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Abstract
In many practical settings, some parameters of an optimization problem may be a priori unknown
but can be estimated from historical data. Recently, end-to-end predict-then-optimize has emerged
as an attractive alternative to the two-stage approach of separately fitting a predictive model for
the unknown parameters, then optimizing. In this work, we present the PyEPO package, a Py-
Torch -based end-to-end predict-then-optimize library in Python for linear and integer program-
ming. It provides two base algorithms: the first is based on the convex surrogate loss function
from the seminal work of Elmachtoub and Grigas [8], and the second is based on the differentiable
black-box solver approach of Pogančić et al. [20]. PyEPO provides a simple interface for the def-
inition of new optimization problems, the implementation of state-of-the-art predict-then-optimize
training algorithms, the use of custom neural network architectures, and the comparison of end-
to-end approaches with the two-stage approach. PyEPO and its documentation are available at
https://github.com/khalil-research/PyEPO.
Keywords: Data-driven optimization, Mixed integer programming, Machine learning

1. Introduction

Predictive modeling is ubiquitous in real-world decision-making. For instance, in many applica-
tions, the objective function coefficients of the optimization problem, such as travel time in a rout-
ing problem, customer demand in a delivery problem, and assets return in portfolio optimization,
are unknown at the time of decision making. In this work, we are interested in the commonly used
paradigm of prediction followed by optimization in the context of linear programs or integer linear
programs, two widely applicable modeling frameworks. Here, it is assumed that a set of features
describe an instance of the optimization problem. A regression model maps the features to the
(unknown) objective function coefficients. A deterministic optimization problem is then solved to
obtain a solution. Due to its wide applicability and simplicity compared to other frameworks for op-
timization under uncertain parameters, the predict-then-optimize paradigm has received increasing
attention in recent years.

Bengio [5], Ford et al. [11], and Elmachtoub and Grigas [8] reported that training a predictive
model based on prediction error leads to worse decisions than directly considering decision error.
Thus, compared to independent prediction and optimization, to integrate optimization into predic-
tion becomes an attractive alternative. Since Amos and Kolter [4] first introduced a neural network
layer for mathematical optimization, there have been some prominent attempts to bridge the gap
between mathematical optimization and deep learning. The critical component is typically a dif-
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ferentiable block for optimization tasks. With a differentiable optimizer, neural network packages
enable the computation of gradients for optimization operations and then update predictive model
parameters based on a loss function that depends on decision quality.

While research code implementing a number of predict-then-optimize training algorithms have
been made available for particular classes of optimization problems and/or predictive models [2,
3, 6–9, 14, 14, 20, 21], there is a dire need for a generic end-to-end learning framework, especially
for linear and integer programming. In this paper, we propose the open-source software package
PyEPO which aims to customize and train end-to-end predict-then-optimize for linear and integer
programming. We implement SPO+ (“Smart Predict-then-Optimize+”) loss [8], and DBB (differen-
tiable black-box) solver [20] with parallel computing, which are two typical end-to-end methods for
linear and integer programming. We also provide interfaces to the Python-based optimization mod-
eling frameworks GurobiPy and Pyomo , allowing non-specialists to formulate optimization models
with PyEPO .

2. Preliminaries

2.1. Definitions and Notation

For the sake of convenience, we define the following linear programming problem without loss of
generality, where the decision variables are w ∈ Rd and all wi ≥ 0, the cost coefficients are c ∈ Rd,
the constraint coefficients are A ∈ Rk×d, and the right-hand sides of the constraints are b ∈ Rk.
When some variables wi are restricted to be integers, we obtain a (mixed) integer program:

min
w

cTw

s.t. Aw ≤ b

w ≥ 0

wi ∈ Z ∀i ∈ D
′
, D

′ ⊆ {1, 2, ..., d}

(1)

For both linear and integer programming, let S be the feasible region, z∗c be the optimal objective
value with respect to cost vector c, and w∗

c ∈ W ∗
c be a particular optimal solution derived from

some solver. We define the optimal solution set W ∗
c because there may be multiple optima.

2.2. Gradient-based End-to-end Predict-then-Optimize

Figure 1: Illustration of the end-to-end predict-then-optimize framework

The end-to-end predict-then-optimize method in Figure 1 attempts to minimize the decision
error. Consistent with deep learning terminology, we will use the term “backward pass” to refer to
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the gradient computation via the backpropagation algorithm. In order to incorporate optimization
into the prediction, we can derive the derivative of the optimization task and then apply the gradient
descent algorithm, Algorithm 1, to update the parameters of the predictor.

Algorithm 1 End-to-end Gradient Descent
Data: coefficient matrix A, right-hand side b, training data D;
Initialize predictor parameters θ for predictor g(x;θ)

foreach epoch in epochs do
foreach batch of training data (x, c) do

Sample batch of the cost vectors c with the corresponding features x
Forward pass to predict cost using predictor ĉ := g(x;θ)
Forward pass to compute optimal solution w∗

ĉ := argminw∈S ĉ
Tw

Forward pass to compute decision loss l(·)
Backward pass from loss l(·) to update parameters θ with gradient

end
end

For an appropriately defined loss function, i.e., one that penalizes decision error, the chain rule
can be used to calculate the following gradient of the loss w.r.t. predictor parameters. Due to lack
of nonzero gradients in linear and integer programs, computing ∂l(·)

∂ĉ or ∂w∗
ĉ

∂ĉ is challenging.

∂l(·)
∂θ

=
∂l(·)
∂ĉ

∂ĉ

∂θ
=

∂l(·)
∂w∗

ĉ

∂w∗
ĉ

∂ĉ

∂ĉ

∂θ

Note:
∂ĉ

∂θ
=

∂g(x;θ)

∂θ

(2)

2.2.1. DECISION LOSS

To measure the error in decision-making, the notion of regret (also called SPO Loss [8]) has been
proposed and is defined as the difference in objective value between an optimal solution (using the
true but unknown cost vector) and one obtained using the predicted cost vector:

lRegret(ĉ, c) = cTw∗
ĉ − z∗c. (3)

2.3. Methodologies

2.3.1. SMART PREDICT-THEN-OPTIMIZE

To make the decision error differentiable, Elmachtoub and Grigas [8] proposed SPO+, a convex
upper bound on the regret:

lSPO+(ĉ, c) = min
w∈S

{(2ĉ− c)Tw}+ 2ĉTw∗
c − z∗c. (4)

One proposed subgradient for this loss writes as follows:

2(w∗
c −w∗

2ĉ−c) ∈
∂lSPO+(ĉ, c)

∂ĉ
(5)

To accelerate the SPO+ training, Mandi et al. [15] employed continous relaxations (SPO+ Rel)
and warm starting (SPO+ WS) to speed-up the optimization.
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2.3.2. DIFFERENTIABLE BLACK-BOX SOLVER

DBB was developed by Pogančić et al. [20] to estimate gradients from interpolation, replacing the
zero gradient in ∂w∗

c
∂c .

Algorithm 2 DBB Forward Pass
Data: ĉ
Result: w∗

ĉ

Solve w∗
ĉ

Save ĉ and w∗
ĉ for backward pass

Algorithm 3 DBB Backward Pass

Data: ∂l(·)
∂w∗

ĉ
, λ

Result: ∂w∗
ĉ

∂ĉ
Load ĉ and w∗

ĉ from forward pass
c′ := ĉ+ λ ∂l(·)

∂w∗(ĉ)

Solve w∗
c′

∂w∗
ĉ

∂ĉ := 1
λ (w

∗
c′ −w∗

ĉ)

3. Implementation

The core module of PyEPO is an “autograd” function which is inherited from PyTorch [17]. These
functions implement a forward pass that yields optimal solutions to the optimization problem and
a backward pass to obtain non-zero gradients such that the prediction model can learn from the
decision error or its surrogates. Thus, our implementation extends PyTorch , which facilitates the
deployment of end-to-end predict-then-optimize tasks using any neural network that can be imple-
mented in PyTorch .

We choose GurobiPy [12] and Pyomo [13] to build optimization models, which provide a nat-
ural way to express mathematical programming models in PyEPO . Users without specialized opti-
mization knowledge can easily build and maintain optimization models through high-level algebraic
representations. Besides GurobiPy and Pyomo , PyEPO also allows users to construct optimization
models from scratch using any algorithm and solver. Modeling details and an example are in ap-
pendix A.

4. Empirical Evaluation

In this section, we present experimental results for the 2D-knapsack and TSP datasets in Appendix
B. In these experiments, We examine the training time and the normalized regret on a test set with
a sample size of ntest = 1000. Recall that the regret was defined in (3). We define the normalized
regret by ∑ntest

i=1 lRegret(ĉi, ci)∑ntest
i=1 |z∗ci |

.

The methods we compare include the two-stage approach and SPO+/DBB with a linear model (only
a fully-connected layer). The predictors of two-stage method include linear regression, random
forest, Auto-Sklearn [10] with MSE metric and 10 minutes time limit. For the sake of consistency,
we only use regret (3) as the loss for DBB.

All the numerical experiments were conducted in Python v3.7.9 with Intel E5-2683 v4 Broad-
well CPU processors and 8GB memory. Specifically, we used PyTorch [18] v1.10.0 for training
end-to-end models, and Scikit-Learn [19] v0.24.2 and Auto-Sklearn [10] v0.14.6 as predictor of the
two-stage method. Gurobi [12] v9.1.2 was the optimization solver in the background.
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We compare the performance between two-stage methods, SPO+, and DBBwith varying training
data size n ∈ {100, 1000}, polynomial degree deg ∈ {1, 2, 4, 6}, and noise half-width ϵ̄ is 0.5. For
the 2D-knapsack, number of items is 32 and capacity is 20. For the TSP, number of nodes is 20. We
repeated all experiments 10 times, each with a different random vectors and matrix to generate 10
different training/validation/test datasets.
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Figure 2: Normalized regret for the 2D knapsack problem on the test set, lower is better.
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Figure 3: Normalized regret for the TSP problem on the test set, lower is better.

SPO+ shows its advantage: it performs best, or at least relatively well, in all cases. SPO+ is
comparable to linear regression under low polynomial degree and depends less on the sample size
than random forest. At high polynomial degrees, SPO+ outperforms Auto-Sklearn , which exposes
the limitations of the two-stage approach.

5. Conclusion

Because of the lack of easy-to-use generic tools, the potential power of the end-to-end predict-then-
optimize has been underestimated or even overlooked in various applications. Our PyEPO package
aims to alleviate barriers between the theory and practice of the end-to-end approach.

PyEPO , the PyTorch -based end-to-end predict-then-optimize tool, is specifically designed for
linear objective functions, including linear programming and (mixed) integer programming. The
tool is extended from the automatic differentiation function of PyTorch , one of the most widespread
open-source machine learning frameworks. Hence, with PyTorch , PyEPO allows to leverage of
numerous state-of-art deep learning models and techniques as they have been implemented in Py-
Torch .
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Appendix A. Code for Modeling

A.1. Optimization Model

The first step in using PyEPO is to create an optimization model that inherits from the optModel
class. Since PyEPO tackles predict-then-optimize with unknown cost coefficients, it is first nec-
essary to instantiate an optimization model, optModel, with fixed constraints and variable costs.
Such an optimization model would accept different cost vectors and be able to find the correspond-
ing optimal solutions with identical constraints. The construction of optModel is separated from
the autograd functions, SPOPlus and blackboxOpt. Then, it would be passed as an argument into
the above functions.

In PyEPO , the optModel works as a black-box, which means that we do not specifically require
a certain algorithm or a certain solver. This design is intended to give the users more freedom to
customize their tasks. In addition, we provide more convenient API to create an optimization model
with GurobiPy and Pyomo .

Let us use the following optimization model 6 with Gurobi as an example, where ci is an
unknown cost coefficient:

max
x

4∑
i=0

cixi

s.t. 3x0 + 4x1 + 3x2 + 6x3 + 4x4 ≤ 12

4x0 + 5x1 + 2x2 + 3x3 + 5x4 ≤ 10

5x0 + 4x1 + 6x2 + 2x3 + 3x4 ≤ 15

∀xi ∈ {0, 1}

(6)

Inheriting optGrbModel is the convenient way to use Gurobi with PyEPO . The only imple-
mentation required is to override getModel and return a Gurobi model and the corresponding
decision variables. In addition, there is no need to assign a value to the attribute modelSense in
optGrbModel manually. An example for Equation 6 is as follows:

1 import gurobipy as gp
2 from gurobipy import GRB
3 from pyepo.model.grb import optGrbModel
4

5 class myModel(optGrbModel):
6 def _getModel(self):
7 # ceate a model
8 m = gp.Model()
9 # varibles

10 x = m.addVars(5, name="x", vtype=GRB.BINARY)
11 # sense (must be minimize)
12 m.modelSense = GRB.MAXIMIZE
13 # constraints
14 m.addConstr(3*x[0]+4*x[1]+3*x[2]+6*x[3]+4*x[4]<=12)
15 m.addConstr(4*x[0]+5*x[1]+2*x[2]+3*x[3]+5*x[4]<=10)
16 m.addConstr(5*x[0]+4*x[1]+6*x[2]+2*x[3]+3*x[4]<=15)
17 return m, x
18

19 optmodel = myModel()
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A.2. Autograd Functions

Training neural networks with modern deep learning libraries such as TensorFlow [1] or PyTorch
[18] requires gradient calculations for backpropagation. For this purpose, the numerical technique
of automatic differentiation [17] is used. For example, PyTorch provides autograd functions, so that
users are allowed to utilize or create functions that automatically compute partial derivatives.

Autograd functions are the core modules of PyEPO that solve and backpropagate the optimiza-
tion problems with predicted costs. These functions can be integrated with different neural network
architectures to achieve end-to-end predict-then-optimize for various tasks. In PyEPO , autograd
functions include SPOPlus [8] and blackboxOpt [20].

A.2.1. FUNCTION SPOPLUS

The function SPOPlus calculates SPO+ loss, which measures the decision error of an optimization.
This optimization is represented as an instance of optModel and passed into the SPOPlus as an
argument. As shown below, SPOPlus also requires processes to specify the number of processes.

1 from pyepo.func import SPOPlus
2 # init SPO+ Pytorch function
3 spo = SPOPlus(optmodel, processes=8)

The following code block is the SPOPlus forward pass:

1 # calculate SPO+ loss
2 loss = spo(pred_cost, true_cost, true_sol, true_obj)

A.2.2. FUNCTION BLACKBOXOPT

SPOPlus directly obtains a loss while blackboxOpt provides a solution. Thus, blackboxOpt makes
it possible to use various loss functions. Compared to SPOPlus, blackboxOpt requires an ad-
ditional parameter lambd, which is the hyperparameter λ for the differentiable black-box solver.
According to Pogančić et al. [20], the values of λ should be between 10 and 20.

1 from pyepo.func import blackboxOpt
2 # init DBB solver
3 dbb = blackboxOpt(optmodel, lambd=10, processes=8)

Since blackboxOpt works as a solver, there is only one parameter pred cost for the forward
pass. As in the code below, the output is the optimal solution for the given predicted cost:

1 # solve
2 pred_sol = dbb(pred_cost)

A.3. Parallel Computation

In addition, PyEPO supports parallel computing. For SPO+ and DBB, the computational cost is a
major challenge that cannot be ignored, particularly for integer programs. Both require solving an
optimization problem per instance to obtain the gradient.

Figure 4 shows the average running time per epoch for a mini-batch gradient descent algorithm
with a batch size of 32 as a function of the number of cores. It was conducted in Python v3.7.9
with AMD Ryzen-7-5800X 8-Core Processor and 16GB memory. Specifically, we used pathos
v0.2.8 for multiprocessing. The decrease in running time per epoch is sublinear in the number of
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Figure 4: Parallel efficiency: Although there is additional overhead in creating a new process, par-
allel computing of SPO+ and DBB with an appropriate number of processors can reduce
the training time effectively.

cores. This may be explained by the overhead associated with starting up additional cores, which
might dominate computation cost. For example, in Figure 4, for the shortest path, the easily solvable
polynomial problem, the running time actually increases when the number of cores exceeds 8, while
the more complicated NP-complete problem, TSP, continues to benefit slightly from additional
cores. Overall, we believe this feature is crucial for large-scale predict-then-optimize tasks.
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Appendix B. Benchmark Datasets

In PyEPO , we generated new benchmark datasets for the task of end-to-end predict-then-optimize.
Overall, we generate datasets in a similar way to Elmachtoub and Grigas [8]. The synthetic dataset
D includes features x and cost coefficients c: D = {(x1, c1), (x2, c2), ..., (xn, cn)}. The feature
vector xi ∈ Rp follows a standard multivariate Gaussian distribution N (0, Ip) and the correspond-
ing cost vector ci ∈ Rd comes from a (possibly nonlinear) polynomial function of xi with additional
random noise. ϵij ∼ U(1− ϵ̄, 1 + ϵ̄) is the multiplicative noise term for cij , the jth element of cost
ci.

Our dataset includes three of the most classical optimization problems: the shortest path prob-
lem, the multi-dimensional knapsack problem, and the traveling salesperson problem. PyEPO pro-
vides functions to generate these data with the adjustable data size n, number of features p, cost
vector dimension d, polynomial degree deg, and noise half-width ϵ̄.

B.1. Shortest Path

We consider a h × w grid network and the goal is to find the shortest path [16] from northwest to
southeast. We generate a random matrix B ∈ Rd×p, where Bij follows Bernoulli distribution with
probability 0.5. Then, the cost vector ci is almost the same as in [8], and is generated from[

1

3.5deg
√
p
((Bxi)j + 3)deg + 1

]
· ϵij . (7)

B.2. Multi-Dimensional Knapsack

Because we assume that the uncertain coefficients exist only in the objective function, the weights
of items are fixed throughout the data. We use k to denote the number of resources; the number of
items is same as the dimension of the cost vector d. The weights W ∈ Rk×m are sampled from 3
to 8 with a precision of 1 decimal place. With the same B ∈ Rd×p as in Section B.1, cost cij is
calculated according to (7).

B.3. Traveling Salesperson

PyEPO generates costs from a distance matrix. The distance is the sum of two parts: one comes
from Euclidean distance, the other derived from feature encoding. For Euclidean distance, we create
coordinates from the mixture of Gaussian distribution N (0, I) and uniform distribution U(−2, 2).
For feature encoding, the polynomial kernel function is 1

3deg−1√p
((Bxi)j + 3)deg · ϵij , where the

elements of B come from the multiplication of Bernoulli B(0.5) and uniform U(−2, 2).
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