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Abstract

In this work we investigate the dynamics of (stochastic) gradient descent when training a single-
neuron ReLU autoencoder on orthogonal inputs. We show that for this non-convex problem there
exists a manifold of global minima all with the same maximum Hessian eigenvalue and that gradient
descent reaches a particular global minimum when initialized randomly. Interestingly, which min-
imum is reached depends heavily on the batch-size. For full batch gradient descent, the directions
of the neuron that are initially positively correlated with the data are merely rescaled uniformly,
hence in high-dimensions the learned neuron is a near uniform mixture of these directions. On the
other hand, with batch-size one the neuron exactly aligns with a single such direction, showing that
when using a small batch-size a qualitatively different type of “feature selection” occurs.

1. Introduction and Related Work

Recent years have witnessed the impressive successes of neural networks across a wide variety of
domains. However their ability to generalize to unseen data is still not fully understood [16, 28]. One
potential explanation is that gradient-based optimization algorithms have an “implicit bias” towards
models that can generalize well [2, 3, 8, 9, 12, 17, 18, 20, 22]. In particular, it has been observed
that the choice of step-size and batch-size in these algorithms can make a substantial difference
in the generalization performance of trained neural networks, with generally better performance
obtained when using larger step-sizes and smaller batch-sizes [11, 13, 25]. These observations
have inspired a surge of research aimed at more deeply understanding the particular benefits of
small-batch stochastic gradient descent (SGD) over full-batch gradient descent (GD) [5, 10, 15, 26].
Most of this prior work has focused on the supervised learning setting where the data is labeled.
However, given the currently massive interest in unsupervised learning [4, 6, 19], it is crucial to
better understand the implicit bias of optimization algorithms in the unsupervised setting.

In this work, we consider a simple unsupervised setting where we are given a dataset of orthogonal
input vectors and train a single-neuron autoencoder to reconstruct the inputs using gradient descent
started from a random initialization. Since the network has only a single neuron, it is generally im-
possible to perfectly reconstruct all of the inputs, but it is still of interest to understand what gradient
descent will learn, the quality of learned solutions, and the role of different hyperparameters.

In this setting, we show that there exists a manifold of solutions which achieve the global minimum
value, and that gradient descent with a random initialization is able to find a minimum. However, for
different choices of the batch size, gradient descent finds qualitatively different minima. In the full
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batch setting (c.f. Section 2.3), we show that gradient descent essentially only modifies the norm
of the random initialization: the direction of the learned weight vector is almost identical to its
randomly-initialized direction. In contrast, for batch-size one we observe empirically (c.f. Section
3) that SGD “rotates” the neuron significantly during training, eventually aligning it with a single
datapoint, and prove that this occurs in a simplified setting (c.f. Section 2.4). Additionally, we show
that the maximum Hessian eigenvalue at these minima are identical, suggesting that this measure of
“flatness” is insufficient to characterize the implicit bias in this setting.

We note that previous works have also considered the dynamics of gradient descent for learning
single-neuron architectures [7, 14, 23, 27]. However, to the best of our knowledge none of these
previous works considered unsupervised learning with autoencoders or establish a separation be-
tween the minima learned using gradient descent with different batch sizes.

2. Main Results

2.1. Setting

Our model of interest is a simple weight-tied auto-encoder f(x;w) : Rn → Rn

f(x;w) = wφ(〈w,x〉), φ(t) = max(t, 0) (1)

parameterized by one-neuron w ∈ Rn, with no bias, and ReLU activation. Assume we are given
a dataset D = {a1, . . . ,am} where the ai ∈ Rn are orthonormal and necessarily m ≤ n. Let
(a1,a2, . . . ,an) be the completion to an orthonormal basis of Rn. We will be interested in charac-
terizing the dynamics of (stochastic) gradient descent on the standard reconstruction objective

L(w;D) =
1

m

m∑
i=1

`(w;ai), `(w;x) =
1

2
‖x− f(x;w)‖2 . (2)

Remark 1 One can view this setting as a very simple instance of the sparse coding model popular
in the dictionary learning literature (e.g. [1, 21]) where the ground-truth dictionary is orthogonal
and the latent codes are one-hat encodings with no observation noise.

We will consider SGD training with batch-size b and constant step-size α, namely

w(t+ 1) = w(t)− α1

b

∑
i∈B(t)

∇w `(w;ai), B(t) ⊆ [m], |B(t)| = b, t = 0, 1, . . . (3)

where a simple calculation gives the gradient of the pointwise loss

∇w `(w;x) = φ′(〈w,x〉) · [xw> + 〈w,x〉In] · (f(x;w)− x), φ′(t) := 1(t ≥ 0). (4)

We will be most interested in understanding the convergence behavior from a random initialization
wi(0) ∼iid N (0, σ2

init/n), i ∈ [n] for some constant σinit > 0. There are many possible instantia-
tions of Eq. (3) based on the choice of mini-batch order B(t) including the following

(GD) Full-batch GD (b = m) where B(t) = [m] for all t.

(SGD) Stochastic GD (b = 1) where B(t) = {it} and it ∼iid Unif([m]) for all t.
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Figure 1: Visualization of optimization trajectories for GD, CSGD, and SGD with m = n = 2. All
three methods are initialized at w(0) = (0.1, 0.08)> and run with step size α = 0.25.

(CSGD) Cyclic Stochastic GD (b = 1) where B(t) = {t mod m}.

Our theoretical results analyse in particular GD in Section 2.3 and CSGD in Section 2.4.

2.2. Visualization of convergence behaviors on toy example

To illustrate how the batch size and mini-batch order influence the solutions found by gradient
descent, we run full-batch GD, stochastic GD, and cyclic stochastic GD on the simple toy example
where D = {a1,a2} with a1 = (1, 0)> and a2 = (0, 1)>, that is, the dataset is given by standard
basis vectors in R2. For all three methods, we initialize at w(0) = (0.1, 0.08)>. As we will see in
Section 2.3 and Section 2.4, full-batch GD must converge to w? = (0.781, 0.625) whereas cyclic
SGD converges to a1.

Figure 1 visualizes the optimization trajectory of the coordinates for each of the three methods in
R2. We see that both GD and CSGD converge to points as predicted by our theory. Figure 1 also
shows that SGD converges to a2, showing that randomness in the mini-batch order can lead to a
different convergence behavior compared with cyclic SGD. Unlike CSGD, SGD is seen with a2

more often during an early stage of iterations, and hence it converges to a2 eventually.

2.3. Full Batch Gradient Descent

We now characterize the dynamics of full-batch gradient descent training. That is we analyse the
dynamics of w(t) when b = m in Eq. (3). First let us define the following set

S(t) = {i ∈ [m] : 〈wt,ai〉 > 0}, (5)

that is S(t) is the indices of datapoints with which w is positively correlated at time t. For con-
venience let S := S(0). Due to our assumption of random initialization we can assume that
〈w(0),ai〉 6= 0 for all i ∈ [n] since this occurs almost surely. Thus we can assume that S is
non-empty, otherwise from Eq. (4) it is easy to see that w(t) = w(0) for all t. Let ΠS be the
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orthogonal projection onto span(ai : i ∈ S), that is

ΠS(x) =
∑
i∈S
〈ai,x〉ai.

We then have the following limiting characterization the proof of which is given in Appendix A.

Theorem 2 Assume that the initialization w(0) satisfies the following

1. ‖w(0)‖ < 1,

2. |S| > 0 and 〈ai,w(0)〉 6= 0 ∀i ∈ [n]

and the step-size α ≤ m/5. Then full-batch gradient descent iterates w(t) converges to w? where

w? =
ΠS(w(0))

‖ΠS(w(0))‖
.

Corollary 3 Assume that wi(0) ∼iid N (0, σ2
init/n) for i ∈ [n] where σinit < 1 is a constant and

m = Ω(n). Then with probability at least 1−O(n−1),

max
i∈[m]

lim
t→∞
〈ai,w(t)〉 = Õ(n−1/2), w(t) = w(t)/ ‖w(t)‖ .

2.4. Cyclic Stochastic Gradient Descent

In this section we consider the case of batch-size one. We analyse a simplified set-up where m =
n = 2 and the mini-batch order remains fixed throughout. For convenience, we will relabel the data
indices so that D = {a0,a1} and assume that B(t) = {at%2} where t%2 is 0 if t is even and 1 if t
is odd. In Conjecture 6 we conjecture that similar results hold true for more general settings.

As in Section 2.3 we can assume that at initialization 〈ai,w0〉 6= 0 for i ∈ [n]. Recall the definition
of the set S := S(0) from Eq. (5). From the updates in Eq. (4) it is clear that wt = w0 for all t if S
is empty. If |S| = 1, then it is clear that wt → ai where i ∈ S since the dynamics are equivalent to
full-batch gradient descent with batch-size one on the dataset D = {ai}. Therefore, we concentrate
on the case when |S| = 2. We have the following characterization proven in Appendix B.

Theorem 4 Assume that m = n = 2 and the initialization w(0) satisfies the following

1. 〈w(0),a0〉 > 0 and 〈w(0),a0〉 ≥ 〈w(0),a1〉

2. ‖w(0)‖ < 1, 〈w,ai〉 6= 0 for all i = 0, 1

and the step-size α ≤ 1/4. Then the CSGD iterates w(t) converge to a0 as t→∞.

Corollary 5 Assume m = n = 2 and wi(0) ∼iid N (0, σ2
init/n). Then with probability at least

some universal constant δ > 0, running full-batch gradient descent and cyclic stochastic gradient
descent initialized from w(0) converge to difference solutions.

Our result in Theorem 4 is limited in the fact that it only covers the case where m = n = 2,
〈w(0),a0〉 ≥ 〈w(0),a1〉, and the mini-batches follow a fixed, cyclic order. However, we believe
that this result can be a useful stepping stone for showing a much more general behavior of SGD
which we conjecture below. We have observed this conjectured behavior consistently in simulations
(e.g. Section 3) and are currently working on providing a theoretical analysis.
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Conjecture 6 For any m,n ∈ N such that 1 ≤ m ≤ n running SGD (or cyclic SGD) on the
autoencoder objective Eq. (1) from an initialization w(0) such that 〈w(0),ai〉 > 0 for some i ∈ [m]
and with step-size α = O(1) will almost surely converge to ai for some i ∈ S.

2.5. Loss Landscape

In this section we will study properties of different stationary points of GD and (cyclic) SGD for the
one-neuron autoencoder Eq. (1). Our first result characterizes the manifold of global minima.

Theorem 7 (Global Minima) The minimum value of the loss objective L(w) from Eq. (2) is equal
to L? and is attained on the setM where

L? :=
m− 1

2m
, M =

{
m∑
i=1

ciai : c1, . . . , cm ≥ 0 and
m∑
i=1

c2
i = 1

}
.

Theorem 2 shows that full batch gradient descent converges to the following solution

wGD
? =

∑
i∈S

〈w0,ai〉√
Φ

ai, Φ =
∑
i∈S
〈w0,ai〉2 (6)

where S is defined in Eq. (5). By the above theorem wGD
? is a global minimum. In Conjecture 6 we

conjecture that in general (C)SGD converges to

wSGD
? = ai, for some i ∈ S. (7)

Interestingly, this point is also a global minimum. Thus, both algorithms optimally minimize the
loss objective, but from a “feature learning” perspective achieve qualitatively different solutions,
since SGD learns a “pure” datapoint whereas GD learns a “mixture”.

As both algorithms converge to global minima, the solutions reached are identical in terms of loss
value and have gradient zero. Thus, it is a natural question to understand the second-order behavior
of these critical points. The Hessians at the critical points wGD

? and wSGD
? are given below.

Proposition 8 The Hessians of the loss objective at wGD
? Eq. (6) and wSGD

? Eq. (7) are

HGD := ∇2
w L(wGD

? ) = − 1

m

∑
`∈S

a`a
>
` +

4

m

1

Φ

∑
`∈S

∑
i∈S
〈w0,a`〉 〈w0,ai〉aia>` +

1

m
· I, (8)

HSGD := ∇2
w L(wSGD

? ) =
3

m
aia

>
i +

1

m
· I. (9)

A major thread of deep learning research seeks to understand the connection between the “flat-
ness” of local minima, the properties of different optimization algorithms, and generalization per-
formance. Such measures of flatness are usually related to the eigenspectrum of the Hessian. We
characterize the Hessian eigenspectra of HGD and HSGD below.

Lemma 9 The Hessian matrix HGD from Eq. (8) has eigenvalue 4/m with multiplicity 1 cor-
responding to eigenvector wGD

? , eigenvalue 1/m with multiplicity n − |S| and eigenvalue 0 with
multiplicity |S| − 1.
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Lemma 10 The Hessian matrix HSGD from Eq. (9) has eigenvalue 4/m with multiplicity 1 corre-
sponding to eigenvector wSGD

? and eigenvalue 1/m with multiplicity n− 1.

From the above we have the following observations. Both HGD and HSGD have the same max-
imum eigenvalue corresponding to the respective solutions wGD

? and wSGD
? . The matrix HGD is

however generally rank deficient for random initializations since |S| ≥ m/4 with high probability.
In contrast, the matrix HSGD is full-rank. Lastly we can compute the respective traces

Tr(HGD) =
4 + n− |S|

m
, Tr(HSGD) =

3 + n

m
.

Note that if m = Ω(n), then |S| = Ω(n) with high probability and so Tr(HGD)� Tr(HSGD).

3. Numerical Experiments

Here we use simulated data to investigate the convergence behavior of GD, SGD, and CSGD. We fix
n = 100 and m ∈ {20, 80}, corresponding to a small and large m. The dataset D = {a1, . . . ,am}
is given by columns of an orthonormal matrix drawn at random, and the initialization w(0) is drawn
fromN (0, (σ2

init/n) ·In) with σinit = 0.1. For each of the methods, we run the method for T = 104

iterations with step-size α = 0.25, and repeat for 100 trials. Table 1 shows the maximum correla-
tions between the limit points of each method and datapoints, i.e., maxi∈[m]〈w(T ),ai〉, averaged
over 100 trials. We observe that cyclic SGD converges to one of the datapoints, as predicted by our
theory in the simplified set-up, and similarly for stochastic GD as we conjecture. Proving this is the
subject of current ongoing work. Whereas full-batch GD fails to converge to any of the datapoints,
and as expected from Corollary 3, the correlation further degrades as m increases.

Settings full-batch GD cyclic SGD ordinary SGD
m = 20 0.612 (0.099) 1.0 (< 10−8) 1.0 (< 10−8)
m = 80 0.394 (0.059) 1.0 (< 10−8) 1.0 (< 10−8)

Table 1: Maximum correlations between limit points of different methods and datapoints in simu-
lated data with n = 100, averaged over 100 simulated datasets.

4. Conclusion

In this work, we studied the dynamics of gradient descent for single-neuron autoencoders, showing
that gradient descent with a small enough step-size finds a global minimum for this non-convex
problem. Different from previous works about learning single-neuron architectures (e.g. [27]), we
show that in our setting the choice of batch-size strongly influences the solution found by gradient
descent. Although both full batch GD and cyclic SGD reach global minima of the loss objective,
the latter becomes highly correlated with a datapoint leading to an arguably more “meaningful”
solution. In addition to the obtained loss, the maximal eigenvalue of the Hessians of both solutions
are also identical, suggesting that this notion of sharpness is limited for this setting. Looking ahead,
it is an exciting direction for future work to extend to more general settings (see Conjecture 6),
especially ones involving non-orthogonal data and multi-neuron autoencoders.
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Appendix A. Proofs for Section 2.3

A.1. Proof of Theorem 2

In this section we will give the proof of Theorem 2. Throughout we will make the assumptions
given in the theorem statement. Let us make some definitions. Define the vector of correlations
with the datapoints

c(t) = (〈w(t),a1〉 , . . . , 〈w(t),an〉) ∈ Rn

and as before define

S(t) = {i ∈ [m] : ci(t) > 0}, S(t)c = [n] \ S(t)

where for convenience we let S := S(0) and Sc := Sc(0). Let ΠS be the orthogonal projection
onto span(ai : i ∈ S) and ΠSc be the projection onto the complement, that is

ΠS(x) =
∑
i∈S
〈ai,x〉ai, ΠSc(x) =

∑
j∈Sc

〈aj ,x〉aj = x−ΠS(x).

Furthermore we will define

Φ(t) := ‖ΠS(w(t))‖2 =
∑
i∈S

ci(t)
2, Ψ(t) := ‖ΠSc(w(t)‖2 =

∑
j∈Sc

cj(t)
2.

Lastly we define the rescaled step-size η := α/m. By assumption η ≤ 1/9. If at time t, we have
ci(t) 6= 0 for all i ∈ [n], then from Eqs. (3, 4) we can write the full-batch gradient update as follows

ci(t+ 1) = ci(t) + ηci(t)(2− 2Φ(t)−Ψ(t)), i ∈ S(t)

cj(t+ 1) = cj(t)− ηcj(t)Φ(t). j ∈ S(t)c

To reduce notational clutter in the following we will sometimes suppress the time index t and write
for example ci := ci(t), c′i := ci(t+ 1), and ∆ci = c′i − ci.

Let P (t) be the following statement:

for all i ∈ [n], ci(t) 6= 0 and S(t) = S(0)

and let Q(t) be the statement that P (k) is true for all 0 ≤ k ≤ t. Observe that by assumption P (0)
is true. If P (t) is true, then we can write the full-batch update at time t as follows

∆ci = ηci(2− 2Φ−Ψ), i ∈ S (10)

∆cj = −ηcjΦ. j ∈ Sc (11)

We will eventually show in Corollary 14 that P (t) is true for all t. We will first show an invariant
for a weighted norm-like quantity under the assumption Q(t) holds.

Lemma 11 If Q(t) is true, then

Φ(t) +
5

8
Ψ(t) < 1. (12)

9
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Proof We will prove this by induction on t. By assumption the statement is true for t = 0.
Assuming the statement is true for time t− 1 ≥ 0, we will then show that it is true for time t.

Assume Q(t) is true and consider the update at time t− 1.

∆Φ ≤ 5ηΦ(1− Φ−Ψ/2), (13)

∆Ψ ≤ −ηΦΨ. (14)

Since P (t− 1) is true, by Lemma 12

∆Φ = 2ηΦ(2− 2Φ−Ψ) + η2Φ(2− 2Φ−Ψ)2

∆Ψ = −2ηΦΨ + η2Φ2Ψ.

By the induction hypothesis, Φ+(5/8)Ψ < 1. Since Φ,Ψ ≥ 0, this implies in particular that Φ < 1
and Φ + Ψ/2 < 1. Combined with the fact that η ≤ 1/5 we obtain Eq. (13)

∆Φ = 2ηΦ(2− 2Φ−Ψ) + η2Φ(2− 2Φ−Ψ)2

= 4ηΦ(1− Φ−Ψ/2) + 4η(1− Φ−Ψ/2) · [ηΦ(1− Φ−Ψ/2)]

≤ 4ηΦ(1− Φ−Ψ/2) +
4

5
η(1− Φ−Ψ/2)

≤ 5ηΦ(1− Φ−Ψ/2).

Similarly, for Eq. (14)

∆Ψ = −2ηΦΨ + η2Φ2Ψ

= −2ηΦΨ + ηΦΨ[ηΦ]

≤ −2ηΦΨ +
1

5
ηΦΨ ≤ −ηΦΨ.

Now observe that from the previous inequalities

∆

(
Φ +

5

8
Ψ

)
= ∆Φ +

5

8
∆Ψ

≤ 5ηΦ(1− Φ−Ψ/2)− 5

8
ηΦΨ

= 5ηΦ(1− (Φ + 5Ψ/8))

≤ 5η(Φ + 5Ψ/8)(1− (Φ + 5Ψ/8)).

Since η ≤ 1/5, by Lemma 21 and the induction hypothesis it follows that Eq. (12) is true.

Lemma 12 Assume P (t) is true. We have the following update equations for Φ and Ψ.

∆Φ = 2ηΦ(2− 2Φ−Ψ) + η2Φ(2− 2Φ−Ψ)2 (15)

∆Ψ = −2ηΦΨ + η2Φ2Ψ. (16)

10
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Proof This follow from straight-forward calculations

∆Φ = Φ′ − Φ =
∑
i∈S

(c′i)
2 − c2

i

=
∑
i∈S

(c′i − ci)(c′i + ci)

=
∑
i∈S

ηci(2− 2Φ−Ψ)(2ci + ηci(2− 2Φ−Ψ))

= 2η
∑
i∈S

c2
i (2− 2Φ−Ψ) + η2

∑
i∈S

c2
i (2− 2Φ−Ψ)2

= 2ηΦ(2− 2Φ−Ψ) + η2Φ(2− 2Φ−Ψ)2,

and similarly

∆Ψ = Ψ′ −Ψ =
∑
j∈Sc

(c′j)
2 − c2

j

=
∑
j∈Sc

(c′j − cj)(c′j + cj)

=
∑
j∈Sc

−ηcjΦ(2cj − ηcjΦ)

= −2η
∑
j∈Sc

c2
jΦ + η2

∑
j∈Sc

c2
jΦ

2

= −2ηΦΨ + η2Φ2Ψ.

Now we show some important monotonicity properties of the correlations under the assumption of
Q(t). As corollaries we will see that P (t) is true for all t and that Φ and Ψ are monotone quantities.

Lemma 13 Assume Q(t) is true. Then,

1. ci(t+ 1) > ci(t) for i ∈ S,

2. cj(t+ 1) · cj(t) > 0 and |cj(t+ 1)| < |cj(t)| for j ∈ Sc.

Proof We prove this by induction on t. Assume the statement is true for t − 1 ≥ 0 and consider
the update at time t. By the induction hypothesis ci(t) > . . . > ci(0) > 0 for i ∈ S. Since Q(t) is
true, by Lemma 11 we have that Φ + (9/16)Ψ < 1 which implies in particular that 2Φ + Ψ < 2.
Therefore since P (t) is true, from Eq. (10) we have ∆ci = ηci(2 − 2Φ − Ψ) > 0 for i ∈ S
which implies ci(t + 1) > ci(t) which shows the first claim. Furthermore, from Eq. (11) we have
c′j = (1− ηΦ)cj . Since η,Φ ∈ (0, 1), it follows that 0 < 1− ηΦ < 1 from which we easily get the
second claim.

Corollary 14 If P (0) is true, then P (t) is true for all t.

11
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Proof This is immediate from the previous lemma which gives that if i ∈ S, then ci(t) > 0 for all
t and if j ∈ Sc ∩ [m] then cj(t) < 0 for all t.

Corollary 15 Φ is monotone increasing and Ψ is monotone decreasing.

Proof This is also immediate from the previous lemma which gives that ci(t)2 is monotone increas-
ing for i ∈ S and cj(t)2 is monotone decreasing for j ∈ Sc.

Therefore from now on we can assume P (t) is true for all t, hence the dynamics obey the update
equations Eqs. (10, 11) and Eqs. (15, 16). Now let us characterize the limiting behaviors of Φ and
Ψ.

Lemma 16 As t→∞, Φ(t)→ 1 and Ψ(t)→ 0.

Proof For the first claim observe that from Eq. (15)

∆Φ = 2ηΦ(2− 2Φ−Ψ) + η2Φ(2− 2Φ−Ψ)2 ≥ 2ηΦ(2− 2Φ−Ψ).

Furthermore since Φ + (9/16)Ψ < 1 by Lemma 11, we have

2− 2Φ−Ψ ≥ 2(1− Φ)− 16

9
(1− Φ) =

2

9
(1− Φ).

Therefore since Φ(t) is increasing by Corollary 15 we have

∆Φ ≥ 4

9
ηΦ(1− Φ) ≥ 4

9
ηΦ(0) · (1− Φ).

Thus, by Lemma 20
0 ≤ 1− Φ(t) ≤ (1− Φ(0)) · exp(−κt)

where κ := (4/9)ηΦ(0) > 0, hence Φ(t)→ 1. Since

0 ≤ Ψ(t) ≤ 16

9
(1− Φ(t))

we see Ψ(t)→ 0.

Now we are ready to complete the proof of Theorem 2. Define the quantity,

Γ(t) = η(2− 2Φ(t)−Ψ(t)).

Then by unrolling Eq. (10),

ci(t) = ci(0)
t−1∏
k=0

(1 + Γ(k)), i ∈ S. (17)

Note that we can write Eq. (15) as
∆Φ

Φ
= 2Γ + Γ2

12
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hence unrolling the update over t yields

Φ(t) = Φ(0)
t−1∏
k=0

(1 + 2Γ(k) + Γ(k)2)

= Φ(0)

[
t−1∏
k=0

(1 + Γ(k))

]2

.

Therefore we have the relation
t−1∏
k=0

(1 + Γ(k)) =

√
Φ(t)

Φ(0)
.

which combined with Eq. (17) implies that

ci(t)√
Φ(t)

=
ci(0)√
Φ(0)

, i ∈ S.

Since Φ(t)→ 1, we get the same result as before

ci(t)→
ci(0)√
Φ(0)

, i ∈ S.

Since Ψ→ 0 it is clear that cj(t)→ 0 for j ∈ Sc. Therefore we see that

w(t)→ ΠS(w(0))

‖ΠS(w(0))‖

as desired.

A.2. Proof of Corollary 3

In this section we give the proof of Corollary 3. For convenience, we will say an event occurs w.h.p.
if it occurs with probability at least 1−O(n−1). By Theorem 2 we have that

lim
t→∞

w(t) =
ΠS(w(0))

‖ΠS(w(0))‖
, ΠS(w(0)) =

∑
i∈S
〈w(0),ai〉ai.

Therefore our goal is to show that

max
i∈[m]

〈
ai, lim

t→∞
w(t)

〉
=

1√
Φ

max
i∈S

ci(0) = Õ(n−1/2),

w.h.p where Φ =
∑
i∈S

ci(0)2. We will do so by bounding Φ and maxi∈S ci(0) individually w.h.p.

First of all, note that since |S| follows a Binomial distribution Binom(n,1/2), by a Chernoff bound
18, we have |S| ≥ n/4 w.h.p. Since ci(0) = 〈w(0),ai〉 ∼iid N (0, σ2

init/n) it follows that condi-
tional on S

Φ =
∑
i∈S

ci(0)2 ∼ σ2
init/n · χ2(|S|)

13
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where χ2(k) denotes a chi-squared random variable with k-degrees of freedom. A standard tail
bound Lemma 17 implies that w.h.p,

Φ ≥ |S| · σ
2
init

4n

which combined with our bound on |S| yields Φ ≥ σ2
init/16 w.h.p. Furthermore, a standard inequal-

ity for the maximum of independent Gaussians Lemma 19, gives that w.h.p,

max
i∈S

ci(0) ≤ max
i∈[n]

ci(0) ≤ σinit

√
2 log n

n
.

Finally combining everything yields

1√
Φ

max
i∈S

ci(0) ≤ σinit

4
· σinit

√
2 log n

n
= O(n−1/2 log n)

w.h.p as desired.

Lemma 17 (Chi-square Tail Bound [24]) If X ∼ χ2(k) then for all t ∈ (0, 1),

Pr[X ≤ k(1− t)] ≤ exp(−kt2/8).

Lemma 18 (Chernoff Bound) Let X =
∑n

i=1Xi where Xi = 1 with probability pi and Xi = 0
with probability 1− pi, and all Xi are independent. Let µ = E(X) =

∑n
i=1 pi. Then

Pr(X ≤ (1− δ)µ) ≤ exp(−µδ2/2)

for all δ ∈ (0, 1).

Lemma 19 (Maximum of Gaussians) Let X1, . . . , Xn ∼iid N (0, σ2). Then,

Pr

(
max
i∈[n]

Xi −
√

2σ2 log n ≥ t
)
≤ exp

(
−t2

2σ2

)
.

A.3. Auxiliary Lemmas

Lemma 20 Consider a sequence {xt}t∈N which satisfies

xt+1 − xt ≥ ct(1− xt)

for all t ∈ N, where ct ∈ (0, 1] and x0 ≤ 1. Then

1− xt ≤
t∏
i=1

(1− ci)(1− x0) ≤ exp

(
−

t∑
i=1

ci

)
(1− x0)

Proof Rearranging
xt+1 − xt ≥ ct(1− xt)

yields
(1− xt+1) ≤ (1− ct)(1− xt)

14
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hence unrolling the recursion yields

1− xt ≤
t∏
i=1

(1− ci)(1− x0)

and then the inequality 1− x ≤ e−x yields

t∏
i=1

(1− ct)(1− x0) ≤ exp

(
−

t∑
i=1

ci

)
(1− x0).

Lemma 21 Let {xt}t∈N be a sequence such that x0 < 1 and

xt+1 − xt ≤ λxt(1− xt)

for λ ≤ 1. Then xt < 1 for all t ∈ N.

Proof Assume the statement is true for t ≤ T . Observe that the function

f(x) = (1 + λ)x− λx2

has derivative
f ′(x) = 1 + λ− 2λx

hence f is strictly increasing on the interval (−∞, 1] and f(1) = 1. Therefore since xT ∈ [0, 1),
we have that xT+1 ≤ f(xT ) < 1 completing the claim.

Appendix B. Proofs for Section 2.4

B.1. Dynamics of Cyclic SGD

First let recall our setting. We assume that at each time step t we process example xt where xt =
at%2 and t%2 is 0 when t is even and 1 when t is odd. Let yt = 〈wt,a0〉 and zt = 〈wt,a1〉. From
Eqs. (3, 4) it follows that the dynamics are given by

yt+1 = yt(1 + α(2− 2y2
t − z2

t ))

zt+1 = zt(1− αy2
t )

for t%2 = 0 and

yt+1 = yt(1− αz2
t )

zt+1 = zt(1 + α(2− 2z2
t − y2

t ))

for t%2 = 1. For convenience we let F : R2 → R2 denote the function which gives the two-step
update (yt+2, zt+2) = F (yt, zt) for t%2 = 0. We will make use of the following definitions

15



GRADIENT DYNAMICS OF SINGLE-NEURON AUTOENCODERS

• Define the potential function V (y, z) = z/y. We will show that under the given initial condi-
tions the potential is always decreasing after every two-steps.

• Define V− = {(y, z) ∈ (0, 1)2 : V (F (y, z)) − V (y, z) < 0} as the set of points where the
potential strictly decreases after two-steps.

• Define A = {(y, z) ∈ (0, 1)2 : y ≥ z > 0, y2 + z2 ≤ 1 + α/4}. We will show that A ⊆ V−
and that A is an invariant set under F , i.e. (y, z) ∈ A implies F (y, z) ∈ A.

B.2. Proof of Theorem 4

We first begin with the observation that yt, zt ∈ (0, 1) for all t.

Lemma 22 If y0, z0 ∈ (0, 1) and α ≤ 1/4 then yt, zt ∈ (0, 1) for all t.

Proof We induct on t. If t%2 = 0, then yt+1 = yt(1+α(2−2y2
t−z2

t ) ≥ yt(1−α) > 0 and similarly
zt+1 = zt(1 − αy2

t ) ≥ zt(1 − α) > 0. Therefore yt+1, zt+1 > 0. Furthermore zt+1 < zt < 1 and
yt+1 < yt(1 + 2α(1− y2

t )) ≤ 1 by Lemma 30. The case for t%2 = 1 is analogous.

Now we begin by with some observations about the behavior of the squared norm Nt = y2
t + z2

t in
Lemma 24, 25, and 26. The first result Lemma 24 says that Nt is strictly increasing while Nt < 1
since yt > 0 by Lemma 22. The second result Lemma 25 says that if at some point Nt ≥ 1, then
Nt′ ≥ 1 for all t′ ≥ t. Therefore since N0 < 1 it follows that Nt ≥ N0 for all t. The last result
Lemma 26 states that Nt is always at most 1 + α/4, so in fact N0 ≤ Nt ≤ 1 + α/4 for all t.

Now we will consider the subsequence of even iterates (y2t, z2t) for t = 0, 1, . . . Let us recall the
sets V− and A from Appendix B.1. In Proposition 27 we show that A ⊆ V−. Then by Lemmas
22 and 26, along with the definition of V− it is easy to see that A is invariant under F , that is if
(y, z) ∈ A then F (y, z) ∈ A. Since by assumption (y0, z0) ∈ A, this will imply that (y2t, z2t) ∈ A
for all t and that V (y2t, z2t) is strictly decreasing. Thus V (y2t, z2t)→ V? ≥ 0.

We claim that V? = 0. For the sake of contradiction assume that V? > 0. Let Nt = y2
t + z2

t .
Since by assumption N0 < 1, by Lemmas 24, 25, and 26, we have that for all t, 0 < N0 ≤
N2t ≤ 1 + α/4. Since V? ≤ z2t/y2t ≤ z0/y0 ≤ 1, the sequence {(y2t, z2t)} ⊆ K1 ⊆ V− where
K1 = {(r cos θ, r sin θ) : θ ∈ [arctan(V?), π/4], r ∈ [N0, 1 + α/4]}. Since K1 is a compact set
this is a contradiction by Proposition 23, therefore V? = 0.

Now we claim that lim inf N2t ≥ 1. If there exists t0 such that Nt0 ≥ 1, then by Lemma 25
we have Nt ≥ 1 for all t ≥ t0, hence lim inf N2t ≥ 1. If however, Nt < 1 for all t, then by
Lemma 24 N2t is an increasing sequence, hence limN2t = supN2t. We claim that supN2t ≥ 1.
Suppose for the sake of contradiction N? := supN2t < 1. Then {(y2t, z2t)} ⊆ K2 where K2 =
{(r cos θ, r sin θ) : r ∈ [N0, N?], θ ∈ [0, π/4]}. By Lemma 24 it follows that for any (y, z) ∈ K2,
N(F (y, z))−N(y, z) > 0 therefore by Proposition 23 with V = −N we get a contradiction.

Now we show that lim(y2t, z2t) = (1, 0). By Lemma 22

y2
2t = N2t − (z2t/y2t)

2 · y2
2t ≥ N2t − (z2t/y2t)

2

which implies that lim inf y2
2t ≥ lim inf N2t − lim(z2t/y2t)

2 = 1 and since y2
2t ≤ 1 we have

lim sup y2
2t ≤ 1. Therefore lim y2t = 1 and lim z2t = lim y2t · (z2t/y2t) = 0. We have shown that

16
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the even subsequence converges to the desired limit point. Now invoking Lemma 29 which shows
the gradient norm is continuous at the limit point, we see that (yt, zt)→ (1, 0) as desired.

B.3. Auxiliary Results

Proposition 23 Let {xt}∞t=0 be a sequence in Rn such that there exists continuous F : Rn → Rn
and xt+1 = F (xt) for all t = 0, 1 . . . Assume there exists a function V : Rn → R that is continuous
on a compact subset K ⊆ Rn such that for all x ∈ K, V (F (x)) − V (x) < 0. Then there exists
t0 ∈ N such that xt0 6∈ K.

Proof For the sake of contradiction assume that xt ∈ K for all t. Define the quantity

ε := sup{V (F (x))− V (x) : x ∈ K}.

By the continuity of V and F and the compactness of K, it follows that ε < 0. Therefore for any T ,

inf
x∈K

V (x) ≤ V (xT )

= V (x0) +

T−1∑
t=0

V (xt+1)− V (xt)

= V (x0) +

T−1∑
t=0

V (F (xt))− V (xt)

≤ V (x0) + εT.

However, the inequality
inf
x∈K

V (x) ≤ V (x0) + εT

clearly cannot hold since by compactness the left-hand side is finite and the right-hand side ap-
proaches negative infinity for large enough T .

Lemma 24 Define Nt = y2
t + z2

t . Assume that Nt < 1 and that yt, zt ∈ [0, 1]. Then Nt+1 ≥ Nt.
The inequality is strict if t%2 = 0 and yt > 0 or t%2 = 1 and zt > 0.

Proof Let ut = y2
t and vt = z2

t . Assume t%2 = 0. Then

ut+1 − ut = αut(2− 2ut − vt)(2 + α(2− 2ut − vt))
= 2αut(2− 2ut − vt) + α2ut(2− 2ut − vt)2

= 2αut(2− 2ut − vt) + α2ut(2− 2ut − 2vt + vt)
2

≥ 2αut(2− 2ut − vt) + α2utv
2
t

vt+1 − vt = −αvtut(2− αut) ≥ −2αvtut

Therefore

Nt+1 −Nt = (ut+1 − ut) + (vt+1 − vt) ≥ 2αut(2− 2ut − 2vt) + α2utv
2
t ≥ 4αut(1−Nt)

from which the claim easily follows. The case for t%2 = 1 follows by symmetry.

17
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Lemma 25 Assume α ≤ 1/4 and yt, zt ∈ [0, 1]. If y2
t + z2

t ≥ 1, then y2
t+1 + z2

t+1 ≥ 1.

Proof Let Nt = ut + vt. Observe that if t%2 = 0 then

Nt+1 = ut+1 + vt+1 = ut(1 + α(2− 2ut − vt))2 + vt(1− αut)2

≥ ut(1 + 2α(2− 2ut − vt)) + vt(1− 2αut)

= ut + vt + 2αut(2− 2ut − 2vt)

The above inequality can be written as

Nt+1 ≥ Nt + 4αut(1−Nt).

Note that
Nt + 4αut(1−Nt) ≥ 1

if and only if
(1− 4αut)(Nt − 1) ≥ 0

which is true since Nt ≤ 1 and

α ≤ 1

4ut
≤ 1/4

by assumption. The case for t%2 follows by symmetry.

Lemma 26 Assume α ≤ 1/4. If y2
0 + z2

0 ≤ 1 + α/4, then y2
t + z2

t ≤ 1 + α/4 for all t.

Proof We prove this by induction. Let Nt = y2
t + z2

t . Assume Nt ≤ 1 + α/4. Let ut = y2
t and

vt = z2
t . Assume t%2 = 0. Then we have

Nt+1 = ut(1 + α(2−Nt − ut))2 + (Nt − ut)(1− αut)2.

Let

f(N ;α, u) = u(1 + α(2−N − u))2 + (N − u)(1− αu)2

= uα(2−N)(α(2−N) + 2(1− αu)) +N(1− αu)2

Note that f ′′(N) ≥ 0 hence

max
N∈[0,1+α/4]

f(N) = max(f(0), f(1 + α/4)).

Note that

f(0) = u(1+α(2−u))2−u(1−αu)2 = 4αu(1+α(1−u)) ≤ sup
u∈[0,1]

4αu(1+α(1−u)) = 4α ≤ 1.

Now fix N = 1 + α/4 and note that be re-arranging

f(N) = α2(3N − 4)u2 + αu[α(2−N)2 + 4(1−N)] +N.

Note that
3N − 4 = 3− 3α/4− 4 = −1− 3α/4 ≤ 0

18
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and
α(2−N)2 + 4(1−N) = α(1− α/4)2 − α ≤ 0

hence it is clear that f(N) ≤ N . By symmetry (swapping vt for ut), an analogous result holds for
t%2 = 1.

Proposition 27 The set A = {(y, z) : y ≥ z > 0, y2 + z2 ≤ 1 + α/4} ⊆ V−.

Proof Let y0 = r cos θ and z0 = r sin θ with θ ∈ [0, π/2]. Consider fixing r and varying θ.
Observe that

V (F (r cos θ, r sin θ))− V (r cos θ, r sin θ) = tan θ ·
(

(1− αy2
0)

(1 + α(2− 2y2
0 − z2

0))

(1 + α(2− 2z2
1 − y2

1)

(1− αz2
1)

− 1

)
.

Therefore (y0, z0) ∈ V− iffthe following inequality holds

(1− αy2
0)

(1 + α(2− 2y2
0 − z2

0))
≤ (1− αz2

1)

(1 + α(2− 2z2
1 − y2

1)

or equivalently

(1− αy2
0)(1 + α(2− 2z2

1 − y2
1) ≤ (1− αz2

1)(1 + α(2− 2y2
0 − z2

0)).

Let us observe that we can write the following terms solely as a function of r and y0.

z2
0 = r − y2

0

z2
1 = z2

0(1− αy2
0)2 = (r − y2

0)(1− αy2
0)2

y2
1 = y2

0(1 + α(2− 2y2
0 − z2

0)2 = y2
0(1 + α(2− r − y0))2.

Letting y = y0 for convenience and substituting into the above inequality, it is equivalent to

f(y; r)− g(y; r) ≤ 0

where

f(y; r) = (1− αy2)(1 + α[2− 2(r − y2)(1− αy2)2 − y2(1 + α(2− r − y2))2])

g(y; r) = (1− α(r − y2)(1− αy)2)(1 + α(2− r − y2)).

By Lemma 32
d

dy
f(y; r)− g(y; r) ≤ 0.

Recalling y = r cos θ, by the chain rule

d

dθ
[f(y(θ); r)− g(y(θ); r)] =

d

dy
[f(y; r)− g(y; r)]

dy

dθ
=

d

dy
[f(y; r)− g(y; r)](−r sin θ) ≥ 0.

(18)
As cos(π/4) = sin(π/4) = 1/

√
2, Lemma 28 states that if r ≤

√
1 + α/4 then (r cosπ/4, r sinπ/4) ∈

V−, that is
f(r cosπ/4; r)− g(r cosπ/4; r) < 0.
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From Eq. (18) for 0 ≤ ψ ≤ π/4

f(r cosψ; r)− g(r cosψ; r) ≤ f(r cosπ/4; r)− g(r cosπ/4; r) < 0

hence (r cosψ, r sinψ) ∈ V−. Since

A = {(r cosψ, r sinψ) : r2 ≤ 1 + α/4, ψ ∈ [0, π/4]}

this proves the claim.

Lemma 28 If 0 < y2 ≤ 1
2(1 + α/4) and α ≤ 1/4, then (y, y) ∈ V−.

Proof Observe that

(y, y) ∈ V− ⇐⇒
z2

y2
− 1 > 0 ⇐⇒ y2 − z2 > 0.

We will explicitly show that the last inequality for y such that y2 ≤ (1 + α/4)/2. We have that

y1 = y(1 + α(2− 3y2))

z1 = y(1− αy2)

Therefore

y1 = (1 + δ)z1, δ =
2α(1− y2)

1− αy2
.

Thus we have that

y2 − z2 = y1(1− αz2
1)− z1(1 + α(2− 2z2

1 − y2
1))

= δz1 − α(1 + δ)z3
1 − 2αz1 + 2αz3

1 + α(1 + δ)2z3
1

= z1(δ − 2α) + αz3
1(2 + δ + δ2)

Substituting and factoring yields

z1(δ−2α)+αz3
1(2+δ+δ2) = 2αz1y

2

(
(α− 1)

1− αy2
+ (1− αy2)2

(
1 +

α(1− y2)

1− αy2
+

2α2(1− y2)2

(1− αy2)2

))
Letting w = 1− αy2 we thus y2 − z2 ≥ 0 iff

α− 1

w
+ w2

(
1 +

α(1− y2)

w
+

2α2(1− y2)2

w2

)
> 0

Letting b = 1− α, it follows that α(1− y2) = w − b and so the above is equivalent to

− b
w

+ w2

(
1 +

w − b
w

+
2(w − b)2

w2

)
> 0

which after clearing denominators and grouping terms is equivalent to

4w3 − 5bw2 + 2wb2 − b > 0.

The claim then follows from Lemma 31.
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Lemma 29 Let t be even and α ≤ 1/4. Then if max(1 − yt, zt) < ε < 1 then max(1 −
yt+1, zt+1) < 2ε.

Proof Just check the size of gradients

• αytz2
t ≤ αε2 < ε.

• αzt(2− 2z2
t − y2

t ) ≤ 2αε < ε.

B.4. Technical Lemmas

Lemma 30 For η ∈ (0, 1/2], supx∈[0,1] x(1 + η(1− x2)) = 1.

Proof Let f(x) = x(1 + η(1− x2)), then f ′(x) = 1 + η − 3ηx2. Note that f ′(x) ≥ 0 iff

x2 ≤ 1 + η

3η

and that since η ≤ 1/2 implies
1 + η

3η
≥ 1

we see that f ′(x) ≥ 0 if x2 ≤ 1, therefore supx∈[0,1] f(x) = f(1) = 1.

Lemma 31 Assume α ≤ 1/4 and 2y2 ≤ 1 + α/4. Let w = 1− αy2 and b = 1− α. Then

4w3 − 5bw2 + 2wb2 − b ≥ 0.

Proof Let f(w, b) = 4w3 − 5bw2 + 2wb2 − b. Since by assumption y2 ≤ (1 + α/4)/2,

w ≥ 1− α/2− α2/8 =
1

8
(−b2 + 6b+ 3).

Let us call
wmin =

1

8
(−b2 + 6b+ 3).

Observe that for w ∈ [b, 1]

d

dw
f(w, b) = 12w2 − 10bw + 2b2 ≥ 14b2 − 10b ≥ 0

since
14b2 − 10b ≥ 0 ⇐⇒ b ≥ 5/7 ⇐⇒ α ≤ 2/7

which is true since by assumption α ≤ 1/4 ≤ 2/7. Further, note that wmin ≥ b since

8(wmin − b) = −b2 + 6b+ 3− 8b = −(b2 + 2b− 3) = −(b+ 3)(b− 1),
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and 8(wmin − b) > 0 for b ∈ [0, 1]. We thus have,

inf
w∈[wmin,1]

f(w, b) = f(wmin, b).

Using Mathematica to simplify

f(wmin, b) = − 1

128
(b− 1)2(b4 − 6b3 − 2b2 + 2b− 27).

Since b ∈ [0, 1)
b4 − 6b3 − 2b2 + 2b− 27 ≤ 1 + 2− 27 < 0

hence f(wmin, b) > 0.

Lemma 32 Assume r ≤ 1 + α/4 is a constant. Define the following functions of y ∈ [0, 1].

f(y; r) = (1− αy2)(1 + α[2− 2(r − y2)(1− αy2)2 − y2(1 + α(2− r − y2))2])

g(y; r) = (1− α(r − y2)(1− αy)2)(1 + α(2− r − y2)).

Then the following is true
d

dy
f(y; r)− g(y; r) ≤ 0

Proof Making the substitution w = 1− αy2 ⇐⇒ αy2 = 1− w we have

f(w; r) = (1− αy2)(1 + α[2− 2(r − y2)(1− αy2)2 − y2(1 + α(2− r − y2))2])

= (1− αy2)(1 + 2α+ 2(αy2 − αr)(1− αy2)2 − αy2(1− αy2 + α(2− r))2])

= w[1 + 2α+ 2w2(1− w − αr) + (w − 1)(w + α(2− r))2].

g(w; r) = (1− α(r − y2)(1− αy)2)(1 + α(2− r − y2))

= (1 + (αy2 − αr)(1− αy)2)(1− αy2 + α(2− r))
= (1 + w2(1− w − αr))(w + α(2− r)).

Using Mathematica we have that

d

dw
f(w; r)− g(w; r) = α[α(2− r)(r − 2 + 4w) + 6(3− 2r)w2 − 6(2− r)w + 2]

= α[p(r, w) + q(r, w)].

where

p(r, w) = α(2− r)(r − 2 + 4w)

q(r, w) = 6(3− 2r)w2 + 6(r − 2)w + 2.

We now show that p(r, w) ≥ 0 and q(r, w) ≥ 0.

Proof that p(r, w) ≥ 0
Note that r ≤ 1 + α/4 ≤ 2 hence 2 − r ≥ 0 and since y2 ≤ 1 it follows that w ≥ 1 − α,
hence 4w ≥ 4(1 − α) ≥ 3 hence (r − 2 + 4w) ≥ r + 1 ≥ 0 since r ≥ 0. Therefore p(r, w) =
α(2− r)(r − 2 + 4w) ≥ 0.
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Proof that q(r, w) ≥ 0
Note that we can write

q(r, w) = 6(3− 2r)w2 + 6(r − 2)w + 2 = 6rw(1− 2w) + s(w)

for some function s of w. Since 1 − 2w ≤ 1 − 2(1 − α) = −1 + 2α ≤ 0 it follows that q is
decreasing in r therefore q(r, w) ≥ q(1 +α/4) ≥ q(1 +α,w). We can lower bound this as follows,
using α ≤ 1/4

q(1 + α,w) = 6(3− 2(1 + α))w2 − 6(1− α)w + 2

≥ 3w2 − 9

2
w + 2

≥ 3(3/4)2 − (9/2)(3/4) + 2 = 5/16 ≥ 0.

Therefore we have shown that
d

dw
f(w; r)− g(w; r) ≥ 0

and since w = 1− αy2 by the chain rule this implies that

d

dy
f(y; r)− g(y; r) ≤ 0.

Appendix C. Proofs for Section 2.5

C.1. Proof of Theorem 7

Proof It is clear that when considering the minimum of the loss objective we can restrict our

consideration to w ∈ span(a1, . . . ,am). Let w =
m∑
i=1

ciai. Then

L(w;D) =
1

2m

m∑
i=1

‖ai −wφ(〈w,ai〉)‖2

=
1

2m

m∑
i=1

∥∥∥∥∥∥ai − φ(ci)

m∑
j=1

cjaj

∥∥∥∥∥∥
2

=
1

2m

 m∑
i=1

(1− ciφ(ci))
2 +

∑
j 6=i

c2
jφ(ci)

2

 .
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Define the quantity B :=
m∑
j=1

c2
j . Then

L(w;D) =
1

2m

(
m∑
i=1

(1− ciφ(ci))
2 + φ(ci)

2(B − c2
i )

)

=
1

2m

(
m− 2

m∑
i=1

ciφ(ci) +

m∑
i=1

c2
iφ(ci)

2 +

m∑
i=1

φ(ci)
2(B − c2

i )

)

=
1

2m

(
m− 2

m∑
i=1

ciφ(ci) +B
m∑
i=1

φ(ci)
2

)

=
1

2m

(
m− 2

m∑
i=1

ciφ(ci) +
m∑
i=1

c2
i

m∑
i=1

φ(ci)
2

)
.

Therefore to find a minimizer it suffices to minimize the quantity

− 2
m∑
i=1

ciφ(ci) +
m∑
i=1

c2
i

m∑
i=1

φ(ci)
2. (19)

If we define
P =

∑
i:ci>0

c2
i , N =

∑
i:ci<0

c2
i .

then Eq. (19) can be rewritten as

−2P + P (P +N) = P 2 − 2P + PN

where P,N ≥ 0. It is easy to see that the minimum of this quantity is achieved precisely when
P = 1, N = 0, which is what we wished to prove.

C.2. Hessians of Critical Points

Let us compute the Hessian of the loss function at a point w.

Lemma 33 The Hessian of the loss L at w is given by

∇2L(w) =
1

m

∑
`∈[m]

φ′(〈w,a`〉)
[
(‖w‖2 − 2) · a`a>` + 2 〈w,a`〉 (a`w> + wa>` ) + 〈w,a`〉2 · I

]
.

Proof For shorthand we will define Ex as the expectation over x ∼ Unif(D).

∇2L(w) = Exφ
′(〈w,x〉)

[
(‖w‖2 − 2) · xx> + 2 〈w,x〉 (xw> + wx>) + 〈w,x〉2 · I

]
=

1

m

∑
`∈[m]

φ′(〈w,a`〉)
[
(‖w‖2 − 2) · a`a>` + 2 〈w,a`〉 (a`w> + wa>` ) + 〈w,a`〉2 · I

]
.
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Proof [Proof of Proposition 8] Let w := wGD
? =

∑
i∈S

〈w0,ai〉√
Φ

ai. Plugging into Lemma 33

HGD =
1

m

∑
`∈S

[
−a`a>` +

2 〈w0,a`〉√
Φ

(∑
i∈S

〈w0,ai〉√
Φ

(aia
>
` + a`a

>
i )

)
+
〈w0,a`〉2

Φ
· I

]

=
1

m

∑
`∈S

[
−a`a>` +

2 〈w0,a`〉
Φ

∑
i∈S
〈w0,ai〉 (aia>` + a`a

>
i ) +

〈w0,a`〉2

Φ
· I

]

= − 1

m

∑
`∈S

a`a
>
` +

2

m

1

Φ

∑
`∈S

∑
i∈S
〈w0,a`〉 〈w0,ai〉 (aia>` + a`a

>
i ) +

1

m
· I

= − 1

m

∑
`∈S

a`a
>
` +

4

m

1

Φ

∑
`∈S

∑
i∈S
〈w0,a`〉 〈w0,ai〉aia>` +

1

m
· I.

Similarly if w := wSGD
? = ak for some k ∈ S then

HSGD =
1

m

[
−aka>k + 4aka

>
k + I

]
=

3aka
>
k + I

m
.

Now we compute the eigenspectra of HGD and HSGD. The eigenspectrum of HSGD is trivial,
hence we only prove the result for HGD.

Proof [Proof of Lemma 9] For convenience let H = HGD and define

c` :=
〈w0,a`〉√

Φ
, ` ∈ S.

Note that by the definition of Φ in Eq. (6), we have
∑

`∈S c
2
` = 1. Consider a unit vector v ∈

span(a` : ` ∈ S) i.e. v =
∑

`∈S b`a` with
∑

`∈S b
2
` = 1. Then

Hv =

(
4

m

∑
`∈S

∑
i∈S

c`ciaia
>
`

)
v

=
4

m

∑
`∈S

∑
i∈S

∑
j∈S

c`cibjaia
>
` aj

=
4

m

∑
`∈S

c`b`
∑
i∈S

ciai.

Therefore if b` = c` then Hv = (4/m)v and if
∑

`∈S b`c` = 0 then Hv = 0. This gives |S|
orthogonal eigenvectors. Note that if v is orthogonal to span(a` : ` ∈ S) then v is an eigenvector
with eigenvalue of 1/m.
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