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Abstract
Spiking neural networks (SNNs) have recently emerged as an alternative to traditional neural net-
works, holding promise for energy efficiency benefits. However, the classic backpropagation al-
gorithm for training traditional networks has been notoriously difficult to apply to SNNs due to
the hard-thresholding and discontinuities at spike times. Therefore, a large majority of prior work
believes that exact gradients for SNN w.r.t. their weights do not exist and has focused on approxi-
mation methods to produce surrogate gradients. In this paper, (1) by applying the implicit function
theorem to SNN at the discrete spike times, we prove that, albeit being non-differentiable in time,
SNNs have well-defined gradients w.r.t. their weights, and (2) we propose a novel training algo-
rithm, called forward propagation (FP), that computes exact gradients for SNNs. Our derivation
of FP in this paper provides insights on why other related algorithms such as Hebbian learning and
also recently-proposed surrogate gradient methods may perform well.
Keywords: first order methods, neuromorphic computing, spiking neural networks

1. Introduction

Spiking neural networks (SNNs), inspired by biological neuronal mechanisms and sometimes re-
ferred to as the third generation of neural networks [31], have garnered considerable attention re-
cently [7, 9, 11, 35, 37] as low-power alternatives. Indeed, SNNs have been shown to yield 1-2
orders of magnitude energy saving over ANNs on emerging neuromorphic hardware [1, 10]. SNNs
have other unique properties, owing to their ability to model biological mechanisms such as den-
dritic computations with temporally evolving potentials [17] or short-term plasticity, which allow
them to even outperform ANNs in accuracy in some tasks [32]. The power of neuromorphic com-
puting can even be seen in ANNs, e.g., [21] use rank-coding in ANN inspired by the temporal
encoding of information in SNNs. However, due to the discontinuous resetting of the membrane
potential in spiking neurons, e.g., in Integrate-and-Fire (IF) or Leaky-Integrate-and-Fire (LIF) type
neurons [6, 24], it is notoriously difficult to calculate gradients and train SNNs by conventional
methods. For instance, the authors of [21] note “spike coding poses difficulties and training that re-
quire ad hoc mitigation” and “SNNs are particularly difficult to analyse mathematically”. As such,
many works focus on how to train SNN without exact gradients, which range from heuristic rules
like in Hebbian learning [23, 39] and STDP [28, 30], or other methods like SNN-ANN conversion
[12, 19, 38] and surrogate gradient approximations [34].
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In this work, by applying the implicit function theorem (IFT) at the firing times of the neurons
in SNN, we first show that under fairly general conditions, gradients of loss w.r.t. network weights
are well-defined. We do this by proving that the conditions for IFT are always satisfied at firing
times. We then provide what we call a forward-propagation (FP) algorithm which uses the causality
structure in network firing times and our IFT-based gradient calculations in order to calculate exact
gradients of the loss w.r.t. network weights. We call it forward propagation because intermediate
calculations needed to calculate the final gradient are actually done forward in time (or forward in
layers for feed-forward networks). We highlight the following features of our method:

• Our method can be applied in networks with arbitrary recurrent connections (up to self loops)
and is agnostic to how the forward pass is implemented.

• Our method can be seen as an extension of Hebbian learning as it illustrates that the gradi-
ent w.r.t. a weight Wji connecting neuron j to neuron i is almost an average of the feeding
kernel yji between these neurons at the firing times. In the context of Hebbian learning (espe-
cially from a biological perspective), this is interpreted as the well-known fact that stronger
feeding/activation amplifies the association between the neurons. [8, 16]

• In our method, the smoothing kernels yji arise naturally as a result of application of IFT at
the firing times, resembling the smoothing kernels applied in surrogate gradient methods. As
a result, (1) our method sheds some light on why the surrogate gradient methods may work
quite well, and (2) in our method, the smoothing kernels yji vary according to the firing times
between two neurons; thus, they can be seen as an adaptive version of the fixed smoothing
kernels used in surrogate gradient methods. See remark 2.

1.1. Related Work

A review of learning in deep spiking networks can be found at [36, 37, 43, 44], with [37] discussing
also developments in neuromorphic computing in both software (algorithms) and hardware. [34]
focuses on surrogate gradient methods, which use smooth activation functions in place of the hard-
thresholding for compatibility with usual backpropagation and have been used to train SNNs in a
variety of settings [3, 14, 20, 40, 42, 46].

A number of works explore backpropagation in SNNs [5, 22, 47]. The SpikeProp [5] framework
assumes a linear relationship between the “post-synaptic input and the resultant spiking time,” which
our framework does not rely on. The method in [22] and its RSNN version [47] are limited to
a rate-coded loss that depends on spike counts. The continuous “spike time” representation of
spikes in our framework is related to temporal coding [33], but the authors of [33] in the context
of differentiation of losses largely ignore the discontinuities that occur at spikes times, stating “the
derivative...is discontinuous at such points...[but] many feedforward ANNs use activation functions
with a discontinuous first derivative...”. In contrast with [33], we prove that exact gradients can be
calculated despite this discontinuity.

As mentioned in [45], applying methods from optimal control theory to compute exact gradients
in hard-threshold spiking neural networks has already been recognized [26, 27, 41]. However, un-
like in our setting these works consider a neuron with a two-sided threshold and provide specialized
algorithms for specific loss functions. Our work, as well as these works which compute exact gra-
dients for SNNs, share in common the application of the implicit function theorem to differentiate
spike times w.r.t. synaptic weights. Most related to our work is the recent EventProp [45] which
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derives an algorithm for a continuous-time spiking neural network by applying the adjoint method
(which can be seen as generalized backpropagation) together with proper partial derivative jumps.

2. Spiking Neural Networks

In this section, we first describe the precise models we use throughout the paper for the pre-synaptic
and post-synaptic behaviors of spiking neurons. We then explain the dynamics of a SNN and the
effects of spike generations. For the remainder of the paper, we consider SNN architectures up to
arbitrary recurrent connections between neurons.

2.1. Post-Synaptic Kernel Model

We call the model illustrated in the left of Fig. 1 the pre-synaptic model. See Appendix A.1 for
details. In this paper, we will work with a modified but equivalent model in which we combine the
synaptic and neuron dynamics, and consider the effect of spiking dynamics of Ni directly on the
membrane potential after it is being smoothed out by the synapse and neuron low-pass filters. We
call this the post-synaptic or kernel model of the SNN.

To derive this model, we simply use the fact that the only source of non-linearity in SNN is hard-
thresholding during the spike generation. And, in particular, SNN dynamics from the stimulating
neuron j ∈ Ni until the membrane potential Vi(t) is completely linear and can be described by the
joint impulse response

hji(t) = hsj(t) ⋆ h
n
i (t) =

∫ ∞

−∞
hsj(τ)h

n
i (t− τ)dτ =

∫ t

0
e−αjτe−βi(t−τ)dτ =

e−αjt − e−βit

βi − αj
u(t).

(1)

Therefore the whole effect of spikes Fj of neuron j ∈ Ni on the membrane potential can be written
in terms of kernel yji(t) =

∑
f∈Fj

hji(t − f). We call this model post-synaptic since the effect of
dynamic of neuron j ∈ Ni on Vi(t) is considered after being processed by the synapse and even
the neuron i. Using the linearity and applying super-position for linear systems, we can see that the
effect of all spikes coming for all stimulating neurons Ni, can be written as

V ◦
i (t) =

∑
j∈Ni

Wjiyji(t), (2)

where Wji is the weight from neuron j to i. We used V ◦
i (t) to denote the contribution to the

membrane potential Vi(t) after neglecting the potential reset due to hard-thresholding and spike
generation. Fig. 1 (right) illustrates the post-synaptic model for the SNN.

Remark 1 Our main motivation for using this equivalent model comes from the fact that even
though the spikes are not differentiable functions, the effect of each stimulating neuron j ∈ Ni on
neuron i is written as a well-defined and (almost everywhere) differentiable kernel yji(.). ♢

Remark 2 (Connection with the surrogate gradients) Intuitively speaking, and as we will show
rigorously in the following sections, the kernel model derived here immediately shows that SNNs
have an intrinsic smoothing mechanism for their abrupt spiking inputs, through the low-pass im-
pulse response hji(t) between their neurons. As a result, one does not need to introduce any ad-
ditional artificial smoothing to derive surrogate gradients by modifying the neuron model in the
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Figure 1: (Left) Generic structure of SNN. (Right) Post-synaptic kernel model of SNN. In
this model neuron j ∈ Ni stimulates neuron i through the smooth kernel yji(t) =∑

g∈Fi
hji(t − g) rather than the abrupt spiking signal

∑
g∈Fj

δ(t − g). Thm. 3 shows
equivalence of both models in computing membrane potentials.

backward gradient computation path. We will use this inherent smoothing to prove that SNNs in-
deed have well-defined gradients. Interestingly, our derivation of the exact gradient based on this
inherent smoothing property intuitively explains that even though surrogate gradients are not exact,
they may be close to and yield a similar training performance as the exact gradients. ♢

2.2. SNN Full Dynamics

In the post-synaptic kernel model, we already specified the effect of spikes from stimulating neurons
as in (2). To have a full picture of the SNN dynamics, we need to specify also the effect of spike
generation. The following theorem completes this.

Theorem 3 Let i be a generic neuron in SNN and let Ni be the set of its stimulating neurons. Let
hni (t) and hsj(t) be the impulse response of the neuron i and synapse j ∈ Ni, respectively, and let
hji(t) = hni (t) ⋆ h

s
j(t). Then the membrane potential of the neuron i for all times t is given by

Vi(t) = V ◦
i (t)−

∑
f∈Fi

θih
n
i (t− f), (3)

where yji(t) =
∑

g∈Fj
hji(t − g) denotes the smoothed kernel between the neuron i and j ∈ Ni,

and θi denotes the spike generation threshold of the neuron i.

Proof is provided in the Appendix A.2, A.3.

3. Exact Gradient Computation via Implicit Function Theorem

The Implicit Function Theorem (IFT) will be our main tool for proving the existence of gradients
for SNNs. A full statement of the theorem and examples are given in the Appendix A.4.

3.1. Loss Formulation in SNNs

To use IFT, we need to specify the loss function used for training. In most settings, we feed the
network with an input signal consisting of a collection of spikes within a given time interval and
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record the firing times F = ⊔iFi (disjoint union) of all the spikes produced by neurons i and also
the potential of the output layer Vo(t). Here, we consider a quite generic loss function of the form

L = ℓF (F ;W ) +

∫ T

0
ℓV (Vo(t),F ;W )dt, (4)

where ℓF and ℓV are assumed to be differentiable functions of all their arguments, with ℓF the part
of the loss that depends on firing times F , and ℓV the part that depends on membrane potential at the
output layer, respectively. Note the second term ℓV (Vo(t),F ;W ) is typically relevant in regression
tasks, where in those cases we always assume that the output layer is linear without any firing and
potential reset. The first term, in contrast, typically happens in classification tasks.

Theorem 4 Let L be the generic loss function as defined before in (4). Then,

(i) loss L depends only on the spike firing times F and the weights W , i.e., L = L(F ,W ),

(ii) L(F ,W ) is a differentiable function of F and W if ℓV (Vo(t),F ;W ) and ℓF (F ;W ) are
differentiable functions of all their arguments (Vo(t),F ;W ),

(iii) loss L has well-defined gradients w.r.t. the weights W if the spike firing times F are differen-
tiable w.r.t. the weights W .

The proof is provided in Appendix A.5. Theorem 4 implies that to prove the existence of the
gradients w.r.t. to the weights, which is needed for training the SNN, it is sufficient to prove that
the firing times F are differentiable w.r.t. the weights W . We will prove this in the next section by
applying the IFT.

3.2. Differentiability of Firing Times w.r.t. Weights

Let us consider a generic neuron i and let us write the set of equations for firing times of i by using
(8) as:

Vi(f) =
∑
j∈Ni

Wjiyji(f)− θi
∑
m<f

hni (f −m)− θi = 0, (5)

where with some abuse of notation we use f both for the firing time and its label (i, f) ∈ F = ⊔lFl.
We can write the equations for all the firing times as V(F ,W ) = 0 where V : RF × RW → RF is
the nonlinear mapping connecting the F firing times and W weight parameters.

Theorem 5 Let P be a permutation matrix sorting the firing times in F in an ascending order.
Then, ∂V

∂F = PTLP where L is an F× F lower triangular matrix. Moreover, L has strictly positive
diagonal elements Lkk > 0 for all k = 1, 2, . . . ,F.

Proof We note that due to causality (future firing times cannot affect past ones), the equation
corresponding to a specific firing time f ∈ F can only have contribution from firing times less than
f . In other words, ∂Vf

∂g = 0 for all g < f . Letting P be the permutation matrix sorting the firing
times, therefore, the Jaccobian matrix of the sorted firing times given by P ∂V

∂FPT should be a lower
triangular matrix L. This yields the first part ∂V

∂F = PTLP. To check the second part, let k be the
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index of a specific firing time f in the sorted version. Let us denote the neuron corresponding to the
firing f by i. Then, we have that

Lkk =
∂Vf

∂f
=

d

df
Vi(f)

∣∣∣
all other firing times fixed

= V ′
i (t)

∣∣∣
t=f−

> 0

which is equal to the left time derivative the potential Vi(t) when it passes through the threshold θi
at time t = f . It is worthwhile to mention that that since Vi(f) is a differentiable function of f ,
it has both left and right derivatives and they are equal. However, this derivative is equal to only
the left derivative of the potential. Note that this derivative should be strictly positive otherwise the
potential will not surpass the firing threshold θi and no firing time will happen. This completes the
proof.

Using Theorem 5, we can now prove that the conditions of IFT (Theorem 6) are always fulfilled for
firing time equations. This give us explicit formulas for the gradients of the network firing times
w.r.t. network weights (Theorem 9). This is summarized in the following theorem.

Theorem 6 Let V(F ,W ) = 0 be the set of equations corresponding to the firing times. Then
the F × F Jacobian matrix ∂V

∂F is non-singular. Moreover, the firing times F can be written as a
differentiable function of the weights W .

Proof The first part result follows from Theorem 5:

det
(
∂V
∂F

)
= det(PTLP) = det(P)det(L)det(PT ) = det(L) =

∏
k

Lkk > 0,

where we used the fact that det(P) = 1 for any permutation matrix P. The second part follows from
Implicit Function Theorem: V(F ,W ) is a differentiable function of the firing times and weights and
∂V
∂F is non-singular, thus, firing times F can be written as a differentiable function of the weights.

Remark 7 Using Theorem 5 and 6 and applying the IFT, we have that ∂V
∂F × ∂F

∂W = − ∂V
∂W . After

suitable sorting of the firing times F (thus, setting the required permutation matrix P to the identity
matrix), this can be written as

L
∂F
∂W

= − ∂V
∂W

, (6)

where L is a lower diagonal matrix. As a result, one can solve for the derivatives ∂F
∂W recursively,

so no matrix inversion is needed. ♢

Remark 8 The matrix ∂V
∂W depends only on the values of kernels at the firing times. More specifi-

cally, let f be a firing times of neuron i and let j ∈ Ni be one of the feeding neurons of neuron i.
Then, ∂V(f)

∂Wji
= yji(f). Moreover, ∂V(f)

∂Wkl
= 0 if l ̸= i or k ̸∈ Ni. ♢

Theorem 9 (Existence of gradients w.r.t. weights) Let L be a generic loss function for training a
SNN as in (4) with ℓV and ℓF being differentiable w.r.t. their arguments. Then, L has well-defined
gradients w.r.t. weights.

Proof From Theorem 4, L has well-defined gradients w.r.t. weights if the firing times F are
differentiable w.r.t. weights, which follows from Theorem 6 by applying the IFT. This completes
the proof.
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4. Discussion

Our framework offers an alternative view of the differentiability of SNN w.r.t. network weights and
provides a new algorithm, forward-propagation (FP) to calculate gradients of SNN by accumulating
information in the forward pass of the network. Implementation details are in Appendix A.7. Our
results apply very generally to networks with arbitrary recurrent connections, and the FP algorithm
can even be used with other algorithms that can simulate the continuous time dynamics in the
forward pass. The effect of training SNN with exact gradients, as opposed to surrogate gradients
as used in practice, can be seen in practice: using exact gradients results in faster convergence and
steeper decrease in the loss function as shown in empirical experiments in Appendix A.8.
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[25] Laura Kriener, Julian Göltz, and Mihai A. Petrovici. The yin-yang dataset, 2022.

[26] Y. Kuroe and H. Iima. A learning method for synthesizing spiking neural oscillators. In The
2006 IEEE International Joint Conference on Neural Network Proceedings, pages 3882–3886,
2006. doi: 10.1109/IJCNN.2006.246885.

[27] Yasuaki Kuroe and Tomokazu Ueyama. Learning methods of recurrent spiking neural net-
works based on adjoint equations approach. In The 2010 International Joint Conference on
Neural Networks (IJCNN), pages 1–8, 2010. doi: 10.1109/IJCNN.2010.5596914.

[28] Chankyu Lee, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik Roy. Training
deep spiking convolutional neural networks with stdp-based unsupervised pre-training fol-
lowed by supervised fine-tuning. Frontiers in Neuroscience, 12, 2018. ISSN 1662-453X.
doi: 10.3389/fnins.2018.00435. URL https://www.frontiersin.org/article/
10.3389/fnins.2018.00435.

[29] Tao Liu, Zihao Liu, Fuhong Lin, Yier Jin, Gang Quan, and Wujie Wen. Mt-spike: A multilayer
time-based spiking neuromorphic architecture with temporal error backpropagation. pages
450–457, 11 2017. doi: 10.1109/ICCAD.2017.8203812.

9

https://proceedings.neurips.cc/paper/2018/file/185e65bc40581880c4f2c82958de8cfe-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/185e65bc40581880c4f2c82958de8cfe-Paper.pdf
https://openreview.net/forum?id=iMH1e5k7n3L
https://openreview.net/forum?id=iMH1e5k7n3L
https://proceedings.neurips.cc/paper/2018/file/3fb04953d95a94367bb133f862402bce-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3fb04953d95a94367bb133f862402bce-Paper.pdf
https://www.frontiersin.org/article/10.3389/fnins.2016.00212
https://www.frontiersin.org/article/10.3389/fnins.2016.00212
https://www.frontiersin.org/article/10.3389/fnins.2018.00435
https://www.frontiersin.org/article/10.3389/fnins.2018.00435


SPECIFY RUNNING TITLE

[30] Sergey A. Lobov, Alexey N. Mikhaylov, Maxim Shamshin, Valeri A. Makarov, and Vic-
tor B. Kazantsev. Spatial properties of stdp in a self-learning spiking neural network en-
able controlling a mobile robot. Frontiers in Neuroscience, 14, 2020. ISSN 1662-453X.
doi: 10.3389/fnins.2020.00088. URL https://www.frontiersin.org/article/
10.3389/fnins.2020.00088.

[31] Wolfgang Maass. Networks of spiking neurons: The third generation of neural network
models. Neural Networks, 10(9):1659–1671, 1997. ISSN 0893-6080. doi: https://
doi.org/10.1016/S0893-6080(97)00011-7. URL https://www.sciencedirect.com/
science/article/pii/S0893608097000117.

[32] Timoleon Moraitis, Abu Sebastian, and Evangelos Eleftheriou. Optimality of short-term
synaptic plasticity in modelling certain dynamic environments, 2020. URL https://
arxiv.org/abs/2009.06808.

[33] Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks.
IEEE Transactions on Neural Networks and Learning Systems, PP, 06 2016. doi: 10.1109/
TNNLS.2017.2726060.

[34] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in
spiking neural networks. ArXiv, abs/1901.09948, 2019.

[35] Priyadarshini Panda, Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and accurate
deep spiking neural networks with backward residual connections, stochastic softmax, and
hybridization. Frontiers in Neuroscience, 14:653, 06 2020. doi: 10.3389/fnins.2020.00653.

[36] Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: Opportunities and
challenges. Frontiers in Neuroscience, 12, 2018. ISSN 1662-453X. doi: 10.3389/fnins.
2018.00774. URL https://www.frontiersin.org/article/10.3389/fnins.
2018.00774.

[37] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine in-
telligence with neuromorphic computing. Nature, 575:607–617, 11 2019. doi: 10.1038/
s41586-019-1677-2.

[38] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.
Conversion of continuous-valued deep networks to efficient event-driven networks for image
classification. Frontiers in Neuroscience, 11, 2017. ISSN 1662-453X. doi: 10.3389/fnins.
2017.00682. URL https://www.frontiersin.org/article/10.3389/fnins.
2017.00682.

[39] Berthold Ruf and Michael Schmitt. Hebbian learning in networks of spiking neurons us-
ing temporal coding, pages 380–389. 04 2006. ISBN 978-3-540-63047-0. doi: 10.1007/
BFb0032496.

[40] Ali Safa, Francky Catthoor, and Georges G.E. Gielen. Convsnn: A surrogate gradient spik-
ing neural framework for radar gesture recognition. Software Impacts, 10:100131, 2021.
ISSN 2665-9638. doi: https://doi.org/10.1016/j.simpa.2021.100131. URL https://www.
sciencedirect.com/science/article/pii/S2665963821000531.

10

https://www.frontiersin.org/article/10.3389/fnins.2020.00088
https://www.frontiersin.org/article/10.3389/fnins.2020.00088
https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://arxiv.org/abs/2009.06808
https://arxiv.org/abs/2009.06808
https://www.frontiersin.org/article/10.3389/fnins.2018.00774
https://www.frontiersin.org/article/10.3389/fnins.2018.00774
https://www.frontiersin.org/article/10.3389/fnins.2017.00682
https://www.frontiersin.org/article/10.3389/fnins.2017.00682
https://www.sciencedirect.com/science/article/pii/S2665963821000531
https://www.sciencedirect.com/science/article/pii/S2665963821000531


SPECIFY RUNNING TITLE

[41] Kukan Selvaratnam, Yasuaki Kuroe, and Takehiro Mori. Learning methods of recurrent spik-
ing neural networks. 2000.

[42] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in
time. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/
file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf.

[43] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier,
and Anthony Maida. Deep learning in spiking neural networks. Neural Networks, 04 2018.
doi: 10.1016/j.neunet.2018.12.002.

[44] Xiangwen Wang, Xianghong Lin, and Xiaochao Dang. Supervised learning in spiking neural
networks: A review of algorithms and evaluations. Neural Networks, 125:258–280, 05 2020.
doi: 10.1016/j.neunet.2020.02.011.

[45] Timo Wunderlich and Christian Pehle. Event-based backpropagation can compute ex-
act gradients for spiking neural networks. Scientific Reports, 11:12829, 06 2021. doi:
10.1038/s41598-021-91786-z.

[46] Friedemann Zenke and Surya Ganguli. SuperSpike: Supervised Learning in Multilayer Spik-
ing Neural Networks. Neural Computation, 30(6):1514–1541, 06 2018. ISSN 0899-7667. doi:
10.1162/neco a 01086. URL https://doi.org/10.1162/neco_a_01086.

[47] Wenrui Zhang and Peng Li. Spike-train level backpropagation for training deep recurrent
spiking neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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Appendix A. Appendix

A.1. Pre-Synaptic Model

For the ease of presentation, a generic structure of a SNN is illustrated in Fig. 1 on the left. There
are many different models to simulate the nonlinear dynamics of a spiking neuron (e.g., see [16]). In
this paper, we adopt the Leaky-Integrate-and-Fire (LIF) model which consists of three main steps.
(i) Synaptic Dynamics. A generic neuron i is stimulated through a collection of input neurons, its
neighborhood Ni. Each neuron j ∈ Ni has a synaptic connection to i whose dynamics is modelled
by a 1st-order low-passRC circuit that smooths out the Dirac Delta currents it receives from neuron
j. Since this system is linear and time-invariant (LTI), it can be described by its impulse response

hsj(t) = e−αjtu(t),

where αj = 1
τsj

and τ sj = Rs
jC

s
j denotes the synaptic time constant of neuron j, and u(t) denotes

the Heaviside step function. Therefore, the output synaptic current Ij(t) can be written as

Ij(t) = hsj(t) ⋆
∑
f∈Fj

δ(t− f) =
∑
f∈Fj

hsj(t− f), (7)

where Fj is the set of output firing times from neuron j. Note that in Eq. (7) we used the fact that
convolution with a Direct Delta function hsj(t)⋆δ(t−f) = hsj(t−f), is equivalent to shifts in time.
(ii) Neuron Dynamics. The synaptic current of all stimulating neurons is weighted byWji, j ∈ Ni,
and builds the weighted current that feeds the neuron. The dynamic of the neuron can be described
by yet another 1st-order low-pass RC circuit with a time constant τni = Rn

i C
n
i and with an impulse

response hni (t) = e−βitu(t) where βi = 1
τni

. The output of this system is the potential Vi(t).
(iii) Hard-thresholding and spike generation. The membrane potential Vi(t) is compared with
the firing threshold θi of neuron i and a spike (a Delta current) is produced by neuron when Vi(t)
goes above θi. Also, after spike generation, the membrane potential is reset/dropped immediately
by θi.

A.2. Proof of Theorem 3

Proof In the following, we provide a a simple and intuitive proof. An alternative and more rigorous
proof by induction on the number of firing times of neuron i is provided in Appendix A.3.
Proof (i): We use the following simple result/computation-trick from circuit theory that in an RC
circuit, abrupt dropping of the potential of the capacitor by θi at a specific firing time f ∈ Fi can
be mimicked by adding a voltage source −θiu(t− f) series with the capacitor. If we do this for all
the firing times of the neuron, we obtain a linear RC circuit with two inputs: (i) weighted synaptic
current coming from the neurons Ni, (ii) voltage sources {−θiu(t− f) : f ∈ Fi}. See Fig. 2 (left).

The key observation is that although this new circuit is obtained after running the dynamics of
the neuron and observing its firing times Fi, as far as the membrane potential Vi(t) is concerned,
the two circuits are equivalent. Interestingly, after this modification, the new circuit is a completely
linear circuit and we can apply the super-position principle for linear circuits to write the response
of the neuron as the summation of: (i) the response V (1)

i (t) due to the weighted synaptic current
Isi (t) in the input (as in the previous circuit), and (ii) the response V (2)

i (t) due to Heaviside voltage
sources {−θiu(t−f) : f ∈ Fi}. From (2), V (1)

i (t) is simply given by V (1)
i (t) =

∑
j∈Ni

Wjiyji(t).

12



SPECIFY RUNNING TITLE

Figure 2: (Left) Equivalence of response for: (i) a nonlinear neuron with weighted synaptic currents
I(t) and spike generation, and (ii) a linear neuron with input I(t) and Heaviside voltages
{−θiu(t− f) : f ∈ Fi}. (Right) Plot of membrane potential over time using Eq. (8).

The response of an RC circuit to a Heaviside voltage function −θiu(t−f) is given by −θihni (t−
f) where hni (t) is the impulse response of the neuron i as before. We also used the time invariance
property (for shift by f ) and a well-known result from circuit theory (Thevenin-Norton theorem)
that for an RC circuit the impulse response due to a Delta current source is the same as the impulse
response due to a Heaviside voltage source. The response to all Heaviside voltage functions, from
super-position principle, is simply given by V (2)

i (t) = −θi
∑

f∈Fi
hni (t− f). Therefore, we obtain

that

Vi(t) = V
(1)
i (t) + V

(2)
i (t) =

∑
j∈Ni

Wjiyji(t)−
∑
f∈Fi

θih
n
i (t− f). (8)

This completes the proof. See Fig. 2 (right).

A.3. Alternative Proof of Theorem 3

Proof (ii): Here we provide a more rigorous proof based on induction on the number of firing times
Fi := |Fi| of the neuron i.

We first check the base of the induction. If there are no firing times, i.e., Fi = ∅ and Fi = 0,
then there is no source of non-linearity and the neuron is a fully linear system. Thus, the response
of the neuron to the input weighted synaptic current Isi (t) is given, as in (2), by

Vi(t) =
∑
j∈Ni

Wjiyji(t),

which yields the desired result since, for Fi = ∅, the second term −
∑

f∈Fi
θih

n
i (t − f) is zero.

This confirms the base of induction for Fi = 0.
Now let us assume that Fi ̸= ∅ and the neuron i has fired at least once (Fi ≥ 1). Here, we can

still check that result holds for all time t ∈ [0, f1) before the first firing time f1 because before the
first firing time the circuit is completely linear (thus, the first term) and the second term is equal to
zero as hni (t− f1) = eβi(t−f1)u(t− f1) is equal to zero for all t < f1 (due to causality and the fact
that u(t− f1) = 0 for t < f1).
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Now we prove that if the result is true for t ∈ [0, fk) it remains true for t ∈ [fk, fk+1) where we
denote the k-th and (k + 1)-th firing times by fk and fk+1 and apply the convention that fk = ∞
for k > Fi.

To prove this, we first note that the weighted synaptic current (see, e.g., Fig. 2) coming from the
neurons Ni is given by

Isi (t) =
∑
j∈Ni

Wji

∑
g∈Fi

hsj(t− g)

for all times t ≥ 0. Also, note that since synapses are always linear, this is true independent of
whether there is any firing and potential drop at the neuron i. At the firing time fk the value of
potential drops to V (k)

i = Vi(fk) − θi. Thus, to prove the result, we need to find and verify the
response of the neuron to the synaptic current Isi (t) for t ∈ [fk, fk+1) starting from the initial
value V (k)

i . Here again we note that starting from fk the system is again linear until the next firing
time fk+1. Thus, we can again apply the super position principle for linear systems to decompose
the response into two parts: (a) response to the initial condition V (k)

i and (b) response to the input
synaptic current Isi (t).

From the linearity and time-invariance of RC circuits, (a) is simply given by

V
(a)
i (t) = V

(k)
i hni (t− fk)

= V
(k)
i e−βi(t−fk)u(t− fk)

= Vi(fk)e
−βi(t−fk)u(t− fk)− θih

n
i (t− fk),

where hni (t) = e−βitu(t) is the impulse response of the neuron i.
The response to the synaptic current in the time interval t ∈ [fk, fk+1) is also given by

V
(b)
i (t)

(i)
= Isi (t)u(t− fk) ⋆ h

n
i (t)

=

∫ ∞

0
Isi (λ)u(λ− fk)h

n
i (t− λ)dλ

(ii)
=

∫ t

fk

Isi (λ)h
n
i (t− λ)dλ

=

∫ t

0
Isi (λ)h

n
i (t− λ)dλ−

∫ fk

0
Isi (λ)h

n
i (t− λ)dλ

= Isi (t) ⋆ h
n
i (t)−

∫ fk

0
Isi (λ)e

−βi(t−λ)dλ

= Isi (t) ⋆ h
n
i (t)− e−βi(t−fk)

∫ fk

0
Isi (λ)e

−βi(fk−λ)dλ

= Isi (t) ⋆ h
n
i (t)− Isi (t) ⋆ h

n
i (t)

∣∣∣
t=fk

× e−βi(t−fk),

where in (i) we multiplied Isi (t) with u(t− fk) to remove the effect of the synaptic current before
fk (since, due to causality, it cannot affect the neuron potential in the time interval t ∈ [fk, fk+1)),
where in (ii) we used the fact that, due to causality, hni(t− λ) = 0 for λ > t, and that u(λ− fk) is
zero for λ < fk.
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From the induction hypothesis applied to fk ∈ [0, fk], we have that

Vi(fk) = Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

− θi

k−1∑
l=1

hni (fk − fl)

= Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

− θi

k−1∑
l=1

hni (fk − fl)

= Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

− θi

k−1∑
l=1

e−βi(fk−fl)

= Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

− θie
βi(t−fk)

k−1∑
l=1

e−βi(t−fl)

= Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

− θie
βi(t−fk)

k−1∑
l=1

hni (t− fl).

Therefore, after simplification, we obtain that

Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

× e−βi(t−fk) (9)

= Vi(fk)e
−βi(t−fk) + θi

k−1∑
l=1

hni (t− fl). (10)

Replacing in (9), therefore, we obtain

V
(b)
i (t) = Isi (t) ⋆ h

n
i (t) (11)

− Vi(fk)e
−βi(t−fk) − θi

k−1∑
l=1

hni (t− fl). (12)

Applying the super position principle, we have

Vi(t) = V
(a)
i (t) + V

(b)
i (t)

= Isi (t) ⋆ h
n
i (t)− θi

k−1∑
l=1

hni (t− fl)− θih
n
i (t− fk)

= Isi (t) ⋆ h
n
i (t)− θi

k∑
l=1

hni (t− fl)

=
( ∑

j∈Ni

Wji

∑
g∈Fi

hsj(t− g)
)
⋆ hni (t)− θi

k∑
l=1

hni (t− fl)

=
∑
j∈Ni

Wji

∑
g∈Fi

hji(t− g)− θi

k∑
l=1

hni (t− fl)

=
∑
j∈Ni

Wjiyji(t)− θi
∑
f∈Fi

hni (t− f),
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where in the last equation we used the fact that hni (t− f) = 0 for t ∈ [fk, fk+1) and for f > fk+1.
This validates the result for t ∈ [fk, fk+1), and verifies the induction. This completes the proof.

A.4. Implicit Function Theorem

In many problem in machine learning, statistics, control theory, mathematics, etc. we use a col-
lection of variables to track/specify the state of an algorithm, a dynamical system, etc. However,
in practice, these variables are not completely free and are connected to each other via specific
constraints. In such cases, we are always interested to know the functional relation between these
variables, namely, how changing some variables affect the others (sensitivity analysis). IFT theorem
provides a rigorous method for these types of analyses when the variables are connected through
differentiable equality constraints, as illustrated in the following theorem.

Theorem 10 (Implicit Function Theorem) Let ϕ : Rn × Rm → Rm be a differentiable function
and let Z = {(x, y) ∈ Rn × Rm : ϕ(x, y) = 0} be the zero-set of ϕ. Suppose that Z ≠ ∅ and let
(x0, y0) ∈ Z be an arbitrary point. Also, let ∂ϕ

∂yϕ(x0, y0) be them×m matrix of partial derivatives

w.r.t. y and assume that it is non-singular, i.e., det
(∂ϕ
∂y (x0, y0)

)
̸= 0. Then,

• There is an open neighborhood Nx around x0 and an open neighborhood Ny around y0 such
that ∂ϕ

∂yϕ(x, y) is non-singular for all (x, y) ∈ N := Nx × Ny (including of course the
original (x0, y0).

• There is a function ψ : Nx → Ny such that (x, ψ(x)) belongs to the zero set Z , namely,
ϕ(x, ψ(x)) = 0, for all x ∈ Nx; therefore, the variables y in Ny can be written as a function
y = ψ(x) of the variables x in Nx.

• ψ is a differentiable function of x for x ∈ Nx and

∂ϕ

∂y
× ∂ψ

∂x
+
∂ϕ

∂x
= 0, (13)

which from the non-singularity of ∂ϕ
∂y yields

∂ψ

∂x
= −

(∂ϕ
∂y

)−1
× ∂ϕ

∂x
. (14)

Example 1. Fig. 3 illustrates the zero-set Z = {(x, y) : ϕ(x, y) = 0} of a function ϕ : R2 → R.
To investigate the conditions of the implicit function theorem, we first note that the gradient of ϕ
denoted by ∇ϕ = (∂ϕ∂x ,

∂ϕ
∂y ) is always orthogonal to the level-set (here the zero-set) of ϕ. Thus, by

observing the orthogonal vector to curve, we can verify if ∂ϕ
∂x or ∂ϕ

∂y are non-singular (non-zero in
the scalar case we consider here). We investigate several cases:

• Point C: gradient vector does not exist, so the assumptions of the IFT are not fulfilled. One
can also see that at C one cannot write neither x as a function of y nor y as a function of x.

• Point A: gradient vector has zero horizontal and non-zero vertical component , i.e., ∂ϕ
∂x = 0

and ∂ϕ
∂y ̸= 0. Thus, from IFT, in a local neighborhood of A, one should be able to write only

y as a differentiable function of x.
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Figure 3: Illustration of the implicit function theorem.

• PointB: gradient has zero horizontal component. And, only x can be written as differentiable
function of y.

• Point D: gradient has non-zero horizontal and vertical components. So, in a local neighbor-
hood of D, one may write both x and y as a differentiable function of the another.

A.5. Proof of Theorem 4

Proof (i) Note that in our post-synaptic kernel model derived in Section 2.1, the membrane potential
of the output layer Vo(t) can be written (in a more expanded form) as

Vo(t) =
∑
j∈No

Wjo

∑
g∈Fj

hjo(t− g). (15)

Note that we dropped the term −θo
∑

f∈Fo
hno (t − f) due to potential reset because we always

assume that the output neuron is linear in regression tasks where Vo(t) appears directly in the loss.
It is also seen that Vo(t) at each time t is a function of all the firing times F and also weights W .

(ii) Since ℓF is assumed to be a differentiable function of F and W , we need to verify only the
differentiability of the integral expression in (4). First note that hjo(t) is a differentiable function
except at t = 0 where, albeit being non-differentiable, it has finite left and right derivatives. This
implies that Vo(t) in (15) is differentiable at all t except at the firing times of its stimulating neuron
No, where at those points it has finite left and right derivatives. Therefore, we may write

∂

∂F

∫ T

0
ℓV (Vo(t),F ;W )dt =

∫ T

0

∂ℓV
∂Vo

(Vo(t),F ;W )
∂Vo(t)

∂F
+

∫ T

0

∂ℓV
∂F

(Vo(t),F ;W )dt.

Since ℓV is assumed to be a differentiable function of F , the second integral is well-defined. Also,
ℓV is differentiable w.r.t. Vo. And Vo(t), being a weighted combination of terms hji(t − g) with
g ∈ ⊔j∈NoFj , is a differentiable function of firing times F except perhaps at finitely many points
t ∈ ⊔j∈NoFj where at those points it may be discontinuous but has finite left and right derivatives.
This implies that the first integral is also well-defined.
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(iii) Since from (ii), the loss L = L(F ;W ) is a differentiable function of both F and W , we
have that

∂L
∂W

= L1
∂F
∂W

+ L2 (16)

where L1 and L2 denote the partial derivative of L w.r.t. its 1st and 2nd argument, and where we
used the fact that from (ii) both L1 and L2 are well-defined. It is seen that the gradients of loss w.r.t.
W exist provided that the firing times F are differentiable w.r.t. the weights. This completes the
proof.

A.6. Example: Causality and Differentiability

In order to track the effects of previous layers’ firing times on a current neuron i, we can map which
firing times of a previous neuron directly cause the firing of a neuron that it feeds into, and so on
through the network. Consider the following simple example of a simple 3 neuron feed-forward
network with 1 input dimension:

1 2 3
w1 w2 w3

y1(t) = x(t) y2(·) y3(·)

f11 f12 f13

f21 f22

f31

1 2 3

1.5 3.5

4

For simplicity, we will assume all neurons have the same parameters α, β, θ. Let w1, w2, w3 be
the weights corresponding to the inputs to neurons 1, 2, and 3, respectively. Suppose that neuron 1
had firing times at f11 = 1, f12 = 2, and f13 = 3. Neuron 2 fired at f21 = 1.5 and f22 = 3.5. Finally
neuron 3 fired at f31 = 4. Note that the only firing times that could cause neuron 2 to fire at f21 = 1.5
had to occur before t = 1.5. This is only f11 = 1. Once neuron 2 fires at f21 , its potential is reset, so
then the next time it fires at f22 it is only affected by f12 and f23 . Similarly, f22 = 3.5 is affected by
f23 . And similarly, f21 and f22 affects f31 . This corresponds to the following causality diagram:

f11 f12 f13

f21 f22

f31
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Note that while this simple example is for the reset to zero regime, where the membrane potential
resets completely to 0 and all inputs in-between firing times accumulate until the next time the
neuron fires, this kind of diagram can similarly be constructed for other regimes. For instance, if
there is a time delay before inputs can start increasing the membrane potentials again, to decide the
causal edges for a current firing time for a neuron we would have to look for input firing times that
occurred at least “time delay” seconds after the current neuron’s previous firing time.

We will use equations (1), (3), and (8) to define the following system. Since all neurons share
the same parameters α, β, we can simplify some notation and refer to the joint impulse response
coming into a neuron as hs+n which corresponds to equation (1) and the impulse response for just
the membrane potential dynamics as hn which corresponds to the hni term in equation (3).

w1 ·
∑

t:x(t)=1∧t<f1
1

hs+n(f
1
1 − t) = θ Eq. for f11

w1 ·
∑

t:x(t)=1∧f1
1<t<f1

2

hs+n(f
1
2 − t)− θ · hn(f12 − f11 ) = θ Eq. for f12

w1 ·
∑

t:x(t)=1∧f1
2<t<f1

3

hs+n(f
1
3 − t)− θ ·

(
hn(f

1
3 − f11 ) + hn(f

1
3 − f12 )

)
= θ Eq. for f13

w2 · hs+n(f
2
1 − f11 ) = θ Eq. for f21

w2 ·
(
hs+n(f

2
2 − f12 ) + hs+n(f

2
2 − f13 )

)
− θ · hn(f22 − f21 ) = θ Eq. for f22

w3 ·
(
hs+n(f

3
1 − f21 ) + hs+n(f

3
1 − f22 )

)
= θ Eq. for f31

Now, all 6 equations are equations of the network weights (w1, w2, w3) and the 6 firing times
(f11 , f

1
2 , f

1
3 , f

2
1 , f

2
2 , f

3
1 ). Here, we invoke the implicit function theorem which will allow us to ex-

press firing times as a function of the weights.
We just need to check that the Jacobian of the above 6 equations (treated as a vector valued

function) differentiated w.r.t. the 6 firing times is invertible. It turns out the causality structure will
ensure that the Jacobian is always lower triangular once you sort by firing times. For feed-forward
networks, this is also true if you sort by firing times by layer (since firing times within the same
layer do not affect each other, and the firing times of deeper layers do not affect earlier ones). This
Jacobian look like

f11 f12 f13 f21 f22 f31


V1(f

1
1 )− θ = 0 x

V1(f
1
2 )− θ = 0 x x

V1(f
1
3 )− θ = 0 x x x

V2(f
2
1 )− θ = 0 x x

V2(f
2
2 )− θ = 0 x x x x

V3(f
3
1 )− θ = 0 x x x

where x is marked for each equation there is a nontrivial derivative w.r.t. the corresponding
variable. The lower triangular structure occurs because of the way later firing times cannot occur in
the equations for earlier ones.

19



SPECIFY RUNNING TITLE

Invertibility holds as long as the diagonal elements are non-zero. Since each equation is equal
to the membrane potential at the firing threshold, the derivative of the membrane potential w.r.t. its
firing time is the equal to the derivative of the membrane potential w.r.t. t evaluated at the firing
time, which is strictly positive because the potential is increasing at firing time.

A.7. Algorithm Details

A.7.1. CAUSALITY GRAPH

Due to the formula in Eq. (3), calculating the membrane potential at any given time just relies on
keeping track of which firing times from the previous (feeding) neuron(s) caused the current one to
spike. Thus to efficiently calculate partial derivatives, we will keep track of this information while
calculating network firing outputs. A detailed explanation on a small example is given in A.6.

A.7.2. FORWARD SPIKE TIME COMPUTATION

Simulating an SNN in the forward pass and computing the firing times of its neurons requires
solving the Euler integration corresponding to the differential equation of the synapse and membrane
potentials. This is usually done approximately by quantizing time into small steps and iteratively
updating potentials. There are several libraries such as snnTorch [13] that implement this. Our
method for gradient computation can definitely use these methods in its forward pass where the
firing times are computed.

Here, however, we propose another method that uses the impulse response (kernel) representa-
tion of the corresponding differential equations derived in (1) and (3) to compute the firing times
exactly without any need for time quantization. The main idea behind this method is that for ex-
ponential synaptic and membrane impulse responses, one can always write the membrane poten-
tial of a neuron over a time interval [t0, t1] at which the neuron receives no spikes at its input
as Ae−αt + Be−βt where A and B are some suitable coefficients and where α, β are the inverse
synaptic and membrane time constants (common to all neurons), respectively. 1 Thus the next firing
time can be found by computing the time t, in case there is any, at which this curve intersects the
horizontal line θ. Once this firing time is computed, we update the coefficients A and B and the
search interval [t0, t1] depending on whether the neuron receives any spikes before this firing time,
and continue this until all the firing times are computed. This is summarzied in Algorithm 1.

Remark 11 Note that one can calculate partial derivatives of each firing time equation w.r.t. input
firing times, the neuron’s previous firing times, and the input weights after solving for the firing time
and computing the causality graph. In feed-forward networks, these calculations for neurons in the
same layer can be parallelized since the firing times of neurons in the same layer will not affect each
other.

1. For example, consider only two input spikes at times t1 and t2 > t1 with associated weights W1i and W2i. Then
the total kernel value at t ∈ [t2,∞) (at which there are no other input spikes) is given by W1ih1i(t − t1) +

W2ih2i(t − t2) = W1ie
βt1+W2ie

βt2

α−β
e−βt + W1ie

αt1+W2ie
αt2

β−α
e−αt. In case the neuron fires, e.g., at time tf , we

need to account for the potential resets by subtracting the term θe−β(t−tf )u(t−tf ), which is again in the exponential
form θeβtf × e−βt for t > tf . Thus the whole expression, for t > t2 and before the next firing time, can be written
as Ae−αt +Be−βt.
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Algorithm 1 Firing Time Computation
Input: Firing times F = ⊔jFj from
neighbors j ∈ Ni and weights Wji.
Hyperparameters α, β, θi.
Initialize A,B = 0.
Initialize empty queue.
for f (sorted) in F do
• Append f to queue.

• Solve for t:

Ae−αt +Be−βt = θi.

• Append t to output.

• Update A and B.

• Add entire queue as causal edges
to t.

• (Empty queue if no synaptic dy-
namics.)

end for
Return Causal graph and firing times.

Algorithm 2 Forward Propagation
Input: Network output firing times F = ⊔iFi for all i
and causal graph (e.g., by Alg. 1).
Initialize matrices L, ∂F

∂W , and ∂V
∂W .

for f (sorted) in F do
Calculate partial derivatives of the firing time equa-
tion for f output by neuron i: Vi(f)− θi = 0.

• Use causal information and Eq. (3) to fully de-
scribe Vi(f).

• Update L. Calculate ∂
∂fj→i

(Vi(f)−θi) for each
fj→i in the causal graph for f .

• Update L. Calculate ∂
∂f (Vi(f)− θi).

• Update ∂V
∂W . Calculate ∂

∂Wji
(Vi(f)−θi) for all

weights Wji attached to neuron i.

• IFT Step. Solve Eq. (6) via back substitution
to update ∂F

∂W .

end for
Calculate ∂L

∂W using final ∂F
∂W via Eq. (16).

A.7.3. FORWARD PROPAGATION FOR GRADIENT COMPUTATION

The forward propagation algorithm emerges from the earlier presented theorems and observations.
We can derive partial derivatives of the total loss by calculating the partial derivatives of the network
firing times w.r.t. network weights, which are in turn calculated by applying the implicit function
theorem with appropriate partial derivatives of the equations that describe the membrane potentials
at each firing time.

Again, due to the lower triangular structure of matrix L (see, e.g., Theorem 5), we can itera-
tively solve the linear system (6) of IFT equations without having to do a full matrix inversion. As
mentioned earlier, the partial derivatives we need to calculate for the update steps in Algorithm 2
can actually all be done in the forward pass. For feed-forward networks in particular, these can be
calculated in the forward pass in parallel within each layer. This incurs a cost of O(|F|2|W|) in
time, using (1 + 2 + 3 + ... + |F|) × ( up to |W|) operations to solve for the |F| × |W| Jacco-
bian matrix. The memory cost is O(|F||W|) to store the solutions and one of the Jacobians, where
O(|F||W|) is always needed for storing the gradients.

A.8. Experiment details

A.8.1. XOR TASK

To investigate whether the network can robustly learn to solve the XOR task as in [33], we repro-
duced most of the experiment settings in [33] by coding each of the input spikes as 0.0 (early spike)
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Figure 4: (Left) Model for XOR task. (Right) Given the input (0, 0), output neurons have different
voltage traces. Note that each output neuron has the same input firing times, from each of
the 4 hidden layer neurons, but the network is able to learn weights that push the output
neuron corresponding to label ’1’ to spike later, and the one corresponding to label ’0’
(true label) to spike earlier.

or 2.0 (late spike), which feed into 4 hidden neurons, which in turn feed into 2 output neurons. We
use a cross-entropy loss based on first spike times of the output neurons (so the label neuron should
fire sooner than the other). For each of 1000 different random weight initializations, we trained until
convergence with learning rate 0.1. Unlike in [33], we consider one iteration of training to be just 1
full batch, rather than 100. Across all 1000 trials, the maximum steps to converge was 98, with the
average being 17.52 steps. Compare this to maximum 61 training iterations (each iteration seeing
100 full batches of the four input patterns), with average 3.48 iterations in [33]. Figure 4 illustrates
the model implementing the XOR task, as well as a post-training simulation of the output neurons’
membrane potentials for input (0, 0). No special tuning of hyperparameters of the 2-4-2 network
was used, and the network reliably converged to 100% accuracy given the following parameters in
Table 1.

A.8.2. IRIS DATASET

We also trained SNN using FP on the Iris dataset to demonstrate learning from data with real-
valued features. Note one class is linearly separable from the other 2; the latter are not linearly
separable from each other [2, 15]. We encoded the input features with a scheme similar to [29], but
modified to where each real-valued feature ni is transformed into a firing time via the transformation
T · (1 − ni−min(ni)

max(ni)−max(ni)
), where T is the maximum time horizon and the min/max of a feature is

taken over the whole dataset. After training a small 4-10-3 network, we achieve 100% test accuracy
(compare to 93.3% for MT-1 (4-25-1) and 96.7% for an MLP ANN (4-25-3) in [29]). Again, the
network is able to learn weights to push the true label output neurons to fire earlier than the others,
since our loss function is minimized when all the correct label neurons fire before other output
neurons. An illustration of this effect is shown in Figure 5. We did a systemic grid search over
hyperparameters to find a network suitable for the Iris classification. There were several networks
which achieved 100% test accuracy. One such set of hyperparameters is given in Table 2.
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Figure 5: A histogram of the first output firing times of each label neuron, given unseen test data.
(Top) At random initialization, firing times look the same across all label neurons. (Bot-
tom) After training, the firing times are clearly separated into the 3 classes, and all test
examples belonging to the same class as the corresponding label neuron fires earlier than
in the other label neurons.

A.8.3. YIN-YANG DATASET

We also implemented FP to train SNN on the Yin-Yang dataset which is a two-dimensional and non-
linearly separable dataset [25]. The Yin-Yang dataset requires a multi-layer model, as a shallow
classifier achieves around 64% accuracy, thus it requires a hidden layer and backpropagation (or
forward-propagation in our case) for gradient-based learning to achieve higher accuracy, as noted
also in [45].

We used a loss based on the earliest spike times of the 3 output neurons, as in [18, 45] defined
as

L = − 1

Nbatch

[Nbatch∑
i=1

log

(
e−fi,l(i)/τ0∑3
j=1 e

−fi,j/τ0

)
+ γ

(
efi,l(i)/τ1 − 1

)]
,

where fi,j is the first spike time of neuron j for the ith example and l(i) is the index of the correct
label for the ith example. The second term is a regularization term which encourages earlier spike
times for the true label neuron, its influence on the total loss controlled by γ.

Comparing to surrogate methods. First, to compare training with surrogate gradient methods,
we used the snnTorch library [13] to train equivalent models2, using the same hyperparameters and

2. Many surrogate methods are usually not compatible with training using temporal losses, as noted also by [13] that
often the first spike time is non-differentiable with respect to the spikes themselves. To fairly compare to surrogate
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Figure 6: (Left) Comparison to surrogate gradients. The plot shows the change in training loss
over time for training SNN with exact and surrogate gradients, the fast sigmoid function
and straight-through estimator each with a count-based and spike-rate cross entropy loss.
(Right) A comparison of model predictions at random initialization, versus after training.

initializations, but with surrogate gradients. Fig. 6 (left) compares training with exact gradient (our
method) with using the fast sigmoid [46] surrogate function and the straight-through estimator [4],
with both count-based cross entropy loss and a spike rate cross entropy loss. (See footnote.) All
models at initialization have around 30-36% accuracy and cross entropy loss around 1.09-1.1, but
at the end of 300 epochs of training, using exact gradients results in faster loss reduction (as one
might expect).

Evaluation. After repeating the experiment with 10 random initializations, a 2-layer SNN model
trained with FP obtains a test accuracy with mean 95.0(0.83)%, comparable to [18] reporting
95.9(0.7)%. It is worth noting that training only involved using the exact gradients for SGD, with-
out employing other heuristics in [18], which include a flat weight bump (increase weights a fixed
amount) whenever the proportion of non-spiking neurons is above a certain threshold, among oth-
ers. These experiments offer a proof of concept that the network is able to learn by using exact
gradients. We hope our work will provide a rigorous stepping stone for developing or improving a
training library for SNNs.

Table 3 describes the hyperparameters used for training the SNN on the Yin-Yang dataset. The
hyperparameters were chosen by a manual search through several combinations of the architecture
and the parameters shown in the table. The final experiments were done on machines part of an
internal cluster with 48 CPU and 5 GB memory, which results in training over 300 full epochs
through the entire training dataset of 5000 examples and evaluation on the entire test dataset of
1000 examples completing in approximately 3 hours.

methods, instead we used both a spike count-based cross entropy loss and a spike rate cross entropy loss. The former
calculates cross entropy from the number of spikes emitted by output neurons, with the network learning to fire more
at the label neuron, and the latter accumulates cross entropy loss at each time step, with the network learning to fire
continuously at the label neuron and others to be silent.
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Table 1: Hyperparameters for XOR Task
SYMBOL DESCRIPTION VALUE

α = 1
τs

Inverse synaptic time constant 1.0
β = 1

τn
Inverse membrane time constant 0.99

θ Threshold 1.0
T Maximum time 2.0
tearly Minimum time 0.0

Hidden sizes [4]
Hidden weights mean [3.0]
Hidden weights stdev [1.0]
Output weights mean 2.0
Ouput weights stdev 0.1
Optimizer Adam

β1 Adam parameter 0.9
β2 Adam parameter 0.999
ϵ Adam parameter 1e− 8
η Learning rate 0.1
γ Regularization factor 0.2
τ0 First loss time constant 0.1
τ1 Second loss time constant 1.0

Table 2: Hyperparameters for Iris Classification

SYMBOL DESCRIPTION VALUE

α = 1
τs

Inverse synaptic time constant 1.0
β = 1

τn
Inverse membrane time constant 0.9

θ Threshold 1.0
T Maximum time 16.0
tearly Minimum time 0.0

Hidden sizes [10]
Hidden weights mean [3.0]
Hidden weights stdev [1.0]
Output weights mean 2.0
Ouput weights stdev 0.1
Optimizer Adam

β1 Adam parameter 0.9
β2 Adam parameter 0.999
ϵ Adam parameter 1e− 8
η Learning rate 0.05
γ Regularization factor 0.1
τ0 First loss time constant 1.0
τ1 Second loss time constant 1.0
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Table 3: Hyperparameters for Yin-Yang Simulations
SYMBOL DESCRIPTION VALUE

α = 1
τs

Inverse synaptic time constant 0.999
β = 1

τn
Inverse membrane time constant 1.0

θ Threshold 1.0
T Maximum time 2.0
tearly Minimum time 0.15
tbias Bias time 0.9

Hidden sizes [150]
Hidden weights mean [1.5]
Hidden weights stdev [0.8]
Output weights mean 2.0
Ouput weights stdev 0.1
Minibatch size 150
Epochs 300
Optimizer Adam

β1 Adam parameter 0.9
β2 Adam parameter 0.999
ϵ Adam parameter 1e− 8
η Learning rate 0.0005
γ Regularization factor 0.005
τ0 First loss time constant 0.2
τ1 Second loss time constant 1.0

26


	Introduction
	Related Work

	Spiking Neural Networks
	Post-Synaptic Kernel Model
	SNN Full Dynamics

	Exact Gradient Computation via Implicit Function Theorem
	Loss Formulation in SNNs
	Differentiability of Firing Times w.r.t. Weights

	Discussion
	Appendix
	Pre-Synaptic Model
	Proof of Theorem 3
	Alternative Proof of Theorem 3
	Implicit Function Theorem
	Proof of Theorem 4
	Example: Causality and Differentiability
	Algorithm Details
	Causality Graph
	Forward spike time computation
	Forward propagation for gradient computation

	Experiment details
	XOR Task
	Iris Dataset
	Yin-Yang Dataset



