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Abstract
In this paper, we study simple bilevel optimization problems, where we minimize a smooth objective
function over the optimal solution set of another convex constrained optimization problem. Several
iterative methods have been developed for tackling this class of problems. Alas, their convergence
guarantees are not satisfactory as they are either asymptotic for the upper-level objective, or the
convergence rates are slow and sub-optimal. To address this issue, in this paper, we introduce a
conditional gradient-based (CG-based) method to solve the considered problem. The main idea is to
locally approximate the solution set of the lower-level problem via a cutting plane, and then run a
CG-type update to decrease the upper-level objective. When the upper-level objective is convex, we
show that our method requires O(max{1/ϵf , 1/ϵg}) iterations to find a solution that is ϵf -optimal
for the upper-level objective and ϵg-optimal for the lower-level objective. Moreover, when the
upper-level objective is non-convex, our method requiresO(max{1/ϵ2f , 1/(ϵf ϵg)}) iterations to find
an (ϵf , ϵg)-stationary solution. To the best of our knowledge, our method achieves the best-known
iteration complexity for the considered bilevel problem.

1. Introduction

Bilevel optimization is a form of optimization where one problem is embedded within another. It
captures a hierarchical structure, where an upper-level function is minimized over the solution set of
a lower-level problem. This class of problems has attracted great attention due to their applications
in hyper-parameter optimization [15, 46], meta-learning [4, 42], and reinforcement learning [23, 28],
to name a few. In this paper, we focus on a specific form of bilevel optimization formally defined as

min
x∈Rn

f(x) s.t. x ∈ argmin
z∈Z

g(z), (1)

where Z is a compact convex set and f, g : Rn → R are continuously differentiable functions on an
open set containing Z . We assume that g is convex but not necessarily strictly convex, and hence the
lower-level problem in (1) could have multiple optimal solutions. We remark that Problem (1) is often
referred to as the “simple bilevel problem” in the literature [12, 14, 47] to differentiate it from the
more general settings where the lower-level problem is parameterized by some upper-level variables.

© R. Jiang, N. Abolfazli, A. Mokhtari & E. Yazdandoost Hamedani.



CG-BASED METHOD FOR BILEVEL OPTIMIZATION WITH CONVEX LOWER-LEVEL PROBLEM

This class of bilevel problems appears in several settings such as hyperparameter selection [16, 53]
and fair classification [17, 55]; we review a few of them in Appendix A.

The key challenge to solve Problem (1) stems from the fact that its feasible set—the solution set
of the lower-level problem—does not admit a simple characterization and is not explicitly given. This
rules out the possibility of applying projection-based methods as well as the conditional gradient (CG)
method, since projection onto or minimizing a linear objective over the feasible set is computationally
intractable. An alternative scheme is reformulating Problem (1) as a constrained optimization
problem with the functional constraint g(x) ≤ g∗ and applying primal-dual methods, where g∗ is
the optimal value of the lower-level problem. However, a critical issue is that the resulting problem
does not satisfy strict feasibility and hence the Slater’s condition fails, which is required for most
primal-dual methods. Even relaxing the constraint (g(x) ≤ g∗ + ϵ) to ensure strict feasibility would
inevitably lead to numerical issues (see more discussions in Appendix F).

Therefore, Problem (1) cannot be simply treated as a classic constrained optimization problem
and calls for new theories and algorithms tailored to its hierarchical structure [9, 48, 50, 52]. More
recently, there has been a surge of interest in establishing non-asymptotic convergence rates for
Problem (1). One of the first methods of this kind is the minimal norm gradient (MNG) method by
Beck and Sabach [3]. When f is strongly-convex and g is convex and smooth, they showed that
MNG converges asymptotically to the optimal solution and achieves a complexity bound of O(1/ϵ2)
in terms of the lower-level objective. Subsequently, the BiG-SAM method was proposed by Sabach
and Shtern [45] and it was shown to achieve a complexity of O(1/ϵ) for the lower-level problem; see
also Shehu et al. [47] for a related method. Malitsky [38] studied a version of Tseng’s accelerated
gradient method that obtains a convergence rate of o(1/k) for the lower-level problem. When f
and g are convex and Lipschitz, Kaushik and Yousefian [26] studied iterative regularization and
showed a convergence rate of O(1/k0.5−b) for the upper-level objective and a rate of O(1/kb) for
the lower-level, where b ∈ (0, 0.5) is a user-defined parameter. Several works also extended this
method to stochastic [1, 2] and distributed [27, 54] settings.

Contributions. As discussed, prior works only establish convergence rates for the lower-level
problem, while the rate for the upper-level is missing. The only exception is the work by Kaushik and
Yousefian [26], but they consider a different setting where both upper-level and lower-level functions
are Lipschitz and possibly non-smooth, which results in slow convergence rates; see Table 1 in the
Appendix. Our main contribution is presenting the conditional gradient-based bilevel (CG-BiO)
method with tight non-asymptotic guarantees for both upper- and lower-level objectives. At each
iteration, CG-BiO uses a cutting plane to locally approximate the solution set of the lower-level
problem, and applies a CG-type update on the upper-level objective. Our theoretical guarantees for
CG-BiO are:

• When the upper-level function f is convex, we show that CG-BiO can find x̂ satisfying
f(x̂)− f∗ ≤ ϵf and g(x̂)− g∗ ≤ ϵg within O(max{1/ϵf , 1/ϵg}) iterations, where f∗ is the
optimal value of Problem (1) and g∗ is the optimal value of the lower-level problem. This
guarantee matches the best-known results in terms of the lower-level objective and are optimal
for bilevel projection-free methods.

• When f is non-convex, CG-BiO finds x̂ that satisfies G(x̂) ≤ ϵf and g(x̂) − g∗ ≤ ϵg
withinO(max{1/ϵ2f , 1/(ϵf ϵg)}) iterations, where G(x̂) is the Frank-Wolfe (FW) gap function
(cf. (3)).
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Additional related work. In the general form of bilevel problems, the upper-level function f
may also depend on an additional variable w ∈ Rm that in turn influences the lower-level problem:

min
x∈Rn,w∈Rm

f(x,w) s.t. x ∈ argmin
z∈Z

g(z,w). (2)

Problem (2) has been studied deeply and we refer readers to the extensive survey by [11]. We can
also see its close connection with the simple bilevel problem we study in this paper, as Problem (2)
reduces to Problem (1) for any fixed w. In recent years, gradient-based methods for Problem (2)
have become increasingly popular including implicit differentiation [13, 18, 25, 41] and iterative
differentiation [37]. However, most existing methods work under the assumption that the lower-level
problem is strongly convex in z for any w and thus has a unique minimum. More relevant to our
work, some concurrent papers consider the case where the lower-level problem can have multiple
minima [31–34, 49]. As they consider a more general problem than ours, their theoretical results are
also weaker, providing only asymptotic convergence guarantees or slower rates. In this paper, we
develop a new approach for solving the bilevel optimization problem in (1) using a fundamentally
different perspective.

2. Assumptions and definitions

In this section, we state the required assumptions and notions of optimality that we use for our
theoretical results.

We focus on the case where the lower-level function g is smooth and convex, while the upper-level
function f is smooth but not necessarily convex. Formally, we make the following assumptions.

Assumption 1 Let ∥ · ∥ be an arbitrary norm on Rn and ∥ · ∥∗ be its dual norm. We assume

(i) Z ⊂ Rn is convex and compact with diameter D, i.e., ∥x− y∥ ≤ D for all x,y ∈ Z .

(ii) g is convex and continuously differentiable on an open set containing Z , and its gradient is
Lipschitz with constant Lg, i.e.,∥∇g(x)−∇g(y)∥∗ ≤ Lg∥x− y∥ for all x,y ∈ Z .

(iii) f is continuously differentiable and its gradient is Lipschitz with constant Lf .

Throughout the paper, we use g∗ ≜ minz∈Z g(z) and X ∗
g ≜ argminz∈Z g(z) to denote the

optimal value and the optimal solution set of the lower-level problem, respectively. Note that by
Assumption 1, the set X ∗

g is nonempty, compact and convex, but in general not a singleton as g could
have multiple minima on Z . Moreover, we use f∗ to denote the optimal value and x∗ to denote an
optimal solution of Problem (1), which are guaranteed to exist as f is continuous and X ∗

g is compact.
For generality, we allow different target accuracies ϵf and ϵg for the upper-level and lower-level

problems, respectively, and define an (ϵf , ϵg)-solution as follows.

Definition 1 ((ϵf , ϵg)-solution) When f is convex, a point x̂ ∈ Z is (ϵf , ϵg)-optimal for the bilevel
problem in (1) if f(x̂) − f∗ ≤ ϵf and g(x̂) − g∗ ≤ ϵg. When f is non-convex, x̂ ∈ Z is (ϵf , ϵg)-
stationary if G(x̂) ≤ ϵf and g(x̂)− g∗ ≤ ϵg, where G(x̂) is the FW gap defined by

G(x̂) ≜ max
s∈X ∗

g

{⟨∇f(x̂), x̂− s⟩}. (3)

Remark 2 The FW gap is a standard performance metric for conditional gradient methods [24, 29].
For any feasible point x̂ ∈ X ∗

g , it is known that x̂ is a first-order stationary point if and only if
G(x̂) = 0.
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Algorithm 1 Conditional gradient-based bilevel (CG-BiO)
1: Input: Target accuracies ϵf , ϵg > 0, stepsizes {γk}k
2: Initialization: Initialize x0 ∈ Z such that 0 ≤ g(x0)− g∗ ≤ ϵg/2
3: for k = 0, . . . ,K do
4: Compute sk ← argmins∈Xk

⟨∇f(xk), s⟩
where Xk ≜ {s ∈ Z : ⟨∇g(xk), s− xk⟩ ≤ g(x0)− g(xk)}

5: if ⟨∇f(xk),xk − sk⟩ ≤ ϵf and ⟨∇g(xk),xk − sk⟩ ≤ ϵg/2 then
6: Return xk and STOP
7: else
8: xk+1 ← (1− γk)xk + γksk
9: end if

10: end for

3. Conditional gradient-based method for bilevel optimizaiton

Before stating our proposed method, we start by the standard CG method for solving Problem (1).
Recall that X ∗

g denotes the solution set of the lower-level problem. If we assume x0 ∈ X ∗
g , then the

update of CG at iteration k is given by

xk+1 = (1− γk)xk + γksk where sk = argmin
s∈X ∗

g

⟨∇f(xk), s⟩ , (4)

and γk ∈ [0, 1] is the stepsize. However, as we discussed earlier, the main challenge here is that the
solution set X ∗

g for the lower-level problem is not explicitly given, and hence the linear minimization
required in (4) is computationally intractable. Moreover, the standard CG method needs to be
initialized with a feasible point. In this case, x0 has to be an optimal solution of the lower-level
problem, which is hard to guarantee in general—in finite number of iterations one may not be able to
find an exact optimal solution for the lower-level problem. Similar issues also hold if we try to use
projection-based methods such as projected gradient descent to solve Problem (1).

Our key idea is to run the CG update over a local approximation set Xk at the k-th iteration in
place of the more complicated set X ∗

g . To this end, we borrow the idea of cutting plane from the
optimization literature [6] and let Xk be the intersection of Z and the halfspaceHk:

Xk ≜ Z ∩Hk,where Hk = {s ∈ Rn : ⟨∇g(xk), s− xk⟩ ≤ g(x0)− g(xk)}. (5)

We can see that Xk is potentially more tractable than X ∗
g , as the difficult nonlinear inequality

g(x) ≤ g∗ is replaced by a single linear inequality. Also, by using the convexity of g, we can show
that the hyperplaneHk eliminates those points that are known to have a larger value of than g(x0).
Thus, if we initialize our algorithm such that x0 is near-optimal, the linear inequality in (5) ensures
improvement in terms of the lower-level function. Further, this also implies that Xk contains the
solution set X ∗

g , so we are guaranteed to make progress on the upper-level objective f . We justify
this observation in the following lemma.

Lemma 3 Recall X ∗
g as the solution set for the lower-level problem in (1) and recall the definition

of the set Xk in (5). Then, for any k ≥ 0, we have X ∗
g ⊆ Xk.
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Now we are ready to state our CG-BiO method. We first initialize x0 ∈ Z as a near-optimal
solution for the lower-level problem, i.e., g(x0)− g∗ ≤ ϵg/2 for some prescribed accuracy ϵg. This
can be achieved by running the standard CG method on the lower-level problem, which requires at
most O(1/ϵg) iterations. Once the initialization step is done, we simply run CG with respect to the
approximation sets Xk. More precisely, at the k-th iteration, we solve the following subproblem over
the set Xk defined in (5):

sk = argmin
s∈Xk

⟨∇f(xk), s⟩ , (6)

and update the iterate by xk+1 = (1 − γk)xk + γksk with stepsize γk ∈ [0, 1]. Here, we assume
access to a linear optimization oracle that returns the solution of the subproblem in (6), which is
standard for projection-free methods [24, 29, 39]. In particular, if Z can be described by a system of
linear inequalities, then the subproblem in (6) corresponds to a linear program and can be solved
efficiently by a standard solver. We repeat the process above until we reach an accuracy of ϵf for the
upper-level objective and an accuracy of ϵg for the lower-level objective. The steps of our proposed
CG-BiO method are summarized in Algorithm 1.

4. Convergence analysis

In this section, we analyze the iteration complexity of our CG-BiO method. We first consider the case
where the upper-level function f is convex. In this case, we choose the stepsize as γk = 2/(k + 2),
which is typical in the standard CG method [24].

Theorem 4 (Convex upper-level) Suppose that Assumption 1 holds and f is convex. Let {xk}Kk=0

be the sequence generated by Algorithm 1 with stepsize γk = 2/(k + 2) for k ≥ 0. Then we have

f(xK)− f∗ ≤
2LfD

2

K + 1
and g(xK)− g∗ ≤ 2LgD

2

K + 1
+

1

2
ϵg.

Theorem 4 shows that the gap of the upper-level objective can be upper bounded by O(1/K),
similar to the convergence bound of standard CG. At the same time, the gap of the lower-level
objective can also be controlled by a term of order O(1/K) in addition to the initial error ϵg/2. As
a corollary, Algorithm 1 will return an (ϵf , ϵg)-optimal solution when the number of iterations K
exceeds

max

{
2LfD

2

ϵf
− 1,

4LgD
2

ϵg
− 1

}
= O

(
max

{
1

ϵf
,
1

ϵg

})
.

Our complexity bound improves over the result by Kaushik and Yousefian [26], who consider a
different setup where both the upper-level and lower-level functions are Lipschitz but not necessarily
smooth. Also, comparing with existing works in the same setup, our convergence rate for the
lower-level objective matches those in [38, 45], while we also provide a non-asymptotic convergence
bound for the upper-level objective. To the best of our knowledge, our result provides the best-known
bound for the considered setting. We also remark that our rate is tight at least within the family of
projection-free methods, since it is known that their worst-case complexity is Θ(1/ϵf ) even for a
single-level problem [24, 30].

Remark 5 As the initialization step requires O(1/ϵg) iterations, this additional cost will not be the
dominant term in the final complexity. The same applies for the non-convex setting below.
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Now we turn to the case where f is non-convex. In this case, we choose the stepsize as a constant
depending on the target accuracies as well as the problem parameters.

Theorem 6 (Non-convex upper-level) Suppose that Assumption 1 holds. Let {xk}K−1
k=0 be the

sequence generated by Algorithm 1 with stepsize γk = min
{ ϵf
LfD2 ,

ϵg
LgD2

}
for all k ≥ 0. Define

f = minx∈Z f(x). Then for K ≥ max
{

2LfD
2(f(x0)−f)

ϵ2f
,
2LgD2(f(x0)−f)

ϵf ϵg

}
, there exists k∗ ∈

{0, 1, . . . ,K − 1} such that G(xk∗) ≤ ϵf and g(xk∗)− g∗ ≤ ϵg.

As a corollary of Theorem 6, the number of iterations required to find an (ϵf , ϵg)-optimal solution
can be upper bounded by O(max{1/ϵ2f , 1/(ϵf ϵg)}). We note that the dependence on the upper-level
accuracy ϵf also matches that in the standard CG method for a single-level problem [29, 39].

5. Conclusion
In this paper, we proposed a conditional gradient-based method to solve a class of bilevel optimization
problems. We closed an important gap in the existing literature by providing a tight non-asymptotic
complexity bound for the upper-level objective. Specifically, we proved that our CG-BiO algorithm
can find an (ϵf , ϵg)-optimal solution after at most O(max{1/ϵf , 1/ϵg}) iterations when the upper-
level objective f is convex, and after at most O(max{1/ϵ2f , 1/(ϵf ϵg)}) iterations when f is non-
convex. To the best of our knowledge, our work presents the best iteration complexity in the
considered bilevel problem.
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Appendix

Appendix A. Motivating examples

Many practical machine learning applications consist of a primal objective g, such as the training
loss, and a secondary objective f , such as a regularization term or auxiliary loss. In this case, a
natural approach is to fully optimize the primal objective and use the secondary objective as a
criterion to select one of the optimal solutions. Such kind of problem, also known as lexicographic
optimization [17], can be exactly formulated as the simple bilevel problem in (1).

To be concrete, consider an empirical risk minimization problem in the form of minβ∈Z ℓtr(β) ≜
1
n

∑n
i=1 ℓ(h(xi;β), yi), where Z ⊆ Rd is the constraint set, h is the learning model parametrized

by β, and ℓ is the loss function corresponding to input xi and its associated label yi. Typically,
the primal objective g is chosen as the training loss ℓtr(β) and different choices of the secondary
objective give rise to different problems. We provide several examples in the following.

Example 1 (Ill-posed optimization) Without an explicit regularization, the empirical risk mini-
mization problem above can be ill-posed, i.e., it has multiple optimal solutions or is sensitive to small
perturbation in the input data. To tackle this issue, we can introduce a regularization termR(·) as
the secondary objective, leading to the following bilevel problem:

min
β∈Rd

f(β) ≜ R(β) s.t. β ∈ argmin
z∈Z

g(z) ≜ ℓtr(z).

In particular, by choosingR(β) = ∥β∥22 we can find the minimal ℓ2-norm solution.

Example 2 (Hyperparameter selection) Most machine learning algorithms require careful hyper-
parameter tuning, and a common strategy is to select the set of hyperparameters that also minimizes
the loss over some validation setDval. In this case, the validation loss ℓval(β) serves as the secondary
objective, leading to the following bilevel problem:

min
β∈Rd

ℓval(β) s.t. β ∈ argmin
z∈Z

ℓtr(z;λ), (7)

where λ ∈ Rp denotes the hyperparameters. Note that for any fixed λ, Problem (7) becomes an
instance of the simple bilevel problem in (1). In particular, we can then use grid search or random
search over λ when the number of hyperparameters is small.

Example 3 (Fair classification) Standard training procedures could lead to a model that discrim-
inates against certain society groups. To alleviate this issue, we can use a fairness metric as a
secondary objective to promote fairness in the decision of the model. For instance, we may consider
the following bilevel problem:

min
β∈Rd

(cov(h(x;β),v))2 s.t. β ∈ argmin
z∈Z

ℓtr(z),

where we use the covariance between the output of the model h(x;β) and the sensitive features v as
the fairness metric [17, 55].
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Appendix B. Summary table

Table 1: Summary of bilevel optimization algorithms. The abbreviations “SC”, “C”, and “non-C”
stand for “strongly convex”, “convex”, and “non-convex”, respectively.

References Upper level Lower level Convergence Projection free?
Objective f Objective g Feasible set Z Upper level Lower level

MNG [3] SC, differentiable C, smooth Closed Asymptotic O(1/ϵ2) ✗

BiG-SAM [45] SC, smooth C, composite Closed Asymptotic O(1/ϵ) ✗

Tseng’s method [38] C, composite C, composite Closed Asymptotic o(1/ϵ) ✗

a-IRG [26] C, Lipschitz C, Lipschitz Closed O(max{1/ϵ4f , 1/ϵ
4
g}) ✗

Ours C, smooth C, smooth Compact O(max{1/ϵf , 1/ϵg}) ✓

Ours Non-C, smooth C, smooth Compact O(max{1/ϵ2f , 1/(ϵf ϵg)}) ✓

Appendix C. Supporting lemmas

C.1. Proof of Lemma 3

Let x∗
g be any point in X ∗

g , i.e., any optimal solution of the lower-level problem. By definition, we
have g(x∗

g) = g∗. Since g is convex and g∗ ≤ g(x0), we have

g(x0)− g(xk) ≥ g∗ − g(xk) = g(x∗
g)− g(xk) ≥

〈
∇g(xk),x

∗
g − xk

〉
,

which implies x∗
g ∈ Xk. Hence, we conclude that X ∗

g ⊆ Xk.

C.2. Improvement in one step

The following lemma characterizes the improvement of both the upper-level and lower-level objective
values after one step of Algorithm 1.

Lemma 7 Let {xk}Kk=0 be the sequence generated by Algorithm 1. Suppose Assumption 1 holds,
then for any k ≥ 0 we have

f(xk+1) ≤ f(xk)− γkG(xk) +
1

2
γ2kLfD

2, (8)

g(xk+1) ≤ (1− γk)g(xk) + γkg(x0) +
1

2
γ2kLgD

2, (9)

Proof
Since the gradient of f is Lf -Lipschitz and Z is bounded with diameter D, we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+
1

2
Lf∥xk+1 − xk∥2

= f(xk) + γk ⟨∇f(xk), sk − xk⟩+
1

2
Lfγ

2
k∥sk − xk∥2

≤ f(xk) + γk ⟨∇f(xk), sk − xk⟩+
1

2
Lfγ

2
kD

2. (10)
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Now using the definition of sk in (6), the definition of G(x) in (3) and Lemma 3, we obtain

⟨∇f(xk), sk − xk⟩ = min
s∈Xk

⟨∇f(xk), s− xk⟩ ≤ min
s∈X ∗

g

⟨∇f(xk), s− xk⟩ = −G(xk). (11)

Then (8) follows from (10) and (11).
Similarly, since the gradient of g is Lg-Lipschitz, we have

g(xk+1) ≤ g(xk) + γk ⟨∇g(xk), sk − xk⟩+
1

2
Lgγ

2
kD

2. (12)

Moreover, since sk ∈ Xk, from the definition ofXk in (6) we get ⟨∇g(xk), sk − xk⟩ ≤ g(x0)−g(xk).
Combining this with (12) leads to (9).

Appendix D. Proof of the main theorems

D.1. Proof of Theorem 4

We first prove the convergence rate of the upper-level objective f , which largely mirrors the standard
analysis of the CG method [24]. Since x∗ ∈ X ∗

g and f is convex, from the definition of G(xk) in (3)
we have

G(xk) = max
s∈X ∗

g

{⟨∇f(xk),xk − s⟩} ≥ ⟨∇f(xk),xk − x∗⟩ ≥ f(xk)− f∗. (13)

Subtracting f∗ from both sides of (8) in Lemma 7 and using (13), we obtain that

f(xk+1)− f∗ ≤ (1− γk)(f(xk)− f∗) +
1

2
γ2kLfD

2. (14)

Now define Ak = k(k + 1). By substituting γk = 2/(k + 2) and multiplying both sides of (14) by
Ak+1, we get

Ak+1(f(xk+1)− f∗) ≤ Ak(f(xk)− f∗) +
2(k + 1)

k + 2
LfD

2 ≤ Ak(f(xk)− f∗) + 2LfD
2.

Hence, if follows from induction that

AK(f(xK)− f∗) ≤ A0(f(x0)− f∗) + 2KLfD
2 ⇒ f(xK)− f∗ ≤

2KLfD
2

Ak
=

2LfD
2

K + 1
.

This completes the first part of the proof.
The proof for the lower-level problem follows from similar arguments. By subtracting g(x0)

from both sides of (9) in Lemma 7, we have

g(xk+1)− g(x0) ≤ (1− γk)(g(xk)− g(x0)) +
1

2
γ2kLgD

2. (15)

By substituting γk = 2/(k + 2) and multiplying both sides of (15) by Ak+1, we obtain

Ak+1(g(xk+1)− g(x0)) ≤ Ak(g(xk)− g(x0)) + 2LgD
2.
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Hence, if follows from induction that

AK(g(xK)− g(x0)) ≤ 2KLgD
2 ⇒ g(xK)− g(x0) ≤

2KLgD
2

Ak
=

2LgD
2

K + 1
.

Since g(x0)− g∗ ≤ ϵg/2, we obtain

g(xK)− g∗ ≤ 2LgD
2

K + 1
+

1

2
ϵg,

which completes the proof.

D.2. Proof of Theorem 6

Since we use a fixed stepsize in Theorem 6, in the following we will write γk = γ.
We first consider the upper-level objective f . The analysis here is similar to the one in [39]. By

using (8) in Lemma 7, we have

G(xk) ≤
f(xk)− f(xk+1)

γ
+

1

2
γLfD

2.

Summing both sides of the above inequality from k = 0 to K − 1, we get

K−1∑
k=0

G(xk) ≤
f(x0)− f(xK)

γ
+

1

2
KγLfD

2 ≤
f(x0)− f

γ
+

1

2
KγLfD

2,

where we used the fact that f(xK) ≥ f = minx∈Z f(x). This further implies that

min
0≤k≤K−1

G(xk) ≤
1

K

K−1∑
k=0

G(xk) ≤
f(x0)− f

γK
+

1

2
γLfD

2. (16)

To upper bound the right-hand side of (16), note that our choices of the stepsize γ and the number of
iterations K satisfy

γ ≤
ϵf

LfD2
and K ≥

2(f(x0)− f)

ϵfγ
.

Thus, we have

min
0≤k≤K−1

G(xk) ≤
f(x0)− f

γK
+

1

2
γLfD

2 ≤
ϵf
2

+
ϵf
2

= ϵf .

This guarantees that G(xk∗) ≤ ϵf by choosing k∗ = argmin0≤k≤K−1 G(xk).
Now we move to the analysis of the lower-level objective g. For any k ≥ 0, by applying induction

on (9) in Lemma 7 it follows that

g(xk)− g(x0) ≤
1

2
LgD

2
k−1∑
j=0

γ2(1− γ)j ≤ 1

2
LgD

2γ,

where we used
∑k−1

j=0(1− γ)j ≤ 1/γ in the last inequality. Furthermore, since g(x0)− g∗ ≤ ϵg/2

and γ ≤ ϵg
LgD2 , this implies that g(xk)− g∗ ≤ 1

2ϵg +
1
2ϵg = ϵg for any 0 ≤ k ≤ K − 1. In particular,

we can take k = k∗ and conclude that g(xk∗)− g∗ ≤ ϵg. This completes the proof.
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Appendix E. Convergence under Hölderian error bound assumption

In Theorems 4 and 6, we measure the progress for the upper-level objective in terms of f(x)− f∗

(in the convex case) or G(x) (in the non-convex case). However, in general they may not serve as a
good performance metric: since the generated iterate x may lie outside of the feasible set X ∗

g , both
f(x) − f∗ and G(x) could be negative. Thus, our convergence result will be stronger if we can
instead upper bound |f(x)− f∗| or |G(x)|.

Let x̂ be an (ϵf , ϵg)-optimal solution as defined in Definition 1. Intuitively, since x̂ is ϵg-optimal
for the lower-level function, it should be close to the optimal solution set X ∗

g under some regularity
condition on g. As such, we can lower bound f(x̂)− f∗ by using the smoothness of f . Formally, we
assume that the lower-level function satisfies the Hölderian error bound, which quantifies the growth
rate of the objective value g(x) as the point x deviates from the optimal solution set X ∗

g .

Assumption 2 The function g satisfies the Hölderian error bound for some α > 0 and r ≥ 1, i.e,
α

r
dist(x,X ∗

g )
r ≤ g(x)− g∗, ∀x ∈ Z, (17)

where dist(x,X ∗
g ) ≜ infx′∈X ∗

g
∥x− x′∥.

We note that the error bound condition in (17) is well-studied in the optimization literature (see
[5, 40, 43] and the references therein) and is known to hold generally when the function g is analytic
and the set Z is bounded [35, 36]. Two important special cases are: 1) g satisfies (17) with r = 1,
i.e., X ∗

g is a set of weak sharp minima of g [7, 8]; 2) g satisfies (17) with r = 2, which can be viewed
as a general notion of strong convexity.

Under Assumption 2, we can establish the following lower bounds on f(x̂) − f∗ and G(x̂).
Notably, the following result is an intrinsic property of Problem (1) and independent of the algorithm
we use.

Proposition 8 Assume that g satisfies the Hölderian error bound in Assumption 2, and define
M = maxx∈X ∗

g
∥∇f(x)∥∗. Then for any x̂ that satisfies g(x̂)− g∗ ≤ ϵg, it holds that:

(i) If f is convex, then f(x̂)− f∗ ≥ −M
( rϵg

α

) 1
r .

(ii) If f is non-convex and has Lf -Lipschitz gradient, then G(x̂) ≥ −M
( rϵg

α

) 1
r − Lf

( rϵg
α

) 2
r .

By combining Theorems 4 and 6 with Proposition 8, we obtain the following stronger convergence
guarantees for the output of our proposed method.

Corollary 9 Suppose that Assumption 1 holds and g satisfies the Hölderian error bound in Assump-
tion 2 with α > 0 and r ≥ 1. Let M = maxx∈X ∗

g
∥∇f(x)∥∗.

(i) If f in Problem (1) is convex, we can set ϵg = α
r

( ϵf
M

)r. Then after K = O(1/ϵrf ) iterations,
we have |f(xK)− f∗| ≤ ϵf and g(xK)− g∗ ≤ ϵg.

(ii) If f in Problem (1) is non-convex, we can set ϵg = min{αr
( ϵf
2M

)r
, αr

( ϵf
2Lf

)r/2}. Then after

K = O(1/ϵr+1
f ) iterations, there exists k∗ ∈ {0, 1, . . . ,K − 1} such that |G(xk∗)| ≤ ϵf and

g(xk∗)− g∗ ≤ ϵg.

Corollary 9 shows that under the r-th Hölderian error bound assumption, we can find an iterate
to be ϵf -close to optimality within O(1/ϵrf ) iterations in the convex case, and to be ϵf -close to
stationarity within O(1/ϵr+1

f ) iterations in the non-convex case.
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E.1. Proof of Proposition 8

Since X ∗
g is closed and compact, we can let x̂∗ = argminx∈X ∗

g
∥x − x̂∥ such that ∥x̂∗ − x̂∥ =

dist(x̂,X ∗
g ). By Assumption 2, we obtain

α

r
∥x̂∗ − x̂∥r ≤ g(x̂)− g∗ ≤ ϵg ⇔ ∥x̂∗ − x̂∥ ≤

(rϵg
α

) 1
r
.

When f is convex, we have

f(x̂)− f∗ = f(x̂)− f(x̂∗) ≥ ⟨∇f(x̂∗), x̂− x̂∗⟩ ≥ −∥∇f(x̂∗)∥∗∥x̂− x̂∗∥ ≥ −M
(rϵg

α

) 1
r
,

where we used the convexity of f in the first inequality. When f is non-convex, we have

G(x̂) = max
s∈X ∗

g

{⟨∇f(x̂), x̂− s⟩} ≥ ⟨∇f(x̂), x̂− x̂∗⟩

= ⟨∇f(x̂)−∇f(x̂∗), x̂− x̂∗⟩+ ⟨∇f(x̂∗), x̂− x̂∗⟩
≥ −∥∇f(x̂)−∇f(x̂∗)∥∗∥x̂− x̂∗∥ − ∥∇f(x̂∗)∥∥x̂− x̂∗∥
≥ −Lf∥x̂− x̂∗∥2 −M∥x̂− x̂∗∥ (18)

≥ −M
(rϵg

α

) 1
r − Lf

(rϵg
α

) 2
r
,

where we used the fact that∇f is Lf -Lipschitz in (18). This completes the proof.

E.2. Proof of Corollary 9

In the first case where f is convex, we set ϵg = α
r

( ϵf
M

)r. By Theorem 4, we have f(xK)− f∗ ≤ ϵf
and g(xK)− g∗ ≤ ϵg when

K ≥ max

{
2LfD

2

ϵf
− 1,

4LgD
2

ϵg
− 1

}
= max

{
2LfD

2

ϵf
− 1,

4rM rLgD
2

αϵrf
− 1

}
= O

(
1

ϵrf

)
.

Moreover, Proposition 8 implies that f(xK)− f∗ ≥ −M
( rϵg

α

) 1
r ≥ −ϵf . Putting all pieces together,

we conclude that |f(xK)− f∗| ≤ ϵf and g(xK)− g∗ ≤ ϵg after K = O(1/ϵrf ) iterations.

In the second case where f is non-convex, we set ϵg = min{αr
( ϵf
2M

)r
, αr

( ϵf
2Lf

)r/2}. By
Theorem 6, we can find k∗ ∈ {0, 1, . . . ,K − 1} such that G(xk∗) ≤ ϵf and g(xk∗) − g∗ ≤ ϵg
when

K ≥ (f(x0)− f) ·max

{
2LfD

2

ϵ2f
,
2LgD

2

ϵf ϵg

}
= (f(x0)− f) ·max

{
2LfD

2

ϵ2f
,
2r(2M)rLgD

2

αϵr+1
f

,
2r(2Lf )

r
2LgD

2

αϵ
r
2
+1

f

}
= O

(
1

ϵr+1
f

)
.

Moreover, Proposition 8 implies that G(xk∗) ≥ −M
( rϵg

α

) 1
r −Lf

( rϵg
α

) 2
r ≥ − ϵf

2 −
ϵf
2 = −ϵf . Thus,

we conclude |G(xk∗)| ≤ ϵf and g(xk∗)− g∗ ≤ ϵg after K = O(1/ϵr+1
f ) iterations.
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Appendix F. Primal-dual method for the bilevel problem

In this section, we discuss the convergence rate of primal-dual type methods for solving the bilevel
problem in (1). We consider the setting as in Theorem 4, in which both f and g are convex and
smooth. To simplify the discussion, we further assume Z = {z ∈ X | Az ≤ b} where A ∈ Rm×n,
b ∈ Rm, and X is a convex and easy-to-project compact set.

Formally, we first reformulate (1) as the following constrained optimization problem:

min
x∈Rn

f(x) s.t. x ∈ Z, g(x) ≤ g∗. (19)

To solve Problem 19, one first needs to estimate the optimal value g∗ of the lower-level problem.
Since it is a convex program with linear constraints, we can implement a first-order primal-dual
method (e.g., [10]) to find g0 such that |g0 − g∗| ≤ ϵg/4 within at mostO(Lg+∥A∥

ϵg
) iterations1. Next,

Problem (1) can be cast as the following convex optimization problem with linear and nonlinear
convex constraints:

min
x∈X

f(x) s.t. Ax ≤ b, g(x) ≤ g0 +
ϵg
2
, (20)

where we add the term ϵg
2 to ensure that the Slater’s condition holds. Now we can apply any classic

or accelerated first-order primal-dual methods [21, 22, 51] to find a solution of Problem (20) that is
both ϵf -suboptimal and ϵg

4 -infeasible. For example, the optimal convergence rates obtained in [51]
and [21] imply that after K iterations, the average iterate x̄K satisfies

max {|f(x̄K)− f(x∗
ϵ )| , |g(x̄K)− g(x∗

ϵ )|} ≤ ∆/K,

where x∗
ϵ denotes an optimal solution of Problem (20), ∆ ≜ O((Lf + Lg + Cg)D

2 + Cg |λ∗
1|
2 +

∥A∥ ∥λ∗
2∥

2), Cg is the Lipschtiz constant of g, and λ∗
1 ∈ R and λ∗

2 ∈ Rm denote an arbitrary dual
optimal solution corresponding to the nonlinear and linear constraints in Problem (20), respectively.
Using the fact that f(x∗

ϵ ) ≤ f(x∗) and g(x∗
ϵ ) ≤ g0 +

ϵg
2 ≤ g∗ + 3

4ϵg, we conclude

f(x̄K)− f(x∗) ≤ ∆/K and |g(x̄K)− g(x∗)| ≤ ∆/K +
3

4
ϵg.

Therefore, to achieve an (ϵf , ϵg)-optimal solution of Problem (1), a primal-dual method overall

requires O
(
Lg+∥A∥

ϵg
+ ∆

min{ϵf ,ϵg}

)
primal-dual gradient calls, while our proposed method overall

requires O
(
Lg

ϵg
+

(Lf+Lg)D2

min{ϵf ,ϵg}

)
linear minimization oracle calls. In particular, we observe that the

convergence guarantee of primal-dual methods heavily rely on the norm of the dual optimal variable
|λ∗

1|, which may tend to infinity as ϵ approaches zero and the problem in (20) becomes nearly
degenerate.

Appendix G. Numerical experiments

In this section, we test our method for solving different bilevel optimization problems. First, we
consider a toy example to demonstrate the instability of primal-dual methods by comparing the
iteration trajectory of our method with accelerated primal-dual method with backtracking (APDB)
proposed by [21]. Next, we consider the hyperparameter selection problem described in Example 2
and compare our method with other existing methods in the literature [3, 26, 45]. All experiments
are performed on a MacBook Pro with Apple M1 chip and 16GB RAM.

1. Note that this complexity can be improved to the optimal rate of O(
√

Lg

ϵg
+ ∥A∥

ϵg
) using an accelerated method.

17



CG-BASED METHOD FOR BILEVEL OPTIMIZATION WITH CONVEX LOWER-LEVEL PROBLEM

0 50 100 150 200

iteration

10
-6

10
-5

10
-4

10
-3

10
-2

CG-BiO

APDB

0 50 100 150 200

iteration

10
-6

10
-5

10
-4

10
-3

10
-2

CG-BiO

APDB

Figure 1: The performance of CG-BiO (red) vs APDB (blue) on Problem (21). Plots from left to
right: upper-level suboptimality, lower-level suboptimality, and iteration trajectory.

G.1. Toy example
Here we consider a simple two-dimensional example to illustrate the numerical instability of primal-
dual methods applied to the relaxed problem (20). To this end, consider the following problem

min
x∈R2

0.5x21 − 0.5x1 + 0.1x2 s.t. x ∈ argmin
z∈Z

{−z1 − z2}, (21)

where Z = {z ∈ Rn
+ | z1 + z2 ≤ 1, 4z1 + 6z2 ≤ 5}. The lower-level problem has multiple

solutions which can be described by X ∗
g = {x ∈ R2 | x1 + x2 = 1, x1 ∈ [0.5, 1], x2 ∈ [0, 0.5]}

and the optimal solution of (21) is (x∗1, x
∗
2) = (0.6, 0.4). We implemented our proposed method and

compared it with APDB. Figure 1 illustrates the iteration trajectories of both methods. We selected
the relaxing parameter in (20) as ϵ = 10−5 for APDB. We also used the same accuracy for ϵg and ϵf
when implementing CG-BiO. The primal-dual method finds an ϵ-solution (dark red cross) within
193 iterations while CG-BiO finds an ϵ-solution (green star) within 20 iterations. Furthermore, we
observe a more stable numerical behavior for CG-BiO in comparison with APDB. This is consistent
with our discussions in Appendix F.

G.2. Hyperparameter selection

In this section, we consider a sparse linear regression problem on the Wikipedia Math Essential
dataset [44], which consists of a data matrix A ∈ Rn×d with n = 1068 instances and d = 730
attributes and an outcome vector b ∈ Rn. Our goal is to find a sparse parameter β ∈ Rd to achieve a
small prediction error 1

2∥Aβ−b∥22. We formulate the regression problem as the bilevel optimization
problem in Example 2. Specifically, we assign 60% of the dataset as the training set (Atr,btr),
20% as the validation set (Aval,bval) and the rest as the test set (Atest,btest). Then the lower-level
objective is the training error g(β) = 1

2∥Atrz − btr∥22, the upper-level objective is the validation
error f(β) = 1

2∥Avalβ−bval∥22, and the constraint set is the ℓ1-ball Z = {β : ∥β∥1 ≤ λ} for some
λ > 0 to induce sparsity in β. We also use the test error 1

2∥Atestβ − btest∥22 as our performance
metric. Note that the regression problem is over-parameterized since the number of features d is
larger than the number of data instances in the training set.

In the experiment, we implement our CG-BiO algorithm to solve the bilevel problem with
parameter λ = 1. We set the target accuracies for the upper-level and lower-level problems to
ϵf = 10−4 and ϵg = 10−4, respectively. For comparison, we also implement the MNG method
in [3], the Bilevel Gradient SAM (BiG-SAM) in [45], and the averaging iteratively regularized
gradient (a-IRG) method in [26]. For benchmarking purposes, we use CVX [19, 20] to solve the

18



CG-BASED METHOD FOR BILEVEL OPTIMIZATION WITH CONVEX LOWER-LEVEL PROBLEM

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

(a) Lower-level gap

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

(b) Upper-level gap

0 20 40 60 80 100
10

-2

10
-1

10
0

(c) Test error objective

Figure 2: The performance of CG-BiO compared with BiG-SAM, a-IRG and MNG on hyperparame-
ter selection. Plots from left to right: lower-level suboptimality, upper-level suboptimality,
and the test error.

lower-level problem and the constrained reformulation in (19) to obtain the optimal values g∗ and f∗,
respectively.

In Fig. 2, we illustrate the numerical performance of all considered algorithms. From Fig. 2(a),
we can see that CG-BiO converges at a faster rate than the other baseline methods in terms of the
lower-level objective, which confirms our theoretical result (cf. Table 1). Fig. 2(c) and (d) also show
that it is able to achieve a smaller upper-level objective value as well as a smaller test error compared
with BiG-SAM, a-IRG and MNG within the same running time. Interestingly, we observe that after
the initial stage, the upper-level objective f(βk) of CG-BiO actually increases, while the optimality
gap |f(βk) − f∗| decreases. This suggests that CG-BiO may “overshoot” at the beginning due
to its relatively large stepsize. Nevertheless, as the number of iterations increases and the level of
infeasibility decreases, the upper-level objective of our algorithm approaches the optimal value of
the bilevel problem, which is also in line with Proposition 8.

Appendix H. Further experiment details

In this section, we include more details of the numerical experiments in Section G.
For completeness, we briefly review the update rules of MNG [3], BiG-SAM [45], and a-IRG [26]

in the setup of Problem (1). In the following, we use ΠZ(·) to denote the Euclidean projection onto
the set Z .

• Each step of MNG requires solving the following subproblem:

xk+1 = argmin
x∈Qk∩Wk

f(x), (22)

where

Qk ≜

{
z ∈ Rn : ⟨GM (xk),xk − z⟩ ≥ 3

4M
∥GM (xk)∥2

}
,

Wk ≜ {z ∈ Rn : ⟨∇f(xk), z− xk⟩ ≥ 0} ,

GM (x) ≜ M

[
x−ΠZ

(
x− 1

M
∇g(x)

)]
,
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and M ≤ 1/Lg is a hyperparameter. As we can see, the implementation of MNG is only
feasible when the subproblem in (22) is easy to solve. In particular, it is computationally
intractable when the upper-level objective f is non-convex.

• BiG-SAM is given by

yk+1 = ΠZ(xk − ηg∇g(xk)), (23)

zk+1 = xk − ηf∇f(xk), (24)

xk+1 = αk+1zk+1 + (1− αk+1)yk+1, (25)

where ηf and ηg are stepsizes and αk = min{γk , 1} for some γ > 0.

• The a-IRG algorithm is given by

xk+1 = ΠZ (xk − γk(∇g(xk) + ηk∇f(xk))) , (26)

where γk is the stepsize and ηk is the regularization parameter. In our experiment, we choose
γk = 0.01/

√
k + 1 and ηk = 1/(k + 1)1/4.

H.1. Over-parametrized regression

Dataset generation. The original Wikipedia Math Essential dataset [44] consists of an 1068×731
matrix. We randomly select one of the columns as the outcome vector b ∈ R1068 and the rest as the
data matrix A ∈ R1068×730.
Initialization. We run the standard CG algorithm with the stepsize chosen as 2/(k + 2) on the
lower-level problem. We terminate the procedure once the FW gap is no more than ϵg/2 = 5× 10−5.
Implementation details. For our CG-BiO algorithm, we choose the stepsizes as γk = 2/(k+ 12) to
avoid instability due to large stepsizes. In each iteration, we need to solve a subproblem in the form
of

min
s
⟨∇f(βk), s⟩ s.t. ∥s∥1 ≤ λ, ⟨∇g(βk), s− βk⟩ ≤ g(β0)− g(βk). (27)

We can reformulate the above problem as a linear program by introducing s+, s− ≥ 0 such that
s = s+ − s−. Specifically, Problem (27) becomes

min
s+,s−

⟨∇f(βk), s
+ − s−⟩

s.t. s+, s− ≥ 0, ⟨s+,1⟩+ ⟨s−,1⟩ ≤ λ, ⟨∇g(βk), s
+ − s− − βk⟩ ≤ g(β0)− g(βk).
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