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Abstract
Decentralized learning offers privacy and communication efficiency when data are naturally dis-

tributed among agents communicating over an underlying graph. Motivated by overparameterized
learning settings, in which models are trained to zero training loss, we study algorithmic and gener-
alization properties of decentralized learning with gradient descent on separable data. Specifically,
for decentralized gradient descent (DGD) and a variety of loss functions that asymptote to zero at in-
finity (including exponential and logistic losses), we derive novel finite-time generalization bounds.
This complements a long line of recent work that studies the generalization performance and the
implicit bias of gradient descent over separable data, but has thus far been limited to centralized
learning scenarios. Notably, our generalization bounds approximately match in order their central-
ized counterparts. Critical behind this, and of independent interest, is establishing novel bounds
on the training loss and the rate-of-consensus of DGD for a class of self-bounded losses. Finally,
on the algorithmic front, we design improved gradient-based routines for decentralized learning
with separable data and empirically demonstrate orders-of-magnitude of speed-up in terms of both
training and generalization performance.

1. Introduction

Machine learning tasks often revolve around inference from data using empirical risk minimization
(ERM):

min
w2Rd

F̂ (w) :=
1

n

nX

i=1

f (w, xi) . (1)

Here f : Rd
⇥Rd0

! R is a loss function and xi := yiai, where (ai, yi)ni=1
iid
⇠ D represent features

and labels, sampled from a distribution D. In large scale machine learning, due to privacy con-
cerns and communication constraints, data points are often distributed on a set of local computing
agents. Decentralized learning methods aim at minimizing the global loss function (1) while agents
communicate their parameters on an underlying connected graph. The most ubiquitous of these
algorithms is Decentralized Gradient Descent (DGD). Here the ` th agent runs a step of gradient
descent followed by an averaging step in which every agent replaces its parameter with the average
of its neighbors [20]:

w(t+1)
` =

X

k2N`

A`kw
(t)
k � ⌘trF̂`(w

(t)
` ). (2)

. The long version of the paper including additional results and all the proofs is available at [29].

c� H. Taheri & C. Thrampoulidis.
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The superscripts signify the iteration number and A`k refers to the averaging weights used by agent
` for the parameter of agent k. The global loss F̂ is the average of local loss functions F̂`, `  N ,
where each F̂` is formed as the average empirical risk evaluated on the local training dataset S` of
the ` th agent:

F̂ (w) =
1

N

NX

`=1

F̂`(w), F̂`(w) =
1

n`

X

xj2S`

f(w, xj), (3)

where n` denotes the dataset size of agent `. Convergence properties of the train loss F̂ (·) in DGD
have been studied extensively in literature, e.g., [15, 18–20, 34]. The bulk of these studies build
upon classical optimization theory [22] suited for studying the train loss per iteration. In particular,
it is well-stablished in the literature that DGD converges at the rate 1

T

PT
t=1 F̂ (w̄(t))�F̂ ? = O( 1p

T
)

for smooth convex functions [18]. Here w̄(t) is the average of local parameters w(t)
` . Our results in

Sections 2.1-2.2 show a rate of F̂ (w̄(T )) = O( (log T )2

T ) and kW (T )
�W̄ (T )

k
2
F = O( (log T )4

T 2 ) for the
training loss and consensus error of DGD over separable data with “exponentially tailed” losses.

The study of generalization performance of DGD algorithms in the literature is mostly limited
to empirical observations e.g., [9, 11, 32], making the theory behind test error performance largely
unexplored. Our first goal in this paper is to complement prior general results on the convergence
of training loss in DGD by considering specific, but commonly encountered, settings in ERM over
separable data. This includes the analysis of non-smooth objectives such as the exponential loss,
analysis of logistic regression in the interpolating regime where the optimum is achieved at infinity,
and analysis of objectives satisfying the PL condition. Our second goal is to study, for the first
time, convergence rates of the DGD test loss F (w̄(t)) := Ex⇠D[f(w̄(t), x)]. Finally, we leverage
recent advances in the study of centralized learning with separable data to design fast algorithms for
decentralized learning.

Contributions. Our contributions are summarized as follows,

• In Section 2.1 we derive convergence rates for the training and test loss of the decentralized
gradient descent algorithm with separable data. Our results hold for convex losses satisfying
realizability and self-boundedness, as well as, convex losses satisfying self-boundedness and
the PL condition. In Section 2.2, we prove that under additional self-boundedness assump-
tions on the Hessian and gradient, which holds for exponentially tailed losses, the test loss
bound can be improved to approximately match the test loss bounds of centralized GD. We
extend our results to losses satisfying the PL condition (in the long version of this work [29,
Sec. 2.3]). Numerical experiments in verify our theoretical results [29, Sec. 3.2].

• We propose two algorithms (see [29, Sec. 2.4]) for speeding up the convergence of decentral-
ized learning with separable data. Notably, numerical experiments [29, Sec. 3.1] demonstrate
that our proposed algorithms significantly improve the train error and test error of decentral-
ized logistic regression.

Further related works

Decentralized learning. Over the last few years there have been numerous research works which
consider the convergence of first order methods for decentralized learning; an incomplete list in-
cludes [3, 9, 12, 13, 15, 18, 20, 24, 30, 31, 33, 34]. The study of generalization of DGD was mostly
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limited to numerical experiments. While this paper was being written, we were notified of the recent
work [28] which studies the generalization bounds of decentralized methods for Lipschitz convex
losses. However, we consider the setting of separable data and exponentially tailed losses and show
that in our settings the train/test loss of DGD is closely similar to centralized GD. Compared to this
work, we also propose improved algorithms for learning with separable data. We highlight that our
rates on the training loss are comparable to [12, Theorem 2]. While [12] also derives convergence
of DGD train loss on separable data, their analysis is valid only for bounded optimizers. In contrast,
we derive training loss bounds which are true for the case of unbounded optimizers as is the case
for logistic regression over separable data.

Implicit bias of GD. For centralized settings, a line of recent works [6, 7, 17, 25–27] studies
the parameter convergence, as well as training and test loss convergence, of gradient descent on
separable data, showing that for (a class of) monotonic losses the solution to ERM and the max-
margin solution are the same in direction., i.e., kŵ(t)

� ŵMMk ! 0. Here ŵ(t) := w(t)/kw(t)
k

and ŵMM := wMM/kwMMk, where the vector wMM is the solution to the hard-margin support vector
machine problem. Notably, [6, 27] characterized the rate of convergence for margin gap to be
kŵ(T )

� ŵMMk = O(1/log(T )) and for the training loss to be F̂ (w(T )) = O( 1
⌘T ). Recently,

Shamir [26] and Schliserman and Koren [25] showed that the test loss of GD for logistic regression
on linearly separable data satisfies F (w(T )) = Õ( 1

⌘T + 1
n) signifying that overfitting does not

happen during the iterates of GD. In Section 2.2 (Remark 9), we show that the test loss of DGD
with logistic regression on linearly separable data satisfies E[F (w̄(T ))] = Õ( 1

⌘T + 1
n + ⌘2). This

signifies that, under the data separability assumption, the rate of decay for test loss is essentially
identical for centralized and decentralized scenarios.

2. Main results

Throughout the paper we make the following standard assumption on the mixing matrix A =
[Aij ]N⇥N corresponding to the underlying connected network.

Assumption 1 (Mixing matrix) The mixing matrix A 2 RN⇥N is symmetric, doubly stochastic
with bounded spectrum i.e., |�i(A)| 2 (0, 1] and �2(A) < 1.

First, we state a lemma which relates the generalization loss of DGD at iteration t to its train loss
and consensus error up to iteration t. The lemma is derived based on a stability analysis [4, 5, 14].
Specifically we use a self-boundedness and a realizability assumption [25] which makes the stability
analysis feasible for settings such as logistic regression on separable data. Additionally, we assume
convexity and L-smoothness of the loss function. Formally, we assume the following, where for
simplicity, we use the short-hand fx(w) := f(w, x) for the loss incurred at a generic x 2 D in the
data distribution D.

Assumption 2 (Convexity) The loss functions fx : Rd
! R are convex and differentiable, satis-

fying, fx(w)  fx(v) + hrfx(w), w � vi.

Assumption 3 (Smoothness) The loss functions fx : Rd
! R are L-smooth and differentiable,

i.e. fx(w)  fx(v) + hrfx(v), w � vi+ L
2 kw � vk2.
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Assumption 4 (Self-boundedness of the gradient) The loss functions fx : Rd
! R satisfy the

self-boundedness property with the parameters c > 0 and ↵ 2 [12 , 1], i.e.,

krfx(w)k  c (fx(w))
↵ .

We note that Assumption 4 is weaker than Assumption 3, since an L-smooth function f satisfies
krf(w)k2  2L(f(w) � f?), where f? := infw f(w). However, we make use of the smoothness
property whenever it suits the analysis, in particular in the training loss analysis.

Before stating our key lemma, we introduce a few necessary notations. We define the matrix
W (t)

2 RN⇥d as the concatenation of all agents’ parameters at iteration t, i.e., W = [w(t)
1 , · · · , w(t)

N ]>.
We also denote by w̄(t) the average of local parameters, i.e., w̄(t) := 1

N

PN
i=1w

(t)
i , and denote by

W̄ (t)
2 RN⇥d its concatenated matrix W̄ (t) = [w̄(t), · · · , w̄(t)].

Lemma 1 (Key lemma, Informal version) Consider the iterates of decentralized gradient de-
scent in Eq.(2) with a fixed positive step-size ⌘ 

2
L . Let Assumptions 1-4 hold. Then for the

test loss F at iteration T � 1, it holds that

E[F (w̄(T ))] = (4)

O

⇣
E[F̂ (w̄(T ))] +

⌘2L2c2T 2

n3�2↵
E
h
(
1

T

TX

t=1

F̂ (w̄(t)))2↵
i
+

⌘2L4

N
E
h
(

TX

t=1

kW (t)
� W̄ (t)

kF )
2
i⌘

,

where the expectation is over training samples.

Lemma 1 bounds the test loss with respect to the train loss and the consensus error. In the
following sections, we show how Lemma 1 yields test loss bounds on DGD by establishing bounds
on the train loss and consensus errors under different assumptions on the loss function.

It is worth remarking that Eq. (4) is in fact valid not only for DGD, but also for Decentral-
ized Gradient Tracking (DGT). DGT is another popular algorithm for distributed learning that can
accelerate train error convergence over DGD by modifying the update in Eq.(2) such that each
agent keeps a running estimate of the global gradient [21]. The reason why Eq.(4) continues to
hold for DGD is that the proof of Lemma 1 only relies on the updates of the “averaged” param-
eter w̄(t) := 1

N

PN
`=1w` and that the update rule of w̄(t) for both DGD and DGT is derived as

w̄(t) = w̄(t�1)
� ⌘ 1

N

PN
`=1rF̂`(w

(t�1)
` ). Thus, starting with Eq.(4) one can also obtain test loss

bounds of DGT after replacing appropriate bounds of DGT for the training loss and consensus error.
We leave this to future work.

In the following sections, we discuss how Lemma 1 yields test loss bounds on DGD under
different assumptions on the loss function.

2.1. Convergence with general convex losses

The upper-bound in Eq.(4) shows how the consensus error and train loss of DGD affect the test loss.
The next lemma bounds the training loss and consensus error of DGD for general convex losses.

Lemma 2 (Training bounds for convex losses) Under Assumptions 1-4, for any w 2 Rd and for
a fixed step-size ⌘ < 1

L min(1 � ↵1,
q

1�↵1
2↵2

), where ↵1 2 (3/4, 1),↵2 > 4 are parameters that
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depend only on the mixing matrix, the following holds for the train loss and consensus error of DGD
(2):

1

T

TX

t=1

F̂ (w̄(t)) 
2kwk2

⌘T
+ 4F̂ (w), (5)

1

T

TX

t=1

kW (t)
� W̄ (t)

k
2
F 

↵2⌘2L2

(1� ↵1)
(
2kwk2

⌘T
+ 4F̂ (w)).

To bound the training loss for loss functions f(·) where the optimum is attained at infinity we
need a realizability assumption. In particular, we choose w 2 Rd (of Lemma 2) using the following
assumption.

Assumption 5 (Realizability) The loss functions fx : Rd
! R satisfy the realizability condition,

i.e. 9 decreasing function ⇢ : R+ ! R+ such that for every " > 0 there exists ŵ 2 Rd with
kŵk  ⇢(") that satisfies fx(ŵ)  ".

The set of assumptions 2-5 covers logistic loss over linearly separable data, in addition to losses
with other exponential-type tails exp(�wr) and polynomial tail w�r, for r > 0; See [29, Prop. 24].

Remark 3 (Training loss of DGD on separable data) The realizability assumption appeared in
[14, 25] (and implicitly used in [6, 26]) as the required assumption for bounding the training er-
ror under separable data. It can be checked that for � denoting the margin of training data, loss
functions with an exponential tail such as logistic loss satisfy this assumption with ⇢(") = 1

� log(1" )
(e.g., see Proposition 30 and [25, Lemma 4]). Based on Lemma 2, this leads to the following bound
for DGD training loss for all " > 0,

1

T

TX

t=1

F̂ (w̄(t)) 
2 log(1/")2

�2⌘T
+ 4". (6)

In particular, choosing " = 1/T , gives a rate of O( (log T )2

⌘T ), surprisingly matching up to the
corresponding rate for centralized GD derived in [6, Theorem 1.1].

Remark 4 The bounds of Lemma 2 are true for any dataset {xi}i2[n] provided that Assumptions 2
and 3 hold for all fx = fxi = f(w, xi) := fi(w), i 2 [n]. Similarly, (6) holds provided Assumption
5 is true over the training set (i.e. provided the training dataset is separable). However, bounding
the test loss in Lemma 1, requires bounding the expectation over all datasets of the train/consensus
errors. This is guaranteed by Assumptions 2-5 as they hold for any point x in the distribution.

Theorem 5 (Test loss with convex losses) Under Assumptions 1-5, by choosing ⌘ < 1
L
p
T
min(1�

↵1,
q

1�↵1
2↵2

) where ↵1 2 (3/4, 1),↵2 > 4 are parameters that depend only on the mixing matrix

and assuming "  ⇢(")
⌘T the following bound holds for the test error of DGD for iteration T ,

1

T

TX

t=1

E[F (w̄(t))] = O

⇣⇢(")2
p
T

+
L2c2⇢(")4↵

n3�2↵
T 1�↵ +

L4⇢(")2
p
T

⌘
, (7)

where the expectation is over i.i.d. training samples.

5



ON GENERALIZATION OF DECENTRALIZED LEARNING WITH SEPARABLE DATA

Remark 6 (DGD with logistic regression never overfits) As in Remark 3, we take logistic regres-
sion on separable data with margin � > 0 as our case study. For logistic regression (as well as
other loss functions with an exponential tail), it can be verified that the self-boundedness assump-
tion holds with ↵ = 1. Similar to Remark 3 it holds that ⇢(") = 1

� log(1" ), thus choosing " = 1/
p
T

results in a test loss rate Õ( 1p
T
+ 1

n) by Eq.(7). This indicates that the upper-bound decreases

at a rate of Õ( 1p
T
) until after T = n2

· (max( 1
Lc ,

L
c ))

4 iterations where the upper bound essen-

tially reduces to Õ(L
2c2

n ). Additionally, the fact that the upper-bound is decreasing proves that with
appropriate choice of step-size, overfitting never happens along the path of DGD at any iteration.

Remark 7 (Log factors) The attentive reader will have recognized in Remarks 3 and 6 that due
to the “⇢(") = O(log(T ))” factor, the upper bound on the test loss in Eq. (7) increases (very)
slowly with log4(T ). Note that this term becomes dominant only when T is exponentially large with
respect to the sample size n and the margin �. Our experiments (in the long version of this work
[29]) confirm this slow logarithmic increase late in the training phase. Analogous behavior, but for
centralized GD training, are discussed in [25, 27].

2.2. On the convergence of DGD with exponentially-tailed losses

We note that the bounds in Lemma 2 and Theorem 5 hold for the average loss across iterations
t  T . It is straight-forward to see that if DGD is a descent algorithm i.e., F̂ (w̄(t+1))  F̂ (w̄(t))
for all t  T , then F̂ (w̄(T )) 

1
T

PT
t=1 F̂ (w̄(t)); thus implying that the upper-bounds on training

and test loss hold for the last iterate of DGD. Here, we show that under certain conditions on the
loss and step-size, DGD is a descent algorithm. Moreover, we show that the consensus error of 2 as
well as the test loss bounds of Theorem 5 can be improved for this class of convex loss functions.

In particular, we use the following assumptions together with the self-boundedness gradient
assumption (Assumption 4) with ↵ = 1 as well as the convexity assumption.

Assumption 6 (Self-bounded Hessian) The local losses F̂` : Rd
! R satisfy the following for

the Hessian matrices r2F̂` and a positive constant h,
kr

2F̂`(w)k  h F̂`(w).

Assumption 7 (Self-lowerbounded gradient) The global loss satisfies for a constant ⌧ that

krF̂ (w)k � ⌧ F̂ (w).

Assumptions 2, 4, 6 and 7 considered in this section, include linear classification with non-
smooth losses such as the exponential loss, losses with super-exponential tails (exp(�xr), r > 1)
and the logistic loss.

Theorem 8 (Last iterate convergence of DGD) Consider DGD with the loss functions and mix-
ing matrix satisfying Assumptions 1,2,6,7 and Assumption 4 with ↵ = 1 and c = h. Assume that the
step-size satisfies ⌘ < �

F̂ (1)
, for a constant � depending only on the mixing matrix, ⌧ and h. Then,

the train loss and the consensus error of DGD at iteration T satisfy the following for all w 2 Rd,

F̂ (w̄(T ))  4F̂ (w) +
2kwk2

⌘T
,

kW (T )
� W̄ (T )

k
2
F  O(h2⌘2F̂ 2(w) +

h2kwk4

T 2
).
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Remark 9 (Improved rates) While similar to Lemma 2, for logistic regression we have F̂ (w̄(T )) =
Õ( 1

⌘T + 1
T ), for the consensus error rate we have by applying Theorem 8 and noting that ⇢(") =

log(1/")/� ,

kW (T )
� W̄ (T )

k
2
F  O(h2⌘2"2 +

h2(log(1/"))4

T 2
).

After choosing " = 1/T , we have the improved rate kW (T )
� W̄ (T )

k
2
F = Õ( 1

T 2 ), which is a
significant improvement from Õ( 1

T ) for general convex losses with constant ⌘ (Lemma 2). For the
test loss, employing Lemma 1 with the new rates for the consensus error leads to the following rate
for DGD with logistic regression,

E[F (w̄(T ))] = Õ

⇣ 1

⌘T
+

1

n
+ ⌘2

⌘
. (8)

In accordance to Remark 4, we can conclude the above from Lemma 1 provided Assumptions 4 and
7. Thus, the bounds of Theorem 8 remain true for all training sets within the data distribution.
We note that the resulting bound in Eq. (8) is a superior rate for the test loss of logistic regression,
compared to the rate of Remark 6. Concretely, setting ⌘ = 1/T 1/3 gives a rate of Õ(1/T 2/3+1/n),
faster than the Õ(1/

p
T +1/n) rate in Remark 6. On the other hand, it is slightly slower compared

to its centralized counterpart Õ(1/T + 1/n) in [25, 26]. As revealed by Lemma 1, the additional
⌘2 factor in Eq. (8) captures impact of the consensus term, which is unavoidable in decentralized
learning.

3. Conclusion

We studied the behavior of train loss and test loss of decentralized gradient descent (DGD) methods
when training dataset is separable. To the best of our knowledge, this yields the first rigorous
guarantees for the generalization error of DGD in such a setting. For the same setting, we also
proposed fast algorithms and empirically verified that they accelarate both training and test accuracy.
We believe our work opens several directions, with perhaps the most exciting one being the analysis
of non-convex objectives. Generalization analysis of quantized DGD methods over time-varying
and directed topologies [2] is another future direction. We are also interested in extending our
results to other distributed settings such as federated learning [10] and Gradient Tracking [21].
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