
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

Accelerating Perturbed Stochastic Iterates in Asynchronous
Lock-Free Optimization

Kaiwen Zhou KWZHOU@CSE.CUHK.EDU.HK
Department of Computer Science and Engineering, The Chinese University of Hong Kong

Anthony Man-Cho So MANCHOSO@SE.CUHK.EDU.HK
Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong

James Cheng JCHENG@CSE.CUHK.EDU.HK

Department of Computer Science and Engineering, The Chinese University of Hong Kong

Abstract
We show that stochastic acceleration can be achieved under the perturbed iterate framework [25]
in asynchronous lock-free optimization, which leads to the optimal incremental gradient complex-
ity for finite-sum objectives. We prove that our new accelerated method requires the same linear
speed-up condition as existing non-accelerated methods. Our key algorithmic discovery is a new
accelerated SVRG variant with sparse updates. Empirical results are presented to verify our theo-
retical findings.

1. Introduction

We consider the following unconstrained optimization problem, which appears frequently in ma-
chine learning and statistics, such as empirical risk minimization:

min
x∈Rd

f(x) ≜
1

n

n∑
i=1

fi(x), (1)

where each fi is L-smooth and convex, f is µ-strongly convex.1 We further assume that the compu-
tation of each fi is sparse, i.e., the computation is supported on a set of coordinates Ti ⊆ {1, . . . , d}.
For example, generalized linear models (GLMs) satisfy this assumption. GLMs has the form:
∀i, fi(x) = ℓi(⟨ai, x⟩), where ℓi is some loss function and ai ∈ Rd is a data sample. In this
case, the support of each fi is the set of non-zero coordinates of ai. Many large real-world datasets
have very high sparsity (see Table 1 for several examples).

In the past decade, exciting progress has been made on solving problem (1) with the introduction
of stochastic variance reduced methods, such as SAG [34, 36], SVRG [13, 44], SAGA [5], S2GD
[18], SARAH [30], etc. These methods achieve fast linear convergence rate as gradient descent
(GD), while having low iteration cost as stochastic gradient descent (SGD). There are also several
recent works on further improving the practical performance of these methods based on past gradi-
ent information [7, 12, 37, 38, 41]. Inspired by Nesterov’s seminal works [26, 27, 29], stochastic
accelerated methods have been proposed in recent years [1, 19, 23, 39, 47–49]. These methods
achieve the optimal convergence rates that match the lower complexity bounds established in [43].

1. In fact, we will only use a weaker quadratic growth assumption. The formal definitions are in Section 2.

© K. Zhou, A.M.-C. So & J. Cheng.

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

For sparse problems, lagged update [36] is a common technique for the above methods to efficiently
leverage the sparsity.

Inspired by the emerging parallel computing architectures such as multi-core computer and dis-
tributed system, many parallel variants of the aforementioned methods have been proposed, and
there is a vast literature on those attempts. Among them, asynchronous lock-free algorithms are of
special interest. Recht et al. [33] proposed an asynchronous lock-free variant of SGD called Hog-
wild! and first proved that it can achieve a linear speed-up, i.e., running Hogwild! with ρ parallel
processes only requires O(1/ρ)-times the running time of the serial variant. The condition on the
maximum overlaps among the parallel processes is called the linear speed-up condition. Following
Recht et al. [33], Lian et al. [24], Sa et al. [35] analyzed asynchronous SGD for non-convex prob-
lems, and Duchi et al. [8] analyzed for stochastic optimization; Mania et al. [25] refined the anal-
ysis framework (called the perturbed iterate framework) and proposed KroMagnon (asynchronous
SVRG); Leblond et al. [20] simplified the perturbed iterate analysis and proposed ASAGA (asyn-
chronous SAGA), and in an extended version of this work, Leblond et al. [21] further improved the
analysis of KroMagnon and Hogwild!; Pedregosa et al. [32] derived proximal variant of ASAGA;
Nguyen et al. [31] refined the analysis of Hogwild!; Joulani et al. [14] proposed asynchronous meth-
ods in online and stochastic settings; Gu et al. [10] proposed several asynchronous variance reduced
algorithms for non-smooth or non-convex problems; Stich et al. [40] studied a broad variety of SGD
variants and improved the speed-up condition of asynchronous SGD.

All the above mentioned asynchronous methods are based on non-accelerated schemes such as
SGD, SVRG and SAGA. Having witnessed the success of recently proposed stochastic accelerated
methods, it is natural to ask: Is it possible to achieve stochastic acceleration in asynchronous lock-
free optimization? Will it lead to a worse linear speed-up condition? The second question comes
from a common perception that accelerated methods are less tolerant to gradient noise, e.g., [4, 6].

We answer these two questions in this work: We propose the first asynchronous lock-free
stochastic accelerated method for solving problem (1), and we prove that it requires the identical
linear speed-up condition as the non-accelerated counterparts.

The works that are most related to ours are [9, 11, 45, 47]. Fang et al. [9] proposed several
asynchronous accelerated schemes. However, their analysis requires consistent read and does not
consider sparsity. The dependence on the number of overlaps τ in their complexities is O(τ) com-
pared with O(

√
τ) in our result. Zhou et al. [47] naively extended their proposed accelerated method

into asynchronous lock-free setting. However, even in the serial case, their result imposes strong
assumptions on the sparsity. This issue is discussed in detail in Section 3.1. In the asynchronous
case, no theoretical acceleration is achieved in [47]. Hannah et al. [11], Xiao et al. [45] proposed
asynchronous accelerated block-coordinate descent methods (BCD). However, as pointed out in
Appendix F in [32], BCD methods perform poorly in sparse problems since they focus only on a
single coordinate of the gradient information.

2. Preliminaries

Notations We use ⟨·, ·⟩ and ∥·∥ to denote the standard inner product and the Euclidean norm,
respectively. We let [n] denote the set {1, 2, . . . , n}, E denote the total expectation and Ei denote
the expectation with respect to a random sample i. We use [x]v to denote the coordinate v of the
vector x ∈ Rd, and for a subset T ⊆ [d], [x]T denotes the collection of [x]v for v ∈ T . We let ⌈·⌉
denote the ceiling function, Id denote the identity matrix and (α)+ ≜ max {α, 0}.

2

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Algorithm 1 SS-Acc-SVRG: Serial Sparse Accelerated SVRG

Input: initial guess x0 ∈ Rd, constant ω > 1 which controls the restart frequency.
Initialize: set the scalars m,ϑ, φ, η, S,R according to Theorem 1, initialize the diagonal matrix D.

1: for r = 0, . . . , R− 1 do ▷ performing restarts
2: x̃0 = z00 = xr.
3: for s = 0, . . . , S − 1 do
4: Compute and store ∇f(x̃s).
5: for k = 0, . . . ,m− 1 do
6: Sample ik uniformly in [n] and let Tik be the support of fik .
7: [yk]Tik

= ϑ · [zsk]Tik
+ (1− ϑ) · [x̃s]Tik

− φ · [D∇f(x̃s)]Tik
. ▷ sparse coupling

8: [zsk+1]Tik
= [zsk]Tik

− η ·
(
∇fik([yk]Tik

)−∇fik([x̃s]Tik
) +Dik∇f(x̃s)

)
.

9: end for
10: x̃s+1 = yt for uniformly random t ∈ {0, 1, . . . ,m− 1}.
11: zs+1

0 = zsm.
12: end for
13: xr+1 =

1
S

∑S−1
s=0 x̃s+1.

14: end for
Output: xR.

We say that a function f : Rd → R is L-smooth if it has L-Lipschitz continuous gradients, i.e.,
∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ . An important consequence of f being L-smooth and
convex is that ∀x, y ∈ Rd, f(x)−f(y)−⟨∇f(y), x− y⟩ ≥ 1

2L ∥∇f(x)−∇f(y)∥2 . We call it the
interpolation condition following [42]. A continuously differentiable f is called µ-strongly convex
if ∀x, y ∈ Rd, f(x) − f(y) − ⟨∇f(y), x− y⟩ ≥ µ

2 ∥x− y∥2 . In particular, the strong convexity
at any x ∈ Rd and x⋆ is called the quadratic growth, i.e., f(x) − f(x⋆) ≥ µ

2 ∥x− x⋆∥2 . All our
results hold under this weaker condition. We define κ ≜ L

µ , which is always called the condition
ratio. Other equivalent definitions of these assumptions can be found in [16, 29]. Oracle complexity
refers to the number of incremental gradient computations needed to find an ϵ-accurate solution (in
expectation), i.e., E [f(x)]− f(x⋆) ≤ ϵ.

3. Serial Sparse Accelerated SVRG

We first introduce a new accelerated SVRG variant with sparse updates in the serial case (Algo-
rithm 1), which serves as the base algorithm for our asynchronous scheme. Our technique is built
upon the following sparse approximated SVRG gradient estimator proposed in [25]: For uniformly
random i ∈ [n] and y, x̃ ∈ Rd, define

Gy ≜ ∇fi(y)−∇fi(x̃) +Di∇f(x̃), (2)

where Di ≜ PiD with Pi ∈ Rd×d being the diagonal projection matrix of Ti (the support of
fi) and D = (1n

∑n
i=1 Pi)

−1, which can be computed and stored in the first pass. Note that we
assume the coordinates with zero cardinality have been removed in the objective function,2 and thus
nId ⪰ D ⪰ Id. A diagonal element of D corresponds to the inverse probability of the coordinate

2. Clearly, the objective value is not supported on those coordinates.

3

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

belonging to a uniformly sampled support Ti. It is easy to verify that this construction ensures the
unbiasedness Ei

[
Di∇f(x̃)

]
= ∇f(x̃). We first summarize our key technical novelty (i.e., Sparse

Variance Correction) and then present the convergence result.

3.1. Sparse Variance Correction

Intuitively, the sparse SVRG estimator (2) will lead to a larger variance compared with the dense
one (when D = Id). In the previous attempt, Zhou et al. [47] naively extends an accelerated SVRG
variant into the sparse setting, which results in a fairly strong restriction on the sparsity as admitted
by the authors.3 In contrast, sparse variants of SVRG and SAGA in [20, 25] require no assumption
on the sparsity, and they achieve the same oracle complexities as their original dense versions.

Analytically speaking, the only difference of adopting the sparse estimator (2) is on the variance
bound. The analysis of non-accelerated dense SVRG typically uses the following variance bound
(D = Id) [13, 44]: E

[
∥Gy −∇f(y)∥2

]
≤ 4L

(
f(y)− f(x⋆) + f(x̃)− f(x⋆)

)
. It is shown in [25]

that the sparse estimator (2) admits the same variance bound for any D. Thus, the analysis in the
dense case can be directly applied to the sparse variant, which leads to a convergence guarantee that
is independent of the sparsity.

However, things are not as smooth in the accelerated case. To (directly) accelerate SVRG, we
typically uses a much tighter bound [1]: E

[
∥Gy −∇f(y)∥2

]
≤ 2L

(
f(x̃)−f(y)−⟨∇f(y), x̃− y⟩

)
(in the dense case D = Id). Unfortunately, in the sparse case (D ̸= Id), we do not have an identical
variance bound as before. The variance of the sparse estimator (2) can be bounded as follows. The
proof is given in Appendix A.

Lemma 1 (Variance bound for accelerated SVRG) The variance of Gy (2) can be bounded as

Ei

[
∥Gy −∇f(y)∥2

]
≤ 2L

(
f(x̃)− f(y)− ⟨∇f(y), x̃− y⟩

)
− ∥∇f(y)∥2

+ 2 ⟨∇f(y), D∇f(x̃)⟩︸ ︷︷ ︸
R1

−⟨∇f(x̃), D∇f(x̃)⟩ . (3)

In general, except for the dense case, where we can drop the last three terms above by completing the
square, this upper bound will always be correlated with the sparsity (i.e., D). This correlation causes
the strong sparsity assumption in [47]. We may consider a more specific case where D = nId. In
this case, the last three terms above can be written as (n − 1) ∥∇f(y)∥2 − n ∥∇f(y)−∇f(x̃)∥2,
which is not always non-positive.

Inspecting (3), we see that it is basically the term R1, which could be positive, that causes the
issue. We thus propose a novel sparse variance correction for accelerated SVRG, which is designed
to perfectly cancel R1. The correction is added to the coupling step (Step 7):

yk = ϑ · zk + (1− ϑ) · x̃s︸ ︷︷ ︸
Negative Momentum

− φ ·D∇f(x̃s)︸ ︷︷ ︸
Sparse Variance Correction

.

This correction neutralizes all the negative effect of the sparsity, in a similar way as how the negative
momentum cancels the term ⟨∇f(y), x̃− y⟩ in the analysis [1]. We can understand this correction
as a variance reducer that controls the additional sparse variance. Then we have the following
sparsity-independent convergence result for Algorithm 1, and its proof is given in Appendix B.

3. It can be shown that when κ is large, almost no sparsity is allowed in their result.

4

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Algorithm 2 AS-Acc-SVRG: Asynchronous Sparse Accelerated SVRG

Input: initial guess x0 ∈ Rd, constant ω > 1 which controls the restart frequency.
Initialize: set m,ϑ, φ, η, S,R according to Theorem 2, initialize shared z and diagonal matrix D.

1: for r = 0, . . . , R− 1 do ▷ performing restarts
2: x̃0 = z = xr.
3: for s = 0, . . . , S − 1 do
4: Compute in parallel and store ∇f(x̃s).
5: while number of samples ≤ m do in parallel
6: Sample i uniformly in [n] and let Ti be the support of fi.
7: [ẑ]Ti = inconsistent read of z on Ti.
8: [ŷ]Ti = ϑ · [ẑ]Ti + (1− ϑ) · [x̃s]Ti − φ · [D∇f(x̃s)]Ti .
9: [u]Ti = −η ·

(
∇fi([ŷ]Ti)−∇fi([x̃s]Ti) +Di∇f(x̃s)

)
.

10: for v ∈ Ti do
11: [z]v = [z]v + [u]v. ▷ coordinate-wise atomic write
12: end for
13: end while
14: x̃s+1 = ŷt, where ŷt is chosen uniformly at random among ŷ in the previous epoch.
15: end for
16: xr+1 =

1
S

∑S−1
s=0 x̃s+1.

17: end for
Output: xR.

Theorem 1 For any constant ω > 1, let m=Θ(n), ϑ=
√
m√

κ+
√
m
, φ= 1−ϑ

L , η= 1−ϑ
Lϑ , S=

⌈
2ω
√

κ
m

⌉
.

For any accuracy ϵ > 0, we restart R = O
(
log f(x0)−f(x⋆)

ϵ

)
rounds. Then, Algorithm 1 outputs xR

satisfying E [f(xR)]− f(x⋆) ≤ ϵ in O
(
max {n,

√
κn} log f(x0)−f(x⋆)

ϵ

)
oracle complexity.

This complexity matches the lower bound established in [43] (up to a log factor), and is sub-
stantially faster than the O

(
(n + κ) log 1

ϵ

)
complexity of sparse approximated SVRG and SAGA

derived in [20, 21] in the ill-conditioned regime (κ ≫ n). We provide some additional remarks on
the construction of Algorithm 1 in Appendix C.

4. Asynchronous Sparse Accelerated SVRG

We then extend Algorithm 1 into the asynchronous setting (Algorithm 2), and analyze it under the
perturbed iterate framework proposed in [25]. Note that Algorithm 2 degenerates into Algorithm 1
if there is only one thread (or worker). We provide a detailed review on the perturbed iterate analysis
framework and formally define the ordering of sequences {ẑk}, {ŷk} in Appendix D. The analysis
in this line of work crucially relies on the following two assumptions, and we discuss them in details
in Appendix E.

Assumption 1 (unbiasedness) ẑk is independent of the sample ik, i.e., E [Gŷk |ẑk] = ∇f(ŷk),
where Gŷk ≜ ∇fik(ŷk)−∇fik(x̃s) +Dik∇f(x̃s).

Assumption 2 (bounded overlaps) There exists a uniform bound τ on the maximum number of
iterations that can overlap together.

5

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

A subtlety here is that due to the periodic synchronization structure of Algorithm 2, we always
have τ ≤ m. Defining the same sparsity measure as in [33]: ∆ = 1

n · maxv∈[d] |{i : v ∈ Ti}|, we
establish the convergence result of Algorithm 2 as follows. We first present the following guarantee
for any τ given that some upper estimation of τ is available. The proof is provided in Appendix E.

Theorem 2 For any m ≥ τ̃ ≥ τ and any constant ω > 1, let m = Θ(n), ϑ =
√
m√

κ(1+2
√
∆τ̃)+

√
m

,

φ = 1−ϑ
L , η = (1−ϑ)

Lϑ(1+2
√
∆τ̃)

and S =

⌈
2ω
√

κ
m(1 + 2

√
∆τ̃)

⌉
. For any accuracy ϵ > 0, we restart

R = O
(
log f(x0)−f(x⋆)

ϵ

)
rounds. Then, Algorithm 2 outputs xR satisfying E [f(xR)] − f(x⋆) ≤ ϵ

in O

(
max

{
n,
√
κn(1 + 2

√
∆τ̃)

}
log f(x0)−f(x⋆)

ϵ

)
oracle complexity.

An interesting observation is that Theorem 2 establishes an O(
√
κnτ) dependence, which seems

to conflict with the Ω(τ
√
κ) lower bound in the deterministic n = 1 case (by adapting Theorem 3.15

in [2] with delayed gradient). Certainly there is no contradiction. The subtlety is again the periodic
synchronization structure of Algorithm 2. When n = 1, we have τ ≤ m = Θ(1) and Algorithm 2
is “almost synchronous”. Based on this theorem, it is direct to identify the region of τ where a
theoretical linear speed-up is achievable. The proof is straightforward and is thus omitted.

Corollary 2.1 (Speed-up condition) In Theorem 2, suppose τ ≤ O
(

1√
∆
max

{
n
κ , 1
})

. Then,

setting τ̃ = O
(

1√
∆
max

{
n
κ , 1
})

, we have S = O
(
max

{
1,
√

κ
n

})
, which leads to the total oracle

complexity #grad = R · S · (n+ 2m) = O
(
max {n,

√
κn} log f(x0)−f(x⋆)

ϵ

)
.

Since τ ≤ m, the precise linear speed-up condition of AS-Acc-SVRG is that τ = O(n) and
τ = O(1√

∆
max

{
n
κ , 1
}
), which is identical to that of ASAGA (cf., Corollary 9 in [21]) and slightly

better than that of KroMagnon (cf., Corollary 18 in [21]). We provide some insights about the
asynchronous acceleration in Appendix F.

5. Experiments

We present numerical results on optimizing the ℓ2-logistic regression problem:

f(x) =
1

n

n∑
i=1

log
(
1 + exp (−bi ⟨ai, x⟩)

)
+

µ

2
∥x∥2 , (4)

where ai ∈ Rd, bi ∈ {−1,+1}, i ∈ [n] are the data samples and µ is the regularization parameter.
We use the datasets from LIBSVM website [3], including KDD2010 [46], RCV1 [22], News20
[17], Avazu [15]. All the datasets are normalized to ensure a precise control on κ. We focus on the
ill-conditioned case where κ ≫ n (the case where acceleration is effective). Detailed experimental
setup and dataset descriptions can be found in Appendix L.

We compare the practical convergence and speed-up of AS-Acc-SVRG (Algorithm 2) with Kro-
Magnon and ASAGA in Figure 1. We do not compare with the empirical method MiG in [47], which
requires us to tune two highly correlated parameters with only limited insights. This is expensive
or even prohibited for large scale tasks. For the compared methods, we only tune the τ -related con-
stants in their theoretical parameter settings. That is, we tune the constant 1 + 2

√
∆τ̃ in Theorem 2

6

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

0 0.5 1 1.5 2 2.5 3

106

10-10

10-5

(a) KDD2010, 20 threads

0 0.5 1 1.5 2 2.5 3 3.5 4

105

10-10

10-5

(b) RCV1.full, 20 threads

0 2 4 6 8

106

10-10

10-5

(c) Avazu-site, 20 threads

5 10 15 20

5

10

15

20

(d) KDD2010, speed-up

5 10 15 20

5

10

15

20

(e) RCV1.full, speed-up

5 10 15 20

5

10

15

20

(f) Avazu-site, speed-up

Figure 1: Convergence and speed-up for asynchronous sparse methods. Speed-up is the improve-
ment on the wall-clock time to achieve 10−5 sub-optimality relative to using a single thread.

for AS-Acc-SVRG and the constant c in the step size 1
cL for KroMagnon and ASAGA. In fact, in

all the experiments, we simply fixed the constant to 1 for AS-Acc-SVRG (the same parameters as
the serial case), which worked smoothly. The main tuning effort was devoted to KroMagnon and
ASAGA, and we tried to choose their step sizes as large as possible. The detailed choices can be
found in Appendix L. Due to the scale of the problems, we only conducted a single run. From
Figure 1, we see significant improvement of AS-Acc-SVRG for ill-conditioned tasks and similar
practical speed-ups among the three methods, which verifies Theorem 2 and Corollary 2.1. We also
observe a strong correlation between the practical speed-up and ∆, which is predicted by the theo-
retical O(1/

√
∆) dependence. It seems that we cannot reproduce the speed-up results in [21] on the

RCV1.full dataset. This could be due to the difference in the programming languages, as we used
C++ and they used Scalar. Pedregosa et al. [32] also used C++ implementation and we observe a
similar 10× speed-up of ASAGA on the KDD2010 dataset.

Please see the appendices for additional experiments, including an ablation study of sparse
variance correction (Appendix G), comparison between sparse estimator and lagged update (Ap-
pendix H), verifying the O(

√
κ) dependence (Appendix J) and a sanity check (Appendix K).

6. Conclusion

In this work, we proposed a new asynchronous accelerated SVRG method which achieves the op-
timal oracle complexity under the perturbed iterate framework. We show that it requires the same
linear speed-up condition as the non-accelerated methods. Empirical results justified our findings.
The limitations of this work are that it requires a known µ and it does not support proximal opera-
tors. Directly incorporating the sparse proximal techniques in [32] results in an accelerated method
that requires the knowledge of ∇f(x⋆).

7

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

References

[1] Z. Allen-Zhu. Katyusha: The First Direct Acceleration of Stochastic Gradient Methods. Jour-
nal of Machine Learning Research, 18(1):8194–8244, 2017.

[2] S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends®
in Machine Learning, 8(3-4):231–357, 2015.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[4] S. Cyrus, B. Hu, B. Van Scoy, and L. Lessard. A robust accelerated optimization algorithm for
strongly convex functions. In Annual American Control Conference (ACC), pages 1376–1381.
IEEE, 2018.

[5] A. Defazio, F. R. Bach, and S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method
With Support for Non-Strongly Convex Composite Objectives. In Advances in Neural Infor-
mation Processing Systems, pages 1646–1654, 2014.

[6] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization
with inexact oracle. Mathematical Programming, 146(1):37–75, 2014.

[7] B. Dubois-Taine, S. Vaswani, R. Babanezhad, M. Schmidt, and S. Lacoste-Julien. SVRG
Meets AdaGrad: Painless Variance Reduction. arXiv preprint arXiv:2102.09645, 2021.

[8] J. C. Duchi, M. I. Jordan, and H. B. McMahan. Estimation, Optimization, and Parallelism
when Data is Sparse. In Advances in Neural Information Processing Systems, pages 2832–
2840, 2013.

[9] C. Fang, Y. Huang, and Z. Lin. Accelerating asynchronous algorithms for convex optimization
by momentum compensation. arXiv preprint arXiv:1802.09747, 2018.

[10] B. Gu, W. Xian, Z. Huo, C. Deng, and H. Huang. A Unified q-Memorization Framework for
Asynchronous Stochastic Optimization. Journal of Machine Learning Research, 21:190–1,
2020.

[11] R. Hannah, F. Feng, and W. Yin. A2BCD: Asynchronous Acceleration with Optimal Com-
plexity. In International Conference on Learning Representations, 2019.

[12] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. Variance Reduced Stochastic
Gradient Descent with Neighbors. In Advances in Neural Information Processing Systems,
pages 2305–2313, 2015.

[13] R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance
Reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

[14] P. Joulani, A. György, and C. Szepesvári. Think out of the ”Box”: Generically-Constrained
Asynchronous Composite Optimization and Hedging. In Advances in Neural Information
Processing Systems, pages 12225–12235, 2019.

8

http://www.csie.ntu.edu.tw/~cjlin/libsvm

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

[15] Y. Juan, Y. Zhuang, W. Chin, and C. Lin. Field-aware Factorization Machines for CTR Pre-
diction. In Proceedings of the 10th ACM Conference on Recommender Systems, pages 43–50.
ACM, 2016.

[16] H. Karimi, J. Nutini, and M. Schmidt. Linear Convergence of Gradient and Proximal-Gradient
Methods Under the Polyak-Łojasiewicz Condition. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

[17] S. S. Keerthi, D. DeCoste, and T. Joachims. A Modified Finite Newton Method for Fast
Solution of Large Scale Linear SVMs. Journal of Machine Learning Research, 6:341–361,
2005.

[18] J. Konečnỳ and P. Richtárik. Semi-stochastic gradient descent methods. arXiv preprint
arXiv:1312.1666, 2013.

[19] G. Lan, Z. Li, and Y. Zhou. A unified variance-reduced accelerated gradient method for
convex optimization. In Advances in Neural Information Processing Systems, volume 32,
pages 10462–10472, 2019.

[20] R. Leblond, F. Pedregosa, and S. Lacoste-Julien. ASAGA: Asynchronous Parallel SAGA. In
Proceedings of the Twentieth International Conference on Artificial Intelligence and Statistics,
volume 54, pages 46–54, 2017.

[21] R. Leblond, F. Pedregosa, and S. Lacoste-Julien. Improved Asynchronous Parallel Optimiza-
tion Analysis for Stochastic Incremental Methods. Journal of Machine Learning Research,
19:81:1–81:68, 2018.

[22] D. D. Lewis, Y. Yang, T. Russell-Rose, and F. Li. RCV1: A New Benchmark Collection for
Text Categorization Research. Journal of Machine Learning Research, 5:361–397, 2004.

[23] Z. Li. ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method. arXiv
preprint arXiv:2103.11333, 2021.

[24] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous Parallel Stochastic Gradient for Nonconvex
Optimization. In Advances in Neural Information Processing Systems, pages 2737–2745,
2015.

[25] H. Mania, X. Pan, D. S. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan. Per-
turbed Iterate Analysis for Asynchronous Stochastic Optimization. SIAM Journal on Opti-
mization, 27(4):2202–2229, 2017.

[26] Y. Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[27] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

[28] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005.

9

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

[29] Y. Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[30] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. SARAH: A Novel Method for Machine
Learning Problems Using Stochastic Recursive Gradient. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, pages 2613–2621, 2017.

[31] L. M. Nguyen, P. H. Nguyen, M. van Dijk, P. Richtárik, K. Scheinberg, and M. Takác. SGD
and Hogwild! Convergence Without the Bounded Gradients Assumption. In Proceedings of
the 35th International Conference on Machine Learning, volume 80, pages 3747–3755, 2018.

[32] F. Pedregosa, R. Leblond, and S. Lacoste-Julien. Breaking the Nonsmooth Barrier: A Scalable
Parallel Method for Composite Optimization. In Advances in Neural Information Processing
Systems, pages 56–65, 2017.

[33] B. Recht, C. Ré, S. J. Wright, and F. Niu. Hogwild!: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent. In Advances in Neural Information Processing Systems, pages
693–701, 2011.

[34] N. L. Roux, M. Schmidt, and F. R. Bach. A Stochastic Gradient Method with an Exponential
Convergence Rate for Finite Training Sets. In Advances in Neural Information Processing
Systems, pages 2663–2671, 2012.

[35] C. D. Sa, C. Zhang, K. Olukotun, and C. Ré. Taming the Wild: A Unified Analysis of Hogwild-
Style Algorithms. In Advances in Neural Information Processing Systems, pages 2674–2682,
2015.

[36] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[37] F. Shang, Y. Liu, K. Zhou, J. Cheng, K. K. W. Ng, and Y. Yoshida. Guaranteed Suffi-
cient Decrease for Stochastic Variance Reduced Gradient Optimization. In Proceedings of
the Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84,
pages 1027–1036, 2018.

[38] Z. Shi, N. Loizou, P. Richtárik, and M. Takáč. AI-SARAH: Adaptive and Implicit Stochastic
Recursive Gradient Methods. arXiv preprint arXiv:2102.09700, 2021.

[39] C. Song, Y. Jiang, and Y. Ma. Variance Reduction via Accelerated Dual Averaging for Finite-
Sum Optimization. In Advances in Neural Information Processing Systems, volume 33, pages
833–844, 2020.

[40] S. U. Stich, A. Mohtashami, and M. Jaggi. Critical Parameters for Scalable Distributed Learn-
ing with Large Batches and Asynchronous Updates. In Proceedings of the Twenty-Fourth
International Conference on Artificial Intelligence and Statistics, volume 130, pages 4042–
4050, 2021.

[41] C. Tan, S. Ma, Y. Dai, and Y. Qian. Barzilai-Borwein Step Size for Stochastic Gradient De-
scent. In Advances in Neural Information Processing Systems, pages 685–693, 2016.

10

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

[42] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Smooth strongly convex interpolation and
exact worst-case performance of first-order methods. Mathematical Programming, 161(1-2):
307–345, 2017.

[43] B. E. Woodworth and N. Srebro. Tight Complexity Bounds for Optimizing Composite Objec-
tives. In Advances in Neural Information Processing Systems, pages 3639–3647, 2016.

[44] L. Xiao and T. Zhang. A Proximal Stochastic Gradient Method with Progressive Variance
Reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

[45] L. Xiao, A. W. Yu, Q. Lin, and W. Chen. DSCOVR: Randomized Primal-Dual Block Coor-
dinate Algorithms for Asynchronous Distributed Optimization. Journal of Machine Learning
Research, 20(1):1634–1691, 2019.

[46] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G. McKenzie, J.-W. Chou, P.-H. Chung, C.-H.
Ho, C.-F. Chang, Y.-H. Wei, et al. Feature engineering and classifier ensemble for KDD cup
2010. In KDD cup, 2010.

[47] K. Zhou, F. Shang, and J. Cheng. A Simple Stochastic Variance Reduced Algorithm with
Fast Convergence Rates. In Proceedings of the 35th International Conference on Machine
Learning, pages 5980–5989, 2018.

[48] K. Zhou, Q. Ding, F. Shang, J. Cheng, D. Li, and Z.-Q. Luo. Direct Acceleration of SAGA
using Sampled Negative Momentum. In Proceedings of the Twenty-Second International Con-
ference on Artificial Intelligence and Statistics, pages 1602–1610, 2019.

[49] K. Zhou, Y. Jin, Q. Ding, and J. Cheng. Amortized Nesterov’s Momentum: A Robust Mo-
mentum and Its Application to Deep Learning. In Proceedings of the 36th Conference on
Uncertainty in Artificial Intelligence, pages 211–220, 2020.

[50] K. Zhou, A. M.-C. So, and J. Cheng. Boosting First-Order Methods by Shifting Objective:
New Schemes with Faster Worst-Case Rates. In Advances in Neural Information Processing
Systems, pages 15405–15416, 2020.

[51] K. Zhou, L. Tian, A. M.-C. So, and J. Cheng. Practical Schemes for Finding Near-Stationary
Points of Convex Finite-Sums. arXiv preprint arXiv:2105.12062, 2021.

11

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Appendix A. Proof of Lemma 1

Ei

[
∥Gy −∇f(y)∥2

]
(a)
= Ei

[
∥∇fi(y)−∇fi(x̃) +Di∇f(x̃)∥2

]
− ∥∇f(y)∥2

= Ei

[
∥∇fi(y)−∇fi(x̃)∥2

]
+ 2Ei [⟨∇fi(y)−∇fi(x̃), Di∇f(x̃)⟩]

+ Ei

[
∥Di∇f(x̃)∥2

]
− ∥∇f(y)∥2

(b)
= Ei

[
∥∇fi(y)−∇fi(x̃)∥2

]
+ 2Ei [⟨∇fi(y)−∇fi(x̃), D∇f(x̃)⟩]

+ Ei [⟨D∇f(x̃), Di∇f(x̃)⟩]− ∥∇f(y)∥2

= Ei

[
∥∇fi(y)−∇fi(x̃)∥2

]
+ 2 ⟨∇f(y), D∇f(x̃)⟩ − ⟨∇f(x̃), D∇f(x̃)⟩ − ∥∇f(y)∥2

(c)

≤ 2L
(
f(x̃)− f(y)− ⟨∇f(y), x̃− y⟩

)
+ 2 ⟨∇f(y), D∇f(x̃)⟩ − ⟨∇f(x̃), D∇f(x̃)⟩

− ∥∇f(y)∥2 ,

where (a) uses the unbiasedness Ei [Gy] = ∇f(y), (b) follows from that ∇fi(y) − ∇fi(x̃) is
supported on Ti and P 2

i = Pi, and (c) uses the interpolation condition of fi (see Section 2).

Appendix B. Proof of Theorem 1

We omit the superscript s in the one-epoch analysis for clarity. Using convexity, we have

f(yk)− f(x⋆) ≤ ⟨∇f(yk), yk − x⋆⟩
= ⟨∇f(yk), yk − zk⟩+ ⟨∇f(yk), zk − x⋆⟩
(⋆)

≤ 1− ϑ

ϑ
⟨∇f(yk), x̃s − yk⟩ −

φ

ϑ
⟨∇f(yk), D∇f(x̃s)⟩+ ⟨∇f(yk), zk − x⋆⟩ , (5)

where (⋆) follows from the construction yk = ϑzk + (1− ϑ) x̃s − φD∇f(x̃s).
Denote Gyk = ∇fik(yk) − ∇fik(x̃s) + Dik∇f(x̃s). Based on the updating rule: zk+1 =

zk − η · Gyk , it holds that

∥zk+1 − x⋆∥2 = ∥zk − x⋆ − η · Gyk∥
2

⇒ ⟨Gyk , zk − x⋆⟩ = η

2
∥Gyk∥

2 +
1

2η

(
∥zk − x⋆∥2 − ∥zk+1 − x⋆∥2

)
(⋆)⇒ ⟨∇f(yk), zk − x⋆⟩ = η

2
Eik

[
∥Gyk∥

2
]
+

1

2η

(
∥zk − x⋆∥2 − Eik

[
∥zk+1 − x⋆∥2

])
⇒ ⟨∇f(yk), zk − x⋆⟩ = η

2
Eik

[
∥Gyk −∇f(yk)∥2

]
+

η

2
∥∇f(yk)∥2

⇒ ⟨∇f(yk), zk − x⋆⟩ = +
1

2η

(
∥zk − x⋆∥2 − Eik

[
∥zk+1 − x⋆∥2

])
, (6)

where (⋆) follows from taking the expectation with respect to sample ik.

12

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Combine (5), (6) and use the variance bound in Lemma 1.

f(yk)− f(x⋆) ≤ ηL
(
f(x̃s)− f(yk)

)
+

(
1− ϑ

ϑ
− ηL

)
⟨∇f(yk), x̃s − yk⟩

+
(
η − φ

ϑ

)
⟨∇f(yk), D∇f(x̃s)⟩ −

η

2
⟨∇f(x̃s), D∇f(x̃s)⟩

+
1

2η

(
∥zk − x⋆∥2 − Eik

[
∥zk+1 − x⋆∥2

])
.

Substituting the choices η = 1−ϑ
Lϑ and φ = ηϑ = 1−ϑ

L and noting that D ≻ 0, we obtain

f(yk)− f(x⋆) ≤ (1− ϑ)
(
f(x̃s)− f(x⋆)

)
+

Lϑ2

2(1− ϑ)

(
∥zk − x⋆∥2 − Eik

[
∥zk+1 − x⋆∥2

])
.

Summing the above inequality from k = 0 to m− 1 and noting that zs+1
0 = zsm, we obtain

E [f(x̃s+1)− f(x⋆)] =
1

m

m−1∑
k=0

E [f(yk)− f(x⋆)]

≤ (1− ϑ)E [f(x̃s)− f(x⋆)]

+
Lϑ2

2m(1− ϑ)

(
E
[
∥zs0 − x⋆∥2

]
− E

[∥∥zs+1
0 − x⋆

∥∥2]) .
Denoting Qs ≜ E [f(x̃s)− f(x⋆)] and Ps ≜ E

[
∥zs0 − x⋆∥2

]
, we can write the above as

Qs+1 ≤
1− ϑ

ϑ
(Qs −Qs+1) +

Lϑ

2m(1− ϑ)
(Ps − Ps+1) .

Summing this inequality from s = 0 to S − 1 and using Jensen’s inequality, we have

E [f(xr+1)− f(x⋆)] ≤ 1

S

S−1∑
s=0

Qs+1

≤ 1− ϑ

ϑS
(Q0 −QS) +

Lϑ

2m(1− ϑ)S
(P0 − PS)

(⋆)

≤ 1− ϑ

ϑS
E [f(xr)− f(x⋆)] +

Lϑ

2m(1− ϑ)S
E
[
∥xr − x⋆∥2

]
,

where (⋆) follows from x̃0 = z00 = xr.
Using µ-strong convexity at (xr, x⋆) (or quadratic growth), f(xr)−f(x⋆) ≥ µ

2 ∥xr − x⋆∥2, we
arrive at

E [f(xr+1)− f(x⋆)] ≤
(
1− ϑ

ϑS
+

κϑ

m(1− ϑ)S

)
E [f(xr)− f(x⋆)] .

Choosing S =
⌈
ω ·
(
1−ϑ
ϑ + κϑ

m(1−ϑ)

)⌉
, we have E [f(xr+1)− f(x⋆)] ≤ 1

ω ·E [f(xr)− f(x⋆)].
Thus, for any accuracy ϵ > 0 and any constant ω > 1, to guarantee that the output satisfies

13

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

E [f(xR)] − f(x⋆) ≤ ϵ, we need to perform totally R = O
(
log f(x0)−f(x⋆)

ϵ

)
restarts. Note that

the total oracle complexity of Algorithm 1 is #grad = R · S · (n + 2m). Setting m = Θ(n) and
minimizing S with respect to ϑ, we obtain the optimal choice ϑ =

√
m√

κ+
√
m

. In this case, we have

S =
⌈
2ω
√

κ
m

⌉
= O

(
max

{
1,
√

κ
n

})
. Finally, the total oracle complexity is

#grad = O

(
max

{
n,

√
κn
}
log

f(x0)− f(x⋆)

ϵ

)
.

Appendix C. Additional Remarks about Algorithm 1

• We adopt a restart framework to handle the strong convexity, which is also used in [47] and is
suggested in [1] (footnote 9). This framework allows us to relax the strong convexity assumption
to quadratic growth. Other techniques for handling the strong convexity such as (i) assuming a
strongly convex regularizer and using proximal update [1, 28], and (ii) the direct constructions
in [19, 23, 50] fail to keep the inner iterates sparse, and we are currently not sure how to modify
them.

• The restarting point xr+1 is chosen as the averaged point instead of a uniformly random one
because large deviations are observed in the loss curve if a random restarting point is used.

• We can also use sparse variance correction to fix the sparsity issue in [47], which leads to a
slightly different method and somewhat longer proof.

• Algorithm 1 degenerates to a strongly convex variant of Acc-SVRG-G proposed in [51] in the
dense case (D = Id), which summarizes our original inspiration. Note that Acc-SVRG-G is de-
signed for minimizing the gradient norm and function value at the same time, which has nothing
to do with handling sparsity.

• A general convex (µ = 0) variant of Algorithm 1 can be derived by removing the restarts and
adopting a variable parameter choice similar to Acc-SVRG-G in [51], which leads to a similar
rate. We also find that our correction can be used in Varag [19] and ANITA [23] in the general
convex case. Since the previous works on asynchronous lock-free optimization mainly focus on
the strongly convex case, we omit the discussion here.

Appendix D. Perturbed Iterate Analysis Framework

Perturbed iterate analysis Let us denote the kth update as Gŷk ≜ ∇fik(ŷk) − ∇fik(x̃s) +
Dik∇f(x̃s) in Algorithm 2. The precise ordering of the parallel updates will be defined in the
next paragraph. Mania et al. [25] proposed to analyze the following virtual iterates:

zk+1 = zk − η · Gŷk , for k = 0, . . . ,m− 1. (7)

They are called the virtual iterates because except for z0 and zm, other iterates may not exist in
the shared memory due to the lock-free design. Then, the inconsistent read ẑk is interpreted as a
perturbed version of zk, which will be formalized shortly. Note that zm is precisely z in the shared
memory after all the one-epoch updates are completed due to the atomic write requirement, which
is critical in our analysis.

14

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Ordering the iterates An important issue of the analysis in asynchrony is how to correctly order
the updates that happen in parallel. Recht et al. [33] increases the counter k after each successful
write of the update to the shared memory, and this ordering has been used in many follow-up works.
Note that under this ordering, the iterates zk at (7) exist in the shared memory. However, this order-
ing is incompatible with the unbiasedness assumption (Assumption 1 below), that is, enforcing the
unbiasedness would require some additional overly strong assumption. Mania et al. [25] addressed
this issue by increasing the counter k just before each inconsistent read of z. In this case, the unbi-
asedness can be simply enforced by reading all the coordinates of z (not just those on the support).
Although this is expensive and is not used in their implementation, the unbiasedness is enforceable
under this ordering, which is thus more reasonable. Leblond et al. [21] further refined and simplified
their analysis by proposing to increase k after each inconsistent read of z is completed. This modi-
fication removes the dependence of ẑk on “future” updates, i.e., on ir for r > k, which significantly
simplifies the analysis and leads to better speed-up conditions. See [21] for more detailed discussion
on this issue. We follow the ordering of [21] to analyze Algorithm 2. Given this ordering, the value
of ẑk can be explicitly described as

[ẑk]v = [z0]v − η
∑

j∈{0,...,k−1}
s.t. coordinate v was
written for j before k

[Gŷj]v.

Since ŷ is basically composing ẑ with constant vectors, it can also be ordered as

ŷk = ϑẑk + (1− ϑ) x̃s − φD∇f(x̃s). (8)

Appendix E. Proof of Theorem 2

The analysis in this line of work crucially relies on the following two assumptions.

Assumption 1 (unbiasedness) ẑk is independent of the sample ik, i.e., E [Gŷk |ẑk] = ∇f(ŷk),
where Gŷk ≜ ∇fik(ŷk)−∇fik(x̃s) +Dik∇f(x̃s).

As we discussed in Appendix D, the unbiasedness can be enforced by reading all the coordinates of
z while in practice one would only read those necessary coordinates. This inconsistency exists in all
the follow-up works that use the revised ordering [10, 14, 21, 25, 32, 47], and it is currently unknown
how to avoid such an issue. Another inconsistency in Algorithm 2 is that in the implementation,
when a ŷk is selected as the next snapshot x̃s+1, all the coordinates of ẑk are loaded. This makes the
choice of x̃s+1 not necessarily uniformly random. KroMagnon (the improved version in [21]) also
has this issue. In practice, no noticeable negative impact is observed for the two inconsistencies.

Assumption 2 (bounded overlaps) There exists a uniform bound τ on the maximum number of
iterations that can overlap together.

This is a common assumption in the analysis with stale gradients. Under this assumption, the
explicit effect of asynchrony can be modeled as:

ẑk = zk + η

k−1∑
j=(k−τ)+

Jk
j Gŷj , (9)

15

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

where Jk
j is a diagonal matrix with its elements in {0, 1}. The 1 elements indicate that ẑk lacks

some “past” updates on those coordinates.
We use the following lemma from [21] to bound the term in asynchrony. Although the gradient

is evaluated at a different point, the same proof works in our case, and thus is omitted here.

Lemma 2 (Inequality (63) in [21]) We have the following bound for the iterates zk (defined at
(7)) and ẑk (defined at (9)) in one epoch of Algorithm 2:

E [⟨Gŷk , ẑk − zk⟩] ≤
√
∆η

2

 k−1∑
j=(k−τ)+

E
[∥∥Gŷj

∥∥2]+ τE
[
∥Gŷk∥

2
] .

We start with analyzing one epoch of virtual iterates defined at (7): zk+1 = zk − η · Gŷk . The
expectation is first taken conditioned on the previous epochs.

∥zk+1 − x⋆∥2 = ∥zk − x⋆ − η · Gŷk∥
2

⇒ ⟨Gŷk , ẑk − x⋆⟩+ ⟨Gŷk , zk − ẑk⟩ =
η

2
∥Gŷk∥

2 +
1

2η

(
∥zk − x⋆∥2 − ∥zk+1 − x⋆∥2

)
(⋆)⇒ E [⟨∇f(ŷk), ẑk − x⋆⟩] = η

2
E
[
∥Gŷk∥

2
]
+ E [⟨Gŷk , ẑk − zk⟩]

(⋆)⇒ E [⟨∇f(ŷk), ẑk − x⋆⟩] = +
1

2η

(
E
[
∥zk − x⋆∥2

]
− E

[
∥zk+1 − x⋆∥2

])
, (10)

where (⋆) follows from taking the expectation and the unbiasedness assumption E [Gŷk |ẑk] =
∇f(ŷk).

Using the convexity at x⋆ and the inconsistent ŷk (ordered at (8)), we have

f(ŷk)− f(x⋆) ≤ ⟨∇f(ŷk), ŷk − x⋆⟩
= ⟨∇f(ŷk), ŷk − ẑk⟩+ ⟨∇f(ŷk), ẑk − x⋆⟩
(⋆)

≤ 1− ϑ

ϑ
⟨∇f(ŷk), x̃s − ŷk⟩ −

φ

ϑ
⟨∇f(ŷk), D∇f(x̃s)⟩+ ⟨∇f(ŷk), ẑk − x⋆⟩ .

where (⋆) follows from the construction ŷk = ϑẑk + (1− ϑ) x̃s − φD∇f(x̃s).
After taking the expectation and combining with (10), we obtain

E [f(ŷk)]− f(x⋆) ≤ 1− ϑ

ϑ
E [⟨∇f(ŷk), x̃s − ŷk⟩]−

φ

ϑ
E [⟨∇f(ŷk), D∇f(x̃s)⟩] +

η

2
E
[
∥Gŷk∥

2
]

+ E [⟨Gŷk , ẑk − zk⟩] +
1

2η

(
E
[
∥zk − x⋆∥2

]
− E

[
∥zk+1 − x⋆∥2

])
.

Summing this inequality from k = 0 to m− 1, we have

m−1∑
k=0

E [f(ŷk)− f(x⋆)]

≤
m−1∑
k=0

(
1− ϑ

ϑ
E [⟨∇f(ŷk), x̃s − ŷk⟩]−

φ

ϑ
E [⟨∇f(ŷk), D∇f(x̃s)⟩] +

η

2
E
[
∥Gŷk∥

2
])

+
m−1∑
k=0

E [⟨Gŷk , ẑk − zk⟩] +
1

2η

(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
.

16

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Invoke Lemma 2 to bound the asynchronous perturbation.

m−1∑
k=0

E [f(ŷk)− f(x⋆)]

≤
m−1∑
k=0

(
1− ϑ

ϑ
E [⟨∇f(ŷk), x̃s − ŷk⟩]−

φ

ϑ
E [⟨∇f(ŷk), D∇f(x̃s)⟩] +

η

2
E
[
∥Gŷk∥

2
])

+

√
∆η

2

m−1∑
k=0

 k−1∑
j=(k−τ)+

E
[∥∥Gŷj

∥∥2]+ τE
[
∥Gŷk∥

2
]+

1

2η

(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])

=

m−1∑
k=0

(
1− ϑ

ϑ
E [⟨∇f(ŷk), x̃s − ŷk⟩]−

φ

ϑ
E [⟨∇f(ŷk), D∇f(x̃s)⟩] +

η(1 +
√
∆τ)

2
E
[
∥Gŷk∥

2
])

+

√
∆η

2

m−1∑
k=0

k−1∑
j=(k−τ)+

E
[∥∥Gŷj

∥∥2]+ 1

2η

(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])

≤
m−1∑
k=0

(
1− ϑ

ϑ
E [⟨∇f(ŷk), x̃s − ŷk⟩]−

φ

ϑ
E [⟨∇f(ŷk), D∇f(x̃s)⟩] +

η(1 +
√
∆τ)

2
E
[
∥Gŷk∥

2
])

+

√
∆ητ

2

m−1∑
k=0

E
[
∥Gŷk∥

2
]
+

1

2η

(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
=

m−1∑
k=0

(
1− ϑ

ϑ
E [⟨∇f(ŷk), x̃s − ŷk⟩]−

φ

ϑ
E [⟨∇f(ŷk), D∇f(x̃s)⟩] +

η(1 + 2
√
∆τ)

2
E
[
∥Gŷk∥

2
])

+
1

2η

(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
.

For any m ≥ τ̃ ≥ τ , we choose η = (1−ϑ)

Lϑ(1+2
√
∆τ̃)

, and then

m−1∑
k=0

E [f(ŷk)− f(x⋆)]

≤
m−1∑
k=0

(
1− ϑ

ϑ
E [⟨∇f(ŷk), x̃s − ŷk⟩]−

φ

ϑ
E [⟨∇f(ŷk), D∇f(x̃s)⟩] +

1− ϑ

2Lϑ
E
[
∥Gŷk∥

2
])

+
Lϑ(1 + 2

√
∆τ̃)

2(1− ϑ)

(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
.

17

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Note that E
[
∥Gŷk∥

2
]
= E

[
∥Gŷk −∇f(ŷk)∥2

]
+E

[
∥∇f(ŷk)∥2

]
due to the unbiasedness assump-

tion. Using Lemma 1, we can conclude that

m−1∑
k=0

E [f(ŷk)− f(x⋆)]

≤
m−1∑
k=0

((
1− ϑ

Lϑ
− φ

ϑ

)
E [⟨∇f(ŷk), D∇f(x̃s)⟩] +

1− ϑ

ϑ

(
f(x̃s)− E [f(ŷk)]

))

+
Lϑ(1 + 2

√
∆τ̃)

2(1− ϑ)

(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
.

Choosing φ = 1−ϑ
L and dividing both sides by m, we can arrange this inequality as

1

m

m−1∑
k=0

E [f(ŷk)− f(x⋆)] ≤ (1− ϑ)
(
f(x̃s)− f(x⋆)

)
+

Lϑ2(1 + 2
√
∆τ̃)

2m(1− ϑ)

(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
.

Since x̃s+1 is chosen uniformly at random from {ŷ0, . . . , ŷm−1} and that zs+1
0 = zsm (the first

and the last virtual iterates exist in the shared memory, and z is unchanged after each epoch in
Algorithm 2), the following holds

E [f(x̃s+1)− f(x⋆)] ≤ (1− ϑ)
(
f(x̃s)− f(x⋆)

)
+

Lϑ2(1 + 2
√
∆τ̃)

2m(1− ϑ)

(
∥zs0 − x⋆∥2 − E

[∥∥zs+1
0 − x⋆

∥∥2]) .
For the sake of clarity, we denote Qs ≜ E [f(x̃s)− f(x⋆)] and Ps ≜ E

[
∥zs0 − x⋆∥2

]
. Then, it

holds that

Qs+1 ≤
1− ϑ

ϑ
(Qs −Qs+1) +

Lϑ(1 + 2
√
∆τ̃)

2m(1− ϑ)
(Ps − Ps+1) .

Summing this inequality from s = 0 to S − 1 and using Jensen’s inequality, we have

E [f(xr+1)]− f(x⋆) ≤ 1

S

S−1∑
s=0

Qs+1

≤ 1− ϑ

ϑS
(Q0 −QS) +

Lϑ(1 + 2
√
∆τ̃)

2m(1− ϑ)S
(P0 − PS)

≤ 1− ϑ

ϑS
Q0 +

Lϑ(1 + 2
√
∆τ̃)

2m(1− ϑ)S
P0.

Using µ-strong convexity at (xr, x⋆) (or quadratic growth), we have ∥xr − x⋆∥2 ≤ 2
µ

(
f(xr)−

f(x⋆)
)
⇔ P0 ≤ 2

µQ0 and thus

E [f(xr+1)]− f(x⋆) ≤

(
1− ϑ

ϑS
+

κϑ(1 + 2
√
∆τ̃)

m(1− ϑ)S

)
E [f(xr)− f(x⋆)] ,

18

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Letting S =
⌈
ω ·
(
1−ϑ
ϑ + κϑ(1+2

√
∆τ̃)

m(1−ϑ)

)⌉
, we have E [f(xr+1)]−f(x⋆) ≤ 1

ω ·E [f(xr)− f(x⋆)].
Then, since ω > 1 is a constant, to achieve an ϵ-additive error, we need to restart totally R =

O
(
log f(x0)−f(x⋆)

ϵ

)
times. Note that the total oracle complexity of Algorithm 2 is #grad = R ·

S · (n + 2m). Setting m = Θ(n) and choosing ϑ that minimizes S, we obtain the optimal choice
ϑ =

√
m√

κ(1+2
√
∆τ̃)+

√
m

, which leads to

S =

⌈
2ω

√
κ

m
(1 + 2

√
∆τ̃)

⌉
= O

(
max

{
1,

√
κ

n
(1 + 2

√
∆τ̃)

})
.

Finally, the total oracle complexity is

#grad = O

(
max

{
n,

√
κn(1 + 2

√
∆τ̃)

}
log

f(x0)− f(x⋆)

ϵ

)
.

Appendix F. Some Insights about the Asynchronous Acceleration

Let us first consider the serial case (Algorithm 1). Observe that in one epoch, the iterate yk is
basically composing zk with constant vectors, we can equivalently write the update (Step 8) as
yk+1 = yk − ηϑ · Gyk . Thus, the inner loop of Algorithm 1 is identical to that of (sparse) SVRG.
The difference is that at the end of each epoch, when the snapshot x̃ is changed, an offset (or
momentum) is added to the iterate. This has been similarly observed for accelerated SVRG in
[48]. Note that since the sequence z appears in the potential function, the current formulation of
Algorithm 1 allows a cleaner analysis. Then, in the asynchronous case, the inner loop of Algorithm 2
can also be equivalently written as the updates of asynchronous SVRG, and the momentum is added
at the end of each epoch. This gives us some insights about the identical speed-up condition in
Corollary 2.1: Since the asynchronous perturbation only affects the inner loop, the momentum is
almost uncorrupted, unlike the cases of noisy gradient oracle. That is, the asynchrony only corrupts
the “non-accelerated part” of Algorithm 2, which thus leads to the same speed-up condition as the
non-accelerated methods.

19

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Appendix G. The Effectiveness of Sparse Variance Correction

0 50 100 150 200 250 300

10-10

10-5

(a) Synthetic

0 50 100 150 200 250 300 350

10-10

10-5

(b) KDD2010.S

0 50 100 150 200

10-10

10-5

(c) RCV1.train

0 50 100 150 200

10-10

10-5

(d) News20

Figure 2: Ablation study for the practical effect of sparse variance correction (abbreviated as SVC
in the legends). Run 10 seeds. Shaded bands indicate ±1 standard deviation.

We study the practical effect of the correction in the serial case. In Figure 2, “with SVC” refers to
Algorithm 1 and “without SVC” is a naive extension of the dense version of Algorithm 1 into the
sparse case (i.e., simply using a sparse estimator (2)), which suffers from the same sparsity issue as
in [47]. For the two variants, we chose the same parameters in Theorem 1 to conduct an ablation
study. In theory, we would expect the sparsity issue to be more severe if D is closer to nId (i.e.,
more sparse). Note that by definition, ∆ = maxi∈[d]D

−1
ii , and thus D ⪰ ∆−1Id. Hence, smaller

∆ indicates that D is closer to nId. From Figure 2d to 2a, ∆ is decreasing and we observe more
improvement from the correction. The improvement is consistent in our experiments, which justifies
the effectiveness of sparse variance correction.

Appendix H. Sparse Estimator v.s Lagged Update

0 1000 2000 3000 4000 5000

10-10

10-5

(a) Synthetic

0 1 2 3 4 5

105

10-10

10-5

(b) KDD2010.S

0 0.5 1 1.5 2 2.5

104

10-10

10-5

(c) RCV1.train

0 0.5 1 1.5 2

105

10-10

10-5

(d) News20

Figure 3: Running time comparison between using sparse gradient estimator and lagged update
(abbreviated as LU). The wall-clock time and objective value are averaged over 10 runs.

We examine the running time improvement from adopting the sparse estimator compared with using
the lagged update technique. Lagged update technique handles sparsity by maintaining a last seen
iteration for each coordinate. When a coordinate is involved in the current iteration, it computes
an accumulated update from the last seen iteration in closed form. Such computation is dropped
when adopting a sparse estimator, which is the source of running time improvement. Moreover, it is
extremely difficult to extend the lagged update technique into the asynchronous setting as discussed
in Appendix E in [21]. In Figure 3, we compare SS-Acc-SVRG (Algorithm 1) with lagged update
implementations of (dense) SS-Acc-SVRG and Katyusha. Their default parameters were used.

20

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Note that the lagged update technique is much trickier to implement, especially for Katyusha. We
need to derive the closed-form solution of some complicated constant recursive sequence for the
accumulated update. Plots with respect to effective passes are provided in Appendix J, in which
SS-Acc-SVRG and Katyusha show similar performance.

Appendix I. The Effect of the Constant ω (the Restart Frequency)

0 50 100 150 200 250 300 350 400 450

10-10

10-5

Figure 4: The practical effect of ω. RCV1.train, run 10 seeds. The circle marks the restarting
points, i.e., {xr}. Shaded bands indicate ±1 standard deviation.

We numerically evaluate the effect of the constant ω in Figure 4. We choose ω from 1.5 (frequent
restart) to 50 (not restart in this task). The results on the News20 and KDD2010.S datasets are
basically identical, and thus are omitted here. As we can see, unfortunately, the restarts only deteri-
orate the performance. An intuitive explanation is that the restart strategy is more conservative as it
periodically retracts the point. In theory, the explicit dependence on ω (in the serial case) is

1

logω

⌈
2ω

√
κ

m

⌉
,

which suggests that if ω is large, the convergence on the restarting points {xr} will be slower. This is
observed in Figure 4. However, what our current theory cannot explain is the superior performance
of not performing restart, and we are not aware of a situation where the “aggressiveness” of no
restart would hurt the convergence. Optimally tuning ω in the complexity will only lead to a small
ω that is close to 1. Further investigation is needed for the convergence of Algorithms 1 and 2
without restart (we have strong numerical evidence in Appendix J that without restart, they are still
optimal).

21

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Appendix J. Justifying the
√
κ Dependence

0 50 100 150 200 250 300

10-10

10-5

(a) KDD2010.S, µ = 10−6.

0 50 100 150 200 250 300

10-10

10-5

(b) RCV1.train, µ = 10−5.

0 50 100 150 200 250 300

10-10

10-5

(c) News20, µ = 10−5.

0 50 100 150 200 250 300 350

10-10

10-5

(d) KDD2010.S, µ = 10−7.

0 50 100 150 200 250 300

10-10

10-5

(e) RCV1.train, µ = 10−6.

0 50 100 150 200 250 300

10-10

10-5

(f) News20, µ = 10−6.

Figure 5: Justifying the
√
κ dependence. Run 10 seeds. Shaded bands indicate ±1 standard devia-

tion.

We choose µ to be 10-times larger (Figures 5a to 5c) than the ones specified in Table 1 (Figures 5d
to 5f) to verify the

√
κ dependence. In this case, κ is 10-times smaller and we expect the accelerated

methods to be around 3-times faster in terms of the number of data passes. This has been observed
across all the datasets for Katyusha and SS-Acc-SVRG, which verifies the accelerated rate.

Appendix K. Sanity Check for Our Implementation

0 50 100 150

10-10

10-5

Figure 6: Sanity check. a9a.dense, µ = 10−6. Run 20 seeds. Shaded bands indicate ±1 standard
deviation.

22

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

If the dataset is fully dense, then the following three schemes should be equivalent: SS-Acc-SVRG,
SS-Acc-SVRG with lagged update implementation and AS-Acc-SVRG with a single thread. We
construct a fully dense dataset by adding a small positive number to each elements in the a9a
dataset [3] (n = 32,561, d = 123), and we name this dataset as a9a.dense. The sanity check is
then provided in Figure 6. SS-Acc-SVRG (LU) shows slightly different convergence because we
used an averaged snapshot instead of a random one in its implementation. Implementing lagged
update technique with a random snapshot is quite tricky, since the last seen iteration might be in
the previous epochs in this case. We tested SS-Acc-SVRG with an averaged snapshot and it shows
almost identical convergence as SS-Acc-SVRG (LU).

Appendix L. Experimental Setup

Table 1: Summary of the datasets. Density is the ratio of non-zero elements.

Scale Dataset n d µ Density ∆ Description

Small

Synthetic 100,000 100,000 10−7 10−5 10−5 Identity data matrix with random labels

KDD2010.S 70,000 29,890,095 10−7 10−6 0.15 The first 70,000 data samples of KDD2010

RCV1.train 20,242 47,236 10−6 1.6 · 10−3 0.42

News20 19,996 1,355,191 10−6 3.4 · 10−4 0.93

Large

KDD2010 19,264,097 29,890,095 10−10 10−6 0.16

RCV1.full 697,641 47,236 10−9 1.5 · 10−3 0.43 Combined test and train sets of RCV1

Avazu-site 23,567,843 999,962 10−10 1.5 · 10−5 0.96 Avazu-site.train

We provide the dataset descriptions and the choices of µ in Table 1. We conduct serial experi-
ments on the small datasets and asynchronous experiments on the large ones. The asynchronous
experiments were conducted on a multi-core HPC. All the methods are implemented in C++.

Here we discuss two subtleties in the implementation:

• If each fi(x) = log
(
1 + exp (−bi ⟨ai, x⟩)

)
+ µ

2 ∥x∥
2, then it is supported on every coordinate

due to the ℓ2-regularization. Following [21], we sparsify the gradient of the regularization term
as µDix; or equivalently, fi(x) = log

(
1 + exp (−bi ⟨ai, x⟩)

)
+ µ

2 ⟨x,Dix⟩. Clearly, this fi also
sums up to the objective (4). The difference is that the Lipschitz constant of fi will be larger,
i.e., from 0.25 + µ to at most 0.25 + µn. Since we focus on the ill-conditioned case (L ≫ µn),
this modification will not have significant effect.

• In Theorems 1 and 2, all the parameters have been chosen optimally in our analysis except
for ω, which controls the restart frequency. Despite all the theoretical benefits of the restart
framework mentioned in Section C, in practice, we do not find performing restarts lead to a
faster convergence. Thus, we do not perform restarts in our experiments (or equivalently, we
choose a relatively large ω = 50). Clearly, this choice will not make our method a “heuristic”
since the theorems hold for any ω > 1. Detailed discussion is given in Appendix I.

Serial setup We ran serial experiments on an HP Z440 machine with a single Intel Xeon E5-
1630v4 with 3.70GHz cores, 16GB RAM, Ubuntu 18.04 LTS with GCC 9.4.0, MATLAB R2021a.
We fixed the epoch length m = 2n and chose the default parameters: SS-Acc-SVRG follows
Theorem 1; Katyusha uses τ2 = 1

2 , τ1 =
√

m
3κ , α = 1

3τ1L
[1]; SVRG uses η = 1

4L .

23

ACCELERATED ASYNCHRONOUS LOCK-FREE OPTIMIZATION

Asynchronous setup We ran asynchronous experiments on a Dell PowerEdge R840 HPC with
four Intel Xeon Platinum 8160 CPU @ 2.10GHz each with 24 cores, 768GB RAM, CentOS 7.9.2009
with GCC 9.3.1, MATLAB R2021a. We implemented the original version of KroMagnon in [25].
We fixed the epoch length m = 2n for KroMagnon and AS-Acc-SVRG. AS-Acc-SVRG used
the same parameters as in the serial case for all datasets. The step sizes of KroMagnon and
ASAGA were chosen as follows: On RCV1.full, KroMagnon uses 1

L , ASAGA uses 1
1.3L ; on Avazu-

site.train, KroMagnon uses 1
2L , ASAGA uses 1

2L ; on KDD2010, KroMagnon uses 1
2L , ASAGA

uses 1
3L . Due to the scale of the tasks, we cannot do fine-grained grid search for the step sizes of

KroMagnon and ASAGA. They were chosen to ensure a stable and consistent performance in the
20-thread experiments.

24

	Introduction
	Preliminaries
	Serial Sparse Accelerated SVRG
	Sparse Variance Correction

	Asynchronous Sparse Accelerated SVRG
	Experiments
	Conclusion
	Proof of Lemma 1
	Proof of Theorem 1
	Additional Remarks about Algorithm 1
	Perturbed Iterate Analysis Framework
	Proof of Theorem 2
	Some Insights about the Asynchronous Acceleration
	The Effectiveness of Sparse Variance Correction
	Sparse Estimator v.s Lagged Update
	The Effect of the Constant (the Restart Frequency)
	Justifying the Dependence
	Sanity Check for Our Implementation
	Experimental Setup

