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Abstract
We consider the problem of scheduling operations/nodes, the dependency among which is char-
acterized by a Directed Acyclic Graph (DAG). Due to its NP-hard nature, heuristic algorithms
were traditionally used to acquire reasonably good solutions, and more recent works have proposed
Machine Learning (ML) heuristics that can generalize to unseen graphs and outperform the non-ML
heuristics. However, it is computationally costly to generate solutions using existing ML schedulers
since they adopt the episodic reinforcement learning framework that necessitates multi-round neural
network processing. We propose a novel ML scheduler that uses a one-shot neural network encoder
to sample node priorities which are converted by list scheduling to the final schedules. Since the
one-shot encoder can efficiently sample the priorities in parallel, our algorithm runs significantly
faster than existing ML baselines and has comparable run time with the fast traditional heuristics.
We empirically show that our algorithm generates better schedules than both non-neural and neural
baselines across various real-world and synthetic scheduling tasks.

1. Introduction

The problem of scheduling operations arises across many domains, such as data centers where the
incoming jobs have to be scheduled on a distributed server [14], manufacturing pipelines in the
form of job shop scheduling problems (JSSP) [13], and ML compilers where the operations of a
computation graph need to be scheduled on the available hardware devices [15, 26]. In all these cases,
the problem may be abstracted using a directed acyclic graph (DAG) where the nodes of the graph
represent the operations and the edges represent the dependency constraints between the operations
and hence the problem is also referred to as DAG scheduling. The objective is to minimize the finish
time (or makespan) of the DAG subject to resource and dependency constraints.*†

It is well known that this is an NP-hard problem [9], and practitioners have traditionally relied
on heuristic methods to obtain good solutions. One of the celebrated scheduling approaches is list
scheduling [5] where the idea is to schedule nodes as early as possible and to break ties using priorities.
The priorities can be obtained via different node metrics which are computationally inexpensive such
as critical-path based, shortest processing time or most operations remaining [7]. More recently,
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researchers have proposed deep reinforcement learning based methods to solve scheduling problems
[14, 22, 25, 26]. The scheduling policy in all the references utilize Graph Neural Networks (GNN)
as an encoder to derive node embeddings. [25] proposed an auto-regressive GNN based policy for
the JSSP problem which predicts the next node for scheduling given the nodes scheduled so far.
[22] proposed a bi-level optimization approach which modifies the input DAG by adding multiple
edges via a learned policy and then apply the critical-path heuristic on the modified DAG. One major
drawback of the existing ML based schedulers is the computational cost as they require multi-round
neural network processing (encoding step). The multi-round neural network processing is reflected
as auto-regressive architecture [25] or bi-level optimization design [22]. This drawback limits the
scalability to large graphs and the applicability to domains where solutions need to be obtained in a
timely manner (e.g., scheduling computation graphs in compilers).

In this paper, we propose a novel ML scheduler that uses a one-shot neural network encoder
to sample node priorities which are converted by list scheduling to the final schedules. Since our
encoder generates node priorities with a single forward pass of a neural network and efficiently
samples priorities in parallel, our algorithm runs significantly faster than existing ML baselines
and has comparable run time with the fast traditional heuristics. We perform experiments on a
variety of scheduling tasks which includes TPC-H benchmark and scheduling for synthetic and
real-world computation graphs. We show that our method outperforms (w.r.t to the makespan) both
the non-neural baselines and the neural baseline.

2. Preliminaries

2.1. Scheduling Problem

In scheduling problems, we define a DAG as a tuple G := (V, E , δ, ρ, µ) with a set V of nodes
(or vertices) and a set E of directed edges (or arcs). Each node v ∈ V represents an operation
with δ(v) ≥ 0 denoting its operational duration and ρ(v) ≥ 0 denoting the resources required to
execute v. For a setM of machine types, each node v ∈ V has to be assigned to its own machine
type µ(v) ∈ M (|M| = 1 and |M| > 1 correspond to scheduling with homogeneous machines
and heterogeneous ones, respectively). The set E of edges in the DAG G represents computational
dependency among nodes. For instance, for the scheduled start time τ(v) ≥ 0, v ∈ V for each node,
a directed edge (v1, v2) ∈ E , v1, v2 ∈ V, means τ(v1) + δ(v1) ≤ τ(v2), i.e., any node should be
scheduled on or after all its predecessor nodes are finished. We assume that each type of machine
m ∈M has its own maximum resource limit λ(m) ≥ 0, i.e., at any point of time the total amount of
occupied resources for machines of type m cannot exceed λ(m).

Let us introduce the vectorized notation τ = [τ(v)]v∈V ∈ R|V|
≥0 of the start times with a little

abuse of notation for the sake of simpler notation. We define a valid schedule as a vector τ ∈ T
where T is the set of all valid schedules (satisfying both precedence and resource constraints for
given DAG G). The objective of the scheduling problem is to find τ∗ := argminτ∈T C(τ ;G),
where C(τ ;G) := maxv∈V{τ(v) + δ(v)}, the duration required to complete all operations, is the
makespan of schedule τ .

2.2. List Scheduling

List scheduling [5] is a class of priority-based schedule algorithms that are widely adopted in practice
due to their simplicity. We describe how list scheduling works as follows (See Figure in Appendix A);
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(Step 1) Input a list of node priorities and set the current decision time to be zero; (Step 2) Find ready
nodes that can be scheduled at the current decision time, i.e., nodes whose predecessors have finished;
(Step 3) Schedule the ready nodes sequentially at the current decision time by following the order of
node priority until either all ready nodes are scheduled or further nodes cannot be scheduled due to
resource constraints; (Step 4) Move the decision time to the earliest finish time over all scheduled
nodes which have not finished at the current decision time and repeat (Step 2) to (Step 4) until all
nodes are scheduled.

2.3. The Gumbel-Top-k Trick

Consider a random variable Y over a set Y of finite categories, where the distribution is defined by
the softmax over logits(y) ∈ R, y ∈ Y (the unnormalized log-probabilities), i.e., Pr{Y = y} ∝
exp(logits(y)), y ∈ Y, and thus

Pr{Y = y} = exp(logits(y))∑
y′∈Y exp(logits(y′))

. (1)

The Gumble-Max trick [6] is a method to sample from the categorical distributions when logits
characterizing the distributions are tractable. Specifically, the trick shows that by using a random
vector Z ∈ R|Y| where elements Z(y), y ∈ Y, are sampled from i.i.d. standard Gumbel distribution,
one can randomly generate a category as follows:

argmax
y∈Y

{logits(y) + Z(y)} ∼ Pr{Y = y}. (2)

More recent works [12, 21] found that the Gumbel-Max trick can be extended to sample k categories
without replacement, which is called the Gumbel-Top-k trick. For the extension, they introduced
arg top(k) which takes a real vector on Y and outputs a sequence of elements in Y that correspond
to the k largest values; the output sequence of the elements should be ordered by the corresponding
decreasing input values [12]. As a special case where k = |Y|, arg top(k) becomes arg sort in
decreasing values. The Gumbel-Top-k trick generates the random sequence of elements in Y

[Y1, Y2, ..., Yk] := arg top
y∈Y

(k){logits(y) + Z(y)}, (3)

and shows that the sequence is equivalent to the one from sampling k elements without replacement;
note that the random vector Z is sampled once and before applying arg top(k). In other words, the
distribution of the random sequence in Eq. (3) is shown to be described as follows [12]:

Pr{[Y1, Y2, ..., Yk] = [y1, y2, ..., yk]} =
k∏

i=1

exp(logits(yi))∑
y′∈Y\{y1,...,yi−1} exp(logits(y

′))
. (4)

Intuitively, Eq. (4) tells us that each element in the random sequence in Eq. (3) follows the categorical
distribution that is characterized by the softmax over logits, where previously sampled categories are
excluded. In this work, we use Eq. (3) to decide the priorities over the elements in Y when k = |Y|,
which will be elaborated in the next section.
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3. DAG Scheduling with Neural Priority Sampler

Suppose we have a set G := {G1, G2, ...} of DAGs, where each DAG Gi := (Vi, Ei, δi, ρi, µi)
follows the definition in Section 2.1. We also assume that we have a device which is equipped
with machines required for the DAGs. The learning-to-schedule algorithms by [25] and [22] aim
to find out a parameterized schedule generator πθ(τ |G) (with the neural network parameter θ) that
minimizes the average makespan over G, i.e.,

argmin
θ

EG∼GEτ∼πθ(·|G) [C(τ ;G)] , (5)

where τ is the schedule (the start times of nodes) and C(τ ;G) is the makespan of τ in G as in
Section 2.1.

3.1. Schedule Generator with One-Shot Priority Sampler

Using one-shot node priorities was recently proposed by [4] to solve peak memory minimization
problems in DAGs. We adopt Topoformer, the graph neural network (GNN) encoder presented by
Gagrani et al., as our graph encoder GNNθ1(G) ∈ (Rh)|V|, where h is the dimension of output
embeddings for each node, and θ1 is the neural network parameter of the encoder. We use MLPθ2 :
Rh → R to convert the GNN’s output node embeddings into logits over the nodes, i.e., for θ :=
(θ1, θ2) and G ∈ G = {G1, G2, ...},

logitsθ(v;G) := MLPθ2([GNNθ1(G)]v) ∈ R, v ∈ V. (6)

The difference between Gagrani et al.’s algorithm and ours arises from sampling procedure using
logits. Gagrani et al. considers logits of schedulable nodes at each decoding step and sequentially
samples among those schedulable nodes, whereas we sample node priorities only once at the start of
decoding. Specifically, by using i.i.d. standard Gumbel variables Z(v) ∈ R, v ∈ V, and arg sort, we
randomly sample a sequence of nodes from perturbed logits:

V := [V1, V2, ..., V|V|] := arg sort
v∈V

{logitsθ(v;G) + Z(v)}. (7)

Note that the LHS of Eq. (7) is a random sequence due to the randomness of Z and arg sort is
applied in decreasing values of the perturbed logits. We then regard the sampled random sequence
V = [V1, V2, ..., V|V|] as the sequence of node priorities V1 ≻ V2 ≻ ... ≻ V|V|, which does not
require additional computation. Due to the stochastic nature of the Gumbel-Top-k Trick described in
Section 2.3, our mapping from the random sequence to the node priorities is equivalent to sampling
nodes without replacement where nodes sampled earlier are considered to be higher-priority ones.
More importantly, the trick allows us to use the tractable distribution of the random sequence, which
becomes highly beneficial when optimizing the neural network. We will discuss this further in the
next subsection.

Finally, we use list scheduling (described in Section 2.2) with the sampled random sequence
in Eq. (7) to generate a valid schedule with the start time τ :

τ = ListScheduling(V ;G) ∈ R|V|
≥0 . (8)
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Table 1: Experimental results on TPC-H datasets are described. We use bold letters to emphasize
the minumim average makespan.

TPC-H-50 TPC-H-100 TPC-H-150
Makespan Time (sec) Makespan Time (sec) Makespan Time (sec)

Const. Prog. 8629.4 - 19278.3 - - -

CP 9821.3 0.008 16914.1 0.027 24429.5 0.048
SPT 12818.4 0.002 19502.7 0.008 27409.4 0.021
MOPNR 11360.1 0.011 17733.1 0.032 24871.2 0.064

PPO-BiHyb 8905.4 66.484 15192.2 149.215 22371.2 571.424

Greedy (ours) 8845.6 0.057 14981.2 0.100 22332.7 0.259
S(16) (ours) 8782.4 0.114 14972.0 0.287 22330.2 0.674
S(64) (ours) 8742.5 0.216 14968.1 0.699 22323.0 1.856
S(256) (ours) 8694.4 0.540 14964.7 2.270 22320.8 6.485

3.2. Algorithm and Practical Consideration

The objective of learning-to-schedule frameworks in Eq. (5) can be rewritten with our scheduler
generator as follows:

argmin
θ

EG∼GEV ∼πθ(·|G)CLS(V ;G), (9)

where CLS(V ;G) := C(ListScheduling(V ;G);G) is the makespan of list scheduling for given
node priorities V = [V1, ..., V|V|] and the graph G, and πθ(·|G) is the probability distribution of
sampling node priorities for G. From the Gumbel-Top-k trick discussed in Section 2.3, we can get
the tractable form of πθ(·|G) below:

πθ(V |G) : = Prθ{V = [v1, ..., v|V|]|G} =
|V|∏
i=1

exp(logitsθ(vi;G))∑
v∈V\{v1,...,vi−1} exp(logitsθ(v;G))

. (10)

This enables us to use the following gradient descent rule using REINFORCE [23] that optimizes the
objective Eq. (9) with learning rate α > 0:

θ ← θ − αEG∼GEV ∼πθ(·|G)[∇θ log πθ(V |G)CLS(V ;G)]. (11)

Together with the above update rule, we found that the practical techniques including Logit
Norm Regularization and Cost Standardization we introduce are crucial to stabilize the training
and lead to significantly better performance. We describe details on those techniques together with
an illustrative figure and our final algorithm in Appendix.

4. Experiments

We evaluate our neural DAG scheduler and baselines for three different scheduling tasks: DAG
scheduling on TPC-H dataset, and scheduling on computation graphs (See Appendix E for
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details about all tasks.). We compare our algorithm with both non-neural and neural baselines.
For non-neural baselines, we consider list scheduling algorithms with different node priorities
(based on Critical-Path (CP), Most Operations Remaining (MOPNR) and Shortest Processing Time
(SPT)) [25], and a constraint programming (Const. Prog.) solver (CP-SAT by [17]) with 24 hours
time limit. For neural baselines, we consider PPO-BiHyb [22], where we use the deployed model
of PPO-BiHyb for TPC-H dataset and train the model for the dataset with real-world computation
graphs.

For our model, we consider two types of operating modes. In Greedy mode, our model generates
schedules with node priorities that uses arg sort and the pure logits without adding Gumbel random
variables. In Sampling mode, we sample multiple node priorities (where the number of samples are
chosen from 16, 64 and 256). We report the makespan for output schedules and the run time of each
algorithm. We report the speedup metric, which is defined as the ratio of sum duration of all nodes
and the makespan, in the computation graph scheduling task.

4.1. TPC-H Dataset

TPC-H dataset1 includes DAGs that consists of industrial queries and data modifications which
represent computation jobs and need to be scheduled on a homogenous machine with finite resources.
Table 1 shows the performance of baselines and our model on the test set. We observe that our
method obtains better average makespan than all the baselines including PPO-BiHyb on all the three
instances except in TPC-50 where constraint programming achieves slightly better makespan. One
more thing to note is that our method has much smaller run time compared to PPO-BiHyb. This is
because our method generates node priorities via a single pass of our GNN encoder and samples
priorities effectiviely by using Gumbel Top-k trick, whereas PPO-BiHyb has to run their GNN
encoder multiple times and requires beam search.

4.2. Computation Graphs

We test our approach on scheduling tasks for both synthetic and real-world computation graphs of
neural networks that arise in ML compilers. We consider three type of synthetic computation graphs:
layered graphs [4], Erdos-Renyi and stochastic block model graphs [15] (See appendix F.3.). We
show that our model significantly outperforms our baselines and describe the results in Appendix
due to the space limit. We also experiment on a set of proprietary real-world computation graphs
to evaluate the practical applicability of our neural scheduler. This dataset consists of computation
graphs of diverse neural net architectures like classifiers, convolution nets, denoisers, etc. We observe
that our method achieves superior speedup on graphs of all sizes compared to all non-neural baselines.
We also compare our approach with PPO-BiHyb and constraint programming baseline in this setting.
Our results show that we outperform both PPO-BiHyb and constraint programming in terms of the
achieved speedup. Note that we generate better schedules and run much faster than PPO-BiHyb.
The fact that we beat constraint programming shows the large search space of this problem and the
effectiveness of our approach to learn to find good schedules in this large space.

1http://tpc.org/tpch/default5.asp
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Table 2: Experimental results on real-world computation graphs are described. We use bold letters
to emphasize the maximum average speedup for each test set of graphs.

200 - 500 Node Graphs 500 - 700 Node Graphs 700 - 1000 Node Graphs
SpeedUp Time (sec) SpeedUp Time (sec) SpeedUp Time (sec)

Const. Prog. 3.267 - 3.183 - 2.497 -

CP 3.174 0.007 2.804 0.016 2.739 0.025
SPT 3.107 0.002 2.868 0.005 2.664 0.008
MOPNR 3.181 0.009 2.825 0.020 2.739 0.028

PPO-BiHyb 3.223 17.937 2.965 52.777 2.798 322.793

Greedy (ours) 3.245 0.152 3.131 0.098 2.846 0.060
S(16) (ours) 3.271 0.192 3.188 0.245 2.848 0.230
S(64) (ours) 3.278 0.263 3.199 0.456 2.856 0.606
S(256) (ours) 3.286 0.595 3.207 1.309 2.860 2.001
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Appendix A. Illustrations for List Scheduling and Our Neural DAG Scheduler
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Figure 1: An example of list scheduling [5] for a 4-node DAG scheduling is described. Each node has
its own duration, while resource limit is ignored for illustration purpose. List scheduling
takes node priority as an input (e.g., 1 ≻ 3 ≻ 2 ≻ 4, brighter color implies higher priority)
and schedules the higher-priority node among ready nodes earlier than the other nodes.
After all ready nodes are scheduled, we move the decision time until a new set of ready
nodes is found. We repeat these steps until we schedule all nodes.
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Figure 2: Our neural scheduler for DAGs works as follows: (Step 1) Generate logits for all nodes
from a DAG by using a GNN encoder followed by an MLP. (Step 2) Perturb logits by
adding i.i.d. Gumbel random variables. (Step 3) Take argsort over perturbed logits to
define node priorities. Higher priority nodes have brighter colors. (Step 4) Use list
scheduling to generate a schedule.

Appendix B. Algorithmic details

Logit Norm Regularization. When [4] used their GNN encoder (Topoformer) to define the model
distribution, the standardization over logits was used to bound the range of logits (See Section
C.2 in [4]). Specifically for the mean m and standard deviation s over logits(v), v ∈ V, and a
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Algorithm 1: Neural DAG Scheduler via One-Shot Priority Sampling
Input: A set G = {G1, G2, ...} of the training graphs, a node priority sampler πθ, learning rate

α > 0, a regularization coefficient clogits > 0.
for each epoch do

for each G ∈ G do
Sample a batch of node priorities V (1),V (2), ...,V (N) ∼ πθ(·|G).
Convert the priorities to valid schedules by list scheduling.
Evaluate makespan for all sampled schedules.
Standardize makespan C̄n ← C(V (n);V (1), ...,V (N), G), n = 1, ..., N, by Eq. (13).
Compute REINFORCE gradient gREINFORCE ← 1

N

∑N
n=1∇θ log πθ(V

(n)|G)C̄n.
Compute logit norm gradient glogits ← clogits ×∇θLlogits(θ;G) with Eq. (12).
Update θ by using gradient descent: θ ← θ − α(gREINFORCE + glogits).

end
end
Output: πθ

scalar hyperparameter c > 0, the standardized logits logits(v) := c× (logits(n)−m)/s is used to
define the model’s probability of topological ordering. However, we empirically observe that such
standardization over logits leads to poor performance. We believe this is because standardization
significantly restricts the model’s representation capability. While a rigorous proof for our argument
may be complicated, we can easily show that this is true for binary random variables. Specifically with
the above definition of standardized logits and a random variable X ∈ {0, 1}, one can only represent
(Pr{X = 0},Pr{X = 1}) = ( 1

1+exp(2c) ,
exp(2c)

1+exp(2c)) or ( exp(2c)
1+exp(2c) ,

1
1+exp(2c)) (See Appendix C.).

Note that the constant c is a hyperparameter and assumed to be fixed during training, and the example
implies that only two distributions can be described for any given c, which supports our claim.

After removing the standardization of logits due to the above observation, however, we still
observe instability in training caused by the unbounded logits. Therefore, we introduce the logit
norm regularizer that minimizes

Llogits(θ;G) :=
1

|V|
∑
v∈V

logitsθ(v;G)2 (12)

by gradient descent, together with the aforementioned REINFORCE objective. Intuitively, the norm
regularizer allows our model to have the logits around the origin so that we can avoid numerical errors
due to the unbounded logits while the sufficient amount of flexibility is still maintained for choosing
logits. We empirically found that this highly stabilizes training and improves the performance and
hence we apply the regularizer in all of our experiments.

Cost Standardization. [4] stored the best-performing model so far and used its cost as the policy
gradient baseline. This so-called greedy baseline was introduced due to the empirical performance
of [11]’s algorithm on routing problems. However, if the scale of makespan varies significantly
across different training graphs, the model trained with the greedy baseline can easily overfit a
small subset of training graphs, which may lead to poor performance on test graphs. Also, the
greedy baseline requires additional resources since the intermediate models should be stored and
evaluated during training. To address these issues, we use cost standardization that has been widely

11



NEURAL DAG SCHEDULING VIA ONE-SHOT PRIORITY SAMPLING

adopted in policy-gradient algorithms, e.g., PPO [18, 19]. Specifically for a given graph G during
a training iteration, we first sample multiple node priorities, i.e., V (1), ...,V (N) ∼ πθ(·|G), and
evaluate makespan CLS(V

(1);G), ..., CLS(V
(N);G). During the policy gradient update, we use the

standardized makespan across the samples, i.e.,

C(V ;V (1), ...,V (N), G) :=
CLS(V ;G)−meann=1,...,N [CLS(V

(n);G)]

max{stdn=1,...,N [CLS(V (n);G)], ϵ}
, (13)

where ϵ > 0 is used to clip the standard deviation in denominator for numerical stability.
The final algorithm with additional stabilization ideas is summarized in Algorithm 1. We train

our model with multiple training epochs over G where a single epoch considers each graph in G
once. For each graph G ∈ G, we randomly sample N priorities and use REINFORCE to update the
model parameter θ while regularizing the norm of logits by Eq. (12). We multiply with a constant
clogits > 0 the regularization loss to balance between REINFORCE loss and regularization. We set
clogits = 0.001 and observe that it empirically works well in all of our experiments.

Appendix C. Probability Distribution with Standardized Logits

Suppose our model has logits l0 := logits(0) and l1 := logits(1). One can easily show that the

mean and standard deviation of logits are equal to m = l0+l1
2 and s =

√
l20+l21
2 −m2 = |l0−l1|

2 ,
respectively. Now for the hyperparameter c > 0 that is assumed to be fixed, consider the standardized
logits

l̄0 := logits(0) := c× l0 −m

s
, l̄1 := logits(1) := c× l1 −m

s
(14)

and model a binary random variable X ∈ {0, 1} by using them. The probability distribution using
the softmax and the above standardized logits becomes

Pr{X = 1} = exp(l̄1)

exp(l̄0) + exp(l̄1)
=

1

1 + exp(l̄0 − l̄1)
= 1− Pr{X = 0}. (15)

Since the difference between l̄0 and l̄1 is

l̄0 − l̄1 = c× l0 −m

s
− c× l1 −m

s
= c× l0 − l1

s
= 2c× l0 − l1

|l0 − l1|
, (16)

we have

Pr{X = 1} =

{
1

1+exp(2c) , if l0 > l1,
exp(2c)

1+exp(2c) , otherwise.

and Pr{X = 0} = 1− Pr{X = 1}.

Appendix D. Related Works

ML for Combinatorial Optimization. The idea of using ML to solve DAG scheduling fits into
the broader theme of using ML for Combinatorial Optimization (CO) which has received attention
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recently [2]. Most of the works in the literature in ML for CO use RL to learn a policy to select
actions for reward maximization which is set to be a direct function of the problem objective. The
policy can be an end-to-end policy whose actions correspond to the the solution of the CO problem
[8, 10, 11, 25, 26] or the policy can augment a traditional heuristic/solver of the problem to find
better solutions [1, 15, 22, 24].
End-to-End ML Schedulers. In the context of the scheduling problems, [25] and [16] proposed an
end-to-end GNN based policy to solve the JSSP problem which is a special case of DAG scheduling.
Their policy is auto-regressive which selects the nodes to be scheduled iteratively and at each iteration
they run the GNN on the modified disjunctive graph to get new node embeddings. Thus, they are
required to run the GNN encoder |N | times which is prohibitive for large graphs. In order to address
the complexity of auto-regressive policies for large graphs encountered in compiler workflows, [26]
came up with the idea of iterative refinement which refines the generated schedule by running their
GNN policy K times where K is a hyper-parameter. [20], [14] and [27] consider the problem of
scheduling jobs on data clusters and provide end to end deep RL solutions to solve data center
scheduling under various settings.
Hybrid Schedulers. [22] propose a bi-level optimization approach for DAG scheduling where they
learn a policy which modifies the input DAG by adding edges and then use the critical-path based
list scheduling method on the modified DAG to obtain a schedule for the original problem. The
authors allow upto K edges to be added to the DAG (where K is a hyper-parameter) and their policy
can run the GNN K times to get to the final schedule. [15] proposed a neural augmented genetic
algorithm for scheduling in compilers. They used a GNN policy to learn the parameters of the mutant
distribution which was used by the genetic algorithm to find good schedules.

In contrast to these works, our method generates the node priorities end-to-end requiring only a
single pass of our GNN encoder and uses list scheduling to obtain the final schedule. This makes our
approach more efficient and scalable compared to prior works.

Appendix E. Scheduling Tasks

In this subsection, we describe how the different tasks that we consider fit into our scheduling
framework described in section 2.1.
Job Shop Scheduling Problem (JSSP). JSSP is a special case of DAG scheduling where a set
of NJ jobs need to be scheduled on NM machines in M. Each job consists of a sequence of
operations that must go through NM machines in a specific order. This task can be modeled in the
framework of section 2.1 by settingM = {1, 2, . . . , NM}, we have one machine of each type i.e.
λ(m) = 1, ∀m ∈ M, each node has a machine type it can be scheduled on i.e. µ(v) ∈ M, each
node occupies the machine it is scheduled on i.e. ρ(v) = 1, ∀v ∈ V .
DAG Scheduling on TPC-H. In this task we need to schedule nodes with single machine type
(homogeneous case) i.e. M = 0 and all the nodes have same machine type i.e. µ(v) = 0,∀v ∈ V .
We assume the same setting as in [22] for experiments and set the available resource of machine 0 to
λ(0) = 6000. Node v occupies ρ(v) ∈ N with ρ(v) ≤ 6000 resources where N is the set of positive
integers.
Computation Graph Scheduling. In this task we need to schedule computation operations of a
DAG on a hardware with 3 types of machines soM = {0, 1, 2}. We assume that we have 1 machine
of type 0 and type 1 whereas 4 machines of type 2 i.e. λ(0) = λ(1) = 1, λ(2) = 4. This hardware
setting is inspired from the structure of real ML accelerators which have multiple machines (threads)
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of different types available for data processing. A node v can be scheduled on one machine of its
machine type µ(v) ∈M i.e., the resource required ρ(v) = 1, ∀v ∈ V .

Appendix F. Dataset

F.1. Synthetic JSSP Instances

We generate synthetic JSSP instances by using the code deployed by [25]2. For reproducibility of this
dataset, we fix our seed as 0 and sample 150 instances for all combinations of Nj ∈ {25, 50}, Nm ∈
{10, 20, 30}, respectively. We use the first 100 instances as training instances and the last 50 instances
as test instances.

F.2. TPC-H Dataset

We use TPC-H dataset generated by [22]3. The dataset for each of TPC-50, TPC-100, TPC-150
experiments consists of 50 training graphs and 10 test graphs. The average number of nodes for
TPC-50, TPC-100 and TPC-150 dataset are 467.2, 929.8 and 1384.5 respectively.

F.3. Synthetic Computation Graph Dataset

Layered graphs. Layered graphs were introduced in [4] as a model to generate synthetic graphs
which have similar structure to the computation graph of a neural network. We use the default
parameters specified in [4] to generate the graphs. In order to generate the node duration, we first
sample the memory size m(v) of each node v ∈ V and then use the following affine model to
generate the duration δ(v) for node v ∈ V ,

δ(v) = round(100×m(v)) + 1. (17)

We sample m(v) by first sampling the value from Gaussian Mixture Model (GMM) m(v) ∼
GMM(w, µ, σ)

∣∣
R+

and projecting it to non-negative values. We use a mixture of four Gaussians
and set the means to (mean1,mean2,mean3,mean4) = (0.5, 1, 3, 5) and standard deviations to
(std1, std2, std3, std4) = (0.5, 1, 1, 1).

We sample the machine type µ(v) of node v such that Pr(µ(v) = j) ∝ λ(j) i.e. the probability
that a node has machine type j is proportional to the available resources λ(j) for machine type j.
In our computational graph experiments we used λ(0) = λ(1) = 1, λ(2) = 4 which leads to the
following multi-nomial distribution for µ(v):

Pr(µ(v) = j) =


1/6, if j = 0,

1/6, if j = 1,

2/3, if j = 2.

(18)

Erdos-Renyi and Stochastic Block Model. These two graph distributions are well-known families
of random undirected graphs and were used in [15] for their experiments. We set the probability
of an edge between any two nodes as p = 0.05 for the Erdos-Renyi graphs. We use the following

2https://github.com/zcaicaros/L2D/blob/main/DataGen/generate_data.py
3https://github.com/Thinklab-SJTU/PPO-BiHyb/tree/main/dag_data/tpch
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parameters for the stochastic block model: the number of communities k = 4, the probability for an
edge between two nodes of same community pin = 0.3, the probability for an edge between two
nodes of different communities pout = 0.001. We use the procedure described in [15] to convert the
instances from these two graph families into a DAG. We use the same distribution to generate node
duration and their machine type as in layered graph for these two graph distributions as well.

The results for 1000-node graphs are shown in the main part of our work, and 500-node graph
results are in Appendix H.

Appendix G. Baseline Algorithms

G.1. Priority-Based List Scheduling Baselines

We consider classical list scheduling baselines that use the following values as node priorities [22,
25]:
Critical-Path (CP). The priority for each node is determined by the length of the critical path from
the node to the target node in a DAG.
Most OPeratioNs Remaining (MOPNR). The priority for each node is computed using the number
of operations remaining on the longest path from the node to the target node in a DAG.
Shortest Processing Time (SPT). The priority for each node is computed using the inverse of the
processing time of the node.

G.2. Constraint Programming Baseline

Constraint programming models are commonly used to solve scheduling problems in the literature.
We have developed constraint programming formulations and carried out numerical simulations to
provide a baseline comparison for our methods.
1. Constraint programming for computation graph scheduling. The developed constraint pro-

gramming problem has start times of jobs and machine assignments as discrete variables. The
constraints consist of precedence constraints, correct machine assignment constraints, and con-
straints for enforcing no overlap of tasks if they are assigned to the same machine.

2. Constraint programming for DAG scheduling with TPC-H dataset. The constraint program-
ming problem for the TPC-H dataset experiments has only the start times of jobs as variables.
The constraints ensure that the precedence relations in a DAG are satisfied, and the total resource
usage does not exceed the given resource budget. In addition, the task durations for this dataset
have been scaled by 1000 and rounded to the nearest integer. The reason for this step is that the
CP-SAT solver only works with integer valued data, and the duration values for this dataset are of
floating point precision. We have solved the constraint programming problem using the scaled and
rounded duration values. We have then divided the resulting makespan by 1000. This rounding
step introduces an error of at most 0.0005 seconds per node. Overall, for a 1000-node graph,
this leads to an error of at most 0.5 seconds in the worst case. This is negligibly small since the
makespan values for this dataset are in the order of few thousand seconds.
We have implemented these formulations using Google OR-Tools and solved them using the CP-

SAT solver ([17]). Differently from other baselines, the constraint programming solver is guaranteed
to find the optimal schedule given enough time. Due to practical reasons, we have set a time limit of
24 hours for the solver in the simulations. In most of the experiments, the time limit was reached
before finding the optimal solution. In these cases, we have reported the best result obtained prior to

15



NEURAL DAG SCHEDULING VIA ONE-SHOT PRIORITY SAMPLING

the moment of time-out. Across all experiments, the solver has found the optimal solution for only 3
graphs in the TPC-H-50 dataset. For these 3 jobs, the amounts of time that the solver has run to find
the optimal solutions are 2429, 21949, 39274 seconds, which are still significantly larger than our
algorithms’ run time.

We have observed that the memory requirements of the solver for large graphs could exceed
the available memory in our servers. The graphs in TPC-H-150 fall into this category, where the
experiments resulted in out-of-memory errors. We have not reported results for these graphs in Table
1.

In the experiments, we have provided initial feasible schedules for the solver. This is sometimes
referred to as solution hinting or warm start. This speeds up the solver considerably. Initial feasible
schedules could be obtained in different ways. One way is to generate a topological order of the DAG
and map it to a sequential schedule without any parallelization. Another way is to run list scheduling
and initialize the solver using the output of the list scheduling algorithm. We have experimented with
both options. We have found that using the output of list scheduling leads to a better initialization for
the solver.

G.3. Neural Baselines

In this section we provide how our neural baselines are used. For all the tasks, we use a machine
with a single GPU (Nvidia Tesla V-100) with 32 GB memory that is also used to train and evaluate
our model.
L2D. While the original implementation of L2D uses a new set of training graphs for every training
iteration, we consider more practical scenario where the number of training graphs is restricted. We
use the aforementioned 100 training graphs and 50 test graphs for each JSSP instance. We use 4
environments (that was proposed by [25]), which ends up with training 4 graphs per training iteration.
We train the L2D model for 3000 iterations over 5 different seeds and report the one that performs the
best. Note that we tested learning rates 2× 10−5 (the default learning rate in their implementation)
and 1 × 10−4 for L2D and the learning rate 1 × 10−4 works much better, and thus we report the
results for this case.
PPO-BiHyb. For the experiment with TPC-H dataset, we use the pretrained model4 deployed by the
author. We confirmed that the results reported in their paper are reproducible and evaluate the run
time in our machine settings. For computation graph scheduling, we train PPO-BiHyb for 40 epochs
(where 1 epoch is defined to train all training graphs in the dataset once).

Appendix H. Additional Results

H.1. JSSP

We evaluate our model on randomly generated JSSP instances from [25] which are defined by
number of jobs Nj and number of machines Nm. We summarize the results for (Nj , Nm) =
(25, 20), (25, 30), (50, 20) in Table 3. For each case, we train our algorithm for 100 training graphs
and evaluate it for 50 unseen test graphs. We also train the neural baseline, L2D [25], with the same
training and test graphs. Note that this is different from the original training of L2D since L2D
generates a new set of training graphs for every training iteration. The results show that our algorithm
works well across different numbers of machines and also outperforms both neural and non-neural

4https://github.com/Thinklab-SJTU/PPO-BiHyb/tree/main/pretrained
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Table 3: Experiment results on synthetic JSSP instances are described. We use bold letters to
emphasize the minimum average makespan for each JSSP instance.

(Nj , Nm) = (25, 20) (Nj , Nm) = (25, 30) (Nj , Nm) = (50, 20)
Makespan Time (sec) Makespan Time (sec) Makespan Time (sec)

CP 2120.24 0.009 2588.72 0.017 3290.80 0.024
SPT 2265.88 0.002 2739.20 0.005 3548.20 0.008
MOPNR 2115.86 0.012 2625.96 0.023 3278.82 0.030

L2D 2253.94 1.245 2799.00 2.850 3452.70 3.711

Greedy (ours) 2032.70 0.021 2512.40 0.031 3108.56 0.049
S(16) (ours) 1970.98 0.054 2452.64 0.085 3032.44 0.138
S(64) (ours) 1948.76 0.127 2427.30 0.294 3009.08 0.469
S(256) (ours) 1932.42 0.514 2411.68 0.909 2997.10 1.527

Table 4: Experiment results on synthetic JSSP instances (Nj = 25).
(Nj , Nm) = (25, 10) (Nj , Nm) = (25, 20) (Nj , Nm) = (25, 30)

Makespan Time (sec) Makespan Time (sec) Makespan Time (sec)

CP 1673.56 0.005 2120.24 0.009 2588.72 0.017
SPT 1807.90 0.001 2265.88 0.002 2739.20 0.005
MOPNR 1656.26 0.007 2115.86 0.012 2625.96 0.023

L2D 1725.58 0.577 2253.94 1.245 2799.00 2.850

Greedy (ours) 1578.58 0.018 2032.70 0.021 2512.40 0.031
S(16) (ours) 1540.92 0.045 1970.98 0.054 2452.64 0.085
S(64) (ours) 1527.40 0.092 1948.76 0.127 2427.30 0.294
S(256) (ours) 1519.16 0.321 1932.42 0.514 2411.68 0.909

baselines. Due to one-shot decoding scheme in our model, the running time of our model is shorter
than L2D. We observe that L2D ends up with worse performance than non-neural baselines although
we train L2D until convergence. We think L2D does not generalize well with the limited number of
training graphs, while our algorithm generalizes well with the same dataset.

We describe empirical results for (Nj , Nm) = (25, 10), (25, 20), (25, 30) in Table 4 and (Nj , Nm) =
(50, 10), (50, 20) in Table 5. For broader settings, we can see that our neural scheduler outperforms
our baselines.

H.2. Computation Graphs

We describe empirical results for both 500 and 1000 node synthetic computation graphs in Table 6.
Over all sizes and graph distributions, our algorithm achieves better speedup within a short time.

17



NEURAL DAG SCHEDULING VIA ONE-SHOT PRIORITY SAMPLING

Table 5: Experiment results on synthetic JSSP instances (Nj = 50).
(Nj , Nm) = (50, 10) (Nj , Nm) = (50, 20)

Makespan Time (sec) Makespan Time (sec)

CP 2903.14 0.012 3290.80 0.024
SPT 3111.74 0.003 3548.20 0.008
MOPNR 2897.60 0.016 3278.82 0.030

L2D 2964.96 1.084 3452.70 3.711

Greedy (ours) 2814.58 0.024 3108.56 0.049
S(16) (ours) 2800.32 0.064 3032.44 0.138
S(64) (ours) 2797.84 0.165 3009.08 0.469
S(256) (ours) 2796.98 0.644 2997.10 1.527

Table 6: Experiment results on synthetic graph datasets are described.
Layered Graph Erdos-Renyi Stoc. Block Model

SpeedUp Time (sec) SpeedUp Time (sec) SpeedUp Time (sec)

50
0

N
od

e
G

ra
ph

CP 4.314 0.025 4.973 0.015 4.664 0.018
SPT 4.214 0.004 4.480 0.002 4.416 0.003
MOPNR 4.428 0.033 5.033 0.018 4.715 0.023

Greedy (ours) 4.513 0.042 5.113 0.017 4.835 0.021
S(16) (ours) 4.558 0.129 5.152 0.082 4.901 0.082
S(64) (ours) 4.585 0.269 5.168 0.182 4.935 0.185
S(256) (ours) 4.603 0.803 5.178 0.545 4.956 0.539

10
00

N
od

e
G

ra
ph

CP 4.580 0.058 5.049 0.055 4.701 0.055
SPT 4.526 0.013 4.541 0.008 4.473 0.007
MOPNR 4.745 0.075 5.112 0.068 4.761 0.068

Greedy (ours) 4.819 0.094 5.194 0.046 4.866 0.043
S(16) (ours) 4.848 0.311 5.211 0.214 4.916 0.198
S(64) (ours) 4.872 0.750 5.227 0.542 4.944 0.477
S(256) (ours) 4.889 2.418 5.239 1.799 4.965 1.533

Appendix I. Training and Model details

I.1. Training

In this section we provide the training details of our model on the different scheduling tasks that
we consider. For all the tasks we trained our model on a machine with a single GPU (Nvidia Tesla
V-100) with 32 GB memory. We used Adam optimizer for training on all the tasks.
JSSP. In this case we train our model on each JSSP instance with 100 training graphs and test it on 50
unseen graphs. We train our model for 25 epochs with 5 random seeds and pick the best performing

18



NEURAL DAG SCHEDULING VIA ONE-SHOT PRIORITY SAMPLING

model. We use the number of samples N = 1000.
TPC-H Dataset. We train our model on each TPC instance for 100 epochs with 10 random seeds
and pick the best performing model. We use the number of samples N = 2000.
Computation Graphs. For each synthetic graph distribution, we consider the graph size equal to
either 500 or 1000 and generate a training set of 3000 graphs and 300 unseen test graphs. For the
real-world graphs, our dataset consists of 92 train graphs and 23 test graphs. We train for our model
for 20 epochs with 5 random seeds and pick the best performing model. We use the number of
samples N = 1000 for both synthetic and real computation graphs.

I.2. Model architecture

We use topoformer encoder with the same hyperparameters as described in [4]. We use clogits = 0.001
and ϵ = 0.1 for clipping the denominator in Eq. (13).

I.3. Input features

We use the following input node features xv for node v ∈ V:
• Node duration δ(v)
• Node resource requirement ρ(v)
• One hot representation of node machine type µ(v)
• The critical path duration from v to the target node and critical path duration from source node to v

Note that for tasks where ρ(v) = 1,∀v we ignore ρ(v) from the input feature. We normalize each
entry i of the input features across the nodes so that the features are in between 0 and 1 as follows:

xv[i] =
xv[i]

maxv′∈V xv′ [i]

In addition, we also augment the node features with the Laplacian positional encodings [3] of
dimension 20 by computing it on the undirected version of the DAG. We pass the input feature xv

through a linear layer to obtain the initial embedding of node v for the topoformer encoder.
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