
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

Sufficient conditions for non-asymptotic convergence of Riemannian
optimization methods

Vishwak Srinivasan VISHWAKS@MIT.EDU

Ashia Wilson ASHIA07@MIT.EDU

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract
Motivated by energy based analyses for descent methods in the Euclidean setting, we investigate
a generalisation of such analyses for descent methods over Riemannian manifolds. In doing so,
we find that it is possible to derive curvature-free guarantees for such descent methods. This also
enables us to give the first known guarantees for a Riemannian cubic-regularised Newton algo-
rithm over g-convex functions, which extends the guarantees by Agarwal et al. [1] for an adaptive
Riemannian cubic-regularised Newton algorithm over general non-convex functions. This analysis
motivates us to study acceleration of Riemannian gradient descent in the g-convex setting, and we
improve on an existing result by Alimisis et al. [4], albeit with a curvature-dependent rate. Finally,
extending the analysis by Ahn and Sra [2], we attempt to provide some sufficient conditions for the
acceleration of Riemannian descent methods in the strongly geodesically convex setting.

1. Introduction

In this paper, we are interested in the task of minimizing a function f defined over a Riemannian
manifold M. This is an interesting problem, since certain f functions that are non-convex in the
Euclidean sense have been shown to be convex in a Riemannian sense over a specific Riemannian
manifold. We refer to this notion as geodesic convexity or g-convexity, and formally define this later
in this paper. This therefore motivates the study of optimisation methods over Riemannian mani-
folds, where considerable progress has been recently made in understanding such methods, and
proposing better alternatives. Zhang and Sra [16] identified that a modified triangle equality was
sufficient to obtain non-asymptotic guarantees for Riemannian gradient and subgradients methods.
This triangle inequality also underscored the study of an accelerated Riemannian gradient descent
algorithm [17], which also used the idea of estimate sequences [13] to achieve (local) acceleration
within a ball around the minimizer of f for strongly g-convex functions. While this study focused on
guarantees for strongly g-convex functions, a recent paper by Alimisis et al. [4] investigated accel-
eration of first order methods over bounded domains for a broader class of functions which include
g-convex functions, and proposed an algorithm which is shown to have strictly better rate than Rie-
mannian gradient descent, but did not achieve global acceleration. Their analysis was motivated by
a previous study on continuous-time flows to help model acceleration over Riemannian manifolds
[3]. Complementary to these attempts, Hamilton and Moitra [8] and Criscitiello and Boumal [7]
show that global acceleration may not be achievable over negatively curved manifolds. However,
recent papers by Martı́nez-Rubio [10] and Kim and Yang [9] show that we can obtain global accel-
eration inside a bounded subset of the manifold, and the rates of convergence are affected by the size

© V. Srinivasan & A. Wilson.

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

of this subset. While the focus of the non-exhaustive review is first-order methods, second-order
methods have also been proposed over Riemannian manifolds, and we refer to Boumal [6, Chapter
6] for a detailed introduction to such methods.

1.1. Background

In this subsection, we introduce key definitions and terminology necessary for this work. A Rie-
mannian manifold M is a smooth manifold equipped with a Riemannian metric that defines an
inner product between two vectors v, w in the tangent space TxM of x for every x ∈ M. This
induces a norm given by ∥v∥x = ⟨v, v⟩x for all v ∈ TxM. The gradient of a differentiable func-
tion f at a point x is a vector in TxM satisfying ⟨gradf(x), v⟩x = limt→0

f(c(t))−f(x)
t for curve

c : [0, 1] → M satisfying c(0) = x and c′(0) = v for every v ∈ M. A geodesic between two
points x and y on the manifold is a locally length minimizing curve starting at x and ending at y,
and the distance d(x, y) between x and y is given by the length of this geodesic. A subset A of M
is a geodesically unique set if for any two points in A, there exists a unique geodesic connecting
them. The exponential map at a point x on the manifold maps a tangent vector v ∈ TxM to a point
on the manifold Expx(v) such that γx,v(1) = Expx(v) where γx,v : [0, 1] → M is a geodesic
satisfying γx,v(0) = x and γ′x,v(0) = v. The inverse of the exponential map if it exists is called the
logarithmic map (Logx : y 7→ v), which computes the velocity of the geodesic starting from x to
reach a point y. The exponential and logarithmic maps can be viewed as manifold analogoues to
vector addition and subtraction respectively. A µ-strongly g-convex function f : A → R satisfies
for all x, y ∈ A, f(y) ≥ f(x)+ ⟨gradf(x),Logx(y)⟩x+ µ/2∥Logy(x)∥2x. When µ = 0, we refer to
such a function as being simply g-convex. Similarly, a function f : A → R is said to L-g-smooth
when for all x, y ∈ A, f(y) ≤ f(x) + ⟨gradf(x),Logx(y)⟩x + L/2∥Logx(y)∥2x. We specify other
equivalent definitions of these classes of functions in Appendix A.

2. An energy based analysis of Riemannian descent methods

To study Riemannian descent methods, we first introduce an abstraction that will allow us to study
a collection of such algorithms in a unified manner. This abstraction is equivalent to 1-descent
algorithms of order p proposed in [14] in the Euclidean case.

Definition 1 (p-descent algorithm) An iterative algorithm A is a p-forward descent / p-backward
descent algorithm in M w.r.t. function f if the sequence of iterates {xk}k≥1 satisfies

f(xk+1) ≤ f(xk)− c∥gradf(xk+1)∥
p/(p−1)
xk+1

, k ≥ 0 [p-forward descent] (1a)

f(xk+1) ≤ f(xk)− c∥gradf(xk)∥
p/(p−1)
xk

, k ≥ 0 [p-backward descent] (1b)

where c is a constant independent of k and x0 ∈ M is the initialisation given to A.

For such descent algorithms, we show that it is possible to obtain rates of convergence to the
minimizer x⋆ of f where f is g-convex function, analogous to the Euclidean setting. This is possible
since the descent property deals with vectors in the tangent space of a point on the manifold, and the
tangent space is isomorphic to a Euclidean space. Before stating this theorem, we introduce some
assumptions, as made in [17] and [4] that we use in the proof.

(A1) A is a geodesically unique convex subset of M with bounded diameter where Exp and Log
are well-defined.

2

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

(A2) x⋆ is a minimum of f , which lies inside A.

(A3) All the iterates of the algorithm stay within A.

When M is a Hadamard manifold, an example of A satisfying the assumptions is a sublevel set
of f with respect to the initialisation. Hyperbolic spaces and many matrix manifolds are examples
of practically relevant Hadamard manifolds. Other examples of A when M is not a Hadamard
manifold include a subset of a sphere of radius R whose diameter is strictly less than πR.

Theorem 2 (Rate for p-descent algorithms over g-convex functions) Let f be a g-convex func-
tion, and let x0 be the initialisation which belongs in A ⊆ M. If {xk} are the iterates of a p-descent
algorithm (forward (Eq. 1a) or backward (Eq. 1b)) then, assuming (A1), (A2) and (A3), they satisfy
the following guarantee

f(xk)− f(x⋆) ≤ Cp
diam(A)p

kp−1
, ∀ k ≥ 0

where Cp is a constant dependent on p.

While not as involved, it is possible to obtain rates when f is non-convex or when it is gradient
dominated. We include these results in the Appendix B, and the proof of Theorem 2 and the proofs
for rates in the non-convex and gradient dominated settings in Appendix C.

Examples of Riemannian p-descent algorithms and their rates.

Theorem 2 allows us to immediately infer rates of convergence for popular Riemannian methods
when used to optimize g-convex functions. We give instances of such methods below, and include
complete proofs of these propositions in Appendix C.1.

1. The Riemannian gradient descent algorithm which generates a sequence of iterates according
to the recursion xk+1 = Expx(−ηgradf(x)) for k ≥ 0, is a 2-backward descent method
when f is L-g-smooth and 0 < η < 2/L.

2. The Riemannian proximal descent algorithm which generates a sequence of iterates according
to the recursion xk+1 = argminy∈M f(y) + 1

2ηd
2(y, xk) for k ≥ 0, is a 2-forward descent

method for any η > 0.

3. The Riemannian cubic-regularized Newton algorithm which generates a sequence of iterates
according to the recursion xk+1 = Expxk

(sk) where sk satisfies

mk(sk) ≤ mk(0), ∥∇mk(sk)∥xk
≤ θ∥sk∥2xk

with mk(s) := f(xk) + ⟨s, gradf(xk)⟩xk
+ 1

2⟨s,Hessf(xk)[s]⟩xk
+ M

3 ∥s∥
3
xk

is 3-forward
descent algorithm when f has ρ-Lipschitz continuous Hessians and M > ρ/2.

Remark The rates of convergence that we attain for p-descent methods are curvature indepen-
dent, improving on the popular result for Riemannian gradient descent in [16] at the cost of some
additional assumptions, and also matches the curvature independent guarantees stated in [5] for Rie-
mannian gradient descent and proximal descent algorithms over non-negatively curved manifolds.

Remark This theorem allows us to give the first known rates for a cubic-regularized Newton type
algorithm over Riemannian manifolds for g-convex functions. The algorithm is a simpler version
of the practical algorithm by Agarwal et al. [1], which has guarantees in the non-convex setting.

3

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

3. Accelerating descent methods for g-convex and strongly g-convex functions

The energy-based analysis provides an effective way to analyse accelerated versions of descent
methods, as studied by Wilson et al. [15] in the Euclidean case. In this section, we study the
acceleration of the simplest p-forward / backward descent algorithms – which is when p is 2 –
through a Nesterov-style scheme. The algorithm is composed of three updates defined below.

xk+1 = Expyk(τk+1Logyk(zk)) (2a)

yk+1 = Gc(xk+1) (2b)

zk+1 = Expxk+1

(
(αk+1 + βk+1)

−1
{
βk+1Logxk+1

(zk)− gradf(xk+1)
})

(2c)

with y0 = z0 ∈ A ⊆ M. τk ∈ (0, 1), αk, βk > 0 for all k ≥ 0. Gc is a mapping which ensures that
for all x, f(Gc(x))− f(x) ≤ −c∥gradf(x)∥2x. To proceed with the energy based analysis, we first
define the energy function. We use a combination of the function optimality gap and the variant of
the distance to the optimum, formally defined below.

Ek = Ak · (f(yk)− f(x⋆)) +Bk ·
[
∥Logxk

(zk)− Logxk
(x⋆)∥2xk

]
. (3)

This choice of the energy function was previously used by Ahn and Sra [2] to study acceleration of
Riemannian gradient descent for strongly g-convex functions. Since the distance term of the energy
is explicitly dependent on xk, the analysis is not straightforward, as we cannot directly compare
∥Logxk

(y)∥xk
and ∥Logxk+1

(y)∥xk+1
for y in general. To aid us in proceeding with the analysis,

we use the notion of a valid distortion rate which was originally proposed by Ahn and Sra [2].

Definition 3 (Valid Distortion Rate Ahn and Sra [2, Definition 3.2]) δk is a valid distortion rate
at iteration k if ∥Logxk

(zk−1)− Logxk
(x⋆)∥2xk

≤ δk∥Logxk−1
(zk−1)− Logxk−1

(x⋆)∥2xk−1
.

Ahn and Sra [2] provide computable forms of δk based on the iterates xk and zk at each itera-
tion k for Hadamard and non-Hadamard manifolds. Assuming the existence of such valid distortion
rates, we can use Equation 3 with specific setting of parameters Ak, Bk, and show that the acceler-
ated method in Equation 2 with algorithmic parameters τk, αk, βk has better rate guarantees than a
standard 2-forward descent / 2-backward descent algorithm.

Theorem 4 (Guarantees for g-convex functions) Let {yk} be the sequence of y iterates gener-
ated by the algorithm described in Equation 2 when given a g-convex function f , an initialisation
y0 = z0 ∈ A ⊆ M and parameters{

τk+1 =
2AkBk

Ak+1δk+1Bk+1+2BkAk
; αk+1 =

Bk+1−Bk/δk
Ak

; βk+1 =
Bk/δk+1

Ak

Ak = Ak+1 −Ak; Ak+1 =
(k+1)(k+2)

2 ; Bk+1 =
4
c

.

Under (A1), (A2) and (A3) and assuming the existence of a valid distortion rate at every iteration
k ≥ 0, this sequence satisfies

f(yk)− f(x⋆) ≤ E0

k2
+

4/c · diam(A)2 · (1− 1/δmax)

k
, δmax := max

t≤k
δt.

for all k ≥ 0.

Remark Recently, Alimisis et al. [4] proposed a slightly different version of the algorithm stated
in Equation 2 involving a geodesic search step which incurred a search error. In contrast, the algo-
rithm in Equation 2 does not involve such a search step, and as a result, the rate guarantee derived

4

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

in Theorem 4 is free of a search error. When k ≤ CE0,c

1−1/δmax
, the 1/k2 term dominates the 1/k term.

Drawing from the interpretation in [4], this can be viewed as the number of steps until which we
obtain an “accelerated” rate. When δmax = 1 (for e.g., when M is Euclidean), this upper bound
is ∞, and recovers the O(1/k2) rate shown by Nesterov [12]. When δmax → ∞, then we achieve
the same rate as a 2-forward / backward descent algorithm. Due to this, this algorithm achieves a
strictly better rate than a standard 2-forward / backward algorithm as given by our Theorem 2.

While the above analysis was for (weakly) g-convex functions, we can also show that 2-backward
descent algorithms can be accelerated using the same algorithm in Equation 2 with a different set
of algorithmic parameters. This is direct consequence of Ahn and Sra [2, Theorem 3.1], which was
restricted to Gc(·) being a gradient step.

Proposition 5 (Guarantees for µ-strongly g-convex functions) Let {yk} be the sequence of y it-
erates generated by the algorithm described in Equation 2 when given a µ-strongly g-convex func-
tion f , an initialisation y0 = z0 ∈ A ⊆ M and parameters τk+1 =

ξk+1−2µc
1−2µc ; αk+1 = µ; βk+1 =

ξk+1−2µc
2c

Ak+1 =
Ak

1−ξk+1
; Bk+1 =

ξ2k+1

1−ξk+1
· Ak

4c .
,

where ξk+1 is the solution to the equation ξk+1(ξk+1−2µc)
1−ξk+1

=
ξ2k

δk+1
in [2µc, 1) with A0, B0, ξ0 > 0

and c < 1/2µ. Under (A1), (A2) and (A3) and assuming the existence of a valid distortion rate at
each iteration k ≥ 0, this sequence satisfies

f(yk)− f(x⋆) ≤

 k∏
j=1

(1− ξj)

[f(y0)− f(x⋆) +
ξ20
4c

∥Logx0
(z0)− Logx0

(x⋆)∥2x0

]
for all k ≥ 0.

Remark Note that the rate of convergence directly depends on values taken by ξj , which in turn
depends on the variation of the sequence of distortion rates {δj}. Let δmax = maxt≤k δk. When
δmax = 1 (for e.g., when M is Euclidean), Ahn and Sra [2] show in their Lemma 2.1 that the
sequence {ξk}k≥0 converges to

√
2µc. Thus choosing ξ0 ≥

√
2µc, the sequence {ξk}k≥0 converges

to
√
2µc and ξk ≥

√
2µc for all k, giving us the rate O(exp(−

√
2µc · k)). Since µ-strongly g-

convexity corresponds to ((2µ)−1, 2) gradient domination (Definition 9), we can compare this rate
to the rate for 2-backward descent algorithms over ((2µ)−1, 2)-gradient dominated functions, which
is O(exp(−2µc · k)). On the other extreme, when δmax → ∞, then ξk → 2µc, giving us the rate
O(exp(−2µc · k)). As noted for the g-convex case, these guarantees are better than one would
expect from a non-accelerated version, which was noted in [2] but for a gradient descent step.

3.1. Some sufficient conditions for eventual full acceleration of 2-backward descent methods
over µ-strongly g-convex functions

As noted earlier, there exists a computable sequence of valid distortion rates {δk+1} dependent on
the iterates {(xk, zk)} generated by the algorithm in Equation 2. More precisely, for Hadamard
manifolds with sectional curvature lower bounded by −κ < 0, the valid distortion rate at the kth

iteration is given by δk+1 = Tκ(d(xk, zk)) where Tκ(0) = 1. Therefore, it would be instructive to
analyse the rate at which the sequence {d(xk, zk)} converges to 0, and translate that analysis to a

5

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

rate at which the sequence {ξk} converges to
√
2µc. This is the technique adopted in [2] for their

analysis. In this subsection, we extend their analysis to 2-backward descent methods. We begin by
giving the following lemma, which is a generalisation of Lemma 4.2 in [2].

Lemma 6 Let M be a Hadamard manifold and {(xk, yk, zk)} be the sequence of iterates ob-
tained from Algorithm 2 with parameter settings stated in Proposition 5, where the descent con-
stant c of Gc satisfies c < min{1/6L, 1/2µ} given that f has L-Lipschitz gradients. Define D0 =

f(y0) − f(x⋆) +
ξ20
4c∥Logz0(x

⋆)∥2z0 . If ξ0 ∈ (2µc,
√
2µc] and the iterates satisfy d(xk+1, yk+1) ≤

C′
L,µ,c

√∏k
j=1(1− ξj) ·D0 for every k ≥ 0, then d(xk+1, zk+1) ≤ CL,µ,c

√∏k
j=1(1− ξj) ·D0 for

every k ≥ 0 as well, where CL,µ,c and C′
L,µ,c are constants only depending on L, µ, c.

Remark The above lemma states that with any 2-backward descent method that descends suf-
ficiently and causes the sequence of distances {d(xk, yk)} to decrease at a geometric rate, then
the sequence of distances {d(xk, zk)} decreases at the same rate. The original analysis by Ahn
and Sra [2] provides such a result when Gc is a gradient descent update, along with an interest-
ing requirement that the step size be strictly greater than 1/L. Recall that for a gradient update,
c = c(γ) := γ(1 − Lγ/2) and argmaxγ c(γ) = 1/L. Our lemma states that a small enough descent
is sufficient for a similar geometric convergence property.

With the above lemma, we can provide a general convergence result due to a careful analysis of
the evolution of the sequence {ξk} by Ahn and Sra [2].

Proposition 7 (Eventual acceleration of the Algorithm in Eq. 2) Let (xk, yk) be the (x, y) iter-
ates generated by the algorithm in Equation 2 when given a µ-strongly g-convex functions with
parameter settings stated in Proposition 5, c satisfying c < min{1/6L, 1/2µ} and ξ0 ∈ (2µc,

√
2µc],

where f also has L-Lipschitz gradients. Then, when M is a Hadamard manifold with sectional
curvature lower bounded by −κ < 0, the sequence of iterates {yk} generated by this algorithm
satisfies f(yk) − f(x⋆) ≤

(∏k
j=1(1− ξj)

)
· D0 for all k ≥ 0. Moreover, if d(xk+1, yk+1) ≤

C′
L,µ,c

√∏k
j=1(1− ξj) ·D0 for all k ≥ 0, then the sequence {ξk} satisfies |ξk −

√
2µc| ≤ ϵ when

k ≥ Cκ,L,µ,c log(1/ϵ) where Cκ,L,µ,c is a constant depending on κ, L, µ, c.

Remark To achieve full acceleration, we would require ξk =
√
2µc for all k ≥ 0. This theorem

states that while we might not be able to have ξk =
√
2µc for all k ≥ 0, we can still get arbitrarily

close as the algorithm proceeds, and eventually achieve acceleration. We conjecture that this anal-
ysis will also extend to non-Hadamard manifolds under suitable assumptions ((A1), (A2), (A3)) as
discussed in [2, Section D].

4. Conclusion

In this work, we presented a general analysis of Riemannian optimisation methods using an energy-
based analysis framework that has gained popularity in the Euclidean setting and more recently in
the Riemannian setting. Such an analysis is also conducive to a study of accelerated first order
Riemannian descent methods. To this end, we showed that we can obtain a accelerated algorithms
for first order descent methods in a straightforward manner in the g-convex and strongly g-convex
setting, and present an analysis for the latter case which extends an existing analysis. Some open
questions remain: can we achieve (eventual) acceleration for a fully proximal point method, or other
higher order methods such as cubic-regularized Newton even on bounded domains?

6

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

References

[1] Naman Agarwal, Nicolas Boumal, Brian Bullins, and Coralia Cartis. Adaptive regularization
with cubics on manifolds. Mathematical Programming, 188(1):85–134, 2021.

[2] Kwangjun Ahn and Suvrit Sra. From Nesterov’s estimate sequence to Riemannian accelera-
tion. In Conference on Learning Theory, pages 84–118. PMLR, 2020.

[3] Foivos Alimisis, Antonio Orvieto, Gary Bécigneul, and Aurelien Lucchi. A continuous-time
perspective for modeling acceleration in Riemannian optimization. In International Confer-
ence on Artificial Intelligence and Statistics, pages 1297–1307. PMLR, 2020.

[4] Foivos Alimisis, Antonio Orvieto, Gary Becigneul, and Aurelien Lucchi. Momentum im-
proves optimization on Riemannian manifolds. In International Conference on Artificial In-
telligence and Statistics, pages 1351–1359. PMLR, 2021.

[5] Glaydston C Bento, Orizon P Ferreira, and Jefferson G Melo. Iteration-complexity of gradient,
subgradient and proximal point methods on Riemannian manifolds. Journal of Optimization
Theory and Applications, 173(2):548–562, 2017.

[6] Nicolas Boumal. An introduction to optimization on smooth manifolds. To appear with Cam-
bridge University Press, Jun 2022. URL https://www.nicolasboumal.net/book.

[7] Christopher Criscitiello and Nicolas Boumal. Negative curvature obstructs acceleration
for geodesically convex optimization, even with exact first-order oracles. arXiv preprint
arXiv:2111.13263, 2021.

[8] Linus Hamilton and Ankur Moitra. A no-go theorem for robust acceleration in the hyperbolic
plane. Advances in Neural Information Processing Systems, 34:3914–3924, 2021.

[9] Jungbin Kim and Insoon Yang. Accelerated Gradient Methods for Geodesically Convex Op-
timization: Tractable Algorithms and Convergence Analysis. In International Conference on
Machine Learning, pages 11255–11282. PMLR, 2022.

[10] David Martı́nez-Rubio. Global Riemannian acceleration in hyperbolic and spherical spaces.
In International Conference on Algorithmic Learning Theory, pages 768–826. PMLR, 2022.

[11] Yu Nesterov. Accelerating the cubic regularization of Newton’s method on convex problems.
Mathematical Programming, 112(1):159–181, 2008.

[12] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o (1/kˆ2). In Doklady AN USSR, volume 269, pages 543–547, 1983.

[13] Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer.

[14] Ashia C Wilson, Lester Mackey, and Andre Wibisono. Accelerating rescaled gradient descent:
Fast optimization of smooth functions. Advances in Neural Information Processing Systems,
32, 2019.

[15] Ashia C Wilson, Ben Recht, and Michael I Jordan. A Lyapunov Analysis of Accelerated
Methods in Optimization. J. Mach. Learn. Res., 22:113–1, 2021.

7

https://www.nicolasboumal.net/book

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

[16] Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In
Conference on Learning Theory, pages 1617–1638. PMLR, 2016.

[17] Hongyi Zhang and Suvrit Sra. Towards Riemannian accelerated gradient methods. arXiv
preprint arXiv:1806.02812, 2018.

8

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

Appendix A. More definitions

Let A be a geodesically unique convex subset of the Riemannian manifold M. The zeroth order
definition of g-convexity states that a function f : A → R is g-convex if for any two points x, y in
A,

f(γx,y(t)) ≤ tf(y) + (1− t)f(y)

for all t ∈ [0, 1] where γx,y : [0, 1] → A is the geodesic with end points given by x and y. When f
is differentiable, we obtain an equivalent definition of g-convex in terms of the gradient of f ,
which is often used to prove the results in this paper; this result is formally stated in [6, Theorem
11.21]. When a differentiable function f is g-convex, then for all x, y in A

f(y) ≥ f(x) + ⟨gradf(x),Logx(y)⟩x.

Analogously, a differentiable function f is µ-strongly g-convex satisfies for all x, y in A

f(y) ≥ f(x) + ⟨gradf(x),Logx(y)⟩x +
µ

2
∥Logx(y)∥2x.

With the notion of curves and geodesics, one can transport vectors in a tangent space at one point
to the tangent space at another point. This is made possible via the concept of parallel transports.
The parallel transport between TxM and TyM for x, y ∈ M along curve c is denoted by
Γ(c)yx : TxM → TyM. When c is a geodesic between x and y we omit the c in the notation and
use Γy

x to simplify the notation. A key property of parallel transports is that it is norm-preserving:
for any v ∈ TxM, ∥v∥x = ∥Γy

xv∥y where Γy
xv ∈ TyM per the definition of Γy

x. We use the parallel
transport to hence define the property of L-Lipschitz gradients. A function f : A → R is said to
have L-Lipschitz gradients when it satisfies for all x, y ∈ A,

∥gradf(x)− Γx
ygradf(y)∥x ≤ L · d(x, y).

Such a function is also L-g-smooth i.e., for all x, y ∈ A [6, Corollary 10.54]

f(y) ≤ f(x) + ⟨gradf(x),Logx(y)⟩x +
L

2
∥Logx(y)∥2x.

A twice differentiable function f : M → R is said to have ρ-Lipschitz continuous Riemannian
Hessians, when for all x, s in the domain of the exponential map,∣∣∣∣f(Expx(s))− f(x)− ⟨s, gradf(x)⟩x −

1

2
⟨s,Hessf(x)[s]⟩x

∣∣∣∣ ≤ ρ

6
∥s∥3x.

Equivalently from [6, Corollary 10.56],∥∥∥∥{ΓExpx(s)
x

}−1
gradf(Expx(s))− gradf(x)−Hessf(x)[s]

∥∥∥∥
x

≤ ρ

2
∥s∥2x.

Appendix B. Rates for p-descent algorithms for non-convex functions and
gradient-dominated functions

Theorem 8 (Rate for p-descent over non-convex functions) Let f a non-convex function, and
let x0 ∈ M be the initialisation. Then, a p-descent algorithm (forward (Eq. 1a) or backward (Eq.
1b)) satisfies the following guarantee

min
t≤k

∥gradf(xt)∥xt ≤
(
f(x0)− f(x⋆)

ck

)(p−1)/p

9

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

Definition 9 ((τ, p)-gradient dominated functions) A differentiable function f : M → R is said
to be (τ, p)-gradient dominated if x⋆ is the global minimizer of f and for all x

f(x)− f(x⋆) ≤ τ∥gradf(x)∥p/(p−1)
x .

Theorem 10 (Rate for p-descent algorithms over (τ, p)-gradient dominated functions) Let f
be a (τ, p)-gradient dominated function, and let x0 ∈ M be the initialisation. Then, a p-descent
algorithm satisfies the following guarantees

f(xk)− f(x⋆) ≤
(
1 +

c

τ

)−k
(f(x0)− f(x⋆)), ∀ k ≥ 0 [p-forward descent]

f(xk)− f(x⋆) ≤
(
1− c

τ

)k
(f(x0)− f(x⋆)), ∀ k ≥ 0 [p-backward descent]

Appendix C. Proofs for the rate theorems in Section 2 and B

Proof [Proof of Theorem 2] We begin by noting that under the assumptions, the exponential map
and its inverse exists at every v ∈ TxM for every x ∈ A. Consider an energy function

Ek = Ak(f(xk)− f(x⋆)).

Here, {Ak}k≥1 is a sequence satisfying Ak+1 = Ak + ak and x⋆ is the minimizer of f . The
difference between Ek+1 and Ek is

Ek+1 − Ek = (Ak + ak)(f(xk+1)− f(x⋆))−Ak(f(xk)− f(x⋆))

= Ak(f(xk+1)− f(xk)) + ak(f(xk+1)− f(x⋆)) (4a)

= (Ak + ak)(f(xk+1)− f(x⋆))− (Ak + ak)(f(xk)− f(x⋆)) + ak(f(xk)− f(x⋆))

= (Ak + ak)(f(xk+1)− f(xk)) + ak(f(xk)− f(x⋆)). (4b)

Since f is g-convex,

f(xk)− f(x⋆) ≤ ⟨gradf(xk),−Logxk
(x⋆)⟩xk

, and

f(xk+1)− f(x⋆) ≤ ⟨gradf(xk+1),−Logxk+1
(x⋆)⟩xk+1

.

If A is a p-forward-descent algorithm w.r.t. f , we can use Equation 1a and bound the difference in
energies

Ek+1 − Ek ≤ −cAk∥gradf(xk+1)∥
p/(p−1)
xk+1

+ ak⟨gradf(xk+1),−Logxk+1
(x⋆)⟩xk+1

=
cAkp

p− 1

(〈
gradf(xk+1),−

ak
cAk

p− 1

p
Logxk+1

(x⋆)

〉
xk+1

−
∥gradf(xk+1)∥

p/(p−1)
xk+1

p/(p−1)

)
(5)

10

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

If A is a p-backward-descent algorithm w.r.t. f , we can use Equation 1b and bound the difference
in energies

Ek+1 − Ek ≤ −c(Ak + ak)∥gradf(xk)∥
p/(p−1)
xk

+ ak⟨gradf(xk),−Logxk
(x⋆)⟩xk

=
c(Ak + ak)p

p− 1

(〈
gradf(xk),−

ak
c(Ak + ak)

p− 1

p
Logxk

(x⋆)

〉
xk

−∥gradf(xk)∥
p/(p−1)
xk

p/(p−1)

)
. (6)

To bound the quantity inside the brackets in Equations 5 and 6, we use Lemma 11. Specifically, we
invoke the lemma with q = p/p−1 and

• α = − ak
cAk

p−1
p for Equation 5,

• α = − ak
c(Ak+ak)

p−1
p for Equation 6

to get

(5) ⇒ Ek+1 − Ek ≤ cAkp

p(p− 1)
·
(
ak
Ak

)p

·
(
p− 1

p

)p

∥Logxk+1
(x⋆)∥pxk+1

= c′p
apk

Ap−1
k

∥Logxk+1
(x⋆)∥pxk+1

(7)

(6) ⇒ Ek+1 − Ek ≤ c(Ak + ak)p

p(p− 1)
·
(

ak
Ak + ak

)p

·
(
p− 1

p

)p

∥Logxk
(x⋆)∥pxk

= c′p
apk

(Ak + ak)p−1
∥Logxk

(x⋆)∥pxk
. (8)

where c′p =
c1−p

p

(
p−1
p

)p−1
. By definition of the exponential map, d(x, z) = ∥Exp−1

x (z)∥x for all

x, z ∈ A. Also, by (A2), x⋆ ∈ A. Therefore, d(z, x⋆) = ∥Exp−1
z (x⋆)∥z ≤ diam(A) for any

z ∈ A. This further bounds of the difference in energy as

(7) ⇒ Ek+1 − Ek ≤ c′p
apk

Ap−1
k

diam(A)p (9)

(8) ⇒ Ek+1 − Ek ≤ c′p
apk

(Ak + ak)p−1
diam(A)p (10)

Choose Ak = k(k+1)...(k+p−1)
p! . This gives ak = Ak+1 −Ak = (k+1)...(k+p−1)

(p−1)! . Furthermore,

apk
Ap−1

k

=
(k + 1) . . . (k + p− 1)

kp−1︸ ︷︷ ︸
≤pp−1

(p− 1)!p−1(pp−1)

(p− 1)!p−1(p− 1)!
≤ p2(p−1)

(p− 1)!

apk
(Ak + ak)p−1

=
(k + 1) . . . (k + p− 1)

(k + p)p−1︸ ︷︷ ︸
≤1

(p− 1)!p−1(pp−1)

(p− 1)!p−1(p− 1)!
≤ pp−1

(p− 1)!

11

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

We finally have

(9) ⇒ Ek+1 − Ek ≤ c1−p

p

(
p− 1

p

)p−1

· p2(p−1)

(p− 1)!︸ ︷︷ ︸
c′′p,fwd

·diam(A)p

(10) ⇒ Ek+1 − Ek ≤ c1−p

p

(
p− 1

p

)p−1

· pp−1

(p− 1)!︸ ︷︷ ︸
c′′p,bwd

·diam(A)p.

Summing both sides from k = 0 to k = T − 1, we get

ET − E0 ≤ c′′p,fwd · diam(A)p · T

⇒ ET ≤ c′′p,fwd · diam(A)p · T + E0 ⇒ f(xT)− f(x⋆) ≤ c′′p,fwd ·
T

AT
· diam(A)p, and

ET − E0 ≤ c′′p,bwd · diam(A)p · T

⇒ ET ≤ c′′p,bwd · diam(A)p · T + E0 ⇒ f(xT)− f(x⋆) ≤ c′′p,bwd ·
T

AT
· diam(A)p.

Since AT ≥ T p/p!, T/AT ≤ p!/T p−1. Consequently,

p-fwd-descent ⇒ f(xT)− f(x⋆) ≤ c1−p

p

(
p− 1

p

)p−1

· p2(p−1)

(p− 1)!

p!

T p−1
· diam(A)p

=
c1−p · (p2 − p)p−1 · diam(A)p

T p−1
,

p-bwd-descent ⇒ f(xT)− f(x⋆) ≤ c1−p

p

(
p− 1

p

)p−1

· pp−1

(p− 1)!

p!

T p−1
· diam(A)p

=
c1−p · (p− 1)p−1 · diam(A)p

T p−1
.

Proof [Proof of Theorem 8] If A is a p-forward descent algorithm w.r.t. f , we can use Equation 1a
to get

c∥gradf(xk+1)∥
p/p−1
xk+1

≤ f(xk)− f(xk+1)

T−1∑
k=0

c∥gradf(xk+1)∥
p/p−1
xk+1

≤ f(x0)− f(xT)

≤ f(x0)− f(x⋆)

⇒ min
k≤T

∥gradf(xk)∥
p/p−1
xk

≤ f(x0)− f(x⋆)

cT

⇒ min
k≤T

∥gradf(xk)∥xk
≤
(
f(x0)− f(x⋆)

cT

)(p−1)/p

.

12

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

If A is a p-backward descent algorithm w.r.t. f , we can use Equation 1b to get

c∥gradf(xk)∥
p/p−1
xk

≤ f(xk)− f(xk)

T−1∑
k=0

c∥gradf(xk)∥
p/p−1
xk

≤ f(x0)− f(xT)

≤ f(x0)− f(x⋆)

⇒ min
k≤T

∥gradf(xk)∥
p/p−1
xk

≤ f(x0)− f(x⋆)

cT

⇒ min
k≤T

∥gradf(xk)∥xk
≤
(
f(x0)− f(x⋆)

cT

)(p−1)/p

.

Proof [Proof of Theorem 10] Consider the energy function

Ek = f(xk)− f(x⋆).

Then, we obtain
Ek+1 − Ek = f(xk+1)− f(xk).

If A is a p-forward descent algorithm w.r.t. f , then using Eq. 1a

Ek+1−Ek = f(xk+1)−f(xk) ≤ −c∥gradf(xk+1)∥
p/(p−1)
xk+1

≤ − c

τ
(f(xk+1)−f(x⋆)) = − c

τ
Ek+1.

As a result,

Ek+1 ≤
(
1 +

c

τ

)−1
Ek ⇒ ET ≤

(
1 +

c

τ

)−T
E0.

If A is a p-backward descent algorithm w.r.t. f , then using Eq. 1b

Ek+1 − Ek = f(xk+1)− f(xk) ≤ −c∥gradf(xk)∥
p/(p−1)
xk

≤ − c

τ
(f(xk)− f(x⋆)) = − c

τ
Ek.

As a result,

Ek+1 ≤
(
1− c

τ

)
Ek ⇒ ET ≤

(
1− c

τ

)T
E0.

C.1. Proofs for the examples of descent methods

Proof [Rate for Riemannian gradient descent] Using the assumptions, we have for k ≥ 0 that

f(xk+1) ≤ f(xk) + ⟨gradf(xk),Logxk
(xk+1)⟩xk

+
L

2
∥Logxk

(xk+1)∥2xk

= f(xk)− η∥gradf(xk)∥2xk
+

η2L

2
∥gradf(xk)∥2xk

.

13

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

When η = 1/L, we get a simplified bound as

f(xk+1) ≤ f(xk)−
1

2L
∥gradf(xk)∥2xk

.

Using Theorem 2 in the backward case with c = 1/2L, p = 2, we directly obtain

f(xk)− f(x⋆) ≤ 2L · diam(A)2

k
.

Proof [Rate for Riemannian proximal descent] Using the assumptions, we have for k ≥ 0 that

f(xk+1) +
1

2η
∥Logxk+1

(xk)∥2xk+1
≤ f(xk)

⇒ f(xk+1) ≤ f(xk)−
1

2η
∥Logxk+1

(xk)∥2xk+1
.

The proximal update also satisfies Logxk+1
(xk) = ηgradf(xk+1) leading to

f(xk+1) ≤ f(xk)−
η

2
∥gradf(xk+1)∥2xk+1

.

Using Theorem 2 in the forward case with c = η
2 , p = 2, we directly obtain

f(xk)− f(x⋆) ≤ 4η−1 · diam(A)2

k
.

Proof [Rate for Cubic-regularized Newton] For convenience, we will denote Γ
Expx(s)
x by Ps when

operationalising the property of function with ρ-Lipschitz continuous Hessians when the choice of
x is obvious Under our assumptions, the domain of the exponential map when restricted to x ∈ A
is the tangent space at every point. At iteration k, the update velocity satisfies

f(xk) + ⟨sk, gradf(xk)⟩xk
+

1

2
⟨sk,Hessf(xk)[sk]⟩xk

+
M

3
∥sk∥3xk

≤ f(xk).

Using the fact that f has ρ-Lipschitz continuous Riemannian Hessians, we get

f(xk+1) ≤ f(xk) + ⟨sk, gradf(xk)⟩xk
+

1

2
⟨sk,Hessf(xk)[sk]⟩xk

+
ρ

6
∥sk∥3xk

≤ f(xk)−
(
M

3
− ρ

6

)
∥sk∥3xk

.

From Agarwal et al. [1, Theorem 3], the gradient of mk at sk can be computed as

∇mk(sk) = gradf(xk) + Hessf(xk)[sk] +M∥sk∥xk
sk

= P−1
sk

gradf(xk+1) + gradf(xk) + Hessf(xk)[sk]− P−1
sk

gradf(xk+1)

+M∥sk∥xk
sk

14

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

In the last step, we have added and subtracted P−1
sk

gradf(xk+1). This leads us to,

∥∇mk(sk)∥xk
= ∥P−1

sk
gradf(xk+1) + gradf(xk) + Hessf(xk)[sk]− P−1

sk
gradf(xk+1)

+M∥sk∥xk
sk∥xk

≥ ∥P−1
sk

gradf(xk+1)∥xk

− ∥P−1
sk

gradf(xk+1)− gradf(xk)−Hessf(xk)[sk]∥xk

−M∥sk∥2xk

≥ ∥gradf(xk+1)∥xk+1
− ρ

2
∥sk∥2xk

−M∥sk∥2xk

⇒ θ∥sk∥2xk
≥ ∥gradf(xk+1)∥xk+1

− ρ

2
∥sk∥2xk

−M∥sk∥2xk

In the penultimate step, we have used the alternative characterisation of ρ-Hessian Lipschitz
functions. Therefore,

∥gradf(xk+1)∥xk+1
≤
(
θ +

ρ

2
+M

)
∥sk∥2xk

.

Combining this with the descent statement previously, we get

f(xk+1) ≤ f(xk)−
(
M

3
− ρ

6

)(
θ +

ρ

2
+M

)−3/2
∥gradf(xk+1)∥

3/2
xk+1

.

When θ = ρ/2,M = ρ, we get a concise inequality

f(xk+1) ≤ f(xk)−
1

12
√
2
√
ρ
∥gradf(xk+1)∥

3/2
xk+1

.

Using Theorem 2 in the forward case with c = 1
12

√
2
√
ρ
, p = 3, we directly obtain

f(xk)− f(x⋆) ≤ 10368ρ · diam(A)3

k2
.

Appendix D. Proof for results in Section 3

In the proof that follow, we denote ∥Logx(w)− Logx(v)∥x by dx(w, v) for convenience. With this
notation, the δk is a valid distortion rate at iteration k if

dxk
(zk−1, x

⋆)2 ≤ δkdxk−1
(zk−1, x

⋆)2.

15

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

D.1. Proof for convergence guarantees of Algorithm 2

Proof [Proof of Theorem 4] We analyse the difference in energy functions at iterations k and
k + 1. We assume that f is µ-strongly g-convex, and at the end make the substitution µ = 0.

Ek+1 − Ek = Ak+1 · (f(yk+1)− f(x⋆))−Ak · (f(yk)− f(x⋆))︸ ︷︷ ︸
∆EF

k

+Bk+1 · dxk+1
(zk+1, x

⋆)2 −Bk · dxk
(zk, x

⋆)2︸ ︷︷ ︸
∆ED

k

We begin by simplifying ∆ED
k . First, using the fact that δk+1 is a valid distortion rate, we get:

∆ED
k ≤Bk+1dxk+1

(zk+1, x
⋆)2 − Bk

δk+1
dxk+1

(zk, x
⋆)2

=

(
Bk+1 −

Bk

δk+1

)
︸ ︷︷ ︸

Bk

dxk+1
(zk+1, x

⋆)2 +
Bk

δk+1
(dxk+1

(zk+1, x
⋆)2 − dxk+1

(zk, x
⋆)2)

Next, since the tangent space TwM is Euclidean for w ∈ M, we have the canonical three-term
lemma, which states

dw(a, b)
2 + dw(b, c)

2 − dw(c, a)
2 = 2⟨Logw(b)− Logw(a),Logw(b)− Logw(c)⟩w.

Using this with w = xk+1, a = x⋆, b = zk+1 and c = zk we get the bound

∆ED
k ≤ Bkdxk+1

(zk+1, x
⋆)2 − Bk

δk+1
dxk+1

(zk, zk+1)
2

+
2Bk

δk+1

(
⟨Logxk+1

(zk+1)− Logxk+1
(x⋆),Logxk+1

(zk+1)− Logxk+1
(zk)⟩xk+1

)
Due to the update step 2c,

αk+1 + βk+1

βk+1
Logxk+1

(zk+1) = Logxk+1
(zk)−

1

βk+1
gradf(xk+1)

⇒ Logxk+1
(zk+1)− Logxk+1

(zk) = −αk+1

βk+1
Logxk+1

(zk+1)−
1

βk+1
gradf(xk+1).

16

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

We use this to obtain the simplification

∆ED
k ≤ Bkdxk+1

(zk+1, x
⋆)2 − Bk

δk+1
dxk+1

(zk, zk+1)
2

+
2Bk

βk+1δk+1

〈
Logxk+1

(zk+1)− Logxk+1
(x⋆),−αk+1Logxk+1

(zk+1)− gradf(xk+1)
〉
xk+1

= Bkdxk+1
(zk+1, x

⋆)2 − Bk

δk+1
dxk+1

(zk, zk+1)
2

+
2Bk

βk+1δk+1

(〈
Logxk+1

(zk+1)− Logxk+1
(x⋆),−αk+1Logxk+1

(zk+1) + αk+1Logxk+1
(xk+1)

〉
xk+1

−
〈
Logxk+1

(zk+1)− Logxk+1
(x⋆), gradf(xk+1)

〉
xk+1

)
= Bkdxk+1

(zk+1, x
⋆)2

+
2Bkαk+1

δk+1βk+1

〈
Logxk+1

(x⋆)− Logxk+1
(zk+1),Logxk+1

(zk+1)− Logxk+1
(xk+1)

〉
xk+1

+
2Bk

δk+1βk+1

〈
Logxk+1

(x⋆)− Logxk+1
(zk+1), gradf(xk+1)

〉
xk+1

− Bk

δk+1
dxk+1

(zk, zk+1)
2

Applying the three-term lemma again with w = xk+1, a = xk+1, b = zk+1 and c = x⋆, we obtain

∆ED
k ≤ Bkdxk+1

(zk+1, x
⋆)2

+
Bkαk+1

δk+1βk+1

(
dxk+1

(xk+1, x
⋆)2 − dxk+1

(zk+1, xk+1)
2 − dxk+1

(zk+1, x
⋆)2
)

+
2Bk

δk+1βk+1

〈
Logxk+1

(x⋆)− Logxk+1
(zk+1), gradf(xk+1)

〉
xk+1

− Bk

δk+1
dxk+1

(zk, zk+1)
2

=

(
Bk −

Bkαk+1

δk+1βk+1

)
dxk+1

(zk+1, x
⋆)2︸ ︷︷ ︸

T1

− Bk

δk+1

(
αk+1

βk+1
dxk+1

(zk+1, xk+1)
2 + dxk+1

(zk+1, zk)
2

)

+
2Bk

δk+1βk+1

〈
Logxk+1

(x⋆)− Logxk+1
(zk+1), gradf(xk+1)

〉
xk+1

+
Bkαk+1

δk+1βk+1
dxk+1

(xk+1, x
⋆)2

= T1 −
Bk(αk+1 + βk+1)

δk+1βk+1

(
αk+1

αk+1 + βk+1
dxk+1

(zk+1, xk+1)
2 +

βk+1

αk+1 + βk+1
dxk+1

(zk, zk+1)
2

)
+

2Bk

δk+1βk+1

〈
Logxk+1

(x⋆)− Logxk+1
(zk+1), gradf(xk+1)

〉
xk+1

+
Bkαk+1

δk+1βk+1
dxk+1

(xk+1, x
⋆)2

Since the squared projected distance is effectively the squared norm of the distance between two
vectors in a Euclidean space, we can use the fact that

1

2
∥a− λb− (1− λ)c∥2 ≤ λ

2
∥a− b∥2 + 1− λ

2
∥a− c∥2.

This is due to the convexity of the function fa(x) =
1
2∥x− a∥2. Using the inequality over Txk+1

M
with a = Logxk+1

(zk+1), b = Logxk+1
(xk+1), c = Logxk+1

(zk), λ =
αk+1

βk+1+αk+1
and

17

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

wk+1 = λb+ (1− λ)c for some wk+1 ∈ Txk+1
M, we get

∆ED
k ≤ T1 −

Bk(αk+1 + βk+1)

δk+1βk+1
∥Logxk+1

(zk+1)− wk+1∥2xk+1
+

Bkαk+1

δk+1βk+1
dxk+1

(xk+1, x
⋆)2

+
2Bk

δk+1βk+1

〈
Logxk+1

(x⋆)− Logxk+1
(zk+1), gradf(xk+1)

〉
xk+1

= T1 −
Bk(αk+1 + βk+1)

δk+1βk+1
∥Logxk+1

(zk+1)− wk+1∥2xk+1
+

Bkαk+1

δk+1βk+1
dxk+1

(xk+1, x
⋆)2

+
2Bk

δk+1βk+1
⟨Logxk+1

(x⋆), gradf(xk+1)⟩xk+1
− 2Bk

δk+1βk+1
⟨wk+1, gradf(xk+1)⟩xk+1

+
2Bk

δk+1βk+1
⟨wk+1 − Logxk+1

(zk+1), gradf(xk+1)⟩xk+1

≤ T1 −
Bk(αk+1 + βk+1)

δk+1βk+1
∥Logxk+1

(zk+1)− wk+1∥2xk+1
+

Bkαk+1

δk+1βk+1
dxk+1

(xk+1, x
⋆)2

+
2Bk

δk+1βk+1
(f(x⋆)− f(xk+1)− µ/2 · d(xk+1, x

⋆))

− 2Bk

δk+1βk+1
⟨wk+1, gradf(xk+1)⟩xk+1

+
2Bk

δk+1βk+1(αk+1 + βk+1)
∥gradf(xk+1)∥2xk+1

The final inequality is due to the facts that

wk+1 = λb+ (1− λ)c =
βk+1

αk+1 + βk+1
= Logxk+1

(zk+1) +
1

αk+1 + βk+1
gradf(xk+1)

and that f is µ-strongly g-convex.
Next, note that the choice of αk+1 and βk+1 satisfies Bk =

Bkαk+1

δk+1βk+1
and hence T1 = 0.

∆ED
k ≤ T1−

Bk(αk+1 + βk+1)

δk+1βk+1
∥Logxk+1

(zk+1)− wk+1∥2xk+1︸ ︷︷ ︸
≤0

+
Bk

δk+1βk+1
(αk+1 − µ)dxk+1

(xk+1, x
⋆)2

+
2Bk

δk+1βk+1
(f(x⋆)− f(xk+1)) +

2Bk

δk+1βk+1(αk+1 + βk+1)
∥gradf(xk+1)∥2xk+1

− 2Bk

δk+1βk+1
⟨wk+1, gradf(xk+1)⟩xk+1

≤ T1 +
Bk

δk+1βk+1
(αk+1 − µ)dxk+1

(xk+1, x
⋆)2 +

2Bk

δk+1βk+1
(f(x⋆)− f(xk+1))

+
2Bk

δk+1βk+1(αk+1 + βk+1)
∥gradf(xk+1)∥2xk+1

− 2Bk

δk+1βk+1
⟨wk+1, gradf(xk+1)⟩xk+1

=
Bk

δk+1βk+1
(αk+1 − µ)dxk+1

(xk+1, x
⋆)2 +

2Bk

δk+1βk+1(αk+1 + βk+1)
∥gradf(xk+1)∥2xk+1

+
2Bk

δk+1βk+1
(f(x⋆)− f(xk+1))−

2Bk

δk+1βk+1
⟨wk+1, gradf(xk+1)⟩xk+1

=
Bk

δk+1βk+1
(αk+1 − µ)dxk+1

(xk+1, x
⋆)2 +

2Bk

δk+1βk+1(αk+1 + βk+1)
∥gradf(xk+1)∥2xk+1

+
2Bk

δk+1βk+1
(f(x⋆)− f(xk+1))−

2Bk

δk+1(αk+1 + βk+1)
⟨Logxk+1

(zk), gradf(xk+1)⟩xk+1
.

18

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

Due to the form of the update in Eq. 2a, Logxk+1
(yk) =

τk+1

1−τk+1
Logxk+1

(zk).

∆ED
k ≤ Bk

δk+1βk+1
(αk+1 − µ)dxk+1

(xk+1, x
⋆)2 +

2Bk

δk+1βk+1(αk+1 + βk+1)
∥gradf(xk+1)∥2xk+1

+
2Bk

δk+1βk+1
(f(x⋆)− f(xk+1)) +

2Bk(1− τk+1)

δk+1(αk+1 + βk+1)τk+1
⟨Logxk+1

(yk), gradf(xk+1)⟩xk+1

≤ Bk

δk+1βk+1
(αk+1 − µ)dxk+1

(xk+1, x
⋆)2 +

2Bk

δk+1βk+1(αk+1 + βk+1)
∥gradf(xk+1)∥2xk+1

+
2Bk

δk+1βk+1
(f(x⋆)− f(xk+1))

+
2Bk(1− τk+1)

δk+1(αk+1 + βk+1)τk+1
(f(yk)− f(xk+1)−µ/2 · dxk+1

(xk+1, yk)
2︸ ︷︷ ︸

≤0

)

Finally, by definition of the constants, we have

∆ED
k ≤ Ak

(
Bk

Ak

− µ

)
dxk+1

(xk+1, x
⋆)2 +

2A
2
k

Bk+1
∥gradf(xk+1)∥2xk+1

+ 2Ak(f(x
⋆)− f(xk+1))

+
2Bk(1− τk+1)Ak

δk+1Bk+1τk+1
(f(yk)− f(xk+1))

= (Bk −Akµ)dxk+1
(xk+1, x

⋆)2 +
2A

2
k

Bk+1
∥gradf(xk+1)∥2xk+1

+ 2Ak(f(x
⋆)− f(xk+1))

+
2Bk(1− τk+1)Ak

δk+1Bk+1τk+1
(f(yk)− f(xk+1)).

Next, we look at ∆EF
k .

∆EF
k = Ak+1(f(yk+1)− f(xk+1)) +Ak(f(xk+1)− f(yk)) +Ak(f(xk+1)− f(x⋆)).

As a result of these computations:

∆Ek ≤ Ak+1(f(yk+1)− f(xk+1)) +

(
Ak+1 −

BkAk(1− τk+1)

δk+1Bk+1τk+1

)
(f(xk+1)− f(yk))

+
2A

2
k

Bk+1
∥gradf(xk+1)∥2xk+1

+ (Bk − µAk)dxk+1
(xk+1, x

⋆)2.

The choice of τk+1 ensure that the coefficient of the f(xk+1)− f(yk) term is 0. This leads to,
along with µ = 0,

∆Ek ≤ Ak+1(f(yk+1)− f(xk+1)) +
2A

2
k

Bk+1
∥gradf(xk+1)∥2xk+1

+Bkdxk+1
(xk+1, x

⋆)2.

When, Gc is a 2-backward descent method, f(yk+1)− f(xk+1) ≤ −c∥gradf(xk+1)∥2xk+1
. This

gives

Ek+1 − Ek ≤ −

(
cAk+1 −

2A
2
k

Bk+1

)
∥gradf(xk+1)∥2xk+1

+BkR
2.

19

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

Choose Bk+1 =
4
c and Ak+1 =

(k+1)(k+2)
2 . Note that for this choice Ak = Ak+1 −Ak = (k + 1)

and therefore, cAk+1 >
cA

2
k

2 . Due to this,

Ek+1 − Ek ≤ 4

c

(
1− 1

δk+1

)
diam(A)2 ⇒ ET − E0 ≤

4T

c

(
1− 1

δmax

)
diam(A)2.

This gives us a rate

f(yT)− f(x⋆) ≤ E0

AT
+

4
c

(
1− 1

δmax

)
T

AT
≤ E0

T 2
+

4
c

(
1− 1

δmax

)
diam(A)2

T
.

Proof [Proof of Proposition 5] The proof of this proposition is directly given by Ahn and Sra [2,
Theorem 3.1] where we make the substitution ∆γ → c. By definition 2µ∆γ = 2µ · γ(1− Lγ/2) is
strictly less than 0 under the preconditions of their theorem, whereas due to our generality, we will
have to enforce it as a property of Gc. We also find that their theorem holds more generally when
Exp and Log is well-defined at every x ∈ A, hence the additional assumptions (A1), (A2) and
(A3). As noted earlier, when M is a Hadamard manifold, these assumptions hold.

D.2. Proofs for the sufficient conditions

Proof [Proof of Lemma 6] We carefully follow the proof of Lemma 4.2 in Ahn and Sra [2]. By our
assumption, ξ0 ≤

√
2µc and 2µc < 1. For convenience, we use λk+1 =

βk+1

βk+1+αk+1
and

ηk+1 =
1

βk+1+αk+1
.

d(xk+1, zk+1) = ∥Logxk+1
(zk+1)∥xk+1

= ∥λk+1Logxk+1
(zk)− ηk+1gradf(xk+1)∥xk+1

≤ λk+1∥Logxk+1
(zk)∥xk+1

+ ηk+1∥gradf(xk+1)∥xk+1

(i)

≤ λk+1d(xk+1, zk) + ηk+1Ld(xk+1, x
⋆)

(ii)

≤ λk+1d(xk+1, zk) + ηk+1Ld(xk+1, yk) + ηk+1Ld(yk, x
⋆)

(iii)
= λk+1(1− τk+1)d(yk, zk) + ηk+1Lτk+1d(yk, zk) + ηk+1Ld(yk, x

⋆)

= d(yk, zk)(λk+1(1− τk+1) + ηk+1Lτk+1) + ηk+1Ld(yk, x
⋆).

Step (i) holds since f has L-Lipschitz continuous gradients. Next, step (ii) holds due to the
triangle inequality over M. Finally, step (iii) holds due to the fact that xk+1 lies between yk and
zk through Eq. 2a.

20

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

To get a bound on d(xk+1, zk+1), we need to have a bound on d(yk, zk) and d(yk, x
⋆). We can use

the energy inequality from Prop. 5 with µ-strong g-convexity to get the following statements

µ

2
· d(yk, x⋆)2 ≤

k∏
j=1

(1− ξj)D0 ⇔ d(yk, x
⋆) ≤

√√√√ k∏
j=1

(1− ξj)D0

√
2

µ
, (11)

µ2c · dxk
(zk, x

⋆)2 ≤
k∏

j=1

(1− ξj)D0 ⇔ dxk
(zk, x

⋆) ≤

√√√√ k∏
j=1

(1− ξj)D0

√
1

µ2c
. (12)

With these we also have

dxk
(yk, zk) ≤ dxk

(yk, x
⋆) + dxk

(zk, x
⋆) ∵ △ inequality

≤ d(yk, x
⋆) + dxk

(zk, x
⋆) ∵ da(b, c) ≤ d(b, c) for Hadamard manifolds

≤

√√√√ k∏
j=1

(1− ξj)D0

(√
2

µ
+

√
1

µ2c

)
∵ Eqs. 11, 12.

However, this doesn’t quite help us yet, since dxk
(yk, zk) ≤ d(yk, zk), and we need the quantity on

the RHS for the upper bound on d(xk+1, zk+1). Following the proof of Ahn and Sra [2, Prop. C.7],
we will analyse the quantity dxk+1

(yk+1, zk+1).

dxk+1
(yk+1, zk+1) ≥ −dxk+1

(yk+1, xk+1) + dxk+1
(xk+1, zk+1)

= −dxk+1
(yk+1, xk+1) + ∥Logxk+1

(zk+1)∥xk+1

= −dxk+1
(yk+1, xk+1) + ∥λk+1Logxk+1

(zk)− ηk+1gradf(xk+1)∥xk+1

≥ −dxk+1
(yk+1, xk+1) + λk+1d(zk, xk+1)− ηk+1∥gradf(xk+1)∥xk+1

(i)

≥ −d(yk+1, xk+1) + λk+1(1− τk+1)d(yk, zk)− ηk+1∥gradf(xk+1)∥xk+1

(ii)

≥ −d(yk+1, xk+1) + λk+1(1− τk+1)d(yk, zk)− ηk+1Ld(xk+1, x
⋆)

(iii)

≥ −d(yk+1, xk+1) + λk+1(1− τk+1)d(yk, zk)

− ηk+1Ld(xk+1, yk)− ηk+1Ld(yk, x
⋆)

(iv)
= −d(yk+1, xk+1) + λk+1(1− τk+1)d(yk, zk)

− ηk+1Lτk+1d(yk, zk)− ηk+1Ld(yk, x
⋆).

Step (i) and (iv) use the fact that xk+1 lies between yk and zk by Eq. 2a. Step (ii) uses the fact
that f has L-Lipschitz continuous gradients. Step (iii) applies the triangle inequality over M.
This gives us

d(yk, zk)(λk+1(1− τk+1)− ηk+1Lτk+1) ≤ dxk+1
(yk+1, zk+1) + d(yk+1, xk+1) + ηk+1Ld(yk, x

⋆)

≤

√√√√ k∏
j=1

(1− ξj)D0

(√
2

µ
+

√
1

µ2c

)
+ d(yk+1, xk+1)

+ ηk+1L

√√√√ k∏
j=1

(1− ξj)D0

√
2

µ
.

21

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

We make note of the fact that ξk+1 ≤ 1 and use the bound from Eq. 11 and Eq. 12. The final piece
is to bound d(yk+1, xk+1) and to show that λk+1(1− τk+1)− ηk+1Lτk+1 can be bounded in terms
of a constant involving L, µ, c alone. The first part is given by the statement of the lemma, which
states

d(yk+1, xk+1) ≤ C′
L,µ,c

√√√√ k∏
j=1

(1− ξj) ·D0.

For the second part, we make use of global properties of the recurrence relation governing the
sequence {ξk}. From Ahn and Sra [2, Proposition C.9], we have that if ξ0 ≤

√
a, then ξk ≤

√
a for

all k ≥ 0, where
ξk+1(ξk+1 − a)

1− ξk+1
=

ξ2k
δ

for any δ ≥ 1 and a ∈ (0, 1). We use this statement with a = 2µc, and δ being the valid distortion
rate at iteration k which is ≥ 1. Therefore,

λk+1(1− τk+1)− ηk+1Lτk+1 =

[
1− 2µcξ−1

k+1

1− 2µc

]
(1− ξk+1 − 2Lc)

≥

[
1− 2µcξ−1

k+1

1− 2µc

]
(1−

√
2µc− 2Lc).

The quantity 1−
√
2µc− 2Lc strictly positive when c < 1/6L. Therefore, we have the bound on

d(yk, zk) as

d(yk, zk) ≤

1−
√

2µcξ−1
k+1

1− 2µc

−1

1

1−
√
2µc− 2Lc

C′′
L,µ,c

√√√√ k∏
j=1

(1− ξj) ·D0.

Using this to bound d(xk+1, zk+1) we obtain

d(xk+1, zk+1) ≤

(
1− 2µc+ 2Lc

1−
√
2µc− 2Lc

C′′
L,µ,c +

L
√
2

µ
√
µ

)
︸ ︷︷ ︸

CL,µ,c

√√√√ k∏
j=1

(1− ξj) ·D0.

Proof [Proof of Proposition 7] This proposition can be proven using the analysis of the recurrence
relation as presented in Ahn and Sra [2, Section C.7]. The key tool of the analysis is the distance
shrinking lemma, which we have proven for 2-backward descent methods in general when c is
sufficiently small.

22

SUFFICIENT CONDITIONS FOR RIEMANNIAN OPTIMISATION

Appendix E. Auxiliary lemmas

Lemma 11 (Conjugate lemma [11]) Let s, u be vectors in Euclidean space, and α be a scalar.
Then

⟨s, α · u⟩ − 1

q
∥s∥q ≤ q − 1

q
|α|q/q−1∥u∥q/q−1.

Proof Let s⋆ be the maximizer of the LHS (taken with respect to s). By the first order optimality,
we have

α · u− ∥s⋆∥q−2s⋆ = 0

Consequently,

⟨s⋆, α · u⟩ − 1

q
∥s⋆∥q = ∥s⋆∥q − 1

q
∥s⋆∥q = q − 1

q
∥s⋆∥q.

Also,
|α|∥u∥ = ∥s⋆∥q−1.

Hence,

⟨s, α · u⟩ − 1

q
∥s∥q ≤ ⟨s⋆, α · u⟩ − 1

q
∥s⋆∥q = q − 1

q
|α|q/q−1∥u∥q/q−1.

23

	Introduction
	Background

	An energy based analysis of Riemannian descent methods
	Accelerating descent methods for g-convex and strongly g-convex functions
	Some sufficient conditions for eventual full acceleration of 2-backward descent methods over -strongly g-convex functions

	Conclusion
	More definitions
	Rates for p-descent algorithms for non-convex functions and gradient-dominated functions
	Proofs for the rate theorems in Section 2 and B
	Proofs for the examples of descent methods

	Proof for results in Section 3
	Proof for convergence guarantees of Algorithm 2
	Proofs for the sufficient conditions

	Auxiliary lemmas

