥. If ∥v∥ ≥ 4(Ldr + (C+δ)d
r ), then by Lemma 22 either (x⋆)⊤v < − r

4d∥v∥ or
x⋆ ∈ ∂S. Since we assume that x⋆ ∈ IntS, it leaves us with the case (x⋆)⊤v < − r

4d∥v∥. Then
Algorithm 3 finds x with x⊤v < − r

d∥v∥ and hence

f(x) ≤ 1

2
Lr2 + C − r

4d
∥v∥2

≤ 1

2
Lr2 + C − r

4d
4(Ldr + (C + δ)

d

r
)

≤ −δ.

Case 2: x⋆ ∈ IntS ∩ IntB(r). In this case, x⋆ is an unconstrained critical point, and so we must
have∇f(x) = Mx+ v = 0. If M is degenerate, by condition 2, there are no solutions. Otherwise,
there exists a unique x such that Mx = −v. We then check that x ∈ S ∩B(r) and f(x) < f(0)− δ

2 .
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Case 3: x⋆ ∈ IntS∩∂B(r). By the method of Lagrangian multipliers, we must have Mx+v = µx
for some λ. By condition 2, if rank(M− µI) < d, then (M− µI)x = −v has no solutions. Hence,
it suffices to consider cases when µ is not an eigenvalue of M.

When µ is not an eigenvalue of M, (M − µI)x = −v has a unique solution. Based on [30],
we find orthogonal Q and diagonal Λ such that ∥M −Q⊤ΛQ∥ < ε, which can be done in time
O(d3 log 1/ε). By setting ε = O(δ/r2), we guarantee that the function changes by at most O(δ) in
B(r). Then (Q⊤ΛQ− µI)x = −v is equivalent to

(Λ− µI)Qx = −Qv.

Let ṽ = Qv and x̃ = Qx. Then the solutions for x̃ have coordinates x̃i = −ṽi
µ−λi

for all i. Since we
are only interested in solutions on ∂B(r) and Q is an orthogonal matrix, we must have

∥x∥2 = ∥x̃∥2 =
d∑

i=1

ṽ2i
(µ− λi)2

= r2.

By multiplying both sides by
∏

i(µ − λi)
2, we get an equation of form p(λ) = 0, where p is the

polynomial with degree 2d and the highest degree coefficient being r2. We can find all the roots
of p with precision ν (to be specified later) in time O(d2 log d · log log 1

ν ) [29]. Since we are only
interested in real roots, we take the real parts of the approximate roots (if the exact root is real, taking
the real part only improves the accuracy).

Next, we estimate the required precision ν. Since we have ∥x̃∥ = r, it requires, in particular, that
|xi| ≤ r for all i, which means that λi must satisfy

|ṽi|
|µ− λi|

≤ r ⇐⇒ |µ− λi| ≥
|ṽi|
r

.

Since |vi| ≥ θ by our assumption, we have |µ− λi| ≥ θ
r .

Let µ be the exact root of the polynomial and µ′ ∈ [µ−ν, µ+ν] be the corresponding approximate
root found the algorithm. Let x̃ and x̃′ be the points in Rd corresponding to µ and µ′. Then we have:

|x̃i − x̃′i| = |
ṽi

µ− λi
− ṽi

µ′ − λi
|

= | ṽi
µ− λi

· µ− µ′

µ′ − λi
|

≤ rν

|µ′ − λi|
≤ rν

θ
r − ν

≤ 2r2ν

θ
,

where we assumed ν < θ
2r . If x = Q⊤x̃ and x′ = Q⊤x̃, then ∥x− x′∥ = ∥x̃− x̃′∥ ≤ 2

√
dr2ν
θ .
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Let x′′ be the projection of x′ on B(r) ∩ S. Then ∥x′′ − x∥ ≤ 2∥x′ − x∥, and hence:

|f(x)− f(x′′)| =
∣∣∣∣12(x⊤Mx− x′′⊤Mx′′) + (x− x′′)⊤v

∣∣∣∣
=

∣∣∣∣12(x− x′′)⊤M(x+ x′′) + (x− x′′)⊤v

∣∣∣∣
≤ ∥x− x′′∥(Lr + ∥v∥)

≤ ν · 4
√
dr2

θ
(L(d+ 1)r +

(C + δ)d

r
)

≤ δ

10
,

by selecting ν < δθ
40

√
d(L(d+2)r3+(C+δ)dr)

.

Theorem 26 (Theorem 8) Let S = {x | Ax ≤ b} be a set defined by an intersection of k
linear inequality constraints. Let f satisfy Assumptions 1 and 2 and let minx∈S f(x) = f⋆. Then
there exists an algorithm which for δ > 0 finds a δ-SOSP in Õ(f(x0)−f⋆

δ d3(2k + σ2

δ4/3
)) time using

Õ(f(x0)−f⋆

δ (d+ d3σ2

δ4/3
)) stochastic gradient oracle calls w.h.p.

Proof It suffices to show that if x is not a δ-SOSP, then Algorithm 3 decreases function value by
Ω(δ), and hence there can’t be more that O(f(x0)−f⋆

δ ) iterations. W.l.o.g. we can assume that the
current iterate is 0 and f(0) = 0. As shown in Lemma 19, we can replace f with its quadratic
approximation 1

2x
⊤Mx+ x⊤v while increasing the function value by at most δ

2 .
As shown in Section C.1, we can consider function g(y) = 1

2y
⊤M⊥y+y⊤v⊥+C in S⊥∩B(r⊥).

By Lemma 24, we can find y with g(y) < −1
2δ in Õ(d3) time. It remains to show that the conditions

from Lemma 24 are satisfied. Recall that for O ∈ Rd×dimA – an orthonormal basis of A, we define
the following:

• S⊥ ← {y | A(p+Oy) ≤ b}
• M⊥ ← O⊤MO
• v⊥ ← O⊤(v +M(p− x))
As required in Lemma 24, S⊥ is the set defined by linear inequality constraints. We next check

other requirements in Lemma 24.

1) λ|max|(M⊥) ≤ L: Since O defines an orthonormal basis, λ|max|(M⊥) = λ|max|(O
⊤MO) ≤

λ|max|(M) ≤ L.

2) (M⊥ − µI)y = −v⊥ has no solutions for all µ such that rank(Λ− µI) < d

v⊥ = O⊤(v +M(p− x)) = O⊤ζ +O⊤(g +M(p− x)),

where ζ ∼ N (0, ξ δ
r
√
d
· I). Since O is an orthonormal basis, we have O⊤ζ ∼ N (0, ξ δ

r
√
d
· I). This

Gaussian noise guarantees that the v⊥ has the probability 0 to lie in any fixed subspace, which
guarantees that there are no solutions for degenerate systems of the form (M⊥ − µI)y = −v⊥.
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3) |ṽi| ≥ θ for all i Recall that ṽ = Qv⊥ as defined in Line 6 of Algorithm 4, where Q is an
orthogonal matrix. For a fixed i and θ, we consider Prζ [|ṽi| < θ]. Due to rotation invariance of
Gaussian noise, its projection on any linear subspace has distribution N (0, ξ δ

r
√
d
I). By selecting

θ = ε ξδ
d2r

, we have that the for all i, |ṽi| > θ with probability at least 1− ε.
By selecting ε such that taking the union bound over all O(f(x0)−f⋆

δ ) iterations, d coordinates
and 2k sets of constraints gives bounded error probability, we finish the proof.
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