
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

BOME! Bilevel Optimization Made Easy:
A Simple First-Order Approach

author names withheld

Under Review for OPT 2022

Abstract
Bilevel optimization (BO) is useful for solving a variety of important machine learning problems
including but not limited to hyperparameter optimization, meta-learning, continual learning, and
reinforcement learning. Conventional BO methods need to differentiate through the low-level
optimization process with implicit differentiation, which requires expensive calculations related to
the Hessian matrix. There has been a recent quest for first-order methods for BO, but the methods
proposed to date tend to be complicated and impractical for large-scale deep learning applications.
In this work, we propose a simple first-order BO algorithm that depends only on first-order gradient
information, requires no implicit differentiation, and is practical and efficient for large-scale non-
convex functions in deep learning. We provide non-asymptotic convergence analysis of the proposed
method to stationary points for non-convex objectives and present empirical results that show its
superior practical performance.

1. Introduction
We consider the bilevel optimization (BO) problem:

min
v,θ

f
(
v, θ

)
s.t. θ ∈ argmin

θ′
g
(
v, θ′

)
, (1)

where the goal is to minimize an outer objective f whose variables include the solution of another
minimization problem w.r.t an inner objective g. The θ and v are the inner and outer variables,
respectively. We assume that v ∈ Rm, θ ∈ Rn and that g(v, ·) attains a minimum for each v.

BO is notoriously challenging due to its nested nature. Despite the large literature, most existing
methods for BO are slow and unsatisfactory in various ways. For example, a major class of BO
methods is based on direct gradient descent on the outer variable v while viewing the optimal
inner variable θ∗(v) = argminθ g(v, θ) as a (uniquely defined) function of v. The key difficulty
is to calculate the derivative ∇vθ

∗(v) which may require expensive manipulation of the Hessian
matrix of g via the implicit differentiation theorem. Another approach is to replace the low level
optimization with the stationary condition ∇θg(v, θ) = 0. This still requires Hessian information,
and more importantly, is unsuitable for nonconvex g since it allows θ to be any stationary point
of g(v, ·), not necessarily a minimizer. To the best of our knowledge, the only existing fully first-
order BO algorithms1 are BSG-1 [8] and BVFSM with its variants [18–20]; but BSG-1 relies on
a non-vanishing approximation that does not yield convergence to the correct solution in general,

1. By fully first-order, we mean methods that only require information of f, g,∇f,∇g, so this excludes methods that
apply auto-differentiation or conjugate gradient that need multiple steps of matrix-vector computation.
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and BVFSM is sensitive to hyper-parameters on large-scale practical problems and lacks a complete
non-asymptotic analysis for the practically implemented algorithm.

In this work, we seek a simple and fast fully first-order BO method that can be used with non-
convex functions including those appear in deep learning applications. The idea is to reformulate
(1) as a single-level constrained optimization problem using the so-called value-function-based
approach [4, 5]. The constrained problem is then solved by stopping gradient on the single variable
that contains the higher-order information and applying a simple first-order dynamic barrier gradient
descent method based on a method of Gong et al. [9]. Our contributions are: 1) we introduce a novel
and fast BO method by applying a modified dynamic barrier gradient descent on the value-function
reformulation of BO; 2) Theoretically, we establish the non-asymptotic convergence of our method
to local stationary points (as measured by a special KKT loss) for non-convex f and g. Importantly,
to the best of our knowledge, this work is the first to establish non-asymptotic convergence rate for a
fully first-order BO method.

2. Background
This section provides a brief background on traditional BO methods. Please see Bard [1], Dempe
[3], Dempe and Zemkoho [4] for overviews, and Liu et al. [17] for a survey on recent ML applications.
Hypergradient Descent Assume that the minimum of g(v, ·) is unique for all v so that we can
write θ∗(v) = argminθ g(v, θ) as a function of v; this is known as the low-level singleton (LLS)
assumption. The most straightforward approach to solving (1) is to conduct gradient descent on
f(v, θ∗(v)) as a function of v. Note that

∇vf(v, θ
∗(v)) = ∇1f(v, θ

∗(v)) +∇vθ
∗(v)∇2f(v, θ

∗(v)).

The difficulty is to compute∇vθ
∗(v). From implicit function theorem, it satisfies a linear equation:

∇1,2g(v, θ
∗(v)) +∇2,2g(v, θ

∗(v))∇vθ
∗(v) = 0. (2)

If ∇2,2g is invertible, we can solve for∇vθ
∗(v) and obtain a gradient update rule on v:

vk+1 ← vk − ξ
(
∇1fk −

(
∇1,2gk

)⊤(∇2,2gk
)−1∇2fk

)
,

where k denotes iteration,∇1fk = ∇1f(vk, θ
∗(vk)) and similarly for the other terms. This approach

is sometimes known as the hypergradient descent. However, hypergradient descent is computationally
expensive: Besides requiring evaluation of the inner optimum θ∗(vk), the main computational
bottleneck is to solve the linear equation in (2).
Stationary-Seeking Methods. An alternative method is to replace the argmin constraint in (1) with
the stationarity condition∇θg(v, θ) = 0, yielding a constrained optimization:

min
v,θ

f(v, θ) s.t. ∇θg(v, θ) = 0. (3)

Algorithms for nonlinear equality constrained optimization can then be applied [21]. The constraint
in (3) guarantees only that θ is a stationary point of g(v, ·), so it is equivalent to (1) only when g is
convex w.r.t. θ. Otherwise, the solution of (3) can be a maximum or saddle point of g. This makes it
problematic for deep learning, where non-convex functions are pervasive.
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3. Method
We consider a value function approach [see e.g., 18, 23, 29], which yields natural first-order al-
gorithms for non-convex g and requires no computation of Hessian matrices. It is based on the
observation that (1) is equivalent to the following constrained optimization (even for non-convex g):

min
v,θ

f(v, θ) s.t. q(v, θ) := g(v, θ)− g∗(v) ≤ 0, (4)

where g∗(v) := minθ g(v, θ) = g(v, θ∗(v)) is known as the value function. Compared with the
hypergradient approach, this formulation does not require calculation of the implicit derivative
∇vθ

∗(v): Although g∗(v) depends on θ∗(v), its derivative ∇vg
∗(v) does not depend on ∇vθ

∗(v),
by Danskin’s theorem:

∇vg
∗(v) = ∇1g(v, θ

∗(v)) +∇vθ
∗(v)∇2g(v, θ

∗(v)) = ∇1g(v, θ
∗(v)), (5)

where the second term in (5) vanishes because we have ∇2g(v, θ
∗(v)) = 0 by definition of the

optimum θ∗(v). Therefore, provided that we can evaluate θ∗(v) at each iteration, solving (4) yields
an algorithm for BO that requires no Hessian computation.
Dynamic Barrier Gradient Descent. The idea is to iterative update the parameter (v, θ) to reduce
f while controlling the decrease of the constraint q, ensuring that q decreases whenever q > 0.
Specifically, denote ξ as the step size, the update at each step is

(vk+1, θk+1)← (vk, θk)− ξδk, (6)

where δk = argmin
δ
∥∇f(vk, θk)− δ∥2 s.t. ⟨∇q(vk, θk), δ⟩ ≥ ϕk. (7)

Here ∇fk := ∇(v,θ)f(vk, θk), ∇qk := ∇(v,θ)q(vk, θk), and ϕk ≥ 0 is a non-negative control barrier
and should be strictly positive ϕk > 0 in the non-stationary points of q: the lower bound on the inner
product of ∇q(vk, θk) and δk ensures that the update in (6) can only decrease q (when step size ξ is
sufficiently small) until it reaches stationary. In addition, by enforcing δk to be close to∇f(vk, θk) in
(7), we decrease the objective f as much as possible so long as it does not conflict with descent of q.

Two straightforward choices of ϕk that satisfies the condition above are ϕk = ηq(vk, θk) and
ϕk = η ∥∇q(vk, θk)∥2 with η > 0. We find that both choices of ϕk work well empirically and use
ϕk = η ∥∇q(vk, θk)∥2 as the default.

The optimization in (7) yields a simple closed form solution:

δk = ∇f(vk, θk) + λk∇q(vk, θk), with λk = max

(
ϕk − ⟨∇f(vk, θk),∇q(vk, θk)⟩

||∇q(vk, θk)||2
, 0

)
,

and λk = 0 in the case of ||∇q(vk, θk)|| = 0.
Practical Approximation. The main bottleneck of the method above is to calculate the q(vk, θk)

and ∇q(vk, θk) which requires evaluation of θ∗(vk). In practice, we approximate θ∗(vk) by θ
(T )
k ,

where θ
(T )
k is obtained by running T steps of gradient descent of g(vk, ·) w.r.t. θ starting from θk.

That is, we set θ(0)k = θk and let

θ
(t+1)
k = θ

(t)
k − α∇θg(vk, θ

(t)
k ), t = 0, . . . , T − 1, (8)
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for some step size parameter α > 0. We obtain an estimate of q(v, θ) at iteration k by replacing
θ∗(vk) with θ

(T )
k : q̂(v, θ) = g(v, θ)− g(v, θ

(T )
k ).

We substitute q̂(vk, θk) into (7) to obtain the update direction δk. Note that the θ
(T )
k is viewed as

a constant when defining q̂(v, θ) and hence no differentiation of θ(T )
k is performed when calculating

the gradient∇q̂. This differs from truncated back-propagation methods [e.g., 24] which differentiate
through θ

(T )
k as a function of v.

4. Analysis

We establish a KKT condition of BO through the form in (3). Assume f and ∇θq are continuously
differentiable, and (v∗, θ∗) satisfies ∇θq(v

∗, θ∗) = 0 and CRCQ with ∇θq. Then by the typical first
order KKT condition of (3), there exists a Lagrange multiplier ω∗ ∈ Rn such that

∇f(v∗, θ∗) +∇(∇θq(v
∗, θ∗))ω∗ = 0. (9)

This condition can be viewed as the limit of a sequence of (12) in the following way: assume we
relax the constraint in (4) to q(v, θ) ≤ ck where ck is a sequence of positive numbers that converge
to zero, then we can establish (12) for each ck > 0 and pass the limit to zero to yield (13).

Proposition 1 Assume that f , q,∇q are continuously differentiable and ∥∇f∥ , f is bounded. For
a feasible point (v∗, θ∗) of (4) that satisfies CRCQ with ∇θq, if (v∗, θ∗) is the limit of a sequence
{(vk, θk)}∞k=1 satisfying q(vk, θk) ̸= 0 ∀k, and there exists a sequence {λk} ⊂ [0,∞) such that

∇f(vk, θk) + λk∇q(vk, θk)→ 0, q(vk, θk)→ 0,

as k → +∞, then (v∗, θ∗) satisfies (13).

This motivates us to use the following function as a measure of stationarity of the solution returned
by the algorithm:

K(v, θ) = minλ≥0||∇f(v, θ) + λ∇q(v, θ)||2︸ ︷︷ ︸
local improvement

+ q(v, θ)︸ ︷︷ ︸
feasibility

.

The hope is to have an algorithm that generates a sequence {(vk, θk)}∞k=0 that satisfiesK(vk, θk)→ 0
as k → +∞.

4.1. Convergence with multimodal g

Assumption 1 (Smoothness) f and g are differentiable, and ∇f and ∇g are L-Lipschitz w.r.t. the
joint inputs (v, θ) for some L ∈ (0,+∞).

Assumption 2 (Boundedness) There exists a constant M <∞ such that ∥∇g(v, θ)∥, ∥∇f(v, θ)∥,
|f(v, θ)| and |g(v, θ)| are all upper bounded by M for any (v, θ).

To study cases in which g has multiple local optima, we introduce the notion of attraction points
following gradient descent.
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Definition 1 (Attraction points) Given any (v, θ), we say that θ⋄(v, θ) is the attraction point of
(v, θ) with step size α > 0 if the sequence {θ(t)}∞t=0 generated by gradient descent θ(t) = θ(t−1) −
α∇θg(v, θ

(t−1)) starting from θ(0) = θ converges to θ⋄(v, θ).

Assume the step size α ≤ 1/L where L is the smoothness constant defined in Assumption 5, one
can show the existence and uniqueness of attraction point of any (v, θ) using Proposition 1.1 of
Traonmilin and Aujol [27]. Intuitively, the attraction of (v, θ) is where the gradient descent algorithm
can not make improvement. In fact, when α ≤ 1/L, one can show that g(v, θ) ≤ g(v, θ⋄(v, θ)) is
equivalent to the stationary condition∇θg(v, θ) = 0.

The set of (v, θ) that have the same attraction point forms an attraction basin. Our analysis needs
to assume the PL-inequality within the individual attraction basins.

Assumption 3 (Local PL-inequality within attraction basins) Assume that for any (v, θ), θ⋄(v, θ)
exists. Also assume that there exists κ > 0 such that for any (v, θ) ∥∇θg(v, θ)∥2 ≥ κ(g(v, θ) −
g(v, θ⋄(v, θ)).

We can also define local variants of q and K as follows:

q⋄(v, θ) = g(v, θ)− g(v, θ⋄(v, θ)), K⋄(v, θ) = min
λ≥0
∥∇f(v, θ) + λ∇q⋄(v, θ)∥2 + q⋄(v, θ).

Compared with Section B.2, a key technical challenge is that θ⋄(v, θ) and hence q⋄(v, θ) can be
discontinuous w.r.t. θ when it is on the boundary of different attraction basins; K⋄ is not well defined
on these points. However, these boundary points are not stable stationary points, and it is possible
to use arguments based on the stable manifold theorem to show that an algorithm with random
initialization will almost surely not visit them [14, 25].

Theorem 1 With ξ, α ≤ 1/L, ϕk = η ∥∇q̂(vk, θk)∥2, and η > 0. Suppose that Assumptions 5, 6,
and 3 hold and that q⋄ is differentiable on (vk, θk) at every iteration k ≥ 0. Then there exists a
constant c depending on α, κ, η, L, such that when T ≥ c, we have

min
k≤K

K⋄(vk, θk) = O

(√
ξ +

√
1

ξK
+ exp(−bT )

)
,

where b is a positive constant depending on κ, L, and α.

Choosing ξ = O(K−1/2) gives O(K−1/4 + exp(−bT )) rate of mink≤K K⋄(vk, θk).

5. Experiment
Baselines A comprehensive set of state-of-the-art BO methods are chosen as baseline methods. This
includes the fully first-order methods: BSG-1 [8] and BVFSM [19], ; a stationary-seeking method:
Penalty [21], explicit/implicit methods: ITD [12], AID-CG (using conjugate gradient), AID-FP
(using fixed point method) [10], reverse (using reverse auto-differentiation) [6] stocBiO [12], and
VRBO [28].

5.1. Experiment Problems and Results
Toy Coreset Problem To validate the convergence property of BOME, we consider:

minv,θ ∥θ − x0∥2 s.t. θ ∈ argminθ ∥θ −Xσ(v)∥2 ,

5
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Figure 1: Results on the toy coreset problem and mini-max problem. (a)-(c): the trajectories of
(vk, θk), and f(vk, vk) and q̂k(vk, vk) of BOME (our method), BSG-1 [8], BVFSM [19],
Penalty [21] and Optimistic GD [2] (only for minimax problem). (d)-(e) trajectories of
BOME with different choices of inner gradient step T and the control coefficient η.

where σ(v) = exp(v)/
∑4

i=1 exp(vi) is the softmax function, v ∈ R4, θ ∈ R2, and X =
[x1, x2, x3, x4] ∈ R2×4. The goal is to find the closest point to a target point x0 within the convex
hull of {x1, . . . , x4}. See Fig. 5.1 (upper row) for the illustration and results.
Toy Mini-Max Game Mini-max game is a special and challenging case of BO where f and g
contradicts with each other completely (e.g., f = −g). We consider

minv,θ∈R vθ s.t. θ ∈ argmaxθ′∈R vθ′. (10)

The optimal solution is v∗ = θ∗ = 0. Note that the naive gradient descent ascent algorithm diverges
to infinity on this problem, and a standard alternative is to use optimistic gradient descent [2].
Figure 5.1 shows that BOME works on this problem while other first-order BO methods fail.

Figure 5.1-3 show that BOME converges to the optimum of the corresponding bilevel problems
and work well on the mini-max optimization and the degenerate low level problem. In comparison,
the other methods like BSG-1, BVFSM, and Penalty fail to converge to the true optimum even with
a grid search over their hyperparameters. Moreover, in both toy examples, BOME guarantees that
q̂, which is a proxy for the optimality of the inner problem, decreases to 0. Besides the standard
step size ξ in typical optimizers, BOME only has three parameters: control coefficient η, inner loop
iteration T , and inner step size α. We use the default setting of η = 0.5, T = 10 and α = ξ across
the experiments. From Fig. 5.1 (d,e), BOME is robust to the choice of η, T and α as varying them
results in almost identical performance. Specifically, T = 1 works well in many cases. The fact that
BOME works well with a small T empirically makes it computationally attractive in practice.

6. Conclusion and Future Work
BOME, a simple fully first-order bilevel method, is proposed in this work with non-asymptotic
convergence guarantee. While the current theory requires the inner loop iterations to scale in a
logarithmic order w.r.t to the outer loop iterations, we do not observe this empirically. A further study
to understand the mechanism is an interesting future direction.
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Appendix A. Experiment Details

We provide details about each experiment in this section. Regarding the implementation of baseline
methods:

• BVFSM’s implementation is adapted from https://github.com/vis-opt-group/
BVFSM.

• Penalty’s implementation is adapted from https://github.com/jihunhamm/bilevel-penalty.

• VRBO’s implementation is adapted from https://github.com/JunjieYang97/MRVRBO.

• AID-CG and AID-FP implementations are adapted from https://github.com/prolearner/
hypertorch.

• ITD implementation is adapted from https://github.com/JunjieYang97/stocBiO.

A.1. Toy Coreset Problem

The problem is:

min
v,θ
∥θ − x0∥2 s.t. θ ∈ argmin

θ
∥θ −Xσ(v)∥2 ,

where σ(v) = exp(v)/
∑4

i=1 exp(vi) is the softmax function, v ∈ R4, θ ∈ R2, and X =
[x1, x2, x3, x4] ∈ R2×4. where σ(v) = exp(v)/

∑4
i=1 exp(vi) is the softmax function. Here

the outer objective f pushes θ to towards x0 while the inner objective g ensures θ remains in the
convex hull formed by 4 points in the 2D plane (e.g. X = [x1, x2, x3, x4] ∈ R2×4). We choose
x0 = (3,−2) and the four points x1 = (1, 3), x2 = (3, 1), x3 = (−2, 2) and x4 = (−3, 2). We set
v0 = (0, 0, 0, 0) and θ0 ∈ {(0, 3), (−3, 1), (3.5, 1)}. For all methods, we fix both the inner stepsize
α and the outer stepsize ξ to be 0.05 and set T = 10. For BVFSM and Penalty, we grid search the
best hyperparameters from {0.001, 0.01, 0.1}. For BOME, we choose ϕ = η ∥∇q̂∥2 and ablate over
η ∈ {0.1, 0.5, 0.9} and T ∈ {1, 10, 100}. The visualization of the optimization trajectories over the
3 initial points are plotted in Fig. 2.

As shown, BOME successfully converges to the optimal solution regardless of the initial θ0,
while BSG-1, BVFSM and Penalty methods converge to non-optimal points. We emphasize that for
BVFSM and Penalty, the convergence point depends on the choice of hyperparameters.

A.2. Toy Mini-max Game

The toy mini-max game we consider is:

min
v∈R

vθ∗(v) s.t. θ∗(v) = argmax
θ∈R

vθ. (11)

For BOME and BSG-1, BVFSM, and Penalty methods, we again set both the inner stepsize α and β
to be 0.05, as no significant difference is observed by varying the stepsizes. For all methods, we set
the inner iteration T = 10. For BVFSM and Penalty, we grid search the best hyperparameters from
{0.001, 0.01, 0.1}.
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Figure 2: Trajectories of (vk, θk) on the toy coreset problem (5.1) obtained from BOME (blue) and
three recent first-order bilevel methods: BSG-1 [8] (green), BVFSM [19] (orange), and
Penalty [21] (red). The goal of the problem is to find the closet point (marked by opt.) to
the goal x0 within the convex envelop of the four vertexes. All methods start from 3 initial
points (start 1-3), and the converged points are shown in darkblue. For BOME, we also
plot the trajectory of {θ̂Tk } in cyan.

A.3. Without LLS assumption

The toy example to validate whether BOME requires the low-level singleton assumption is borrowed
from Liu et al. [16]:

min
v∈R,θ∈R2

∥θ − [v; 1]∥22 s.t. θ ∈ argmin
(θ′1,θ

′
2)∈R2

(θ′1 − v)2,

where θ = (θ1, θ2) and the optimal solution is v∗ = 1, θ∗ = (1, 1). Note that the inner objective has
infinite many optimal solution θ∗(v) since it is degenerated. We set both the inner and outer stepsizes
to 0.5 and T = 10 for all methods. For BVFSM and Penalty, we grid search the best hyperparameters
from {0.001, 0.01, 0.1}. In Fig. 3, we provide the distance of f(vk, θk), g(vk, θk), θk, vk to their
corresponding optimal over training time in seconds. Note that BOME ensures that q̂(vk, θk) =
g(vk, θk)− g(v∗, θ∗) decreases to 0.

Figure 3: Results on Problem (A.3) which violates the low-level singleton (LLS). We compare
BOME against BSG-1, BVFSM, and Penalty. (v∗, θ∗) denotes the true optimum and The
four plots show how fast f(vk, θk), g(vk, θk), θk and vk to the corresponding optimal
values w.r.t. the training time in seconds.

10
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Appendix B. More Theoretical Results

B.1. KKT Conditions

Consider a general constrained optimization of form min f(v, θ) s.t. q(v, θ) ≤ 0. Under proper
regularity conditions known as constraint quantifications [22], the first-order KKT condition gives
a necessary condition for a feasible point (v∗, θ∗) with q(v∗, θ∗) ≤ 0 to be a local optimum of (4):
There exists a Lagrangian multiplier λ∗ ∈ [0,+∞), such that

∇f(v∗, θ∗) + λ∗∇q(v∗, θ∗) = 0, (12)

and λ∗ satisfies the complementary slackness condition λ∗q(v∗, θ∗) = 0. A common regularity
condition to ensure (12) is the constant rank constraint quantification (CRCQ) condition [11].

Definition 2 A point (v∗, θ∗) is said to satisfy CRCQ with a function h if the rank of the Jacobian
matrix∇h(v, θ) is constant in a neighborhood of (v∗, θ∗).

Unfortunately, the KKT condition in (12) does not hold for the bilevel optimization in (4).
The CRCQ condition does not typically hold for this problem. This is because the minimum of q is
zero, and hence if (v∗, θ∗) is feasible for (4), then (v∗, θ∗) must attain the minimum of q, yielding
q(v∗, θ∗) = 0 and∇q(v∗, θ∗) = 0 if q is smooth; but we could not have∇q(v, θ) = 0 uniformly in
a neighborhood of (v∗, θ∗) (hence CRCQ fails) unless q is a constant around (v∗, θ∗). In addition, if
KKT (12) holds, we would have∇f(v∗, θ∗) = −λ∗∇q(v∗, θ∗) = 0 which happens only in the rare
case when (v∗, θ∗) is a stationary point of both f, g.

Instead, one can establish a KKT condition of BO through the form in (3), because there is
nothing special that prevents (v∗, θ∗) from satisfying CRCQ with ∇θq = ∇θg (even though we just
showed that it is difficult to have CRCQ with q). Assume f and∇θq are continuously differentiable,
and (v∗, θ∗) is a point satisfying ∇θq(v

∗, θ∗) = 0 and CRCQ with ∇θq. Then by the typical first
order KKT condition of (3), there exists a Lagrange multiplier ω∗ ∈ Rn such that

∇f(v∗, θ∗) +∇(∇θq(v
∗, θ∗))ω∗ = 0. (13)

This condition can be viewed as the limit of a sequence of (12) in the following way: assume we
relax the constraint in (4) to q(v, θ) ≤ ck where ck is a sequence of positive numbers that converge
to zero, then we can establish (12) for each ck > 0 and pass the limit to zero to yield (13).

Proposition 2 Assume that f , q,∇q are continuously differentiable and ∥∇f∥ , f is bounded. For
a feasible point (v∗, θ∗) of (4) that satisfies CRCQ with ∇θq, if (v∗, θ∗) is the limit of a sequence
{(vk, θk)}∞k=1 satisfying q(vk, θk) ̸= 0 ∀k, and there exists a sequence {λk} ⊂ [0,∞) such that

∇f(vk, θk) + λk∇q(vk, θk)→ 0, q(vk, θk)→ 0,

as k → +∞, then (v∗, θ∗) satisfies (13).

This motivates us to use the following function as a measure of stationarity of the solution returned
by the algorithm:

K(v, θ) = minλ≥0||∇f(v, θ) + λ∇q(v, θ)||2︸ ︷︷ ︸
local improvement

+ q(v, θ)︸ ︷︷ ︸
feasibility

.

11
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The hope is to have an algorithm that generates a sequence {(vk, θk)}∞k=0 that satisfiesK(vk, θk)→ 0
as k → +∞.

Intuitively, the first term in K(v, θ) measures how much ∇f conflicts with ∇q (how much we
can decrease f without increasing q), as it is equal to the squared ℓ2 norm of the solution to the
problem minδ ||∇f−δ||2 s.t. ⟨∇q, δ⟩ ≥ 0. The second term inK measures how much the argmin g
constraint is satisfied.

B.2. Convergence with unimodal g

We first present the convergence rate when assuming g(v, ·) has unique minimizer and satisfies the
Polyak-Łojasiewicz (PL) inequality for all v, which guarantees a linear convergence rate of the
gradient descent on the low level problem.

Assumption 4 (PL-inequality) Given any v, assume g(v, ·) has a unique minimizer denoted as
θ∗(v). Also assume there exists κ > 0 such that for any (v, θ), ∥∇θg(v, θ)∥2 ≥ κ(g(v, θ) −
g(v, θ∗(v))).

The PL inequality gives a characterization on how a small gradient norm implies global optimality.
It is implied from, but weaker than strongly convexity. The PL-inequality is more appealing than
convexity because some modern over-parameterized deep neural networks have been shown to satisfy
the PL-inequality along the trajectory of gradient descent. See, for example, Frei and Gu [7], Liu
et al. [15], Song et al. [26] for more discussion.

Assumption 5 (Smoothness) f and g are differentiable, and ∇f and ∇g are L-Lipschitz w.r.t. the
joint inputs (v, θ) for some L ∈ (0,+∞).

Assumption 6 (Boundedness) There exists a constant M <∞ such that ∥∇g(v, θ)∥, ∥∇f(v, θ)∥,
|f(v, θ)| and |g(v, θ)| are all upper bounded by M for any (v, θ).

Assumptions 5 and 6 are both standard in optimization.

Theorem 2 With ξ, α ≤ 1/L, ϕk = η ∥∇q̂(vk, θk)∥2, and η > 0. Suppose that Assumptions 4, 5,
and 6 hold. Then there exists a constant c depending on α, κ, η, L such that when T ≥ c, we have
for any K ≥ 0,

min
k≤K

K(vk, θk)=O

(√
ξ +

√
q0
ξK

+
1

ξK
+ exp(−bT )

)
where q0 = q(v0, θ0), and b > 0 is a constant depending on κ, L, and α.

Remark Note that one of the dominant terms depends on the initial value q0 = q(v0, θ0). Therefore,
we can obtain a better rate if we start from a θ0 with small q0 (hence near the optimum of g(v0, ·)). In
particular, when q(v0, θ0) = O(1), choosing ξ = O(K−1/2) gives mink≤K K(vk, θk) = O(K−1/4+
exp(−bT )) rate. On the other hand, if we start from a better initialization such that q(v0, θ0) =
O((ξK)−1), then choosing ξ = O(K−2/3) gives mink≤K K(vk, θk) = O(K−1/3 + exp(−bT )).

12
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Appendix C. Proof of the Result in Section B.1

We proof Proposition 2 using Proposition 6.3 (presented below using our notation) in Gong et al.
[9] by checking all the assumptions required by Proposition 6.3 in Gong et al. [9] are satisfied.
Specifically, it remains to show that for any k, λk < ∞, limk→∞∇q(vk, θk) = 0 and q is lower
bounded (this is trivial as q ≥ 0 by its definition), which we prove below.

Firstly, simple calculation shows that for any k,

λk =

[
−⟨∇f(vk, θk),∇q(vk, θk)⟩

||∇q(vk, θk)||2

]
+

≤
supv,θ ||∇f(v, θ)||
||∇q(vk, θk)||

<∞.

Here the last inequality is by ||∇q(vk, θk)|| > 0. Secondly, note that as we assume∇q is continuous,
this implies that

lim
k→∞

∇q(vk, θk) = ∇q(v∗, θ∗).

As q(v∗, θ∗) = 0, we have∇q(v∗, θ∗) = 0. Using Proposition 6.3 in Gong et al. [9] gives the desired
result.

[Proposition 6.3 in Gong et al. [9]] Assume f, q,∇q are continuously differentiable. Let
{[vk, θk, λk] : k = 1, 2, ...} be a sequence which satisfies limk→∞ ||∇q(vk, θk)|| = 0 and limk→∞ ||∇f(vk, θk)+
λk∇q(vk, θk)|| = 0. Assume that [v∗, θ∗] is a limit point of [vk, θk] as k →∞ and [v∗, θ∗] satisfies
CRCQ with∇θq, then there exists a vector-valued Lagrange multiplier ω∗ ∈ Rm (the same length as
θ) such that

∇f(v∗, θ∗) +∇(∇θq(v
∗, θ∗))ω∗ = 0.

Appendix D. Proof of the Result in Section B.2

We define Lq := 2L(L/κ+ 1) and using Assumption 5 and 4, we are able to show that q(v, θ) is
Lq-smooth (see Lemma 4 for details). For simplicity, we also assume that ξ ≤1 throughout the proof.
We use b with some subscript to denote some general O(1) constant and refer reader to section F for
their detailed value.

Note that q̂ defined in Section 3 changes in different iterations (as it depends on θ
(T )
k ) and so

does ∇q̂. To avoid the confusion, we introduce several new notations. Firstly, given v and θ, θ(T )

denotes the results of T steps of gradient of g(v, ·) w.r.t. θ starting from θ with step size α (similar
to the definition in (8)). Note that θ(T ) depends on v, θ and α. Our notation does not reflects this
dependency on v, α as we find it introduces no ambiguity while much simplifies the notation. Also
note that when taking gradient on q̂, the θ

(T )
k at iteration k is treated as a constant and the gradient

does not pass through it. To be clear, we define ∇̂q(v, θ) = ∇g(v, θ)−
[
∇⊤

1 g(v, θ
(T )), 0⊤

]⊤
, where

0 denotes a zero vector with the same dimension as θ. Using this definition, ∇̂q(vk, θk) = ∇q̂(vk, θk)
at iteration k. We also let λ∗(v, θ) be the solution of the dual problem of

min
δ
||∇̂q(v, θ)−∇f(v, θ)||2 s.t.

〈
∇̂q(v, θ),∇f(v, θ)

〉
≥ η||∇̂q(v, θ)||2. (14)

That is

λ∗(v, θ) =


[η||∇̂q(v,θ)||2−⟨∇̂q(v,θ),∇f(v,θ)⟩]+

||∇̂q(v,θ)||2
when ||∇̂q(v, θ)|| > 0

0 when ||∇̂q(v, θ)|| = 0
(15)

13
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We might use λ∗ for λ∗(v, θ) when it introduces no confusion. Also, denote δ∗(v, θ) = λ∗(v, θ)∇̂q(v, θ)+
∇f(v, θ) and thus δk = δ∗(vk, θk).

We start with several technical Lemmas showing some basic function properties.

D.1. Technical Lemmas

Lemma 1 Under Assumption 4, for any v, θ, g(v, θ)− g(v, θ∗(v)) ≥ κ
4 ||θ − θ∗(v)||2.

Lemma 2 Under Assumption 4 and 5, we have ||∇q(v, θ)−∇̂q(v, θ)|| ≤ L||θ(T )− θ∗(v)|| for any
v, θ. Also, when ||∇̂q(v, θ)|| = 0, q(v, θ) = 0.

Lemma 3 Under Assumption 5, 4, we have ||θ∗(v2)− θ∗(v1)|| ≤ 2L
κ ||v1 − v2||.

Lemma 4 Under Assumption 5, we have ||∇θq(v, θ1) − ∇θq(v, θ2)|| ≤ L||θ1 − θ2||, for any v.
Further assume Assumption 4, we have

∥∇q(v1, θ1)−∇q(v2, θ2)∥ ≤ Lq||[v1, θ1]− [v2, θ2]||,

where Lq := 2L(L/κ+ 1).

Lemma 5 Under Assumption 4, 5 and assume that α < 2/L. Given any v, θ, suppose θ(0) = θ
and θ(t+1) = θ(t) − α∇θq(v, θ

(t)), then for any t, we have q(v, θ(t)) ≤ exp(−b1(α,L, κ)t)q(v, θ),
where b1(α,L, κ) = is some strictly positive constant that depends on α, L and κ.

Lemma 6 Under Assumption 6, for any [v, θ], we have ||δ∗(v, θ)||, ||∇q(v, θ)||, ||∇̂q(v, θ)|| ≤
b2(M,η), where b2(M,η) = (3 + η)M .

Lemma 7 Under Assumption 6, for any [v, θ], we have λ∗||∇̂q||2 ≤ η||∇̂q||2 +M ||∇̂q||,where λ∗

are defined in (15).

Lemma 8 Under Assumption 4 and 5, we have ||∇q(v, θ)|| ≤ 2κ−1/2Lqq
1/2(v, θ).

D.1.1. LEMMAS

Now we give several main lemmas that are used to prove the result in Section B.2.

Lemma 9 Under Assumption 4, 5 and 6, when ||∇̂q(vk, θk)|| > 0, we have

q(vk+1, θk+1)− q(vk, θk) ≤ −ξη||∇q(vk, θk)||2 + ξηLq||θ(T )
k − θ∗(vk)|| (Lq||θ(T )

k − θ∗(vk)||+ 2Lq||θk − θ∗(vk)||)

+ ξb2L||θ(T )
k − θ∗(vk)||+ Lqξ

2b22/2.

When ||∇̂q(vk, θk)|| = 0, we have q(vk+1, θk+1)− q(vk, θk) ≤ ξ2Lqb
2
2/2.

Lemma 10 Under Assumption 4, 5 and 6, choosing T ≥ b3(η, r, κ, L), we have

q(vk, θk) ≤ exp(−b4k)q(v0, θ0) + ∆,

where b4 = − log(1− ξ
4ηκ) is some strictly positive constant and ∆ = O(exp(−b1T ) + ξ).

14
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Lemma 11 Under Assumption 4, 5 and 6, we have

K−1∑
k=0

||∇q(vk, θk)||2 ≤
b5q(v0, θ0)

ξ
+Kξ2b6∆,

where b5 is some constant depends on Lq, η, κ; b6 is some constant depends on κ, L and ∆ is defined
in Lemma 10.

Lemma 12 Under Assumption 4, 5 and 6, choosing T ≥ b3(η, r, κ, L) and assume that r, ξ ≤ 1/L,
we have

K−1∑
k=0

[
||δ∗(vk, θk)||2 + q(vk, θk)

]
= O(ξ−1+K exp(−b1T/2)+Kξ1/2+ ξ−1/2K1/2q1/2(v0, θ0)).

D.2. Proof of Theorem 2

Using our definition of λ∗ in (15), we have

||∇f(v, θ) + λ∗(v, θ)∇q(v, θ)|| ≤ ||∇f(v, θ) + λ∗(v, θ)∇̂q(v, θ)||+ ||λ∗(v, θ)(∇̂q(v, θ)−∇q(v, θ))||
= ||δ∗(v, θ)||+ ||λ∗(v, θ)(∇̂q(v, θ)−∇q(v, θ))||.

Using Lemma 2, we know that when ||∇̂q|| = 0, we have q = 0 and thus ||∇q|| = 0. In this
case, ||λ∗(∇̂q −∇q)|| = 0. When ||∇̂q|| > 0, some algebra shows that

||λ∗(∇̂q −∇q)|| ≤
[
η −

〈
∇f, ∇̂q/||∇̂q||

〉
||∇̂q||−1

]
||∇̂q −∇q||

≤ (η −
〈
∇f, ∇̂q/||∇̂q||

〉
||∇̂q||−1)||∇̂q −∇q||.

Notice that

||∇̂q(v, θ)−∇q(v, θ)|| ≤ L||θ(T ) − θ∗(v)||
≤ 2Lκ−1/2q1/2(v, θ(T ))

≤ 2Lκ−1/2 exp(−b1T/2)q1/2(v, θ)
≤ 2Lκ−1 exp(−b1T/2)||∇q(v, θ)||.

Here the first inequality is by Lemma 2, the second inequality is by Lemma 1, the third inequality
is by Lemma 5 and the last inequality is by Assumption 4 (using ||∇q(v, θ)|| ≥ ||∇θg(v, θ)||).
Similarly, under assumption that T ≥

⌈
−b−1

1 log( 1
16κ

2L−2)
⌉
, Lκ−1 exp(−b1T/2) ≤ 1/4,

||∇̂q(v, θ)|| = ||∇̂q(v, θ)−∇q(v, θ) +∇q(v, θ)||
≥ ||∇q(v, θ)|| − ||∇̂q(v, θ)−∇q(v, θ)||
≥ ||∇q(v, θ)||(1− (2Lκ−1 exp(−b1T/2)))

≥ 1

2
||∇q(v, θ)||.

15
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This implies that

||∇̂q −∇q||
||∇̂q||

≤ 2
||∇̂q −∇q||
||∇q||

≤ 4Lκ−1 exp(−b1T/2).

We thus have

||λ∗(v, θ)(∇̂q(v, θ)−∇q(v, θ))|| ≤ η||∇̂q −∇q||+

〈
∇f, ∇̂q
||∇̂q||

〉
||∇̂q −∇q||
||∇̂q||

≤ 2Lκ−1 exp(−b1T/2)

[
η||∇q(v, θ)||+ 2

〈
∇f, ∇̂q
||∇̂q||

〉]
≤ 2Lκ−1 exp(−b1T/2)(η + 2)b2,

where the last inequality is by Lemma 6. Combining all the results and using ||∇q(vk, θk)|| ≤
2κ−1/2Lqq

1/2(vk, θk) by Lemma 8, we have

K(v, θ) ≤ ||∇f(v, θ) + λ∗(v, θ)∇q(v, θ)||2 + q(v, θ)

≤ 2||∇f(v, θ) + λ∗(v, θ)∇̂q(v, θ)||2 + q(v, θ) + 2||λ∗(v, θ)(∇̂q(v, θ)−∇q(v, θ))||2

≤ 2||δ∗(v, θ)||2 + q(v, θ) + 8L2κ−2 exp(−b1T )(η + 2)2b22.

Using Lemma 12, we have

min
k
K(vk, θk) = O(min

k
(||δ∗(vk, θk)||2 + q(vk, θk)) + exp(−b1T ))

= O(ξ−1 +K exp(−b1T/2) +Kξ1/2 + ξ−1/2K1/2q1/2(v0, θ0)).

D.3. Proof of Lemmas

D.3.1. PROOF OF LEMMA 9

When ||∇̂q(vk, θk)|| > 0, by Lemma 4, we know that q is Lq-smoothness, we have

q(vk+1, θk+1)− q(vk, θk) ≤ −ξ ⟨∇q(vk, θk), δ∗(vk, θk)⟩+
Lqξ

2

2
||δ∗(vk, θk)||2

≤ −ξ
〈
∇̂q(vk, θk), δ∗(vk, θk)

〉
− ξ

〈
∇q(vk, θk)− ∇̂q(vk, θk), δ∗(vk, θk)

〉
+ Lqξ

2b22/2

≤ −ξη||∇̂q(vk, θk)||2 − ξ
〈
∇q(vk, θk)− ∇̂q(vk, θk), δ∗(vk, θk)

〉
+ Lqξ

2b22/2

≤ −ξη||∇̂q(vk, θk)||2 + ξb2||∇q(vk, θk)− ∇̂q(vk, θk)||+ Lqξ
2b22/2.

where the second and the last inequality is by Lemma 6 and the third inequality is ensured by
the constraint in the local subproblem (

〈
∇∇̂q(vk, θk), δ∗(vk, θk)

〉
≥ η||∇̂q(vk, θk)2||.). And by

Lemma 2, we have ||∇q(vk, θk)− ∇̂q(vk, θk)|| ≤ L||θ(T )
k − θ∗(vk)||. Plug in the bound we have

q(vk+1, θk+1)− q(vk, θk) ≤ −ξη||∇̂q(vk, θk)||2 + ξb2L||θ(T )
k − θ∗(vk)|| .
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Also notice that∣∣∣||∇̂q(vk, θk)||2 − ||∇q(vk, θk)||2∣∣∣ ≤ ||∇̂q(vk, θk)−∇q(vk, θk)|| ||∇̂q(vk, θk) +∇q(vk, θk)||
≤ ||∇̂q(vk, θk)−∇q(vk, θk)|| (||∇̂q(vk, θk)−∇q(vk, θk)||+ 2||∇q(vk, θk)||)

≤ Lq||θ(T )
k − θ∗(vk)|| (Lq||θ(T )

k − θ∗(vk)||+ 2||∇q(vk, θk)||)

= Lq||θ(T )
k − θ∗(vk)|| (Lq||θ(T )

k − θ∗(vk)||+ 2||∇q(vk, θk)−∇q(vk, θ∗(vk))||)

≤ Lq||θ(T )
k − θ∗(vk)|| (Lq||θ(T )

k − θ∗(vk)||+ 2Lq||θk − θ∗(vk)||),

where the third inequality is by Lemma 2, the equality is by ∇q(vk, θ∗(vk)) = 0 and the last
inequality is by Lemma 4.

Using this bound, we further have

q(vk+1, θk+1)− q(vk, θk) ≤ −ξη||∇q(vk, θk)||2 + ξη
∣∣∣||∇̂q(vk, θk)||2 − ||∇q(vk, θk)||2∣∣∣

+ ξb2||∇q(vk, θk)− ∇̂q(vk, θk)||+ Lqξ
2b22/2

≤ −ξη||∇q(vk, θk)||2 + ξηLq||θ(T )
k − θ∗(vk)|| (Lq||θ(T )

k − θ∗(vk)||+ 2Lq||θk − θ∗(vk)||)

+ ξb2L||θ(T )
k − θ∗(vk)||+ Lqξ

2b22/2.

When ||∇̂q(vk, θk)|| = 0, by Lemma 2, q(vk, θk) = 0 and hence∇q(vk, θk) = 0. We thus have

q(vk+1, θk+1)− q(vk, θk) ≤ −ξ ⟨∇q(vk, θk), δ∗(vk, θk)⟩+
Lqξ

2

2
||δ∗(vk, θk)||2

=
Lqξ

2

2
||δ∗(vk, θk)||2

≤ ξ2Lqb
2
2/2.

D.3.2. PROOF OF LEMMA 10

By Lemma 9, when ||∇̂q(vk, θk)|| > 0, we have

q(vk+1, θk+1)− q(vk, θk) ≤ −ξη||∇q(vk, θk)||2 + ξηLq||θ(T )
k − θ∗(vk)|| (Lq||θ(T )

k − θ∗(vk)||+ 2Lq||θk − θ∗(vk)||)

+ ξb2L||θ(T )
k − θ∗(vk)||+ Lqξ

2b22/2.

By Lemma 1 and Lemma 5

||θ(T )
k − θ∗(vk)|| ≤ 2κ−1/2q1/2(vk, θ

(T )
k ) ≤ 2κ−1/2 exp(−b1T/2)q1/2(vk, θk).

||θk − θ∗(vk)|| ≤ 2κ−1/2q1/2(vk, θk).

Using those bounds, we know that

Lq||θ(T )
k − θ∗(vk)|| (Lq||θ(T )

k − θ∗(vk)||+ 2Lq||θk − θ∗(vk)||) ≤ 12L2
qκ

−1 exp(−b1T )q(vk, θk)
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This implies that

q(vk+1, θk+1)− q(vk, θk)

≤− ξη||∇q(vk, θk)||2 + 12ξηL2
qκ

−1 exp(−b1T )q(vk, θk)

+2ξb2Lκ
−1/2 exp(−b1T/2)q1/2(vk, θk) + Lqξ

2b22/2

≤− ξηκq(vk, θk) + 12ξηL2
qκ

−1 exp(−b1T )q(vk, θk)

+2ξb2Lκ
−1/2 exp(−b1T/2)q1/2(vk, θk) + Lqξ

2b22/2.

Choosing T such that T ≥ b3(η, α, κ, L) where

b3(η, α, κ, L) =

⌈
−b−1

1 log(
ηκ

64ηL2
q

)

⌉
,

we have

q(vk+1, θk+1)−q(vk, θk) ≤ −
3

4
ξηκq(vk, θk)+2ξb2Lκ

−1/2 exp(−b1T/2)q1/2(vk, θk)+Lqξ
2b22/2.

This implies that when 64b22L
2

η2κ
exp(−b1T ) ≤ q(vk, θk) and 2Lqξb22

ηκ ≤ q(vk, θk),

q(vk+1, θk+1)− q(vk, θk) ≤ −
1

4
ξηκq(vk, θk).

Let a = max(
64b22L

2

η2κ
exp(−b1T ),

2Lqξb22
ηκ ). Also, when q(vk, θk) < a,

q(vk+1, θk+1) ≤ q(vk, θk) + 2ξb2Lκ
−1/2 exp(−b1T/2)q1/2(vk, θk) + Lqξ

2b22/2

< a+ 2ξb2Lκ
−1/2 exp(−b1T/2)

√
a+ Lqξ

2b22/2.

Note that

2ξb2Lκ
−1/2 exp(−b1T/2) ≤

ξηκ

4

√
a

Lqξ
2b22/2 ≤

ξηκ

4
a.

This gives that in the case of q(vk, θk) < a,

q(vk+1, θk+1) < (1 +
ξηκ

4
)a.

Define k0 as the first iteration such that q(vk, θk) < a. This implies that, for any k ≤ k0,

q(vk, θk) ≤ (1− ξ

4
ηκ)kq(v0, θ0).

When any k > k0, we show that q(vk+1, θk+1) ≤ (1 + ξηκ
4 )a. This can be proved by induction.

At k = k0 + 1, if q(vk, θk) < a, we have q(vk, θk) < (1 + ξηκ
4 )a. Else if at k = k0 + 1,

18
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q(vk, θk) ≥ a, q(vk+1, θk+1) ≤ q(vk, θk) ≤ a. We thus have the conclusion that for any k > k0,
q(vk, θk) ≤ (1 + ηκ

4 )a. Combining the result, we have

q(vk, θk) ≤ (1− ξ

4
ηκ)kq(v0, θ0) + ∆,

where we denote

∆ = (1 +
ηκ

4
)(
64b22L

2

η2κ3
exp(−b1T ) +

2Lqξb
2
2

ηκ
) + Lqξ

2b22/2 = O(exp(−b1T ) + ξ). (16)

Let b4(η, κ, ξ) = − log(1− ξ
4ηκ), we have the desired result.

D.3.3. PROOF OF LEMMA 11

By Lemma 8 and 10, we have

||∇q(vk, θk)||2 ≤ 2κ−1L2
qq(vk, θk)

≤ 2κ−1L2
q [exp(−b4k)q(v0, θ0) + ∆] ,

where ∆ is defined in (16). Also notice that

||∇̂q(v, θ)|| ≤ ||∇̂q(v, θ)−∇q(v, θ)||+ ||∇q(v, θ)||
≤ L||θ(T ) − θ∗(v)||+ ||∇q(v, θ)||
≤ 2Lκ−1/2q1/2(v, θ(T )) + ||∇q(v, θ)||
≤ 2Lκ−1/2 exp(−b1T/2)q1/2(v, θ) + ||∇q(v, θ)||
≤ (2Lκ−1 exp(−b1T/2) + 1)||∇q(v, θ)||
≤ (2Lκ−1 + 1)||∇q(v, θ)||

Here the first inequality is by triangle inequality, the second inequality is by Lemma 2, the third
inequality is by Lemma 1, the forth inequality is by Lemma 5 and the fifth inequality is by Assumption
4. Taking summation over iteration and using Lemma 10, we have

K−1∑
k=0

||∇̂q(v, θ)||2 ≤ (2Lκ−1 + 1)2
K−1∑
k=0

||∇q(vk, θk)||2

≤ (2Lκ−1 + 1)2

[
2κ−1L2

qq(v0, θ0)
K−1∑
k=0

[exp(−b4k)] +K∆

]

≤ (2Lκ−1 + 1)2

[
2κ−1L2

qq(v0, θ0)

1− exp(−b4)
+K∆

]

=
b5q(v0, θ0)

ξ
+Kb6∆,

where we define b5(Lq, η, κ) =
16L2

q

ηκ2 (2Lκ−1 + 1)2 and b6(κ, L) = (2Lκ−1 + 1)2.
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D.4. Proof of Lemma 12

Remind that by our definition of λ∗ in (15) and Assumption 5, we have

f(vk+1, θk+1)− f(vk, θk) ≤ −ξ ⟨∇f(vk, θk), δ∗(vk, θk)⟩+
Lξ2

2
||δ∗(vk, θk)||2

= −ξ
〈
δ∗(vk, θk)− λ∗(vk, θk)∇̂q(vk, θk), δ∗(vk, θk)

〉
+

Lξ2

2
||δ∗(vk, θk)||2

= −(ξ − Lξ2

2
)||δ∗(vk, θk)||2 + ξλ∗(vk, θk)

〈
∇̂q(vk, θk), δ∗(vk, θk)

〉
≤ −(ξ − Lξ2

2
)||δ∗(vk, θk)||2 + ξηλ∗(vk, θk)||∇̂q(vk, θk)||2

≤ −ξ

2
||δ∗(vk, θk)||2 + ξηλ∗(vk, θk)||∇̂q(vk, θk)||2,

where the last inequality is by the assumption on ξ ≤ 1/L. To show the second inequality, we use
the complementary slackness of Problem (14), that is

λ∗(vk, θk)
[〈
∇̂q(vk, θk), δ∗(vk, θk)

〉
− η||∇̂q(vk, θk)||

]
= 0.

By telescoping,

K−1∑
k=0

f(vk+1, θk+1)− f(vk, θk) ≤ −
ξ

2

K−1∑
k=0

||δ∗(vk, θk)||2 + ξη
K−1∑
k=0

λ∗(vk, θk)||∇̂q(vk, θk)||2

≤ −ξ

2

K−1∑
k=0

||δ∗(vk, θk)||2 + ξη

K−1∑
k=0

(η||∇̂q(vk, θk)||2 +M ||∇̂q(vk, θk)||)

= −ξ

2

K−1∑
k=0

||δ∗(vk, θk)||2 + ξη2
K−1∑
k=0

||∇̂q(vk, θk)||2 + ξηM
K−1∑
k=0

||∇̂q(vk, θk)||

≤ −ξ

2

K−1∑
k=0

||δ∗(vk, θk)||2 + ξη2
K−1∑
k=0

||∇̂q(vk, θk)||2 + ξηM
√
K

√√√√K−1∑
k=0

||∇̂q(vk, θk)||2,

where the second inequality is by Lemma 7 and the last inequality is by Holder’s inequality. Since∑K−1
k=0 f(vk+1, θk+1)− f(vk, θk) = f(vK , θK)− f(v0, θ0), rearrange the terms, we have

ξ
K−1∑
k=0

||δ∗(vk, θk)||2 ≤ 2(f(v0, θ0)−f(vK , θK))+2ξη2
K−1∑
k=0

||∇̂q(vk, θk)||2+2ξηM
√
K

√√√√K−1∑
k=0

||∇̂q(vk, θk)||2.

This implies that

ξ

K−1∑
k=0

[
||δ∗(vk, θk)||2 + q(vk, θk)

]
≤ 2(f(v0, θ0)− f(vK , θK)) + 2ξη2

K−1∑
k=0

||∇̂q(vk, θk)||2

+ 2ξηM
√
K

√√√√K−1∑
k=0

||∇̂q(vk, θk)||2 + ξ
K−1∑
k=0

q(vk, θk).
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Using Lemma 10, we know that

q(vk, θk) ≤ (1− ξ

4
ηκ)kq(v0, θ0) + ∆.

This gives that

ξ
K−1∑
k=0

q(vk, θk) ≤
4q(v0, θ0)

ηκ
+ ξK∆.

Using Lemma 11, 10 and
√
x+ y ≤

√
x+
√
y, we have

2ξη2
K∑
k=1

||∇̂q(vk, θk)||2 ≤ 2η2b5q(v0, θ0) + 2Kη2ξb6∆

2ξηM
√
K

√√√√ K∑
k=1

||∇̂q(vk, θk)||2 ≤ 2ξ1/2K1/2b
1/2
5 ηMq1/2(v0, θ0) + 2Kξb

1/2
6 ηM∆1/2

This implies that

ξ
K−1∑
k=0

[
||δ∗(vk, θk)||2 + q(vk, θk)

]
≤2(f(v0, θ0)− f(vK , θK)) + 2η2b5q(v0, θ0) + 2Kη2ξb6∆+ 2ξ1/2K1/2b

1/2
5 ηMq1/2(v0, θ0)

+2Kξb
1/2
6 ηM∆1/2 +

4q(v0, θ0)

ηκ
+ ξK∆

≤2(f(v0, θ0)− f(vK , θK)) + (2η2b5 +
4

ηκ
)q(v0, θ0) + 2Kξ(b

1/2
6 ηM∆1/2 + (b6η

2 + 1/2)∆)

+2ξ1/2K1/2b
1/2
5 ηMq1/2(v0, θ0)

We thus have

K−1∑
k=0

[
||δ∗(vk, θk)||2 + q(vk, θk)

]
=O(ξ−1 +K∆1/2 + ξ−1/2K1/2q1/2(v0, θ0))

=O(ξ−1 +K exp(−b1T/2) +Kξ1/2 + ξ−1/2K1/2q1/2(v0, θ0)).

D.5. Proofs of Technical Lemmas

D.5.1. PROOF OF LEMMA 1

Please see the proof of Theorem 2 in Karimi et al. [13].
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D.5.2. PROOF OF LEMMA 2

Since ∇2g(v, θ
∗(v)) = 0, we have ∇vg(v, θ

∗(v)) = ∇1g(v, θ
∗(v)) + ∇vθ

∗(v)∇2g(v, θ
∗(v)) =

∇1g(v, θ
∗(v)). Thus

∇q(v, θ) =
[
∇vg(v, θ)−∇vg(v, θ

∗(v))
∇θg(v, θ)

]
=

[
∇vg(v, θ)−∇1g(v, θ

∗(v))
∇θg(v, θ)

]
.

Also note that

∇̂q(v, θ) =
[
∇vg(v, θ)−∇1g(v, θ

(T ))
∇θg(v, θ)

]
.

This gives that

||∇q(v, θ)− ∇̂q(v, θ)|| = ||∇1g(v, θ
(T ))−∇1g(v, θ

∗(v))||
≤ L||θ(T ) − θ∗(v)||.

Also when 0 = ||∇̂q(v, θ)|| =
√
||∇vg(v, θ)−∇1g(v, θ(T ))||2 + ||∇θg(v, θ)||2, we have ||∇θg(v, θ)|| =

0. Under Assumption 4,

0 = ||∇θg(v, θ)|| ≥ κ(g(v, θ)− g(v, θ∗(v))) = κq(v, θ).

D.5.3. PROOF OF LEMMA 3

Using Assumption 4 and∇2g(v1, θ
∗(v1)) = 0, we have

||∇2g(v1, θ
∗(v2))|| ≥

√
κ(g(v1, θ∗(v2))− g(v1, θ∗(v1)).

Also by Lemma 1, we have g(v1, θ∗(v2))− g(v1, θ
∗(v1) ≥ 1

4κ||θ
∗(v2)− θ∗(v1)||2. These imply that

||∇2g(v1, θ
∗(v2))|| ≥

1

2
κ||θ∗(v2)− θ∗(v1)||.

Also

||∇2g(v1, θ
∗(v2))||

=||∇2g(v1, θ
∗(v2))−∇θg(v2, θ

∗(v2))||
=||∇2[g(v1, θ

∗(v2))− g(v2, θ
∗(v2))]||

≤||∇[1,2][g(v1, θ
∗(v2))− g(v2, θ

∗(v2))]||
≤L||v1 − v2||,

where∇[1,2] denotes taking the derivative on both first and second variables. We thus conclude that

||θ∗(v2)− θ∗(v1)|| ≤
2L

κ
||v1 − v2||.
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D.5.4. PROOF OF LEMMA 4

To prove the first property,

||∇θq(v, θ1)−∇θq(v, θ2)|| = ||∇θg(v, θ1)−∇θg(v, θ2)||
≤ L||θ1 − θ2||.

Also

∥∇q(v1, θ1)−∇q(v2, θ2)∥ = ∥∇g(v1, θ1)−∇g(v2, θ2)−∇g(v1, θ∗(v1)) +∇g(v2, θ∗(v2))∥
≤ ∥∇g(v1, θ1)−∇g(v2, θ2)∥+ ∥∇1g(v1, θ

∗(v1))−∇1g(v2, θ
∗(v2))∥ .

By Assumption 5 (Lipschitz continuity of∇g),

||∇1g(v1, θ
∗(v1))−∇1g(v2, θ

∗(v2))|| ≤ ||∇[1,2]g(v1, θ
∗(v1))−∇[1,2]g(v2, θ

∗(v2))||

≤ L
√
||θ∗(v1)− θ∗(v2)||2 + ||v1 − v2||2,

where∇[1,2] denotes taking the derivative on both first and second variable. Also By Lemma 3,

L
√
||θ∗(v1)− θ∗(v2)||2 + ||v1 − v2||2 ≤ L

√
4L2

κ2
||v1 − v2||2 + ||v1 − v2||2

≤ L(
2L

κ
+ 1)||v1 − v2||.

This gives that

∥∇q(v1, θ1)−∇q(v2, θ2)∥ ≤ ∥∇g(v1, θ1)−∇g(v2, θ2)∥+ ∥∇1g(v1, θ
∗(v1))−∇1g(v2, θ

∗(v2))∥

≤ L
√
||v1 − v2||2 + ||θ1 − θ2||2 + ∥∇1g(v1, θ

∗(v1))−∇1g(v2, θ
∗(v2))∥

≤ L
√
||v1 − v2||2 + ||θ1 − θ2||2 + L(

2L

κ
+ 1)||v1 − v2||

≤ Lq

√
||v1 − v2||2 + ||θ1 − θ2||2,

where Lq := 2L(L/κ+ 1).

D.5.5. PROOF OF LEMMA 5

By Lemma 4, we have

q(v, θ(t+1))− q(v, θ(t)) ≤ −(α− Lα2

2
)||∇θq(v, θ

(t))||2.

By Assumption 4, we have

||∇θq(v, θ
(t))||2 = ||∇2g(v, θ

(t))||2 ≥ κ(g(v, θ(t))− g(v, θ∗(v)) = κq(v, θ(t)).

Plug-in, we have

q(v, θ(t+1)) ≤ (1− (α− Lα2

2
)κ)q(v, θ(t)).

Recursively apply this inequality, we have

q(v, θ(t)) ≤ (1− (α− Lα2

2
)κ)tq(v, θ).

Let b1(r, L, κ) = log(1− (α− Lα2/2)κ), we have the desired result.
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D.5.6. PROOF OF LEMMA 6

Notice that ||∇q(v, θ)|| ≤ ||∇g(v, θ)|| + ||∇g(v, θ∗(v))|| ≤ 2M . ||∇̂q(v, θ)|| ≤ ||∇vg(v, θ)|| +
||∇1g(v, θ

(T ))||+ ||∇θg(v, θ)|| ≤ 3M . When ||∇̂q|| = 0, ||δ∗|| = ||∇f || ≤M . When ||∇̂q|| > 0,

||δ∗|| = ||[η||∇̂q||2 −
〈
∇f, ∇̂q

〉
]+/||∇̂q||2∇̂q +∇f ||

≤ η||∇̂q||+ 2||∇f || ≤ (2 + η)M.

This concludes that ||δ∗|| ≤ (2 + η)M .

D.5.7. PROOF OF LEMMA 7

In the case that
〈
∇f, ∇̂q

〉
< η||∇̂q||2, λ∗||∇̂q||2 = η||∇̂q||2 −

〈
∇f, ∇̂q

〉
. In the other case,

λ∗||∇̂q||2 = 0. Thus in all cases,

λ∗||∇̂q||2 ≤ η||∇̂q||2 + ||∇f || ||∇̂q||
≤ η||∇̂q||2 +M ||∇̂q||.

D.5.8. PROOF OF LEMMA 8

Notice that since∇q(v, θ∗(v)) = 0, we have

||∇q(v, θ)|| = ||∇q(v, θ)−∇q(v, θ∗(v))|| ≤ Lq||θ − θ∗(v)|| ≤ 2κ−1/2Lqq
1/2(v, θ),

where the first inequality is by Lemma 4 and the second inequality is by Lemma 1.

Appendix E. Proof of the Result in Section 4.1

We use b with some subscript to denote some general O(1) constant and refer reader to section F for
their detailed value.

For notation simplicity, given v and θ, θ(T ) denotes the results of T steps of gradient of g(v, ·)
w.r.t. θ starting from θ using step size α (similar to the definition in (8)). And note that ∇̂q(v, θ) =
∇g(v, θ)−

[
∇⊤

1 g(v, θ
(T )), 0⊤

]⊤
, where 0 denotes a zero vector with the same dimension as θ. We

refer readers to the beginning of Appendix D for a discussion on the design of this extra notation and
how it relates to the notation we used in Section 3. For simplicity, we omit the superscript ⋄ in q⋄

and simply use q to denote q⋄ in the proof.
We start with the following two Lemmas.

Lemma 13 Under Assumption 3 and assume α ≤ 1/L, for any v, θ, g(v, θ) − g(v, θ⋄(v, θ)) ≥
κ
4 ||θ − θ⋄(v, θ)||2.

Proof It is easy to show that

g(v, θ(t+1)) ≤ g(v, θ(t))− (α− Lα2

2
)||∇θg(v, θ

(t))||2 ≤ g(v, θ(t)).

We thus have g(v, θ⋄(v, θ)) ≤ g(v, θ). The result of the proof follows the proof of Theorem 2 in
Karimi et al. [13].

24



SPECIFY RUNNING TITLE

Lemma 14 Under Assumption 5 and 3, ||θ⋄(v2, θ)− θ⋄(v1, θ)|| ≤ 4L
κ ||v1 − v2|| for any v1, v2.

Proof Notice that∇q(v2, θ⋄(v2, θ)) = 0, we have

||∇q(v1, θ⋄(v2, θ))−∇q(v2, θ⋄(v2, θ))|| = ||∇q(v1, θ⋄(v2, θ))||.

By Assumption 3, we have ||∇q(v1, θ⋄(v2, θ))|| ≥
√

κ(g(v1, θ⋄(v2, θ))− g(v1, θ⋄(v1, θ)). And by
Lemma 13, we have

g(v1, θ
⋄(v2, θ))− g(v1, θ

⋄(v1, θ)) ≥
κ

4
||θ⋄(v2, θ)− θ⋄(v1, θ)||2.

Combing all bounds gives that

2L||v1−v2|| ≥ ||∇q(v1, θ⋄(v2, θ))−∇q(v2, θ⋄(v2, θ))|| = ||∇q(v1, θ⋄(v2, θ))|| ≥
κ

2
||θ⋄(v2, θ)−θ⋄(v1, θ)||.

This implies that ||θ⋄(v2, θ)− θ⋄(v1, θ)|| ≤ 4L
κ ||v1 − v2||.

Now we proceed to give the proof of Theorem 1.
Note that

q(vk+1, θk+1)− q(vk, θk) = [g(vk+1, θk+1)− g(vk+1, θ
⋄(vk+1, θk+1))]− [g(vk, θk)− g(vk, θ

⋄(vk, θk))]

= [g(vk+1, θk+1)− g(vk+1, θ
⋄(vk+1, θk))]− [g(vk, θk)− g(vk, θ

⋄(vk, θk))]

+ [g(vk+1, θ
⋄(vk+1, θk))− g(vk+1, θ

⋄(vk+1, θk+1))]

= [g(vk+1, θk+1)− g(vk, θk)]− [g(vk+1, θ
⋄(vk+1, θk))− g(vk, θ

⋄(vk, θk))]

+ [g(vk+1, θ
⋄(vk+1, θk))− g(vk+1, θ

⋄(vk+1, θk+1))].

Note that

g(vk+1, θk+1)− g(vk, θk) ≤ −ξ ⟨∇g(vk, θk), δ∗(vk, θk)⟩+
Lξ2

2
||δ∗(vk, θk)||2

−[g(vk+1, θ
⋄(vk+1, θk))− g(vk, θ

⋄(vk, θk))] ≤
〈
∇[1,2]g(vk, θ

⋄(vk, θk)), [vk+1, θ
⋄(vk+1, θk)]− [vk, θ

⋄(vk, θk)]
〉

+
L

2
||[vk+1, θ

⋄(vk+1, θk)]− [vk, θ
⋄(vk, θk)]||2.

Notice that as∇2g(vk, θ
⋄(vk, θk)) = 0,〈

∇[1,2]g(vk, θ
⋄(vk, θk)), [vk+1, θ

⋄(vk+1, θk)]− [vk, θ
⋄(vk, θk)]

〉
= ξ

〈
∇[1,2]g(vk, θ

⋄(vk, θk)), δ
∗(vk, θk)

〉
.

Also using Lemma 14, we have

||θ⋄(vk+1, θk)− θ⋄(vk, θk)|| ≤
4L

κ
||vk+1 − vk||.

This implies that

||[vk+1, θ
⋄(vk+1, θk)]−[vk, θ⋄(vk, θk)]||2 ≤ (

16L2

κ2
+1)||vk+1−vk||2 ≤ (

16L2

κ2
+1)ξ2||δ∗(vk, θk)||2.
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We thus have

q(vk+1, θk+1)− q(vk, θk) ≤ −ξ ⟨∇q(vk, θk), δ∗(vk, θk)⟩+ Lqξ
2||δ∗(vk, θk)||2/2 + χk,

where we define Lq = (16L
2

κ2 + 2) and χk = [g(vk+1, θ
⋄(vk+1, θk)) − g(vk+1, θ

⋄(vk+1, θk+1))].
Using the same argument in the proof of Lemma 10 and Lemma 11, we have

q(vk+1, θk+1)− q(vk, θk)

≤− ξη||∇q(vk, θk)||2 + 12ξηL2
qκ

−1 exp(−b1T )q(vk, θk)

+2ξb2Lκ
−1/2 exp(−b1T/2)q1/2(vk, θk) + Lqξ

2b22/2 + χk

≤− ξη||∇q(vk, θk)||2 + 12ξηL2
qκ

−2 exp(−b1T )||∇q(vk, θk)||2

+2ξb2Lκ
−1 exp(−b1T/2)||∇q(vk, θk)||+ Lqξ

2b22/2 + χk.

Here the second inequality is by Assumption 3. Choosing T such that T ≥ b7(η, α, κ, L) where

b7(η, α, κ, L) =

⌈
−b−1

1 log(
κ2

48ηL2
q

)

⌉
,

we have

q(vk+1, θk+1)−q(vk, θk) ≤ −
3

4
ξη||∇q(vk, θk)||2+2ξb2Lκ

−1 exp(−b1T/2)||∇q(vk, θk)||+Lqξ
2b22/2+χk.

Using Young’s inequality, given any x > 0,

exp(−b1T/2)||∇q(vk, θk)|| ≤ x exp(−b1T ) +
1

x
||∇q(vk, θk)||2.

Choosing x = 4Lb2
ηκ , we have

q(vk+1, θk+1)− q(vk, θk) ≤ −
1

4
ξη||∇q(vk, θk)||2 +∆+ χk,

where we denote ∆ = ξ
8L2b22
ηκ2 exp(−b1T ) + 1

2Lqξ
2b22. This gives that

1

4
ξη

K∑
k=0

||∇q(vk, θk)||2 ≤ q(v0, θ0)− q(vK , θK) +K∆+

K−1∑
k=0

χk.

Using the same argument in the proof of Lemma 11,

||∇̂q(v, θ)|| ≤ (2Lκ−1 + 1)||∇q(v, θ)||.

We hence have

K−1∑
k=0

||∇̂q(vk, θk)||2 ≤ (2Lκ−1 + 1)2
K−1∑
k=0

||∇q(vk, θk)||2

≤ 4(2Lκ−1 + 1)2

ξη
(q(v0, θ0)− q(vK , θK) +K∆+

K−1∑
k=0

χk).
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Similar to the proof of Lemma 12,

K−1∑
k=0

||δ∗(vk, θk)||2 ≤
2(f(v0, θ0)− f(vK , θK))

ξ
+2η2

K−1∑
k=0

||∇̂q(vk, θk)||2+2ηM
√
K

√√√√K−1∑
k=0

||∇̂q(vk, θk)||2.

Using
√
x+ y ≤

√
x+
√
y, we have

2η2
K−1∑
k=0

||∇̂q(vk, θk)||2 ≤
8η(2Lκ−1 + 1)2

ξ
(q(v0, θ0)− q(vK , θK) +K∆+

K−1∑
k=0

χk)

2ηM
√
K

√√√√K−1∑
k=0

||∇̂q(vk, θk)||2 ≤
√
K

4η1/2M(2Lκ−1 + 1)

ξ1/2
(
√
q(v0, θ0)− q(vK , θK) +K1/2∆1/2 +

√√√√[
K−1∑
k=0

χk

]
+

).

Also notice that by Assumption 3,

K−1∑
k=0

q(vk, θk) ≤
K−1∑
k=0

ξ

κ
||∇q(vk, θk)||2

≤ 4

ηκξ
(q(v0, θ0)− q(vK , θK) +K∆+

K−1∑
k=0

χk)

We hence have

K−1∑
k=0

(||δ∗(vk, θk)||2 + q(vk, θk)) = O

1

ξ
+

K∆

ξ
+

K1/2

ξ1/2
+

K∆1/2

ξ1/2
+K1/2

[
K−1∑
k=0

χk

]
+

1/2


= O

1

ξ
+K exp(−b1T/2) +Kξ1/2 +

K1/2

ξ1/2
+

K

[
K−1∑
k=0

χk

]
+

1/2
 .

Using the same argument as the proof of Theorem 2, when T ≥
⌈
−b−1

1 log( 1
16κ

2L−2)
⌉
,

K⋄(v, θ) ≤ 2||δ∗(v, θ)||2 + q(v, θ) + 8L2 exp(−b1T )κ−2(η + 2)2b22.

This implies that

min
k
K⋄(vk, θk) ≤

1

K

K−1∑
k=0

[2||δ∗(v, θ)||2 + q(v, θ)] + 8L2 exp(−b1T )κ−2(η + 2)2b22

= O

 1

ξK
+ exp(−b1T/2) + ξ1/2 +

1

ξ1/2K1/2
+

[
1

K

K−1∑
k=0

χk

]
+

1/2
 .

Now we proceed to bound 1
K

∑K−1
k=0 χk. Notice that

χk = g(vk+1, θ
⋄(vk+1, θk))− g(vk+1, θ

⋄(vk+1, θk+1))

= g(vk+1, θ
⋄(vk+1, θk))− g(vk, θ

⋄(vk, θk)) + g(vk, θ
⋄(vk, θk))− g(vk+1, θ

⋄(vk+1, θk+1)).
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Notice that using Assumption 5 and Lemma 14

g(vk+1, θ
⋄(vk+1, θk))− g(vk, θ

⋄(vk, θk)) ≤ L||[vk+1, θ
⋄(vk+1, θk)]− [vk, θ

⋄(vk, θk)]||
≤ L(||vk+1 − vk||+ ||θ⋄(vk+1, θk)− θ⋄(vk, θk)||)

≤ (L+
4L

κ
)||vk+1 − vk||

≤ (L+
4L

κ
)ξ||δ∗(vk, θk)||.

Note that using the same procedure as the proof of Lemma 6, ||δ∗(vk, θk)|| ≤ b2. We thus conclude
that

K−1∑
k=0

χk ≤
K−1∑
k=0

g(vk, θ
⋄(vk, θk))− g(vk+1, θ

⋄(vk+1, θk+1))

+ (L+
4L

κ
)ξ

K−1∑
k=0

||δ∗(vk, θk)||

≤
K−1∑
k=0

g(vk, θ
⋄(vk, θk))− g(vk+1, θ

⋄(vk+1, θk+1)) + (L+
4L

κ
)b2ξK

= g(v0, θ
⋄(v0, θ0))− g(vK , θ⋄(vK , θK)) + (L+

4L

κ
)b2ξK.

We thus have 1
K

∑K−1
k=0 χk = O( 1

K + ξ).

Appendix F. List of absolute constants used in the proofs

Here we summarize the absolute constant used in the proofs.

b1(α,L, κ) = log(1− (α− Lα2/2)κ)

b2(M,η) = (3 + η)M

b3(η, α, κ, L) =

⌈
−b−1

1 log(
ηκ

64ηL2
q

)

⌉
b4(η, κ, ξ) = − log(1− ξ

4
ηκ)

b5(Lq, η, κ) =
16L2

q

ηκ2
(2Lκ−1 + 1)2

b6(κ, L) = (2Lκ−1 + 1)2

b7(η, α, κ, L) =

⌈
−b−1

1 log(
κ2

48ηL2
q

)

⌉
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