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Abstract

We prove continuity of the solution path for the group lasso, a popular method of computing group-
sparse models. Unlike the more classical lasso method, the group lasso solution path is non-linear
and cannot be evaluated algorithmically. To circumvent this, we first characterize the group lasso
solution set and then show how to construct an implicit function for the min-norm path. We prove
our implicit representation is continuous almost everywhere and extend this to continuity every-
where when the group lasso solution is unique. These results can be viewed as extending solution
path analyses from the lasso to the group lasso and imply that grid-search is a sensible approach to
hyper-parameter selection. Our work applies to linear models as well as convex reformulations of
neural networks and provides new tools for understanding solution paths of shallow ReLU models.

1. Introduction

The group lasso extends the classical lasso algorithm (R. Tibshirani, 1996) for feature-sparse regres-
sion to problems with group structure. Similar to the lasso, the group lasso is an embedded method;
it achieves group sparsity by augmenting the training objective with a sparsity-inducing penalty
function, in this case the sum of the `2 norms of each feature group (Bakin et al., 1999; Lin and
H. H. Zhang, 2003; Yuan and Lin, 2006). Solving the resulting non-smooth optimization problem
gives a group-sparse solution, with the degree of sparsity controlled by a regularization parameter.

Group-sparsity is desirable in learning problems for both computational and statistical reasons.
Computationally, group-sparse models require less memory and can speed-up prediction by lever-
aging fast algorithms for sparse linear algebra (Wen et al., 2016). They may also generalize better
at test time than dense models (Huang and T. Zhang, 2010; Mitra and C.-H. Zhang, 2016). Finally,
group-sparse models like the group lasso are consistent in certain settings, meaning they recover the
support of the ground-truth model (Bach, 2008; Liu and J. Zhang, 2009; Nardi and Rinaldo, 2008).

The group lasso also has deep connections to neural network optimization. Recent work by Pilanci
and Ergen (2020) shows that two-layer neural networks with ReLU activations can be reformulated
as a group lasso problem with additional constraints. Dropping these constraints yields a simpler
“gated ReLU” neural network with the same expressive power (Fiat et al., 2019; Mishkin et al.,
2022). In both cases, the degree of group sparsity corresponds directly to the number of hidden
units in the final network. Thus, properties of the group lasso translate into properties of neural nets.

This paper studies the solution function—the mapping from regularization parameter to optimal
model—of the linear group lasso problem. Our main contribution is a proof that the solution function
is continuous when the group lasso solution is unique. Although technical, continuity of the solution
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function is necessary for efficient tuning of the regularization parameter (see, e.g. Nesterov et al.
(2018, Sec. 1.1)) and our result is an important “sanity check” that parameter tuning is possible for
the group lasso. As part of our proof, we characterize the set of optimal models as well as the min-
norm model, and provide new sufficient conditions for the group lasso solution to be unique. Finally,
our work lays the foundation for analyzing the solution functions of (convex) neural networks.

1.1. Related Work

The Lasso Solution Path: Efron et al. (2004) and Osborne et al. (2000) develop homotopy methods
for directly computing the lasso solution path, which is piecewise linear. These works establish
continuity of the lasso solution as a side affect, but also require the solution to be unique. Hastie
et al. (2007) connect the lasso path to forward stage-wise regression, while R. J. Tibshirani (2013)
extend many results, including path continuity, to the min-norm solution.

Beyond the Lasso: Limited results exist outside of the lasso setting. R. J. Tibshirani and Taylor
(2011) analyze the generalized lasso and provide path-computation algorithms in this setting. Vaiter
et al. (2012) establish almost-everywhere continuity of the group lasso solution function with respect
to the targets, rather than the regularization parameter.

2. Notation

We use lower-case a to denote vectors and upper-case A for matrices. Calligraphic letters C denote
sets. The boundary of a set is written bd(C). For a block of indices bi ⊆ {1, . . . , d}, we write Abi
for the sub-matrix of columns indexed by bi. Similarly, abi is the sub-vector indexed by bi. If M
is a collection of blocks, then AM is the submatrix and aM the sub-vector with columns/elements
indexed by blocks in the collection. Finally, |M| is cardinality of the union of blocks inM.

3. The Group Lasso

Let X ∈ Rn×d be a data matrix, y ∈ Rn the associated vector of targets, and B = {b1, . . . , bm}
a disjoint partition of the feature indices {1, . . . , d}. Given a regularization parameter λ ≥ 0, the
linear group lasso solves the following regularized regression problem:

min
w
fλ(w) :=

1

2
‖Xw − y‖22 + λ

∑
bi∈B
‖wbi‖2. (1)

Solutions to Eq. (1) are block sparse when λ is sufficiently large, meaning wbi = 0 for some subset
of bi. This is similar to the feature sparsity given by the lasso, to which the group lasso naturally
reduces when bi = {i} for each bi ∈ B.

Our primary interest in this work is the solution function or “regularization path”,

W∗(λ) := arg min
w

fλ(w).

For a general data matrix, fλ is not strictly convex and the linear group lasso problem may admit
multiple solutions. As such,W∗(λ) ⊂ Rd is set-valued and only the min-norm solution mapping

w∗(λ) = arg min {‖w‖2 : w ∈ W∗(λ)} ,
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Figure 1: Comparison of solution paths for the lasso and group lasso models on the diabetes dataset
(Dua and Graff, 2017). The lasso path was generated using the lasso modification of the
LARS algorithm via Scikit-Learn (Pedregosa et al., 2011). Note the obvious non-linearity
in the group lasso path, while the lasso is piece-wise linear. Such non-linearity prevents
an explicit characterization of the path between breakpoints and significantly complicates
our study of continuity.

defines a function. Even in the non-unique case, the model fit ŷ(λ) = Xw is the same for all
w ∈ W∗(λ) (Vaiter et al., 2012, Lemma 2). Moreover, if λ > 0, then it is straightforward to deduce
that the sum of group norms

∑
i∈B ‖wbi‖2 is also constant overW∗(λ). Uniqueness of ŷ(λ) extends

to the residual vector r(λ) = y − ŷ(λ) and the block correlation vectors vbi(λ) = X>bi r(λ). We
write v ∈ Rd as the concatenation of the vbi blocks; v plays a critical role in definingW∗(λ).

Unlike the lasso, the group lasso solution function is not piece-wise linear (see Fig. 1). This prevents
us from obtaining an explicit expression for the solution path between breakpoints, where features
enter or exit the active set. We overcome this difficulty by relying only on an implicit characteriza-
tion of the path provided by the implicit function theorem. We start towards this goal by developing
optimality conditions for the group lasso problem.

Since Eq. (1) is a convex optimization problem, first-order (FO) optimality conditions are both
necessary and sufficient for weights w to be globally optimal. Sub-differentiating the optimization
problem gives the following FO conditions:

0 ∈ ∂fλ(w) ⇐⇒ vbi(λ) := X>bi (y −Xw) ∈

{{
λ

wbi
‖wbi‖2

}
if wbi 6= 0

{v : ‖v‖2 ≤ λ} otherwise,
(2)

showing that wbi = 0 when ‖vbi‖2 < λ. As a result, the equicorrelation set

Eλ :=
{
bi ∈ B : ‖X>bi (y −Xw)‖2 = λ

}
, (3)
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contains all blocks which may be active for fixed λ. The complement of Eλ in B is the inactive
set, denoted Iλ. We combine FO conditions with uniqueness of ŷ(λ) to characterize the solution
function in terms of Null(XEλ).

Proposition 1 Let λ > 0 andNλ = Null(XEλ)
⋂
{z : zbi ∈ Span(vbi), i ∈ Eλ}. The optimal set is

W∗(λ) =

{
w ∈ Rd : wEλ = w∗Eλ(λ) + z, z ∈ Nλ, wIλ = 0, wbi 6= 0 =⇒ λwbi

‖wbi‖2
= vbi(λ)

}
.

Proposition 1 extends a similar result for the lasso solution to the group lasso (R. J. Tibshirani, 2013,
Eq. 9). It implies the group lasso solution is unique when the columns ofX are linearly independent;
we will use it later to obtain a more refined condition for uniqueness. See Appendix A for proof.

4. The Minimum-norm Solution

Now we turn our attention to the min-norm solution and its path. UnlikeW∗, the min-norm solution
is a single-valued function of λ and can be analyzed precisely. Our focus is on developing new
characterizations of w∗. All proofs are deferred to Appendix B.

First, we introduce additional notation which will be necessary throughout our discussion. Divide
the equicorrelation set into active and transitioning blocks, respectively,

Aλ(w) := {bi ∈ B : wbi 6= 0} , Tλ(w) := {bi ∈ B : wbi = 0, ‖vbi‖2 = λ} .

Intuitively, Tλ(w) is the set of blocks which may become active (i.e. enter Aλ) or cease to be
equicorrelated in a neighbourhood of λ. We write A∗λ and T ∗λ for the active and transiting blocks of
the min-norm solution. By manipulating FO conditions, we now give a concise expression for w∗A∗λ
in terms of the correlation vector v.

Lemma 2 For λ > 0, the active blocks of the min-norm solution are given by

w∗A∗λ
(λ) = (X>A∗λ

XA∗λ)+X>A∗λ

(
y − (X>A∗λ

)+vA∗λ(λ)
)

(4)

As a corollary, w∗A∗λ is the unique solution to the group lasso which is orthogonal to Null(XA∗λ).
Although we state this lemma in terms of XA∗λ , it is easily extended to XEλ by including FO condi-
tions for the blocks T ∗λ in the same argument. Thus, Lemma 2 also has computational consequences:
given any solution w ∈ W∗(λ), the unique correlation vector v(λ) can be computed and used to
find w∗ as the solution to a linear system. Since w∗A∗λ has no component of Null(XA∗λ), we can also
compute it via a reduced-block optimization problem constrained to Row(XA∗λ).

Lemma 3 Suppose the support of the min-norm solution is A∗λ. Then the active blocks are the
unique solution to the following optimization problem:

w∗A∗λ
= arg min

wA∗
λ

1

2
‖XA∗λwA∗λ − y‖

2
2 + λ

∑
i∈A∗λ

‖wbi‖2 s.t. (I −X+
A∗λ
XA∗λ)wA∗λ = 0. (5)
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Introducing dual variables η ∈ R|A∗λ|, the KKT system for Eq. (5) is

X>biXA∗λwA
∗
λ
−X>bi y + λ

wbi
‖wbi‖2

+ (I −X+
A∗λ
XA∗λ)biη = 0 for all bi ∈ A∗λ

(I −X+
A∗λ
XA∗λ)wA∗λ = 0.

(6)

Satisfying Eq. (6) is both necessary and sufficient for a primal-dual pair (wA∗λ , η) to be optimal
because the reduced-block problem is convex with linear constraints. It turns out that the space of
dual solutions has a simple structure which is easily incorporated into the KKT system.

Lemma 4 Fix λ ≥ 0 and suppose the support of the min-norm solution is A∗λ. Then the space of
dual solutions to the KKT system is exactly Row(XA∗λ).

As a result, the min-norm dual solution is simply η∗ = 0 and is attained by adding the constraint
X+
A∗λ
XA∗λη = 0. Since (I −X+

A∗λ
XA∗λ) and X+

A∗λ
XA∗λ project onto orthogonal spaces, we can incor-

porate this constraint into the KKT system as follows:

X>biXA∗λwA
∗
λ
−X>bi y + λ

wbi
‖wbi‖2

+ (I −X+
A∗λ
XA∗λ)biη = 0 for all bi ∈ A∗λ

(I −X+
A∗λ
XA∗λ)wA∗λ +X+

A∗λ
XA∗λη = 0.

(7)

We call Eq. (7) the unique KKT system. The following proposition uses the unique KKT system to
obtain a local, implicit solution function for the reduced-block problem. We then extend to this to
the full min-norm solution and obtain local continuity of the solution path as a consequence.

Proposition 5 Let Λ be an open interval on which A∗λ is constant. For every λ ∈ Λ, there exists a
neighbourhood of O of λ on which w∗ is continuously differentiable. Moreover, the path for w∗A∗λ is
the same on O as that for the reduced-block problem in Eq. (5).

Proposition 5 is the key technical result from which we derive continuity of the solution path.

4.1. Continuity of the Solution Path

Now we consider the case where the solution to the group Lasso is unique. In this setting, the
solution map W∗ is equal to the min-norm solution w∗ and the analysis is considerably eased. To
facilitate the analysis, we introduce a sufficient condition for uniqueness of the group lasso solution.

Assumption 6 (Group General Position) For every E ⊆ B, |E| ≤ n + 1, there do not exist unit
vectors zbi ∈ R|bi| such that for any j ∈ E ,

Xbjzbj ∈ affine({Xbizbi : bi ∈ E \ bj}).

We call Assumption 6 group general position because it is a natural extension of general position
to groups of column vectors. General position itself is an extension of affine independence and is
sufficient for the lasso solution to be unique (R. J. Tibshirani, 2013). Group general position is
strictly weaker than linear independence of the columns of X , but neither implies nor is implied by
general position (Proposition 11). See Proposition 12 for a formal proof of sufficiency.
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Following Vaiter et al. (2012), define the transition space to be

H =
⋃
bi∈B

bd({λ : bi ∈ A∗λ}), (8)

By construction,H is the set of regularization parameters at which a block bi transitions from being
active to inactive or vice-versa. Note that, as a direct consequence of Proposition 5,H is the exactly
set of potential discontinuities ofW∗. Crucially, we showH contains no intervals.

Lemma 7 The transition spaceH is discrete.

Since H is discrete and Proposition 5 impliesW∗ is continuous away from H, proving continuity
of the path now reduces to showing that the left and right limits of the unique solution are equal at
each “break point” inH. Doing so yields our main result.

Theorem 8 Suppose group general position holds. Then the unique group lasso solution path is
continuous.

The proof of Theorem 8 relies on uniqueness of the solution; without uniqueness, we can only show
the right- and left-hand limits of the min-norm solution at λ̄ ∈ H are also solutions to the group
lasso problem. Since we do not recover their active blocks from the argument, we cannot show they
are the min-norm solution. Thus, we develop machinery for characterizing the min-norm solution
path, but additional work is required to extend continuity to this more general setting.

5. Conclusion

This paper analyzes the path of the group lasso solution set as the regularization parameter is varied.
We prove that the path, called the solution function, is continuous when the group lasso admits a
unique solution and provide a new sufficient condition for such uniqueness to hold. Outside of the
unique-solution setting, we characterize the optimal solution set and show how to compute the min-
norm solution as a linear system of the block correlation vectors. In several cases, our research
extends results for the lasso to the more general setting of the group lasso.

The main technical difficulty in our analysis is that the group lasso path cannot be computed al-
gorithmically, unlike the piecewise linear lasso. In particular, non-linearity makes computing the
active set of the min-norm solution challenging when the group lasso admits multiple solutions. As
such, we leave proving continuity of the min-norm path to future work.

A consequence of our results is that convex reformulations of neural networks with gated ReLU
activations also have continuous solution paths under mild assumptions. We believe it is possible to
extend continuity to convex reformulations of ReLU neural networks by incorporating the necessary
constraints into our analysis. We leave this exciting direction of research to future work.
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Appendix A. Group Lasso: Proofs

Proposition 1 Let λ > 0 andNλ = Null(XEλ)
⋂
{z : zbi ∈ Span(vbi), i ∈ Eλ}. The optimal set is

W∗(λ) =

{
w ∈ Rd : wEλ = w∗Eλ(λ) + z, z ∈ Nλ, wIλ = 0, wbi 6= 0 =⇒ λwbi

‖wbi‖2
= vbi(λ)

}
.

Proof For ease of notation, let

X =

{
w ∈ Rd : wEλ = w∗Eλ(λ) + z, z ∈ Nλ, wIλ = 0, wbi 6= 0 =⇒ λwbi

‖wbi‖2
= vbi(λ)

}
.

Recall that ŷ = Xw is constant overW∗(λ) and each w ∈ W∗(λ) can only have support on Eλ by
FO conditions. Dropping the zero entries of w, ŷ = XEλwEλ and we deduce that

z = wEλ − w
∗
Eλ ∈ Null(XEλ),

for every w ∈ W∗(λ). Let us show that z ∈ Nλ.

If w∗bi 6= 0, then first order optimality conditions require

w∗bi
‖w∗bi‖2

= λ · vbi ,

from which we have w∗bi ∈ Span(vbi). Thus, wbi = 0 implies zbi = −w∗bi ∈ Span(vbi) (this also
trivially holds when w∗bi = 0).

Otherwise, if wbi 6= 0, then first-order optimality again implies

wbi
‖wbi‖2

= λ · vbi

=⇒ w∗bi + zbi ∈ Span(vbi)

=⇒ zbi ∈ Span(vbi),

since w∗bi ∈ Span(vbi). As a result, z ∈ Nλ. It is straightforward to check that first-order optimality
implies wIλ = 0 so thatW∗ ⊆ X .

For the reverse inclusion, let w ∈ X . Clearly

Xw = XEλwEλ = XEλw
∗
Eλ = ŷ(λ),

so that w has the correct model fit. If wbi = 0 and i ∈ Iλ, then

‖X>bi (y −Xw)‖2 = ‖vbi‖2 ≤ λ,

shows FO conditions are satisfied. Alternatively, if i ∈ Eλ, then X>bi (y − Xw) = vbi and FO
conditions are satisfied. Finally, we check blocks for which wbi 6= 0. Membership in X implies

wbi
‖wbi‖2

= vbi

and wbi again satisfies first-order optimality conditions. Putting these conditions together implies
w ∈ W∗. This completes the proof.
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Appendix B. The Minimum-norm Solution: Proofs

Lemma 2 For λ > 0, the active blocks of the min-norm solution are given by

w∗A∗λ
(λ) = (X>A∗λ

XA∗λ)+X>A∗λ

(
y − (X>A∗λ

)+vA∗λ(λ)
)

(4)

Proof Recall the definition of the block correlation vector,

vbi = X>bi r(λ),

which shows vbi ∈ Row(Xbi) for each bi ∈ Aλ and vA∗λ ∈ Row(XA∗λ). As a result, vA∗λ is un-
changed by the projection onto Row(XA∗λ), i.e.

vA∗λ = X>A∗λ
(X>A∗λ

)+vA∗λ .

Combining this with the definition of vbi and summing over the non-zero blocks of the min-norm
solution, we obtain

X>A∗λ
XA∗λw

∗
A∗λ

= X>A∗λ
y −X>A∗λ(X>A∗λ

)+vA∗λ

= X>A∗λ

[
y − (X>A∗λ

)+vA∗λ

]
,

which implies that w′ satisfying

w′A∗λ
= (X>A∗λ

XA∗λ)+X>A∗λ

[
y − (X>A∗λ

)+vA∗λ

]
,

andw′B\A∗λ
= 0 defines one solution to the group Lasso. Moreover,w′A∗λ is orthogonal to Null(XA∗λ).

Now, suppose that the min-norm solution is not orthogonal to Null(XA∗λ). Then w∗A∗λ = w′A∗λ
+ a,

where z ∈ Null(XA∗λ), z 6= 0 and

‖w∗A∗λ‖
2
2 = ‖w′A∗λ‖

2
2 + ‖b‖22 > ‖w′A∗λ‖

2
2,

which is a contradiction. We conclude w∗A∗λ = w′A∗λ
as this is only solution which is orthogonal to

Null(XA∗λ).

Lemma 3 Suppose the support of the min-norm solution is A∗λ. Then the active blocks are the
unique solution to the following optimization problem:

w∗A∗λ
= arg min

wA∗
λ

1

2
‖XA∗λwA∗λ − y‖

2
2 + λ

∑
i∈A∗λ

‖wbi‖2 s.t. (I −X+
A∗λ
XA∗λ)wA∗λ = 0. (5)

Proof Recall that w∗A∗λ is orthogonal to Null
(
XA∗λ

)
. Thus,

(I −X+
A∗λ
XA∗λ)w∗A∗λ

= 0,

10
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and w∗A∗λ is a feasible point for the reduced-block problem. Since A∗λ contains all active blocks of
w∗, we know

min
wA∗

λ

‖XA∗λwA∗λ − y‖
2
2 + λ

∑
i∈A∗λ

‖wbi‖2 ≥ min
w
‖Xw − y‖22 + λ

∑
i∈B
‖wbi‖2

= ‖XA∗λwA∗λ − y‖
2
2 + λ

∑
i∈A∗λ

‖wbi‖2,

so that w∗A∗λ is optimal for the reduced-block problem.

Let w′A∗λ 6= w∗A∗λ
be another solution to the reduced-block problem. Vaiter et al. (2012, Lemma

2) implies w′A∗λ must have the same model fit ŷ = XA∗λw
′
A∗λ

as w∗A∗λ . Thus, z = w′A∗λ
− w∗A∗λ ∈

Null(A∗λ), which implies

0 = (I −X+
A∗λ
XA∗λ)w′A∗λ

= (I −X+
A∗λ
XA∗λ)z.

We deduce z = 0 and w∗A∗λ is the unique solution.

Lemma 4 Fix λ ≥ 0 and suppose the support of the min-norm solution is A∗λ. Then the space of
dual solutions to the KKT system is exactly Row(XA∗λ).

Proof Let η ∈ Row(XA∗λ). The min-norm solution w∗ is member ofW∗(λ). Thus, FO conditions
imply

X>biXA∗λwA
∗
λ
−X>bi y + λ

wbi
‖wbi‖2

= 0,

for all bi ∈ A∗λ. We also have
(I −X+

A∗λ
XA∗λ)η = 0,

by choice of η, which implies any η ∈ Row(XA∗λ) satisfies the first |A∗λ| constraints of the KKT
system. Since w∗ is the min-norm solution, it is orthogonal to Null(XA∗λ), implying

(I −X+
A∗λ
XA∗λ)wA∗λ = 0.

We conclude that (w∗, η) is a KKT point.

Lemma 9 Fix λ ≥ 0 and w̄, η̄ ∈ R|A∗λ|. The Jacobian of the unique KKT system is full rank at
(w̄, η̄).

Proof Let M(w) be the block-diagonal projection matrix given by

M(w)bi =
1

‖wbi‖2

(
I − wbi
‖wbi‖2

w>bi
‖wbi‖2

)
.

The Jacobian of the unique KKT system with respect to (wA∗λ , η) is

Jλ =

[
X>A∗λ

XA∗λ + λM(w) (I −X+
A∗λ
XA∗λ)

(I −X+
A∗λ
XA∗λ) X+

A∗λ
XA∗λ

]
=

[
X>A∗λ

XA∗λ + λM(w) P⊥A∗λ
P⊥A∗λ

PA∗λ

]
,

11
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where PA∗λ and P⊥A∗λ are the projection matrices for Row(XA∗λ) and Null(XA∗λ), respectively.

Let w, η ∈ R|A∗λ| such that (w, η) 6= 0 and assume

Jλ

[
w
η

]
=

[
X>A∗λ

XA∗λw + λM(w̄)w + P⊥A∗λ
η

P⊥A∗λ
w + PA∗λη

]
= 0.

If PA∗λη 6= 0 or P⊥A∗λw 6= 0 then the second block cannot be zero. Thus, η ∈ Null(XA∗λ) and
w ∈ Row(XA∗λ) must hold. We deduce

Jλ

[
w
η

]
=

[
X>A∗λ

XA∗λw + λM(w̄)w + η

0

]
= 0.

Since w ∈ Row(XA∗λ), it holds that XA∗λw 6= 0 and thus

w>X>A∗λ
XA∗λw + λw>M(w̄)w + w>η = ‖X>A∗λw‖

2
2 + w>λM(w̄)w > 0,

sinceM(w̄) is positive semi-definite andw ⊥ η. But this is a contradiction. We conclude Null(Jλ) =
{0}.

Proposition 5 Let Λ be an open interval on which A∗λ is constant. For every λ ∈ Λ, there exists a
neighbourhood of O of λ on which w∗ is continuously differentiable. Moreover, the path for w∗A∗λ is
the same on O as that for the reduced-block problem in Eq. (5).

Proof Let λ ∈ Λ Then, there exists a unique η such that Eq. (7) is satisfied at (w∗A∗λ
, η). (In fact,

Lemma 4 implies η = 0 is exactly the optimal dual parameter.) Furthermore, Lemma 9 shows that
the Jacobian of the unique KKT system at (w∗A∗λ

, η) is invertible.

The implicit function theorem implies there exists an open interval Õ ⊆ Λ containing λ such
that λ 7→ (g̃(λ), h(λ)), where g̃ : Õ → R|A∗λ| and h : Õ → R|A∗λ|, is a unique, continuously
differentiable function satisfying (g̃(λ), h(λ)) = (w∗A∗λ

, η) and (g̃(λ′), h(λ′)) is a zero of the unique

KKT system for all λ′ ∈ Õ. That is, (g̃, h) is locally the primal-dual solution function for the
reduced problem (Eq. (5)); we will show that an extension of g̃ to Rd locally provides the min-norm
solution function for the full group Lasso problem.

Define the extension of g̃ to be g : Õ → Rd such that g(λ′)A∗λ = g̃(λ′) and g(λ′)B\A∗λ = 0. For
i ∈ Iλ, first-order optimality says

‖X>bi (y −Xw
∗)‖2 < λ.

Continuity of g guarantees there exists O ⊆ Õ on which

‖X>bi (y −Xg(λ′))‖2 ≤ λ′,

This implies gIλ satisfies FO conditions on O.

12
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By assumption, A∗λ is constant on Λ and thus on O. Applying Lemma 3, we deduce that w∗A∗λ is
given by the unique solution to the KKT system on O. Thus, gA∗λ also satisfies FO conditions on O
and ŷ(λ′) = Xg(λ′) provides the unique model fit on O.

It remains only to check gT ∗λ (λ′). Suppose there exists bi ∈ T ∗λ such that

‖X>bi (y −Xg(λ′))‖2 > λ.

Since Xg(λ′) = Xw∗(λ′) by uniqueness of the model fit, it must be that

‖X>bi (y −Xw
∗(λ′))‖2 > λ,

which is a contradiction. So FO conditions are also satisfied for all blocks in T ∗λ .

Putting these results together, we have shown g satisfies the (sufficient) FO conditions for the group
lasso on O. We conclude that w∗(λ) is continuously differentiable on O and corresponds with the
min-norm solution for the reduced-block problem.

B.1. Continuity of the Min-norm Path: Proofs

Lemma 10 The minimum-norm solution w∗(λ) is bounded for all λ ≥ 0.

Proof For λ = 0, the min-norm solution reduces to the min-norm least-squares solution, which is
bounded. For λ > 0, we show boundedness directly. Optimality of w∗ implies

1

2
‖Xw∗ − y‖22 + λ

∑
bi∈B
‖w∗bi‖2 ≤

1

2
‖y‖22,

from which we deduce the residual vector r(λ) is bounded for any choice of λ. Thus, the block
correlation vectors satisfy,

‖vbi(λ)‖22 = ‖X>bi r(λ)‖
≤ ‖Xbi‖

2
2‖y‖22

=⇒ ‖v(λ)‖2 ≤

∑
bi∈B
{‖Xbi‖2} ‖y‖2

1/2

.

The right-hand quantity is independent of λ; therefore, v(λ) is also bounded for all λ. By Lemma 2,
w∗A∗λ

is given by

w∗A∗λ
(λ) = (X>A∗λ

XA∗λ)+X>A∗λ

(
y − (X>A∗λ

)+vA∗λ(λ)
)

=⇒ ‖w∗(λ)‖2 ≤ ‖(X>A∗λXA∗λ)+X>A∗λ
‖2
(
‖y‖2 + ‖(X>A∗λ)+‖2‖vA∗λ(λ)‖2

)
,

where the right-hand side is bounded. This completes the proof.

Lemma 7 The transition spaceH is discrete.

13
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Proof To see that thatH is discrete, define

Hi = bd ({λ : bi ∈ Aλ}),

so that H =
⋃
i∈BHi. The (Lebesgue) measure of Hi is zero because it is the boundary of a one-

dimensional set and thus is discrete. By properties of the Lebesgue measure (denoted µ),

µ(H) ≤
⋃
i∈B

µ(Hi) = 0,

since B is finite. We deduce thatH is discrete.

Proposition 11 Group general position (Assumption 6) does not imply the columns of X are in
general position. Similarly, general position of the columns of X does not imply group general
position.

Proof Consider the simple case where we have two groups: b1 = {1} and b2 = {2, . . . , d}. Group
general position is violated if there exists a unit vector zb2 such that

x1 = Xb2zb2 .

⇐⇒ x1 ∈ Xb2Bd−1,

where Bn−1 =
{
z ∈ Rd−1 : ‖z‖ ≤ 1

}
. In contrast, general position is violated if

x1 ∈ affine(x2, . . . , xd)

⇐⇒ x1 ∈ X {z : 〈z, 1〉 = 1} .

Taking Xb2 = I , it is trivial to see that group general position can hold when general position is
violated and vice-versa.

Proposition 12 Suppose Assumption 6 holds and λ > 0. Then the group Lasso solution is unique.

Proof Suppose the group Lasso solution is not unique. Then, Proposition 1 implies

Nλ = Null(XEλ)
⋂
{z : zbi ∝ vbi , i ∈ Eλ} ,

is non-empty. That is, there exist sbi ∈ {+1,−1} and αbi ≥ 0 such that

sbjXbjvbj =
∑

bi∈Eλ\j

αbisbiXbivbi

=⇒ Xbjvbj =
∑

bi∈Eλ\j

αbisbjsbiXbivbi .

Taking inner-products on both sides with the residual r,

=⇒ λ2 =
∑

bi∈Eλ\j

αbisbjsbiλ
2

=⇒ 1 =
∑

bi∈Eλ\j

αbisbjsbi .

14
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Thus, we deduce that
Xbjvbj =

∑
bi∈Eλ\j

βbiXbivbi , (9)

where
∑

bi∈Eλ\j βbi = 1. Now, suppose that |Eλ| > n+ 1. Then, {Xbivbi : bi ∈ Eλ \ j} are linearly
dependent and, by eliminating dependent vectors Xbivbi , we can repeat the above proof with a
subset E ′ of at most n + 1 blocks. Noting ‖vbi‖2 = λ for each bi ∈ Eλ and rescaling both sides of
Eq. (9) by λ implies the existence of unit vectors zbi which contradict Assumption 6. This completes
the proof.

Theorem 8 Suppose group general position holds. Then the unique group lasso solution path is
continuous.

Proof Let λ̄ ∈ H. By Lemma 7, H is discrete so that there exists some open interval O =
(
λ̄, λ0

)
containing no points of H. Let g be the continuous solution function on O, which exists by Propo-
sition 5 and recall that A∗λ is constant on this set.

Let λk ↓ λ̄ so that λk ∈ O for all sufficiently large k. By Lemma 10, the min-norm solution g(λk) is
bounded. Thus, dropping to a convergent subsequence if necessary, the limit w̄ = limk g(λk) exists.
It is trivial to argue in the same fashion for the dual problem, where h(λk) = 0 for all k implies
η̄ = 0 is the limit.

For each bi ∈ A∗λ, FO conditions give

X>bi (y −Xg(λk)) = λk
g(λk)

‖g(λk)‖2
,

which, by taking limits on both sides, yields

X>bi (y −Xw̄) = λku,

with ‖ubi‖2 = 1. If w̄bi 6= 0, then

ubi =
w̄bi
‖w̄bi‖2

,

and FO conditions are satisfied. On the other hand, if w̄bi = 0, then taking norms shows bi ∈ Eλ̄
and FO conditions are also satisfied.

Thus, w̄A∗λ satisfies FO conditions at λ̄. Similarly, taking limits for the blocks in bi ∈ Iλ ∪T ∗λ gives

‖X>bi (y −Xg(λk))‖2 ≤ λk
=⇒ ‖X>bi (y −Xw̄)‖2 ≤ λ̄,

showing the extension w̄bi = 0 satisfies FO conditions for the group Lasso. We conclude that w̄ is a
solution to the group Lasso problem.

Since the solution to the group Lasso is unique under Assumption 6, it must be that w̄ is the unique
solution at λ̄. Since this argument holds for every limit point of g(λk), we have shown that the limit
from the right exists andW∗ is continuous from the right. Arguing identically for the left-hand limit
establishes continuity of the solution function at λ̄.
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