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Abstract
Both gradient descent and dual averaging for convex Lipschitz functions have convergence rates
that are highly dependent on the choice of learning rate. Even when the Lipschitz constant is known,
setting the learning rate to achieve the optimal convergence rate requires knowing the distance
from the initial point to the solution set D. A number of approaches are known that relax this
requirement, but they either require line searches, restarting (hyper-parameter grid search), or do
not derive from the gradient descent or dual averaging frameworks (coin-betting). In this work we
describe a single pass method, with no back-tracking or line searches, derived from dual averaging,
which does not require knowledge ofD yet asymptotically achieves the optimal rate of convergence
for the complexity class of Convex Lipschitz functions.

1. Introduction

We consider the class of unconstrained convex Lipschitz functions with Lipschitz constant G.
Starting at a point x0, at each step we may query a subgradient gk and function value f(xk) at
a query point xk. Let x∗ be any minimizer of f , and denote f∗ = f(x∗).

For this class, classical convergence results for sub-gradient descent:

xk+1 = xk − γkgk,

with a fixed step size require knowledge of the distance to solution term D = ‖x0 − x∗‖ in order to
achieve the optimal rate of convergence. Using a step size:

γk+1 =
D

G
√
k + 1

,

the average iterate x̂n converges in terms of function value at an inverse-sqrt rate:

f(x̂n)− f∗ = O(DG/
√
n+ 1).

This rate is worse case optimal for this complexity class [6]. Knowledge of the constant G can be
removed by using AdaGrad [3] step sizes:

γk =
D√∑k
i=0 ‖gi‖

2
.
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Under the mild assumption that loose lower and upper bounds are known on D, just doing a hyper-
parameter grid search on a log spaced scale from d0 to dmax gives a rate:

f(xn)− f∗ = O
(
DG log(dmax/d0)√

n+ 1

)
,

which is the approach taken in practice in most applications. In this work, we describe a modification
of dual averaging that achieves the optimal rate, for sufficiently large n, by maintaining and updating
a lower bound on D, which is then used as part of the step size. Using this lower bound on
D is provably sufficient to achieve the optimal rate of convergence. The method we describe is
"parameter-free" according to the standard usage of the term [7], as it requires knowledge of G but
not D.

2. Related Work

There are a number of approaches to optimization of Lipschitz functions that achieve independence
of problem parameters, we review the major classes of approaches below.

2.1. Polyak step size

We can trade the requirement of knowledge of D to knowledge of f∗, by using the Polyak step
size[10]:

γk =
f(xk)− f∗
‖gk‖2

.

This gives the optimal rate of convergence without any additional log factors. Using estimates
or approximations of f∗ tend to result in unstable convergence, however a restarting scheme that
maintains lower bounds on f∗ can be shown to converge within a multiplicative log factor of the
optimal rate [5].

2.2. Exact line searches

The following method relying on an exact line search also gives the optimal rate, without requiring
any knowldge of problem parameters [2, 4]:

sk+1 = sk + gk,

γk+1 = argmin fk+1

(
k + 1

k + 2
xk +

1

k + 2
(z0 − γk+1sk+1)

)
,

zk+1 = z0 − γk+1sk+1,

xk+1 =
k + 1

k + 2
xk +

1

k + 2
zk+1.

Relaxing this exact line search to an approximate line search is non-trivial, and will potentially
introduce additional dependencies on problem constants.
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2.3. Bisection

Instead of running sub-gradient descent on every grid-point on a log spaced grid from d0 to dmax,
we can use more sophisticated techniques to instead run a bisection algorithm on the same grid,
giving an improvement of an additional log factor[1]:

f(xn)− f∗ = O
(
DG log log(dmax/d0)√

n+ 1

)
,

This can be further improved by estimating dmax, which allows us to replace dmax with D in this
bound.

2.4. Coin-betting

If we assume knowledge of G but not D, coin betting approaches can be used. Coin-betting [9]
is normally analyzed in the online-convex optimization framework, which is more general then
our setting and for that class, coin-betting methods achieve optimal regret among methods without
knowledge of D, which is a log factor worse than the best possible regret with knowledge of D [7]:

Regretn = O
(
DG

√
(n+ 1) log (1 +D)

)
.

Using online to batch conversion gives a rate of convergence in function value of

f(x̂n)− f∗ = O
(
DG log (1 +D)√

n+ 1

)
.

3. Algorithm

The algorithm we propose is Algorithm 1. It is a modification of the AdaGrad step-size applied
to weighted dual averaging, also known as linear follow-the-regularized-leader in the online learning
community. The key idea is simple. At each step, we construct a lower bound d̂k onD. If this bound
is less than twice our current best estimate of dk ofD, we continue to use dk. Otherwise, we replace
dk in our step size by d̂k, and proceed normally. To construct the lower bound, we use the technique
of analyzing a “phantom” point:

x′k = x0 − γ∗sk,

which differs from the xk sequence used in the algorithm by using a different fixed step size
sequence γ∗ = γn+1/2. By using this point, we are able to gain a additional negative term
−1

4γn+1 ‖sn+1‖2 in our upper bound on the weighted sum of the function values:

n∑
k=0

dk (f(xk)− f∗) ≤ D ‖sn+1‖+
n∑
k=0

γk
2
d2k ‖gk‖

2 − γn+1

4
‖sn+1‖2 .

Using the fact that
∑n

k=0 dk (f(xk)− f∗) ≥ 0, we have:

0 ≤ D ‖sn+1‖+
n∑
k=0

γk
2
d2k ‖gk‖

2 − γn+1

4
‖sn+1‖2 ,
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Algorithm 1 Parameter Free Dual Averaging
Input: d0, x0
s0 = 0
for k = 0 to n do
gk ∈ ∂f(xk)
sk+1 = sk + dkgk

γk+1 =
1√

G2 +
∑k

i=0 ‖gi‖
2

d̂k+1 =
γk+1

2 ‖sk+1‖2 −
∑k

i=0 γid
2
i ‖gi‖

2

2 ‖sk+1‖

if d̂k+1 > 2dk then
dk+1 = d̂k+1

else
dk+1 = dk

end if

xk+1 = x0 − γk+1sk+1

end for
Return x̂n = 1∑n

k=0 dk

∑n
k=0 dkxk
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which can be rearranged to yield a lower bound on D, involving only known quantities:

D ≥ d̂n+1 =
γn+1

2 ‖sn+1‖2 −
∑n

k=0 γkd
2
k ‖gk‖

2

2 ‖sn+1‖
.

This bound is potentially vacuous if ‖sn+1‖2 is small in comparison to
∑n

k=0 γkd
2
k ‖gk‖

2, however
we are able to show that the algorithm converges rapidly in that case, and so further increases of dk
are not needed.

Theorem 1 For a convex G-Lipschitz function f . Algorithm 1 returns a point x̂n such that:

f(x̂n)− f(x∗) = O
(

DG√
n+ 1

)
,

as n→∞, where D = ‖x0 − x∗‖ for any x∗ in the set of minimizers of f , as long as d0 ≤ D. We
provide a proof in the Appendix.

The above result is asymptotic due to the potential of worst-case functions. For any fixed choice of
n, a function could be constructed such that Algorithm 1 run for n steps has a dependence on d0.
The next theorem shows that even in the worst case this dependence only results in a log2(D/d0)
worst rate of convergence, significantly better than the D/d0 worse rate that sub-gradient-descent
incurs:

Theorem 2 Consider Algorithm 1 run for n steps, if we return the point x̂t = 1∑t
k dk

∑t
k=0 dkxk

where t is chosen to be:
t = argmin

t≤n

dt+1∑t
k=0 dk

,

Then:

f(x̂t)− f∗ ≤ 11
log2(D/d0)

n+ 1
D

√√√√ t∑
k=0

‖gk‖2.

4. Discussion

Our analysis applies to a very restricted problem setting of convex Lipschitz functions. In Carmon
and Hinder [1], an approach for the same setting is extended to the stochastic setting in high
probability. The same extension may also be applicable here.

Our approach has an undesirable dependence on the constantG, as it appears in the denominator
of the step size. This dependence is typical for dual averaging methods, and approaches have been
developed to remove the dependence [8]. In general, this dependence is mild in practice, as the G
term only has a significant effect at the early stages of optimization, where it might dominate the
sum in the denominator of the step size:

γk+1 =
1√

G2 +
∑k

i=0 ‖gi‖
2
.

Our algorithm requires an initial lower bound d0 on D. The value of d0 does not appear in the
convergence rate bound as it’s contribution goes to zero as k → ∞, and hence is suppressed when
big-O notation is used. In practice very small values can be used, as dk will grow exponentially
with k when d0 is extremely small.
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5. Conclusion

We have presented a simple approach to achieving parameter free learning of convex Lipshitz
functions, by constructing succesively better lower bounds on the key unknown quantity: the distance
to solution ‖x0 − x∗‖. Our approach for constructing these lower bounds may be of independent
interest.
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Appendix A. Theory

Let the weighting of the gradient in the sk sum be λk:

sk+1 = sk + λkgk,

We use the theory technique of a phantom point

x′k = x0 − γ∗sk,

using a Lyapunov function:

Vk =
1

2γ∗

∥∥x′k − x∗∥∥2 .
A.1. Lemmas

Lemma 3 (From Carmon and Hinder [1]) For any points x0, xT , (not necessarily iterates):

‖x0 − x∗‖2 − ‖xT − x∗‖2 ≤ 2 ‖x0 − x∗‖ ‖x0 − xT ‖ .

Proof We apply a case analysis. Suppose that ‖xT − x∗‖ ≥ ‖x0 − x∗‖, then clearly ‖x0 − x∗‖2−
‖xT − x∗‖2 is negative and thus trivially less than 2 ‖x0 − x∗‖2 ‖x0 − xT ‖.

So next consider the case that ‖x0 − x∗‖2 ≥ ‖xT − x∗‖2. Then:

‖x0 − x∗‖2 − ‖xT − x∗‖2

= (‖x0 − x∗‖+ ‖xT − x∗‖) (‖x0 − x∗‖ − ‖xT − x∗‖)
≤ (‖x0 − x∗‖+ ‖xT − x∗‖) ‖x0 − xT ‖
≤ 2 ‖x0 − x∗‖ ‖x0 − xT ‖ .

The first inequality is an application of the triangle inequality in the form ‖x0 − x∗‖ ≤ ‖xT − x∗‖+
‖x0 − xT ‖. The second inequality uses our case assumption.

Lemma 4 The inner product γkλk 〈gk, sk〉 is a key quantity that occurs in our theory, where sk+1 =
sk + λkgk for some choice of λk. We can bound the sum of these inner products over time by
considering the following expansion, where γk is any sequence of weights.

−
n∑
k=0

γkλk 〈gk, sk〉 = −
γn+1

2
‖sn+1‖2 +

n∑
k=0

γk
2
λ2k ‖gk‖

2 +
1

2

n∑
k=0

(γk+1 − γk) ‖sk+1‖2 .

This simplifies when the weighting sequence is flat:

−γn+1

n∑
k=0

〈gk, sk〉 = −
γn+1

2
‖sn+1‖2 +

γn+1

2

n∑
k=0

‖gk‖2 ,

with λ weights:

−γn+1

n∑
k=0

λk 〈gk, sk〉 = −
γn+1

2
‖sn+1‖2 +

γn+1

2

n∑
k=0

λ2k ‖gk‖
2 .
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Proof This is straight-forward to show by induction (it’s a consequence of standard DA proof
techniques, where ‖sn‖2 is expanded).

γn+1

2
‖sn+1‖2 =

γn
2
‖sn+1‖2 +

1

2
(γn+1 − γn) ‖sn+1‖2

=
γn
2
‖sn‖2 + γnλn 〈gn, sn〉+

γn
2
λ2n ‖gn‖

2 +
1

2
(γn+1 − γn) ‖sn+1‖2 .

Therefore

−γnλn 〈gn, sn〉 =
γn
2
‖sn‖2 −

γn+1

2
‖sn+1‖2 +

γn
2
λ2n ‖gn‖

2 +
1

2
(γn+1 − γn) ‖sn+1‖2 .

Telescoping

−
n∑
k=0

γnλn 〈gk, sk〉 = −
γn+1

2
‖sn+1‖2 +

n∑
k=0

γk
2
λ2k ‖gk‖

2 +
1

2

n∑
k=0

(γk+1 − γk) ‖sk+1‖2 .

A.2. Main Theory

Theorem 5 For Algorithm 1, for all steps k it holds that:

λk [f(xk)− f∗] + Vk+1 ≤ Vk + λk
〈
gk, xk − x′k

〉
+
γ∗
2
λ2k ‖gk‖

2 .

Proof The bound simply relies on convexity:

Vk+1 =
1

2γ∗

∥∥x′k+1 − x∗
∥∥2

=
1

2γ∗

∥∥x′k − x∗ − γ∗λkgk∥∥2
=

1

2γ∗

∥∥x′k − x∗∥∥2 − λk 〈gk, x′k − x∗〉+ γ∗
2
λ2k ‖gk‖

2

= Vk − λk
〈
gk, x

′
k − xk + xk − x∗

〉
+
γ∗
2
λ2k ‖gk‖

2

= Vk − λk
〈
gk, x

′
k − xk

〉
− λk 〈gk, xk − x∗〉+

γ∗
2
λ2k ‖gk‖

2

≤ Vk − λk
〈
gk, x

′
k − xk

〉
− λk [f(xk)− f∗] +

γ∗
2
λ2k ‖gk‖

2 .

Theorem 6 Theorem 5 can be telescoped and simplified to give:

n∑
k=0

λk (f(xk)− f∗) ≤ ‖x0 − x∗‖ ‖sn+1‖+
n∑
k=0

γk
2
λ2k ‖gk‖

2 − γn+1

4
‖sn+1‖2 .
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Proof Plugging in the phantom step size:

−λk
〈
gk, x

′
k − xk

〉
= −λk 〈gk, x0 − γ∗sk − x0 + γksk〉
= −λk (γk − γ∗) 〈gk, sk〉 .

So:
λk [f(xk)− f∗] + Vk+1 ≤ Vk − λk (γk − γ∗) 〈gk, sk〉+

γ∗
2
λ2k ‖gk‖

2 .

Then telescoping:

Vk+1 ≤ V0 −
n∑
k

γkλk 〈gk, sk〉+ γ∗

n∑
k=0

λk 〈gk, sk〉+
γ∗
2
λk

n∑
k=0

‖gk‖2 .

Therefore:
n∑
k=0

λk (f(xk)− f∗) +
1

2γ∗

∥∥x′n+1 − x∗
∥∥2 ≤ 1

2γ∗
‖x0 − x∗‖2 −

n∑
k

γkλk 〈gk, sk〉

+ γ∗

n∑
k=0

λk 〈gk, sk〉+
γ∗
2

n∑
k=0

λ2k ‖gk‖
2 .

We now apply Lemmas 3 as follows:
1

2γ∗
‖x0 − x∗‖2 −

1

2γ∗

∥∥x′n+1 − x∗
∥∥2 ≤ 1

γ∗
‖x0 − x∗‖

∥∥x0 − x′n+1

∥∥
≤ ‖x0 − x∗‖ ‖sn+1‖ ,

and 4 to simplify

γ∗
n∑
k=0

λk 〈gk, sk〉 =
γ∗

2
‖sn+1‖2 −

γ∗

2

n∑
k=0

λ2k ‖gk‖
2 .

Combining gives:
n∑
k=0

λk (f(xk)− f∗) ≤ ‖x0 − x∗‖ ‖sn+1‖ −
n∑
k

γkλk 〈gk, sk〉+
γ∗

2
‖sn+1‖2

We can further simplify with:

−
n∑
k=0

γkλk 〈gk, sk〉 = −
γn+1

2
‖sn+1‖2 +

n∑
k=0

γk
2
λ2k ‖gk‖

2 +
1

2

n∑
k=0

(γk+1 − γk) ‖sk+1‖2

Using the fact that γk+1 − γk ≤ 0 and that γ∗ = γn+1/2 we have:
n∑
k=0

λk (f(xk)− f∗) ≤ ‖x0 − x∗‖ ‖sn+1‖ −
n∑
k

γkλk 〈gk, sk〉+
γ∗

2
‖sn+1‖2

= ‖x0 − x∗‖ ‖sn+1‖ −
n∑
k

γkλk 〈gk, sk〉+
γn+1

4
‖sn+1‖2

≤ ‖x0 − x∗‖ ‖sn+1‖+
n∑
k=0

γk
2
λ2k ‖gk‖

2 − γn+1

4
‖sn+1‖2
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Theorem 7 The distance to solution error term can be lower bounded as follows

D ≥ d̂n+1 =
γn+1

2 ‖sn+1‖2 −
∑n

k=0 γkλ
2
k ‖gk‖

2

2 ‖sn+1‖
.

Proof The key idea is that the bound:

n∑
k=0

λk (f(xk)− f∗) ≤ D ‖sn+1‖+
n∑
k=0

γk
2
λ2k ‖gk‖

2 − γn+1

4
‖sn+1‖2 ,

gives some indication as to the magnitude of D in the case when the other terms on the right are
negative. To proceed, we use

∑n
k=0 λk (f(xk)− f∗) ≥ 0, giving:

0 ≤ D ‖sn+1‖+
n∑
k=0

γk
2
λ2k ‖gk‖

2 − γn+1

4
‖sn+1‖2 ,

which we can rearrange to:

D ‖sn+1‖ ≥
γn+1

4
‖sn+1‖2 −

n∑
k=0

γk
2
λ2k ‖gk‖

2 .

Therefore:

D ≥
γn+1

4 ‖sn+1‖2 −
∑n

k=0
γk
2 λ

2
k ‖gk‖

2

‖sn+1‖
.

Theorem 8 The norm of sn+1 is bounded as:

‖sn+1‖ ≤
8dn+1

γn+1
+

2
√∑n

k=0
γk
2 λ

2
k ‖gk‖

2

√
γn+1

.

Proof By the definition of d̂n+1 as used in Theorem 7, we have:

d̂n+1 ‖sn+1‖ =
γn+1

4
‖sn+1‖2 −

n∑
k=0

γk
2
λ2k ‖gk‖

2 ,

and since 2dn+1 ≥ d̂n+1,

dn+1 ‖sn+1‖ ≥
1

2
d̂n+1 ‖sn+1‖ =

1

2

[
γn+1

4
‖sn+1‖2 −

n∑
k=0

γk
2
λ2k ‖gk‖

2

]
.

So:

2dn+1 ‖sn+1‖ −
γn+1

4
‖sn+1‖2 +

n∑
k=0

γk
2
λ2k ‖gk‖

2 ≥ 0.

10
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This is a quadratic equation in ‖sn+1‖ that we can solve explicitly. We have equality when:

‖sn+1‖ =
−b±

√
b2 − 4ac

2a
,

where:
a = −γn+1

4
,

b = 2dn+1,

c =
n∑
k=0

γk
2
λ2k ‖gk‖

2 .

So we have equality at the value:

‖sn+1‖ =
−2dn+1 ±

√
4d2n+1 + 4γn+1

4

∑n
k=0

γk
2 λ

2
k ‖gk‖

2

−γn+1

2

,

∴ ‖sn+1‖ =
4dn+1 ± 2

√
4d2n+1 + γn+1

∑n
k=0

γk
2 λ

2
k ‖gk‖

2

γn+1
.

By examination of the cases, we see that that the + case provides an upper bound:

‖sn+1‖ ≤
4dn+1 + 2

√
4d2n+1 + γn+1

∑n
k=0

γk
2 λ

2
k ‖gk‖

2

γn+1
.

We can further simplify this bound using subadditivity:

‖sn+1‖ ≤
4dn+1 + 4dn+1 + 2

√
γn+1

∑n
k=0

γk
2 λ

2
k ‖gk‖

2

γn+1
,

therefore:

‖sn+1‖ ≤
8dn+1

γn+1
+

2
√∑n

k=0
γk
2 λ

2
k ‖gk‖

2

√
γn+1

.

Proposition 9 (From Duchi et al. [3]) The gradient error term can be bounded as:

n∑
k=0

‖gk‖2√
G2 +

∑k−1
i=0 ‖gi‖

2
≤ 2

√√√√ n∑
k

‖gk‖2,

and therefore:

n∑
k=0

γk
2
‖gk‖2 ≤ γn+1

(
G2 +

n∑
k

‖gk‖2
)
.

11
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Appendix B. Putting it together

Theorem 10 For Algorithm 1:

n∑
k=0

dk (f(xk)− f∗) ≤ 8Ddn+1

√√√√ n∑
k=0

‖gk‖2 +
2D
√∑n

k=0
γk
2 λ

2
k ‖gk‖

2

√
γn+1

+

n∑
k=0

γk
2
λ2k ‖gk‖

2 .

Proof Consider the key bound:

n∑
k=0

λk (f(xk)− f∗) ≤ D ‖sn+1‖ −
γn+1

4
‖sn+1‖2 +

n∑
k=0

γk
2
λ2k ‖gk, ‖

2 ,

applying the bound from Theorem 8:

‖sn+1‖ ≤
8dn+1

γn+1
+

2
√∑n

k=0
γk
2 λ

2
k ‖gk‖

2

√
γn+1

,

gives:

n∑
k=0

λk (f(xk)− f∗) ≤
8Ddn+1

γn+1
+

2D
√∑n

k=0
γk
2 λ

2
k ‖gk‖

2

√
γn+1

− γn+1

4
‖sn+1‖2 +

n∑
k=0

γk
2
λ2k ‖gk‖

2 .

Now using λk = dk, plugging in the step size, and dropping the −γn+1

4 ‖sn+1‖2 term:

n∑
k=0

dk (f(xk)− f∗) ≤ 8Ddn+1

√√√√ n∑
k=0

‖gk‖2 +
2D
√∑n

k=0
γk
2 λ

2
k ‖gk‖

2

√
γn+1

+

n∑
k=0

γk
2
λ2k ‖gk‖

2 .

Theorem 11 For the point returned by Algorithm 1, as n→∞:

f(x̂n)− f∗ = O
(

DG√
n+ 1

)
.

Proof Since the sequence dk changes by doubling, and is upper bounded by D, there must exist
some finite n̂ such that after n̂ steps, dk no longer increases, i.e. dn = dn̂ for all n ≥ n̂. Suppose
that n ≥ 2n̂. Then we have that:

n∑
k=0

dk ≥
1

2
(n+ 1)dn+1,

∴
1∑n

k=0 dk
≤ 2

(n+ 1)dn+1
.

12
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Then:

1∑n
k=0 dk

n∑
k=0

dk (f(xk)− f∗) ≤
16D

(n+ 1)

√√√√ n∑
k=0

‖gk‖2

+
4D
√∑n

k=0
γk
2 ‖gk‖

2

(n+ 1)
√
γn+1

+
2γn+1dn+1

∑n
k ‖gk‖

2

n+ 1
.

Then using
∑n

k=0
γk
2 ‖gk‖

2 ≤ γn+1G
2(n+ 2) to simplify further we get:

1∑n
k=0 dk

n∑
k=0

dk (f(xk)− f∗) ≤
16D

(n+ 1)

√√√√ n∑
k=0

‖gk‖2

+
4D

(n+ 1)

√√√√G2 +
n∑
k

‖gk‖2 +
2D

n+ 1

√√√√ n∑
k=0

‖gk‖2.

So

1∑n
k=0 dk

n∑
k=0

dk (f(xk)− f∗) ≤
22D

n+ 1

√√√√G2 +
n∑
k

‖gk‖2.

We can convert to a bound on the average iterate:

x̂n =
1∑n
k dk

n∑
k=0

dkxk,

via Jensen’s inequality. Using ‖gk‖2 ≤ G2 and simplifying gives the result.

Appendix C. Non-asymptotic analysis

Lemma 12 Consider a sequence d0, . . . dN+1, where for each k, dk+1 = dk or dk+1 ≥ 2dk. Let
r ≤ log2(dN/d0) be the number of steps for which dk+1 ≥ 2dk. Then

min
n≤N

dn+1∑n
k=0 dk

≤ log2(dN+1/d0)

N + 1
.

Proof We proceed by an inductive argument on r. In the base case, if r = 0 then the result follows
immediately:

min
n≤N

dn+1∑n
k=0 dk

=
dN+1∑N
k=0 dk

=
dN+1

(N + 1)dN+1

=
1

N + 1
=

log2(dN+1/d0)

N + 1
.

13
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So assume that r > 0. First we show that no induction is needed if for all, and we may take n = N,
if

dk = dn+1, for k ≥
⌊
n+ 1− (n+ 1)

log2(dn+1/d0)

⌋
.

Since, in that case we have:
n∑
k=0

dk ≥
n∑

k=bn+1−(n+1)/ log2(dn+1/d0)c

dk =

(
n+ 1−

⌊
n+ 1− (n+ 1)

log2(dn/d0)

⌋)
dn+1

≥ (n+ 1) dn+1

log2(dn+1/d0)
.

Therefore:
dn+1∑n
k=0 dk

≤ dn+1

(n+ 1)dn+1
log2(dn+1/d0) =

log(dn+1/d0)

n+ 1
.

So, instead suppose that there is at least one increase within the range k ≥
⌊
N + 1− (N+1)

log2(dN+1/d0)

⌋
+

1. Note that +1 is due to the fact that the above case includes the edge case where an increase occurs
exactly at the beginning of the interval. That implies that there are at most r − 1 increases in the
range k ≤

⌊
N + 1− (N+1)

log2(dN+1/d0)

⌋
, therefore, we can apply induction, assuming by induction

that:

min
n≤n′

dn+1∑n
k=0 dk

≤ log2(dn′+1/d0)

n′ + 1
, for n′ =

⌊
N + 1− (N + 1)

log2(dN+1/d0)

⌋
.

Under this inductive hypothesis assumption, we note that:

log2(dn′+1/d0)

n′ + 1
≤ 1⌊

N + 1− (N+1)
log2(dN+1/d0)

⌋
+ 1

log2(dn′+1/d0)

≤ 1

N − (N+1)
log2(dN+1/d0)

+ 1
log2(dn′+1/d0)

=
log2(dN+1/d0)

(N + 1) (log2(dN+1/d0)− 1)
log2(dn′+1/d0)

=
log2(dN+1/d0)

(N + 1)
· log2(dn′+1/d0)

log(dN+1/d0)− 1

≤ log2(dN+1/d0)

(N + 1)

the last inequality follows from dk+1 ≥ 2dk, as it implies that:

log2(dn′+1/d0) ≤ log(dN+1/d0)− 1.

Putting it all together, we have that:

min
n≤N

dn+1∑n
k=0 dk

≤
[

dn+1∑n
k=0 dk

]
n=N− (N+1)

log2(dN/d0)

≤ log2(dN+1/d0)

N + 1
.

14



PARAMETER FREE DUAL AVERAGING

Theorem 13 Consider Algorithm 1 run for n steps, if we return the point x̂t = 1∑t
k dk

∑t
k=0 dkxk

where t is chosen to be:
t = argmin

t≤n

dt+1∑t
k=0 dk

,

Then:

f(x̂t)− f∗ ≤ 11
log2(D/d0)

n+ 1
D

√√√√ t∑
k=0

‖gk‖2.

Proof Consider the bound from Theorem 10:

1∑n
k=0 dk

n∑
k=0

dk (f(xk)− f∗) ≤
dn+1∑n
k=0 dk

8D

√√√√ n∑
k=0

‖gk‖2

+
1∑n

k=0 dk

2D
√∑n

k=0
γk
2 d

2
k ‖gk‖

2

√
γn+1


+

1∑n
k=0 dk

n∑
k=0

γk
2
d2k ‖gk‖

2 .

For the middle term, we can simplify via:√√√√ n∑
k=0

γk
2
d2k ‖gk‖

2 ≤

√√√√d2n+1

n∑
k=0

γk
2
‖gk‖2 = dn+1

√√√√ n∑
k=0

γk
2
‖gk‖2.

For the third term:

1∑n
k=0 dk

n∑
k=0

γk
2
d2k ‖gk‖

2 ≤ Ddn+1∑n
k=0 dk

n∑
k=0

γk
2
‖gk‖2 .

So we have:

f(x̂n)− f∗ ≤
dn+1D∑n
k=0 dk

8
√√√√ n∑

k=0

‖gk‖2 +

√
2
∑n

k=0 γk ‖gk‖
2

√
γn+1

+
1

2

n∑
k=0

γk ‖gk‖2
 .

Now using Lemma 12, we can return the point x̂t and at time t at which minn≤N
dn+1∑n
k=0 dk

is smallest,
ensuring that:

dt+1∑t
k=0 dk

= min
n≤N

dn+1∑n
k=0 dk

≤ log2(dN+1/d0)

N + 1
,

Giving us an upper bound:

f(x̂t)− f∗ ≤
log2(dN+1/d0)

N + 1
D

8
√√√√ t∑

k=0

‖gk‖2 +

√
2
∑t

k=0 γk ‖gk‖
2

√
γn+1

+
1

2

t∑
k=0

γk ‖gk‖2
 .

15
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We can further simplify using Proposition 9:

f(x̂t)− f∗ ≤
log2(dN+1/d0)

N + 1
D

8
√√√√ t∑

k=0

‖gk‖2 +

√√√√2

t∑
k=0

‖gk‖2 +

√√√√ t∑
k=0

‖gk‖2
 ,

f(x̂t)− f∗ ≤ 11
log2(D/d0)

N + 1
D

√√√√ t∑
k=0

‖gk‖2.

16
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