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Abstract
In Federated Learning (FL), inter-client heterogeneity causes two types of errors: (i) client drift
error which is induced by multiple local updates, (ii) client sampling error due to partial partici-
pation of clients at each communication. While several solutions have been offered to the former
one, there is still much room of improvement on the latter one.

We provide a fundamental solution to this client sampling error. The key is a novel single-loop
variance reduction algorithm, SLEDGE (Single-Loop mEthoD for Gradient Estimator), which does
not require periodic computation of full gradient but achieves near-optimal gradient complexity in
the nonconvex finite-sum setting. While sampling a small number of clients at each communication
round, the proposed FL algorithm, FLEDGE, requires provably fewer or at least equivalent commu-
nication rounds compared to any existing method, for finding first and even second-order stationary
points in the general nonconvex setting, and under the PL condition. Moreover, under less Hessian-
heterogeneity between clients, the required number of communication rounds approaches to Θ̃(1).

1. Introduction

Federated learning (FL) is a paradigm of distributed learning, where each local client has access
to local dataset to train a local model, and periodically local model parameters are exchanged to
update a global model in the server [22, 31, 43]. Avoiding share of local data itself, FL provides
privacy protection and encourages the usage of distributed Big Data [17, 24].

Since clients such as smartphones and organizations are physically separated, the main bottle-
necks in FL are synchronization and communication between clients and the server.

To reduce the number of communication rounds, local update has been adopted [25, 29, 31].
Local update means that, between communication rounds, the parameters of a local model are
updated several times inside each client using only its local data, and then aggregated in the server
at the next communication round. Local update causes client drift error, but if that is carefully
corrected, local update can provably reduce communication rounds, especially when clients have
less heterogeneity [20, 32], which had experimentally been observed [19, 31, 49].

On the other hand, client sampling, meaning that not all but only a part of clients are sampled to
participate in each communication, is also widely used to reduce the communication complexity (the
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total number of parameters communicated). Due to huge parameter size, a large number of clients,
low bandwidth communication, and increase of communication cost for secure computation, which
are characteristics of FL, client sampling has become indispensable in designing FL algorithms [17].

However, while a mass of literature has established treatments for client drift error [19, 20, 32],
client sampling error has not effectively been controlled until recently. In fact, the convergence rate
of FedAvg [31], one of the most famous FL algorithms, can be dominated by client sampling error
rather than client drift error [14], and we can see that this is also true for other FL algorithms. Es-
pecially, in order to reduce communication rounds by taking advantage of less client heterogeneity
with local update, client sampling is not allowed [32] or increasingly larger sampling size is required
as heterogeneity gets smaller [20], due to the client sampling error.

Recently, FedVarp [14] tackled client sampling error applying a variance reduced method of
SAGA [9, 40] to FedAvg [31]. Variance reduction is a technique to construct a gradient estimator
with a smaller variance than vanilla SGD by recursively utilizing minibatch gradients at previously
obtained anchor points [9, 16, 41]. Although we agree that applying variance reduction should be a
right direction, a large part of the problem still remains. In fact, their algorithm requires relatively
large client sample size of O(P

2
3 ) to the total number of clients P , and cannot take advantage

of heterogeneity, resulting in sub-optimal communication rounds and complexity compared to the
state-of-the-art FL methods [20, 32].

We considered that this is because existing variance reduction methods are not suitable for ap-
plying FL methods. In general, variance reduction methods are measured only in terms of gradient
complexity. However, when applying them to FL methods, we additionally want single-loop struc-
ture (that is, not to require periodic full or large minibatch gradient since this leads to impractical
full client participation in FL), and fewer gradient complexity under less heterogeneity. From these
perspectives, existing methods are not satisfactory. Indeed, SAGA satisfies single-loop structure,
but not the others. We consider the limitations of the aforementioned work of Jhunjhunwala et al.
[14] came from this point. As for other variance reduction methods, SARAH [35], SPIDER [10],
and NestedSVRG [50] requires periodic full gradient. STORM [7] is sub-optimal in the noncon-
vex finite-sum setting, and its application to FL, MimeMVR [20], requires larger sampling size as
heterogeneity gets smaller as mentioned; ZeroSARAH [28] cannot benefit from less heterogeneity,
and its distributed version does not considers local update. See also Appendix A.1. Thus, we must
design a novel variance reduction algorithm for FL.

1.1. Contributions

We consider FL problems with finite clients, and so variance reduction in the finite-sum setting.
First, we developed a novel single-loop variance reduction method called SLEDGE (Single-

Loop mEthoD for Gradient Estimator) for the nonconvex finite-sum problems. SLEDGE does not
require periodic computation of full gradients, and satisfies the followings: (i) nearly optimal gradi-
ent complexity of Õ(

√
n

ε2
) for finding ε-first-order stationary points with data size n, (ii) second-order

optimality as the first such single-loop algorithm, (iii) exponential convergence under the Polyak-
Łojasiewicz (PL) condition, and (iv) fewer complexity under the less heterogeneity assumption.

Next, we combined SLEDGE with local updates into an efficient federated algorithm, FLEDGE.
FLEDGE appropriately controls client sampling error, and achieves the followings, with the inter-
client heterogeneity ζ and the number of local updates K: (i) For first-order stationary points, the
number of required communication rounds is Õ( 1

Kε2
+ ζ

ε2
), when the number of sampled clients at
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each step p is larger than
√
P . (ii) Adding small perturbation, FLEDGE also can find SOSPs. (iii)

Under the µ-PL condition, FLEDGE exhibits exponential convergence, and the number of commu-
nication rounds depends on µ only through L

Kµ + ζ
µ . For finding first and second order stationary

points, our rates are smaller than or equivalent to those of all existing FL methods across all range
of the inter-client heterogeneity ζ. As ζ → 0, these rates approach to Õ(1) under taking p ≃

√
P ,

while previous methods require full client participation [32, 33] or increasingly larger client sample
size [20]. For PL (and even strongly convex) functions, FLEDGE breaks the dependency on the
condition number when ζ ≪ L and K ≫ 1, for the first time. For detailed comparison of existing
FL methods and discussion on required local budget, see Appendix A.2.

2. SLEDGE: Single-Loop Method for Gradient Estimator
We formalize the finite-sum problems as follows:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
. (1)

Our goal is to find a solution x that is an ε-first-order stationary point (i.e., ∥∇f(x)∥ ≤ ε), and an
(ε, δ)-second-order stationary point (SOSP; i.e., ∥∇f(x)∥ ≤ ε and λmin(∇2f(x)) ≥ −δ).

Throughout the section, we assume that fi is L-smooth, and f is bounded: f(x0)− f∗ =: ∆ <
∞ with f∗ = infx f(x). Moreover, we assume Hessian-heterogeneity: ∥∇2fi(x)−∇2fj(x)∥ ≤ ζ
(note: ζ ≤ 2L holds). For Option I, we suppose ∥∇fi(x0)−∇f(x0)∥ ≤ σc. For finding SOSPs, let
∥∇2fi(x)−∇2fi(y)∥ ≤ ρ∥x− y∥ hold. The µ-PL condition means 2µ(f(x)− f∗) ≤ ∥∇f(x)∥2.

2.1. Algorithm description

We introduce our proposed method SLEDGE for the problem (1). Note that vt, vti , and ỹti in paren-
theses are auxiliary variables with which 1

n

∑n
i=1 y

t
i is updated in O(b) time, utilizing the following

equation: 1
n

∑n
i=1 y

t
i =

1
n

∑n
i=1 y

t−1
i + 1

n

∑
i∈It(

n
b∇fi(x

t)− n−b
b ∇fi(x

t−1)− ỹt−1i −vt−1+vt−1i ).
The small perturbation ξt is necessary to escape from saddle points and to find SOSPs, see Ap-
pendix D.3.

Algorithm 1 SLEDGE(x0, η, b, T, r)

1: Option I: Randomly sample b data I0 and y0i ← 1
b

∑
j∈I0 ∇fj(x0) for i ∈ I

2: Option II: y0i ← ∇fi(x0) for i ∈ I0 = I
(v0 ← 0 and ỹ0i ← y0i , v

0
i ← 0 for i ∈ I)

3: For t = 1 to T do
4: xt ← xt−1 − η

n

∑n
i=1 y

t−1
i + ξt (ξt follows the uniform distribution on the Euclidean ball in Rd with radius r)

5: Randomly sample b data It

6: yti ←

{
∇fi(xt) for i ∈ It

1
b

∑
j∈It(∇fj(xt)−∇fj(xt−1)) + yt−1i for i /∈ It

(vt ← 1
b

∑
j∈It (∇fj(xt)−∇fj(xt−1))+vt−1, ỹti ← yti , v

t
i ← vt for i ∈ I and ỹti ← yt−1

i , vti ← vt−1
i for i /∈ I)

2.2. Convergence analysis

SLEDGE is designed so that it inherits the best points of SAGA [9, 40] and SARAH [34, 35]. It
removes periodic full gradient using stored past gradients as SAGA. Since SAGA’s gradient com-
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plexity is suboptimal, we also import SARAH’s recursive update to achieve the near-optimal rate.
The noise ξt is to guarantee the second-order optimality.

The key observation in the analysis is that, for Option II, the discrepancy between the estimator
and the true gradient is decomposed as

1

n

n∑
i=1

yti −∇f(xt) =
1

n

t∑
s=1

 |Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1))−
∑
i∈Ĩts

(∇fi(xs)−∇fi(xs−1))

 .

Here, Ĩts = [n] \
⋃t

τ=s I
t is the set of indexes not sampled between s and t. Conditioning on |Ĩts|,

the inside of the large parentheses for each s is roughly ζ

√
|Ĩts|
b ∥x

s − xs−1∥. The main technical
difficulty is that the inside of the large parentheses is not independent each other since |Ĩts| depends
on all Is, . . . , It. However, the correlation can be shown to be sufficiently weak.

Now we state the theoretical guarantee for SLEDGE. For the formal version, see Appendix D.

Theorem 1 We take a step size η and a scale of noise r appropriately, and let µ ∈ (0, 1). Then,
with probability 1− ν, SLEDGE finds ε-first-order stationary points using

Õ

(
∆(ζ
√
n ∨ Lb) + n

b σ
2
c

ε2

)
(Option I), Õ

(
n+

∆(ζ
√
n ∨ Lb)

ε2

)
(Option II)

stochastic gradients. For finding SOSPs with probability 1−ν, SLEDGE requires b ≳
√
n+ ζ2

δ2
and

Õ

((
L∆+ σ2

c

)( 1

ε2
+

ρ2

δ4

)
b

)
(Option I), Õ

(
n+ L∆

(
1

ε2
+

ρ2

δ4

)
b

)
(Option II)

stochastic gradients. Under the µ-PL condition, SLEDGE uses

Õ

((
Lb

µ
∨ ζ
√
n

µ
∨ n

)
log

∆ + σc
ε

)
(Option I), Õ

((
Lb

µ
∨ ζ
√
n

µ
∨ n

)
log

∆

ε

)
(Option II)

stochastic gradients for finding ε-solutions with f(xt)− f∗ ≤ ε, with probability 1− ν.

Without periodic computation of full gradient, SLEDGE achieves nearly optimal gradient com-
plexity for first-order stationary points, and can take advantage of less heterogeneity ζ. We show that
the rate of Õ(n+ ∆(ζ

√
n∧Lb)
ε2

) (option II) is near-optimal, see Appendix F. Moreover, SLEDGE can
finds SOSPs as the first single-loop algorithm, and exponentially converge under the PL condition.

3. FLEDGE: Federated Learning Method with Gradient Estimator
Indexing (finite) clients and data by i and j, we consider the following FL problem:

min
x∈Rd

{
f(x) :=

1

P

P∑
i=1

fi(x)

}
, fi(x) =

1

m

m∑
j=1

fi,j(x). (2)

In addition to the previous assumptions on f and fi, we additionally assume that each fi,j is L-
smooth. We bound the intra-client variance as ∥∇fi,j(x) − ∇fi(x)∥ ≤ σ. For finding SOSPs, we
suppose that ∥∇2fi,j(x)−∇2fi,j(y)∥ ≤ ρ∥x− y∥ for all i, j and x, y.

We combine SLEDGE with local update into a novel FL method, FLEDGE. In Lines 4-9, we use
the SARAH-type estimator to control the error from local minibatch sampling. Then, we construct
the estimator of the global gradient ∇f(xt) using the SLEDGE estimator. Here, we only introduce
FLEDGE with Option II and for the case of ζ > δ. For others, see Appendix E.
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Algorithm 2 FLEDGE(x0, η, p, b, T,K, r)

1: for i ∈ I0 = I in parallel do
2: Randomly select minibatch J0

i with size Kb and let y0i ← 1
bK

∑
j∈J0

i
∇fi,j(x0)

3: for t = 1 to T do
4: Randomly sample one client it and Send 1

P

∑P
i=1 y

t−1
i and xt−1 from the server to it

5: xt,0 ← xt−1, zt,0 ← 0
6: for k = 1 to K do
7: xt,k ← xt,k−1 − η( 1

P

∑P
i=1 y

t−1
i + zt,k−1) + ξt,k

(ξt follows the uniform distribution on the Euclidean ball in Rd with radius r)

8: Randomly select minibatch J t,k
it

with size b

9: zt,k ← zt,k−1 + 1
b

∑
j∈Jt,k

it

(∇fit,j(xt,k)−∇fit,j(xt,k−1))

10: Randomly select p clients It, send xt,K from it to It and let xt ← xt,K

11: for i ∈ It in parallel do
12: Randomly select minibatch J t

i with size Kb
13: yti ← 1

bK

∑
j∈Jt

i
∇fi,j(xt) and ∆yti ← 1

bK

∑
j∈Jt

i
(∇fi,j(xt)−∇fi,j(xt−1))

14: Send {(yti ,∆yti)}i∈It from It to the server
15: yti ← yt−1i + 1

p

∑
i∈It ∆yti for i /∈ It (Practically, we only update 1

P

∑P
i=1 y

t
i in O(p) time as in SLEDGE)

Theorem 2 We take an appropriate step size η and a scale of noise r and let µ ∈ (0, 1). Let
b ≳ σ2

PKε2
. Then, with probability 1− ν, FLEDGE finds ε-first-order stationary points using

Õ

(
1 +

(
L

K
∨ L√

Kb
∨ ζ ∨ ζ

√
P

p

)
∆

ε2

)

communication rounds. For finding SOSPs, FLEDGE requires p ≳
√
P + ζ2

δ2
, b ≥ K, and

Õ

(
1 + ∆

(
L

K
∨ ζ

)(
1

ε2
+

ρ2

δ4

))
communication rounds, with probability 1− ν. Under the µ-PL condition, FLEDGE uses

Õ

(
1 +

(
ζ

µ
∨ L

µK
∨ L

µ
√
Kb
∨ ζ
√
P

µp
∨ P

p

)
log

∆

ε

)

communication rounds for finding ε-first-order stationary points, with probability 1− ν.

Setting client sample size p ≥
√
P and local minibatch size b ≥ K, FLEDGE requires only

Õ( ζ
Kε2

+ ζ
ε2
) communication rounds for first-order stationary points. Compared to FedVarp [14],

ours require smaller client sample size and can take advantage of less heterogeneity. What is more,
as far as assumptions on the local minibatch size are satisfied, this rate is better than or equivalent
to any existing federated learning algorithm and approaches Θ̃(1) when ζ → 0 and K → ∞. In
terms of communication complexity, Õ(P + ζ

√
P

ε2
) is near-optimal in a sense that it almost matches

the lower bound of gradient complexity of the finite-sum case. We will show this in Appendix F.
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Moreover, FLEDGE guarantees second-order optimality. To the best of our knowledge, the only
such method is BVR-P-LSGD [33], but that synchronizes all clients at every round.

Furthermore, the algorithm requires Õ( ζµ log ∆
ε ) communication rounds under µ-PL condition.

Thus, even if the condition number L
µ is bad, the required communication rounds goes to Õ(Pp )

when ζ → 0. On the other hand, even in the strongly-convex case and without client sampling, all
existing algorithms require Ω(Lµ log 1

ε ) rounds regardless of the Hessian heterogeneity ζ.
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4. Experiments

Finally, we validate our theories on both SLEDGE and FLEDGE by numerical experiments. We
considered classification of the capital letters using EMNIST dataset [6] for both experiments.

Escaping saddle points with SLEDGE For the finite-sum problem (1), we prepared each fi by
sampling 100 data from one class, employing a four-layer neural network as the training model, and
then defining the average of the cross-entropy loss over the data as fi. We repeated this five times
for each class, and thus n = 130. We compared SLEDGE and its perturbed version with SARAH
[34, 37], SSRGD [26], and ZeroSARAH [28], in terms of the test accuracy. We set b = 12, the
inner-loop length of SARAH and SSRGD to 10, and λ = b

n ≒ 0.092 for ZeroSARAH. For SSRGD
and SLEDGE, we added perturbation of δ = 0.15. We tuned the learning rate for each algorithm
individually. The experiment was repeated with ten different random seeds for each method.

Figure 1 shows the result. We can observe that (i) SLEDGE and ZeroSARAH require fewer
gradient evaluations than SARAH to achieve the same test accuracy, owing to avoidance of periodic
full gradient. Similarly, SLEDGE with small noise is faster than SSRGD. (ii) Adding small noise
helps stable convergence; Although SLEDGE with δ = 0 does not necessarily yield a monotonic
increase in the accuracy (see around 10000-15000 gradient evaluations), SLEDGE with small noise
perturbation makes the accuracy increase almost monotone.

Faster Convergence with FLEDGE For the federated learning problem (2), we again consider
the classification of the capital letters, where each fi consists of 90% data from one class and 10%
data from the other classes. This makes each fi a little less heterogeneous. We used two-layer
neural networks as a training model. We compared FLEDGE with FedAvg [31], SCAFFOLD [19],
MimeMVR [20], and BVR-L-SGD [32]. For each algorithm, we employed P = 104 as the total
number of clients and p = 10 as the number of the clients used at each communication (except
for BVR-L-SGD, which requires P = p = 104). Then, we set b = 16 and K = 10. We tuned
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the learning rate for each algorithm individually. The experiment was repeated with five different
random seeds for each method.

Figure 2 (left) shows that FLEDGE achieves the highest test accuracy with fewer communica-
tion, compared to FedAvg, SCAFFOLD, and MimeMVR. In Figure 2 (right), FLEDGE achieves
the small gradient norm ∥∇f(xt)∥ and the linear convergence at the neighborhood of solutions.
Moreover, we observe that FLEDGE performs similarly to BVR-L-SGD, which almost can be seen
as a special case of FLEDGE with p = P . This means that FLEDGE can appropriately correct the
errors from sampling of the clients and is about ten times more efficient than BVR-L-SGD in terms
of communication complexity by allowing sampling of the clients.
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algorithm for nonconvex optimization. arXiv preprint arXiv:1705.07261, 2017.

[36] Lam M Nguyen, Katya Scheinberg, and Martin Takáč. Inexact sarah algorithm for stochastic
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The appendix consists of the following sections. In Appendix A, we provide further literature
review and detailed comparison with existing algorithms. Appendix B describes details of the ex-
periments and additional experiment results. Appendix C formalizes the assumptions and prepares
mathematical tools for later use. Appendix D gives formal statements for theoretical guarantees
on SLEDGE and the complete proofs. We also explain intuition behind SLEDGE estimators. Ap-
pendix E applies SLEDGE into its federated learning extension. Finally, Appendix F shows gradi-
ent complexity lower bound under the Hessian heterogeneity assumption, which proves SLEDGE’s
gradient complexity under the Hessian heterogeneity of ζ is optimal up to polylogarithmic factors
1.

For those who do not have enough time to read all the contents, we recommend to look over
Appendix D.1. We expect this part gives a flavor of the core concepts of the SLEDGE estimator to
achieve near-optimal complexity and take advantage of less Hessian heterogeneity without periodic
full gradient computation.

Appendix A. Further Literature review

A.1. Variance reduction

As explained in the main part, variance reduction is a technique in minibatch sampling to construct
a gradient estimator with a smaller variance than vanilla SGD by utilizing gradients at previously
obtained anchor points [9, 16, 41]. It is originally developed for (strongly)-convex optimization
[9, 16, 41, 42], and thereafter extended to nonconvex settings [1, 39, 40].

One of the difficulties in obtaining an appropriate gradient estimator, especially in nonconvex
settings, is that recursive update of a gradient estimator with minibatch gradients easily accumulates
the error and eventually buries the correct descent directions. To address this issue, there have been
two major approaches. The first approach is to explicitly store previously calculated gradients as
in SAGA [9]. However, SAGA requires O( 1

ε2
) times of updates with minibatch sample size with

O(n
2
3 ) [40] for solving (1), which is still sub-optimal from the lower bound of [10, 27]. The second

one is to use double-loop algorithms that periodically compute the full gradient or a gradient with
a large minibatch to refresh a gradient estimator. These algorithms include SARAH, SPIDER, and
NestedSVRG [10, 35, 50], which have the optimal rate, i.e., O( 1

ε2
) times of updates with minibatch

sample size with O(
√
n). On the other hand, this approach has an issue that the step of gradient-

refreshing slows down practical computational speed and becomes a bottleneck in the application
to federated learning since this leads to periodic synchronization and communication between the
whole client.

Recent studies have attempted to develop methods that solve this trade-off, or namely that do
not require periodic computation of gradients with a large minibatch size to achieve near-optimal
rates [3, 7, 23, 28, 30, 36, 45]. Among them, Li et al. [28] introduced ZeroSARAH as a single-
loop algorithm with optimal gradient complexity for nonconvex optimization. Here, we say an
algorithm is single-loop when it does not require periodic full or large minibatch gradients. How-
ever, ZeroSARAH’s estimator cannot take advantage of heterogeneity between fis. (The reason

1. The lower bound is proven under averaged gradient Lipshitzness and averaged Hessian-heterogeneity, while we
assume gradient Lipshitzness of each fi and Hessian-heterogeneity for the upper bounds. We remark that, however,
in order to show the first-order optimality in expectation, averaged gradient Lipshitzness and averaged Hessian-
heterogeneity would suffice.
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Table 1: Stochastic gradient complexity for a nonconvex finite-sum problem (1).

Algorithms Stochastic gradient complexity Periodic
Nonconvex SOSP PL condition full gradient

(Noisy) SGD [11, 13, 18] ∆σ2
c

ε4
poly(ε−1, δ−1, d, σ,∆) σ2

µ2ε
log ε−1 Every iteration

SPIDER-SFO+ [10] n+ ∆
√
n

ε2
n+∆(

√
n

ε2
+ 1

εδ3
+ 1

δ5
) None Required

SARAH [35] and its variants [26, 36] n+ ∆
√
n

ε2
n+∆(

√
n

ε2
+

√
n

δ4
+ n

δ3
) n+ σ2

ε2
log ε−1 Required

ZeroSARAH[28]
(∆+σ2

c )
√
n

ε2
None None Never required

n+ ∆
√
n

ε2
None None Only at x0

PAGE [27] n+ ∆
√
n

ε2
None (n+ L

√
n

µ
) log ε−1 Required

SLEDGE (Option I) (ours) (∆+σ2
c )

√
n

ε2
(∆+σ2

c )(
√
n+ ζ2

δ2
)( 1

ε2
+ 1

δ2
) (n+ ζ

√
n

µ
) log ε−1 Never required

SLEDGE (Option II) (ours) n+ ζ∆
√
n

ε2
n+∆(

√
n

ε2
+

√
n

δ4
+ ζ2

ε2δ2
+ ζ2

δ6
) (n+ ζ

√
n

µ
) log ε−1 Only at x0

Note: Here ∆ = f(x0) − inf f(x), σc is the variance between fi(x), µ is the parameter for PL condition, and ζ is the Hessian-
heterogeneity.
In nonconvex and SOSP problems, polylogarithmic terms are omitted. Since ζ ≤ 2L, SLEDGE with Option I has at most the same
complexity to ZeroSARAH, and SLEDGE with Option II does to SPIDER, SARAH, PAGE, and the lower bound, up to log factors.
In PL, polylogarithmic dependency on other than ε−1 and doubly-logarithmic terms are omitted, thus SLEDGE has exponential conver-
gence.

will be briefly explained in Appendix D.1.) To benefit from less Hessian-heterogeneity, we need a
path-integrated type estimator like Fang et al. [10], Nguyen et al. [34], Zhou et al. [50].

Moreover, these recent single-loop methods have an issue in their versatility. First, while it
is usual to extend an optimization algorithm to ensure second-order optimality [11, 15, 48], and
variance reduction methods also have been applied to this [2, 10, 26], no single-loop algorithm
cannot find SOSPs. Since first-order stationary points can include a local maximum or a saddle point
in nonconvex optimization, escaping them and finding SOSPs are necessary to guarantee the quality
of the solution. In addition, most of the existing single-loop methods have focused on removing full
gradient computation in some specific setting. Thus none of them achieve both optimal complexity
in nonconvex settings and exponential convergence in strongly-convex settings.

Note that he Polyak-Łojasiewicz (PL) condition, which we use instead of strong-convexity, is a
generalization of strong convexity to nonconvex settings [38]. One of the recent lines of research
is to loosen the conventional assumption of strong convexity and to show exponential convergence
under the PL condition [18, 27]. For example, PAGE [27] achieves exponential convergence under
the PL condition and the optimal rate in general nonconvex settings, but it should compute the full
gradient at a certain probability. Thus, we do not regard PAGE as a single-loop algorithm in our
definition.

We summarize the convergence rates of existing algorithms and ours in Table 1. Our gradient
estimator, SLEDGE, satisfies nearly optimal complexity for general nonconvex settings, speedup
under less Hessian heterogeneity, second-order optimality, and exponential convergence under the
PL condition, without requiring periodic full gradient computation. For more details on SLEDGE,
see Appendix D. Also, Appendix F shows that SLEDGE with Option II achieves nearly optimal
gradient complexity under less Hessian heterogeneity of ζ.

A.2. Federated learining

In Table 2, we compare the required numbers of communication rounds of existing algorithms and
ours.
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Table 2: Comparison of communication rounds and complexity for a non-convex FL (2).

Algorithms Communication rounds Client sampling (other then x0)

FedAvg (nonconvex) [19] σ2
c

pε4
+ σc

ε3
+ 1

ε2
✓

SCAFFOLD (nonconvex) [19] 1
ε2

(P
p
)
2
3 ✓

MimeMVR (nonconvex) [20] ζ′σc√
pε3

+
σ2
c

pε2
+ 1

Kε2
+ ζ′

ε2
✓

BVR-L-SGD (nonconvex) [32] 1
Kε2

+ ζ
ε2

×
FLEDGE (nonconvex) (ours) 1

Kε2
+ ζ

√
P

pε2
+ ζ

ε2
✓

BVR-L-PSGD (SOSP) [33] ( 1
K

+ ζ)( 1
ε2

+ 1
δ4

) ×
FLEDGE (SOSP) (ours) ( 1

K
+ ζ)( 1

ε2
+ 1

δ4
) ✓ (requiring p ≳

√
P + ζ2

δ2
)

MimeSGD (PL) [20] σ2
c

µpε2
+ L

µ
✓

FLEDGE (PL) (ours) L
µK

+ ζ
√
P

µp
+ ζ

µ
+ P

p
✓

Note: P is the number of clients, µ is the parameter for PL condition, σc is the variance between clients, which can
be as large as O(P ). ζ is the Hessian-heterogeneity between clients and ζ′ in MimeMVR is the Hessian-heterogeneity
between all data (i.e., ∥∇2fi,j(x)−∇2f(x)∥ ≤ ζ′). ζ′ contains not only the inter-client Hessian-heterogeneity but also
the intra-client Hessian-heterogeneity. Thus, ζ ≤ ζ′ always holds and moreover it is possible that ζ ≪ ζ′.
We here choose Option II for FLEDGE, where full participation of clients is conducted only once at x0. Option I allows
client sampling even at x0, at the cost of additional terms, as we detail in Appendix E.

Since inner-loop complexity is different for each algorithm but it is most usual to compare
algorithms in terms of communication rounds, we listed the complexity by ignoring dependency on
the intra-client variance σ. To do so, ours requires b ≳ σ2

PKε2
and b ≥ K. Note that this is quite

moderate, since FedAvg [31] requires b ≳ σ2

pKε2
[19] (, which is larger than σ2

PKε2
), MimeMVR [20]

needs at least one local full gradient between communication rounds, and BVR-L-SGD requires
b ≥ K and b ≥ (

√
Pm
K ∧ σ

Kε)/ζ [32].
We remark that STEM [21] and FedGLOMO [8] do not have advantage in using local updates,

when comparing communication rounds and complexity with centralized algorithms.

Appendix B. Additional experiments

B.1. Details of the experiment for Figure 1

We consider a classification of the capital letters using EMNIST By Class dataset [6]. The original
dataset consists of 814, 255 images of handwritten uppercase and lowercase letters and numbers 0-
9. Note that the number of data points in each class is not balanced. Since the number of images of
lowercase letters is relatively small, we only used the images of uppercase letters for the experiment.
To balance the number of data points between each class, we took the following procedure. We
repeatedly sampled 100 data points five times per each uppercase letter, which yields 26× 5 = 130
groups of sampled data. For each group i, we define fi as the average of the cross-entropy loss
between the output of the model and the true class, over the 100 data points belonging to the group.
As a model, we adopted a four-layer fully-connected neural network, following Murata and Suzuki
[33]. We added L2-regularizer with a regularization parameter of λ = 0.01 to the empirical risk.

As competitors, we implemented SARAH [34, 35], SSRGD [26], and ZeroSARAH [28]. We
set the minibatch size to b = 12 ≒

√
n =
√
130 for all algorithms, the inner-loop length of SARAH

and SSRGD to m = ⌊nb ⌋ = 10, and λ = b
n ≒ 0.092 for ZeroSARAH. Note that [28] adopted

λ = b
2n , but we found that λ = b

n was more stable in this setting. The learning rate for each method
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was tuned individually, from {1.0, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001}, so that the test accuracy after
2000 iterations is the highest. For SSRGD and noisy SLEDGE, we added small noise of r = 0.15.
We plotted the mean of the ten trials with different random seeds and the sample variance is also
shown in the corresponding (lighter) color for each algorithm.

B.2. Details of the experiment for Figure 2

We consider a classification of the capital letters using EMNIST By Class dataset [6] as well. How-
ever, here we divided the images in such a way that fi is a little less heterogeneous, but still more
heterogeneous than i.i.d. sampling, as follows. First, we prepared the same number of data points
for each class, and divided them into each client i by the following procedure, setting q = 0.9;
Then, for each class, we distributed q × 100% of the images into four clients, and the rest into
the remaining 100 clients. This yields that we have 4 × 26 = 104 clients, each of which contains
q×100% of the data from one class, and (1− q)×100% of the data from the other classes. We call
this grouping as a dataset with the heterogeneity parameter of q. Then, we constructed fi,j with the
cross-entropy loss and a two-layer fully-connedted neural network, following Murata and Suzuki
[32]. L2-regularizer with a scale of λ = 0.01 is added to the empirical risk.

We compared FLEDGE with FedAvg [31], SCAFFOLD [19], MimeMVR [20], and BVR-L-
SGD [32]. For each algorithm, we set p = 10 ≒

√
P =

√
104 as the number of the clients used

at each communication (except for BVR-L-SGD, which requires p = P = 104). Then, we set
the local minibatch size as b = 16 and the number of local update to K = 10. We tuned the
learning rate for each algorithm individually from {1.0, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001}, so that
the test accuracy after 2000 outer-loop iterations is the highest. Here we set the global learning rate
of SCAFFOLD to η = 1, as is done in the original paper [19]. MimeMVR adopted a momentum
parameter of a = 0.1 as the authors of the paper reported as the best. We plotted the mean of the
five trials with different random seeds and the sample variance is also shown in the corresponding
(lighter) color for each algorithm.

B.3. Additional experiments for SLEDGE

Comparison with SARAH by changing the learning rate Here we provide comparison of
SLEDGE with SARAH [34, 35], which is one of the most prevailing variance reduction algorithm
with theoretical optimal complexity of O(

√
n

ε2
).

As is done in the experiment for Figure 1,we prepared fi in the following way. We repeatedly
sampled 100 data points five times per each uppercase letter, which yields 26 × 5 = 130 groups
of sampled data. For each group i, we define fi as the average of the cross-entropy loss between
the output of the model and the true class over the 100 data points belonging to the group. As
a model, we adopted a two-layer fully-connected neural network, following Murata and Suzuki
[32]. We set the minibatch size to b = 12 ≒

√
n =

√
130 for both algorithms, and the inner-

loop length of SARAH to m = ⌊nb ⌋ = 10. We added L2-regularizer to the empirical risk with
a fixed regularization parameter of λ = 0.01. We compared SLEDGE with SARAH in terms of
the training loss, the norm of the gradient computed by the whole training data, the test loss, and
the test accuracy, under the same number of stochastic gradient accesses. We changed the learning
rate η between {0.1, 0.03, 0.01, 0.003, 0.001}. We plotted the mean of the five trials with different
random seeds and the sample variance is also shown in the corresponding (lighter) color for each
algorithm.
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Figure 3 shows the result. We clearly observe that the proposed algorithm SLEDGE slightly
faster than SARAH in all range of learning rate η. The trajectories of SLEDGE are as stable as
SARAH in all settings. This result shows that we can remove the requirement of periodic full
gradient evaluation without hurting the stability during optimization with SLEDGE.

Discrepancy between the gradient estimators and the true gradient Here we compare the
norm between the gradient estimators and the true gradient because this is the most essential mea-
sure that quantify the quality of the gradient estimator. The setting is completely the same as the
previous experiment for Figure 3, thus n = 130. We compared SLEDGE estimator with SARAH
and SAGA [9, 40], taking the minibatch size as b = 12 and the inner-loop length of SARAH to
m = ⌊nb ⌋ = 10. We set the learning rate to η = 0.01 for all algorithms, since the larger step size
tend to increase the discrepancy, meaning that it is not fair to compare algorithms with different step
sizes to discuss the discrepancy. We plotted the mean of the five trials with different random seeds
and the sample variance is also shown in the corresponding (lighter) color for each algorithm.

Figure 4 shows the squared norm ∥vt − ∇f(xt)∥2 between the gradient estimator vt of each
algorithm and the true gradient ∇f(xt) at each step t. The discrepancy of the SLEDGE estimator
is clearly smaller than that of SAGA, and close to that of SARAH. Note that SARAH estimator is
refreshed at every m = 10 steps. Remind the discussion in Subsection 3.1. The SLEDGE estimator
is designed to have as small variance as that of SARAH, while removing the need of periodic full
gradient computation. Therefore, this result validates that our strategy actually works well.

B.4. Additional experiments for FLEDGE

Escaping saddle points with FLEDGE Theorem 28 guarantees second-order optimality of FLEDGE.
To validate this theoretical result, we considered the following experiment. We first prepared a
dataset with the heterogeneity parameter of q = 0.7 (see Appendix B.2 for details). Then, we con-
structed fi,j with the cross-entropy loss and a three-layer fully-connedted neural network, following
Murata and Suzuki [33]. L2-regularizer with a scale of λ = 0.01 is added to the empirical risk. We
compared FLEDGE with FedAvg [31], SCAFFOLD [19], MimeMVR [20], BVR-L-SGD [32], and
BVR-L-PSGD [33]. Here, we set P = 104, p = 10, b = 16, and K = 10. Note that, according
to Theorem 28, setting p ≃

√
P theoretically guarantees that the convergence rate of FLEDGE is

not affected by the client sampling and achieves the same number of communication complexity
as that of BVR-L-PSGD to find SOSPs. For FLEDGE and BVR-L-PSGD, we added small noise
of r = 0.015. We plotted the mean of the five trials with different random seeds. We omitted the
sample variance for clearer presentation.

The result is shown in Figure 5. We can clearly observe that FLEDGE with small noise and
BVR-L-PSGD achieve the highest test accuracy. Note that BVR-L-PSGD is almost the same as
FLEDGE with no client sampling (p = P ). Thus, this shows that FLEDGE is not affected by the
client sampling with p ≒

√
P , which is consistent with the theory. Ours is as ten times efficient

as BVR-L-PSGD, in terms of communication complexity (the number of gradients communicated
between the clients).

Performance under changing heterogeneity To exhibit how correctly FLEDGE can control the
variance between clients, we measured the performance of FLEDGE under changing heterogeneity.
We changed heterogeneity parameter in the range of q ∈ {0.04 (i.i.d.), 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
(completely heterogeneous)}, and compared FLEDGE with FedAvg, in terms of both train and test
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Figure 3: Comparison with SARAH by changing the learning rate
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Figure 4: Accuracy of the gradient estimators
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accuracy. All other settings are the same as that of the experiment for Figure 2. Note that we chose
p = 10 ≒

√
P =

√
104, where the theory says that the convergence is never affected by sampling

of clients. Figure 6 shows the average of five trials with different random seeds.
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Figure 6: Performance under changing heterogeneity

According to Figure 6, while FedAvg decreases the train and test accuracy as the heterogeneity
increases, the performance of FLEDGE with even q = 1.0 is only slightly worse than that with
q = 0.04. The fact that FLEDGE is little affected by the strong heterogeneity in this experiment
supports our theoretical guarantee (Theorems 22 and 34) on the effect from sampling of clients. That
is, setting p ≥

√
P , our algorithm does not affected by sampling of clients and finds ε-first-order

stationary points within Õ( 1
Kε2

+ ζ
ε2
) communication rounds.

B.5. Computing infrastructures

• OS: Ubuntu 16.04.5

• CPU: Intel(R) Xeon(R) CPU E5-2680 v4 2.40GHz

• CPU Memory: 512GB

• GPU: Nvidia Tesla V100 (32GB)

• Programming language: Python 3.6.13

• Deep learning framework: PyTorch 1.7.1

Appendix C. Assumptions and Tools

In this section, we formally restate the assumptions and introduce mathematical tools we utilize in
the missing proofs.

C.1. Assumptions

First, gradient Lipschitzness and boundedness are assumed as usual.

Assumption 1 (Gradient Lipschitzness) For all i ∈ [n], fi is L-gradient Lipschitz, i.e., ∥∇fi(x)−
∇fi(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd. For fi,j , we also assume the same.
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Assumption 2 (Existence of global infimum) f has the global infimum f∗ = infx∈Rd f(x) and
∆ := f(x0)− f∗.

Below, (i) inter-client gradient boundedness is assumed for SLEDGE with Option I to remove full
gradient even at x0, as in ZeroSARAH [28]. (ii) Intra-client gradient boundedness is assumed
for FLEDGE. In the main text, we bounded inter-client and intra-client variances uniformly as
∥∇fi(x0)−∇f(x0)∥ ≤ σc and ∥∇fi,j(x)−∇fi(x)∥ ≤ σ. However, if the variances are small in
expectation, we can loosen the uniform boundedness assumptions into the followings. From now,
we assume Assumption 3 instead of ∥∇fi(x0)−∇f(x0)∥ ≤ σc and ∥∇fi,j(x)−∇fi(x)∥ ≤ σ.

Assumption 3 (Boundedness of Gradient) (i) It holds that Ei[∥∇fi(x0) − ∇f(x0)∥2] ≤ σ2
c ,

where the expectation Ei is taken over the choice of i. Moreover, ∥∇fi(x0)−∇f(x0)∥ ≤ Gc holds
for all i. (ii) For all i and x, assume Ej [∥∇fi,j(x) − ∇fi(x)∥2] ≤ σ2, here the expectation Ej is
taken about the choice of j. For all i, j and x, ∥∇fi,j(x)−∇fi(x)∥2 ≤ G2.

In order to give second-order optimality, Hessian Lipschiteness is usually assumed [12, 26].

Assumption 4 (Hessian Lipschitzness) {fi}ni=1 is ρ-Hessian Lipschitz, i.e., ∥∇2fi(x)−∇2fi(y)∥ ≤
ρ∥x− y∥, ∀i ∈ [n] and x, y ∈ Rd.

For federated learning, we solely assume inter-client Hessian-heterogeneity to show the efficiency
of the proposed method in a less heterogeneous setting. It has previously appeared in Mime [20]
(but intra-client Hessian-heterogeneity was assumed at the same time) and BVR-L-SGD [32].

Assumption 5 (Hessian-heterogeneity) {fi}ni=1 is Hessian-heterogeneous with ζ, i.e., for any
i, j ∈ [n] and x ∈ Rd, ∥∇2fi(x)−∇2fj(x)∥ ≤ ζ.

Finally, we explain the PL condition [38]. It is easy to see a µ-strongly convex function satisfies this
with µ.

Assumption 6 (PL Condition) f satisfies PL condition, i.e., ∥∇f(x)∥2 ≥ 2µ (f(x)− f∗) for any
x ∈ Rd.

C.2. Concentration inequalities

Here, we prepare concentration inequalities for later use. We first present Bernstein-type bounds.

Proposition 3 (Matrix Bernstein inequality [47]) Let X1, · · · , Xk be a finite sequence of inde-
pendent random matrices with dimension d1 × d2. Assume each random matrix satisfies

E[Xi] = 0 and ∥Xi∥ ≤ R almost surely.

Define

σ2 = max

{∥∥∥∥∥∑
i

E[XiX
⊤
i ]

∥∥∥∥∥ ,
∥∥∥∥∥∑

i

E[X⊤i Xi]

∥∥∥∥∥
}
.

Then, for all t ≥ 0,

P

[∥∥∥∥∥∑
i

Xi

∥∥∥∥∥ ≥ t

]
≤ (d1 + d2) · exp

(
−t2/2

σ2 +Rt/3

)
.

20



REDUCING COMMUNICATION IN FL WITH A NOVEL SINGLE-LOOP VARIANCE REDUCTION METHOD

In this paper, we deal only with the vector case. In that case, the inequality is rewritten for bounds
with high probability, as follows.

Proposition 4 (Vector Bernstein inequality) Let x1, · · · , xk be a finite sequence of independent,
random, d-dimensional vectors and ν ∈ (0, 1). Assume that each vector satisfies

∥xi − E[xi]∥ ≤ R almost surely.

Define

σ2 =

k∑
i=1

E[∥xi − E[xi]∥2]

Then, with probability at least 1− ν/poly(n, P, T,K),∥∥∥∥∥
k∑

i=1

(xi − E[xi])

∥∥∥∥∥
2

≤ C2
1 · (σ2 +R2)

where C1 = O
(
log(ν−1 + n+ P + d+ T +K)

)
= Õ(1).

Remark 5 Here we do not specify poly(n, P, T,K) to apply different polynomials to later. When-
ever we use this inequality with different poly(n,m, T ), we will reuse C1 for the notational simplic-
ity. We also use this constant C1 in the following parts to denote constants as large as O(log(ν−1+
n+ P + d+ T +K)), with a slight abuse of notations.

Moreover, a similar inequality holds when we consider sampling without replacement. To our
knowledge, Bernstein inequality without replacement for vectors has not been rigorously proven
and we attach its complete proof at the next subsection.

Proposition 6 (Vector Bernstein inequality without replacement) Let A = (a1, a2, · · · , ak) be
d-dimensional fixed vectors, X = (x1, · · · , xl) (l ≤ k) be a random sample without replacement
from A. Assume that

∑k
i=1 ai = 0 and that each vector satisfies

∥ai∥ ≤ R.

Define

σ2 =
1

k

k∑
i=1

∥ai∥2.

Then, for each t ≥ 0 and l < k,

P

[∥∥∥∥∥
l∑

i=1

xi

∥∥∥∥∥ ≥ t

]
≤ (d+ 1) · exp

(
−t2

2lσ2 +Rt/3

)
.

Moreover, for each l < k, with probability at least 1− ν/poly(n, P, T,K),∥∥∥∥∥
l∑

i=1

xi

∥∥∥∥∥
2

≤ C2
1 · (lσ2 +R2),

where C1 = O (log(n+ P + d+ T +K)) = Õ(1).
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Finally, we need a high-probability version of Azuma-Hoeffding inequality.

Proposition 7 (Azuma-Hoeffding inequality with high probability [5, 44]) Let {xi} be a
d-dimensional vector sequence and martingale with respect to a filtration {Fi}. Assume that each
xi satisfies E[xi|Fi−1] = 0 and

∥xi∥ ≤ Ri with probability 1− νi

for νi ∈ (0, 1) (i = 1, . . . , k). Then, with probability at least 1− ν/poly(n, P, T,K)−
∑k

i=1 νi,∥∥∥∥∥
k∑

i=1

xi

∥∥∥∥∥
2

≤ C2
1

k∑
i=1

R2
i ,

where C1 = O
(
log(ν−1 + n+ P + d+ T +K)

)
= Õ(1).

C.3. Proof of Proposition 6

In order to show Proposition 6, we use the Martingale counterpart of Bernstein’s Inequality for
random matrix. The following is a slightly weaker version of Tropp [46].

Proposition 8 (Freedman’s inequality for matrix martingales) Consider a matrix martingale {Yi |
i = 0, 1, · · · } with respect to a filtration {Fi}, whose values are matrices with dimension d1 × d2,
and let {Xi | i = 1, 2, · · · } be the difference sequence. Assume that each of the difference sequence
is uniformly bounded:

∥Xi∥2 ≤ R′
2 almost surely.

Also, assume that each i satisfies

max
{∥∥∥E[XiX

⊤
i | Fi−1]

∥∥∥ ,∥∥∥E[X⊤i Xi| Fi−1]
∥∥∥} ≤ σ′

2 almost surely.

Then, for all t ≥ 0 and for each l,

P [∥Yl∥ ≥ t] ≤ (d1 + d2) · exp
(

−t2/2
lσ′2 +R′t/3

)
.

Proof of Proposition 6 First, we consider the case l ≤ k
2 . Let yi =

∑i
j=1 xj and consider a

filtration Fi = σ(x1, · · · , xi). Then, we have

E [yi+1 |Fi ] = yi +
1

k − i

 n∑
j=1

aj −
i∑

j=1

xj

 =
k − i− 1

k − i
yi.

This means that
{

1
k−iyi

}l

i=0
is martingale with respect to {Fi}. We have that this martingale

satisfies the assumptions of Proposition 8 with R′2 = R2

(k−l)2 and σ′2 = 2σ2

(k−l)2 . In fact, we have∥∥∥∥ 1

k − i− 1
yi+1 − E

[
1

k − i− 1
yi+1

∣∣∣∣Fi

]∥∥∥∥2 = ∥∥∥∥ 1

k − i− 1
xi+1 − E

[
1

k − i− 1
xi+1

∣∣∣∣Fi

]∥∥∥∥2
≤
∥∥∥∥ 1

k − i− 1
xi+1

∥∥∥∥2 ≤ R2

(k − i− 1)2
≤ R2

(k − l)2
,
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where the equality follows since x1 . . . , xi are Fi-measurable, and

E

[∥∥∥∥ 1

k − i− 1
yi+1 − E

[
1

k − i− 1
yi+1

∣∣∣∣Fi

]∥∥∥∥2
∣∣∣∣∣Fi

]

≤ E

[∥∥∥∥ 1

k − i− 1
xi+1

∥∥∥∥2
∣∣∣∣∣Fi

]

=
1

(k − i− 1)2
· 1

k − i

 k∑
j=1

∥aj∥2 −
i∑

j=1

∥xj∥2


≤ 1

(k − l)2
· 2
k

k∑
i=1

∥ai∥2
(
∵ k − i ≥ k

2

)
=

2σ2

(k − l)2
.

Thus, we use Proposition 8 to obtain

P [∥yl∥ ≥ t] ≤ (d+ 1) · exp
(

−t2

2lσ2 +Rt/3

)
.

What remains is the case of l ≥ k
2 . Since

∑l
i=1 xi = −

∑k
i=l+1 xi holds, we can apply the above

bound for
∑k

i=l+1 xi. Thus, we have the first assertion for all l < k. The second assertion follows
by setting t = O

(
(lσ2 +R) log(ν−1 + n+m+ d+ T )

)
= C1 · (lσ2 +R).

C.4. Linear Algebraic Tool

The following lemma is due to Murata and Suzuki [33]. We provide its proof here.

Lemma 9 (Murata and Suzuki [33]) Let A be a d × d symmetric matrix with the smallest and
largest eigenvalues λmin < 0 and λmax < 1, respectively. Then, for k = 0, 1, · · · , it holds that

∥A(I −A)k∥ ≤ −λmin(1− λmin)
k +

1

k + 1
.

Proof Since A is diagonalizable, we write A =
∑d

i=1 λieie
⊤
i , where e1, . . . , ed are normalized

eigenvectors and λmin = λ1 ≤ · · · ≤ λd = λmax are the corresponding eigenvalues. Then, it holds
that

A(I −A)k =

d∑
i=1

λi(1− λi)
keie

⊤
i .

Thus, the remaining is to evaluate maxi |λi(1− λi)
k|. After some algebra, we get

0 < λ(1− λ)k ≤

−λ(1− λ)k (if λ ≤ 0)

1
k+1

(
k

k+1

)k (
if λ > 0; the equality holds with λ = 1

1+k

)
≤ −λmin(1− λmin)

k +
1

k + 1
,
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which concludes the proof.

Appendix D. Missing Proofs for SLEDGE

This section provides the missing proofs in Section 2 about the convergence property of SLEDGE.
First, we divide Theorem 1 into the following three formal theorems.

Theorem 10 Under Assumptions 1, 2 and 5, and 3-(i) for Option I, if we choose η = Θ̃( 1L ∧
b

ζ
√
n
) and r ≤ ηε

2 , Algorithm 1 finds ε-first-order stationary points using

Õ

(
∆(ζ
√
n ∨ Lb) + n

b σ
2
c

ε2

)
(Option I),

Õ

(
n+

∆(ζ
√
n ∨ Lb)

ε2

)
(Option II)

stochastic gradients with probability at least 1− ν.

Theorem 11 Assume Assumptions 1, 2, 4 and 5, 3-(i) for Option I. Let b ≳
√
n + ζ2

δ2
, η = Θ̃( 1L),

r ≲ Õ
(
ε
L

)
, and ν ∈ (0, 1). Then, Algorithm 1 finds (ε, δ)-SOSPs using

Õ

((
L∆+ σ2

c

)( 1

ε2
+

ρ2

δ4

)
b

)
(Option I),

Õ

(
n+ L∆

(
1

ε2
+

ρ2

δ4

)
b

)
(Option II)

stochastic gradients, with probability at least 1− ν.

Theorem 12 Assume Assumptions 1, 2, 3-(i), 5, and 6. If η = Θ̃( 1L ∧
b

ζ
√
n
∧ b

µn), and r ≤ η
√

εµ
3 ,

Algorithm 1 finds an ε-solution with f(xt)− f∗ ≤ ε using

Õ

((
Lb

µ
∨ ζ
√
n

µ
∨ n

)
log

∆ + σc
ε

)
(Option I),

Õ

((
Lb

µ
∨ ζ
√
n

µ
∨ n

)
log

∆

ε

)
(Option II)

stochastic gradients with probability at least 1 − ν. Õ hides at most log5.5(n + µ−1 + ν−1) and
polyloglog factors.

Below, we first describe basic idea for designing SLEDGE. Then,appendix D.2 presents the
first-order optimality ( Theorem 10). Then we prove that SLEDGE can escape saddle points and
find SOSPs (Theorem 11) in appendix D.3. Finally, exponential convergence under the PL condition
(Theorem 12) is shown in appendix D.4.
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D.1. Intuitition behind SLEDGE

SLEDGE is designed so that it inherits the best points of SAGA [9, 40] and SARAH [34, 35]. We
first compare gradient estimators of SAGA and SARAH to explain why SAGA is suboptimal. Then,
we also note SARAH’s estimator gets more accurate under less heterogeneity.

According to SAGA’s update rule, the discrepancy of the gradient estimator from the true gra-
dient at a step t can be decomposed as

1

n

n∑
i=1

(∇fi(xt)−∇fi(xT (t,i)))− 1

b

∑
i∈It

(∇fi(xt)−∇fi(xT (t,i))),

where It is the randomly chosen minibatch with size b and T (t, i) is the step when fi is last sampled.
Note that SAGA stores ∇fi(xT (t,i)) for each i. Thus, the first term is a change from the referable
gradient of 1

n

∑n
i=1∇fi(xT (t,i)), and the second term is an approximation of the first term using a

minibatch with size b. Then, the variance of the gradient estimator is roughly bounded by L
b ∥x

t −
xT (t)∥2 ≤ L(t−T (t))

b

∑t
s=T (t)+1 ∥xs − xs−1∥2, with T (t) = mini T (t, i).

On the other hand, the difference between SARAH’s gradient estimator, which computes the
full gradient periodically, and the true gradient can be written as

t∑
s=T (t)+1

(
∇f(xs)−∇f(xs−1)−

∑
i∈Is

∇fi(xs)−∇fi(xs−1)
b

)
,

where T (t) is the time of the last full gradient evaluation. We can interpret this scheme as it decom-
poses∇f(xt)−∇f(xT (t)) into the sum of∇f(xs)−∇f(xs−1), and each term is approximated by
an independent minibatch with size b. Then, the variance is bounded by L

b

∑t
s=T (t)+1 ∥xs−xs−1∥2,

meaning that SARAH’s estimator is better than that of SAGA by the t− T (t) factor, which can be
as large as O(nb ).

Moreover, in the perspective of application to FL, whether an algorithm can take advantage of
less heterogeneity becomes important. We consider the difference of the probabilistic term fo In
SAGA’s update, the variance cannot be bounded by a factor of ζ, since xT (t,i) is different for differ-
ent i. On the other hand, we can see that, for SARAH’s path-integrated type estimator, the variance
can be bounded by ζ

b

∑t
s=T (t)+1 ∥xs − xs−1∥2 under the Hessian heterogeneity of ζ. Thus, the

path-integrated estimator of SARAH (, which also appears in SPIDER [10] or NestedSVRG [50]),
is crucial in taking advantage of less heterogeneity. This is also the reason for why ZeroSARAH
[28] fails to utilize less Hessian heterogeneity, since at step t they estimate∇f(xt−1) based on naive
application of SAGA.

Based on the above discussion, we first decompose SAGA’s approximation target
1
n

∑n
i=1∇(fi(xt)−∇fi(xT (t,i))) into the sum of∇fi(xs)−∇fi(xs−1), each of which is approxi-

mated in SARAH’s manner. Namely, the decomposed form is written as follows:

1

n

n∑
s=T (t)+1

n∑
i∈Ĩts

(fi(x
s)− fi(x

s−1)).

Here Ĩts = [n] \
⋃t

τ=s I
t, so that Ĩts is the set of indexes not sampled between s and t. Then, we

approximate
∑n

i∈Ĩts
(fi(x

s)− fi(x
s−1)) with |Ĩ

t
s|
b

∑n
i∈Is (fi(x

s)− fi(x
s−1)). This procedure yields

SLEDGE, and the following error bound on the SLEDGE estimator.
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Lemma 13 (Informal) Let ν ∈ (0, 1), T1 = Õ(nb ), and C = Õ(1). We have that, ignoring the
initialization error, with probability 1− ν for all t = 1, · · · , T ,∥∥∥∥∥∇f(xt)− 1

n

n∑
i=1

yti

∥∥∥∥∥
2

≤ Cζ2

b

t∑
s=1∨(t−T1+1)

∥xs − xs−1∥2.

Here, T1 is defined so that T1 ≥ t− T (t) holds with high probability. This lemma tells us that our
gradient estimator has comparable quality to SARAH without computing full gradient. Moreover,
this lemma explicitly states that the variance of SLEDGE estimator is quadratically bounded with
ζ, meaning that we require fewer gradients when ζ ≪ L, which is later exploited for federated
learning application.

While the development is intuitively straightforward, we have the technical difficulty to evaluate
the error, that |Ĩts| depends not only on Is but also on Is+1, . . . , It. In other words, unlike SARAH,
the discrepancy cannot be decomposed into completely independent terms about Is, which prevents
us from using a usual expectation bound. To address this, we prepared vector Bernstein inequality
without replacement (Proposition 6) to give a high probability bound on the discrepancy.

D.2. Finding First-order Stationary Points (Proof of Theorem 10)

In this subsection, we show that SLEDGE finds first-order stationary points with high probability
(Theorem 10). For the proof of Theorem 10, we use the following classical argument (e.g. Ge et al.
[12], Li [26], Li et al. [27]), which ensures decrease of the function values.

Lemma 14 Let f be an L-gradient Lipschitz function and xt := xt−1−ηvt−1+ξt−1 with ∥ξt−1∥ ≤
r. Then,

f(xt) ≤ f(xt−1) + η∥∇f(xt−1)− vt−1∥2 − η

2
∥∇f(xt−1)∥2 −

(
1

2η
− L

2

)
∥xt − xt−1∥2 + r2

η

holds.
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Proof Starting from the direct result from L-gradient Lipschitzness, we have

f(xt)

≤ f(xt−1) + ⟨∇f(xt−1), xt − xt−1⟩+ L

2
∥xt − xt−1∥2

= f(xt−1) +

〈
∇f(xt−1)− vt−1 +

ξt−1

η
, xt − xt−1

〉
+

〈
vt−1 − ξt−1

η
, xt − xt−1

〉
+

L

2
∥xt − xt−1∥2

= f(xt−1) +

〈
∇f(xt−1)− vt−1 +

ξt−1

η
, xt − xt−1

〉
−
(
1

η
− L

2

)
∥xt − xt−1∥2

= f(xt−1) +
η

2

∥∥∥∥∇f(xt−1)− vt−1 +
ξt−1

η

∥∥∥∥2 − η

2
∥∇f(xt−1)∥2 −

(
1

2η
− L

2

)
∥xt − xt−1∥2(3)

≤ f(xt−1) + η∥∇f(xt−1)− vt−1∥2 − η

2
∥∇f(xt−1)∥2 −

(
1

2η
− L

2

)
∥xt − xt−1∥2 (4)

+

∥∥ξt−1∥∥2
η

≤ f(xt−1) + η∥∇f(xt−1)− vt−1∥2 − η

2
∥∇f(xt−1)∥2 −

(
1

2η
− L

2

)
∥xt − xt−1∥2 + r2

η
, (5)

where we used xt − xt−1 = ηvt−1 + ξt−1 and ⟨a − b, b⟩ = 1
2(∥a − b∥2 − ∥a∥2 + ∥b∥2) for (3),

∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2) for (4), and ∥ξt−1∥ ≤ r for (5).

Our algorithm uses vt = 1
n

∑n
i=1 y

t
i as an estimator of ∇f(xt). To apply Lemma 14 for our algo-

rithm, we need to evaluate the term ∥vt − ∇f(xt)∥2, the variance of the gradient estimator. The
next lemma provides its upper bound that holds with high probability.

Lemma 13 Let vt = 1
n

∑n
i=1 y

t
i and all the other variables be as stated in Algorithm 1. Then, by

taking T1 =
n
bC1,

∥vt −∇f(xt)∥2

≤


15C8

1ζ
2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2 + 12C2
11[t < T1]

b
·
(
σ2
c +

G2
c

b

)
(Option I)

15C8
1ζ

2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2 (Option II)

holds for all t = 1, · · · , T with probability at least 1− 3ν.

We decompose ∥vt − ∇f(xt)∥ into three parts to each of which one of the following lemmas is
applied. Below, for each 1 ≤ s ≤ t, we let Ĩts = [n] \

⋃t
τ=s I

t, which is a set of indexes that are not
selected between s+ 1 and t.
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Lemma 15 The following holds uniformly for all 1 ≤ t ≤ T with probability at least 1− ν:∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1+1}

∑
i∈Ĩts

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

≤ C3
1ζ

2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2.

Lemma 16 The following inequality holds uniformly for all 1 ≤ t ≤ T with probability at least
1− ν: ∥∥∥∥∥∥ 1n

t∑
s=max{1,t−T1+1}

|Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

≤ 4C8
1ζ

2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2.

(6)

Lemma 17 The following inequality holds with probability at least 1− ν uniformly over 1 ≤ t ≤
T : ∥∥∥∥∥∥ 1n

∑
i∈Ĩt1

(y0i −∇fi(x0))

∥∥∥∥∥∥
2

≤

{
4C2

1
b

(
σ2
c +

G2
c
b

)
(Option I)

0 (Option II)
.

Proof of Lemma 15 First, we have that

(a) :=

∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1+1}

∑
i∈Ĩts

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

≤ t−max{1, t− T1 + 1}+ 1

n2
×

t∑
s=max{1,t−T1+1}

∥∥∥∥∥∥
∑
i∈Ĩts

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

≤ T1

n2

t∑
s=max{1,t−T1+1}

∥∥∥∥∥∥
∑
i∈Ĩts

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

, (7)

where we use ∥
∑m

i=1 ai∥2 ≤ m
∑m

i=1 ∥ai∥2 for the first inequality. For each s, from Assumption 5,

∥∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1))∥ ≤ ζ∥xs − xs−1∥

holds for all i ∈ [n]. By vector Bernstein inequality without replacement (Proposition 6), for each
t ≥ 1 and s satisfying max{1, t− T1 + 1} ≤ s ≤ t, we have that∥∥∥∥∥∥

∑
i∈Ĩts

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

≤ C2
1 |Ĩts|ζ2∥xs − xs−1∥2 (8)
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holds with probability at least 1− ν
T 2 . Thus, in (7), (8) holds uniformly for all t and s with probability

at least 1− ν. Applying this bound to (7) yields

(a) ≤ T1

n2

t∑
s=max{1,t−T1+1}

C2
1 |Ĩts|ζ2∥xs − xs−1∥2 ≤ C3

1ζ
2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2,

where the second inequality follows from |Ĩts| ≤ n and T1 =
n
bC1.

Proof of Lemma 16 Since |Ĩts| depends not only on Is but also on Is, Is+1, · · · , It, the left-hand
side of (6) is not a sum of martingale variables with respect to the filtration {σ(I1, · · · , Is)}ts=1.
Thus, we consider E[|Ĩts|] instead of |Ĩts| and validate the difference between them later. We decom-
pose (6) as∥∥∥∥∥∥ 1n

t∑
s=max{1,t−T1+1}

|Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1+1}

E[|Ĩts|]
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1+1}

(
|Ĩts| − E[|Ĩts|]

)2 1

b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1+1}

E[|Ĩts|]
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥∥
2

(9)

+
2T1

n2

t∑
s=max{1,t−T1+1}

(
|Ĩts| − E[|Ĩts|]

)2 ∥∥∥∥∥1b ∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1))

∥∥∥∥∥
2

.

(10)

First, we bound the term (9). We can see that E[|Ĩts|]
b

∑
i∈Is(∇fi(xs)−∇fi(xs−1)− (∇f(xs)+

∇f(xs−1))) is a martingale difference sequence. Moreover, by the vector Bernstein inequality
without replacement (Proposition 6) and Assumption 5, we have∥∥∥∥∥E[|Ĩts|]b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥
2

≤ C1E[|Ĩts|]2ζ2

b
∥xs − xs−1∥2 ≤ C1n

2ζ2

b
∥xs − xs−1∥2

with probability at least 1− ν
5T 2 for each t and s in (9). This allows us to use the Azuma-Hoeffding

inequality with high probability (Proposition 7). Consequently, with probability at least 1 − ν
5T −
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T · ν
5T 2 = 1− 2ν

5T , it holds that∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1+1}

E[|Ĩts|]
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

≤ C2
1ζ

2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2 (11)

for each t ∈ [T ]. Therefore, (11) holds for all t with probability 1− 2ν
5 .

As for the term (10), by the Bernstein inequality without replacement (Proposition 6) and As-
sumption 5, we have∥∥∥∥∥1b ∑

i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥
2

≤ C2
1ζ

2

b
∥xs − xs−1∥2, (12)

for all s with probability at least 1 − ν
5 . We move to bound the difference

(
|Ĩts| − E[|Ĩts|]

)2
. For

this purpose, we regard this as a function of (at most) T1 variables It, · · · , Is and prepare a “re-
verse” filtration F̃ = {F̃ t

s}
max{1,t−T1+1}
s=t with F̃ t

s = σ(It, It−1, · · · , Is). Then, the sequence
{|Ĩts|}ts=max{1,t−T1+1} is a measurable process with respect to F̃ . We consider the conditional

expectation of |Ĩts| − |Ĩts+1| with respect to F̃ . When samples in Ĩts+1 are not chosen between t to
s+ 1, each of them is chosen with probability b

n for the first time at step s. Thus, we have

Es

[
|Ĩts+1| − |Ĩts| | F̃ t

s+1

]
=

b

n
|Ĩts+1|,

which leads to Es

[
|Ĩts|
∣∣∣F̃ t

s+1

]
=
(
1− b

n

)
|Ĩts+1|. Hence, the process {uts := |Ĩts|−

(
1− b

n

)
|Ĩts+1| |

t > s ≥ t− T1 +1} is a martingale with respect to F̃ and satisfies Es

[
uts

∣∣∣F̃ t
s+1

]
= 0. In addition,

let A = {1, · · · , 1︸ ︷︷ ︸
|Ĩts+1|

, 0, · · · , 0︸ ︷︷ ︸
n−|Ĩts+1|

} and Ã = (ã1, · · · , ãb) be a random sample without replacement from

A, Then, uts conditioned on F̃ t
s+1 follows the same distribution as that of

∑b
l=1 ãi − E

[∑b
l=1 ãi

]
.

This means that, using Proposition 6, we have ∥uts∥ ≤ C1

√
b with probability at least 1 − 1

5T 2 .

Finally, we apply Proposition 7 to bound |Ĩts| =
∑s

τ=t

(
1− b

n

)(τ−s)
utτ + n

(
1− b

n

)(t−s+1)
, which

yields that

∣∣∣|Ĩts| − E[|Ĩts|]
∣∣∣2 ≤ C2

1

s∑
τ=t

C2
1

(
1− b

n

)(τ−s)
b ≤ C4

1bT1 = C5
1n (13)

with probability at least 1− ν
5T − T · ν

5T 2 = 2ν
5T .
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Combining (12) and (13), with probability 1− ν
5 , we get

T1

n2

t∑
s=max{1,t−T1+1}

(
|Ĩts| − E[|Ĩts|]

)2 ∥∥∥∥∥1b ∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥
2

≤ C8
1ζ

2

b2

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2,

(14)

by letting T1 = n
bC1. Finally, we get the assertion by combining (11) and (14), and applying

2C2
1

b +
2C8

1
b2
≤ 4C8

1
b .

Proof of Lemma 17 As for the Option II, the assertion directly follows from the definition y0i =
∇fi(x0) (i = 1, · · · , n). Henceforth, we prove the bound∥∥∥∥∥∥ 1n

∑
i∈Ĩt1

(y0i −∇fi(x0))

∥∥∥∥∥∥
2

≤ 4C2
1

b

(
σ2
c +

G2
c

b

)

when we use Option I. To this end, we decompose
∥∥∥ 1
n

∑
i∈Ĩt1

(y0i −∇fi(x0))
∥∥∥2 as∥∥∥∥∥∥ 1n

∑
i∈Ĩt1

(y0i −∇fi(x0))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1n
 |Ĩt1|

b

∑
i∈I1

(∇fi(x0)−∇f(x0)) +
∑
i∈Ĩt1

(∇f(x0)−∇fi(x0))

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥ 1n |Ĩ
t
1|
b

∑
i∈I1

(∇fi(x0)−∇f(x0))

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥ 1n
∑
i∈Ĩt1

(∇fi(x0)−∇f(x0))

∥∥∥∥∥∥
2

,

(15)

where we use the inequality ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2. For the first term in (15), Proposition 6
and Assumption 3 imply that∥∥∥∥∥∥ 1n |Ĩ

t
1|
b

∑
i∈I1

(∇fi(x0)−∇f(x0))

∥∥∥∥∥∥
2

≤ |Ĩ
t
1|2

n2b2
C2
1b

(
σ2
c +

G2
c

b

)
≤ C2

1

b

(
σ2
c +

G2
c

b

)
, (16)

holds with probability at least 1− ν
2 for all t. For the second term in (15), we have∥∥∥∥∥∥ 1n

∑
i∈Ĩt1

(∇fi(x0)−∇f(x0))

∥∥∥∥∥∥
2

≤ 1

n2
C2
1 |Ĩt1|

(
σ2
c +

G2
c

|Ĩt1|

)
≤ C2

1

b

(
σ2
c +

G2
c

b

)
,

from Proposition 6 and Assumption 3, with probability at least 1− ν
2T for each t and at least 1− ν

2
uniformly over all t.
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Substituting (15) and (16) to (14), we obtain the desired bound.

Proof of Lemma 13 We first observe that vt −∇f(xt) is written as

vt −∇f(xt)

=
1

n

t∑
s=1

 |Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1))−
∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1))

+
1

n

∑
i∈Ĩt

1

(y0i −∇fi(x0)).

We can ensure that if t − s is sufficiently large, every fi is sampled at least once between s + 1
and t with high probability. Indeed, for each fi and ν > 0, the probability that fi is not sampled
between s+ 1 and t is bounded as(

1− 1

n

)∑t
s=max{1,t−s+1} b

≤
(
1− 1

n

)∑t
s=max{1,t−T1+1} b

≤
(
1− 1

n

)nC1

≤ exp (−C1) , (17)

where we use
∑t

s=max{1,t−T1+1} b ≤ T1b = nC1 in the second inequality. By taking C1 =

Ω
(
log nT

ν

)
, the right-hand side of (17) is bounded by ν

nT . In other words, Ĩts = ∅ with proba-
bility at least 1 − ν for every t and s ≤ t − T1. Henceforth, we assume Ĩts = ∅ and focus on the
errors between max{1, t− T1 + 1} ≤ s ≤ t.

When Ĩts = ∅ holds for s ≤ t− T1, the variance term ∥vt −∇f(xt)∥2 is decomposed as

∥vt −∇f(xt)∥2

=

∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1+1}

 |Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1))−
∑
i∈Ĩts

(∇fi(xs)−∇fi(xs−1))


+
1[t ≤ T1]

n

∑
i∈Ĩt1

(y0i −∇fi(x0))

∥∥∥∥∥∥
2

≤ 3

∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1+1}

∑
i∈Ĩts

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(a)

+ 3

∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1+1}

|Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(b)

+ 3

∥∥∥∥∥∥1[t ≤ T1]

n

∑
i∈Ĩt1

(y0i −∇fi(x0))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(c)

, (18)

by the inequality ∥a + b + c∥2 ≤ 3(∥a∥2 + ∥b∥2 + ∥c∥2). Then, we give the bound of (18) for
Option I and Option II, respectively.
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Option I According to Lemmas 15 to 17, we have

∥vt −∇f(xt)∥2

≤ 3C3
1ζ

2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2

︸ ︷︷ ︸
(a)

+
12C8

1ζ
2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2

︸ ︷︷ ︸
(b)

+
12C2

1

(
σ2
c +

G2
c
b

)
1[t ≤ T1]

b︸ ︷︷ ︸
(c)

≤
(
3C3

1 + 12C8
1

) ζ2
b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2 +
12C2

1

(
σ2
c +

G2
c
b

)
1[t ≤ T1]

b

with probability at least 1− 3ν uniformly over all t.

Option II Almost as well as the previous case, we have

∥vt −∇f(xt)∥2

≤ 3C3
1ζ

2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2

︸ ︷︷ ︸
(a)

+
12C8

1ζ
2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2

︸ ︷︷ ︸
(b)

+ 0︸︷︷︸
(c)

≤
(
3C3

1 + 12C8
1

) ζ2
b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2

with probability at least 1− 2ν uniformly over all t.
By replacing C1 with C1 ∨ 1 and applying 3C3

1 + 12C8
1 ≤ 15C8

1 , we obtain the desired bound
for both cases.

Now, we are ready to prove the first-order convergence of SLEDGE.
Proof of Theorem 10

Summing up (5) over all t = 1, 2, · · · , T and arranging the terms, we get

T∑
t=1

∥∇f(xt−1)∥2

≤ 2

η

[(
f(x0)− f(xt)

)
−

T∑
t=1

(
1

2η
− L

2

)
∥xt − xt−1∥2 + η

T∑
t=1

∥∇f(xt−1)− vt−1∥2
]
+

2Tr2

η2
.
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Applying Lemma 13 to this, we obtain that

T∑
t=1

∥∇f(xt−1)∥2 ≤2

η

[(
f(x0)− f(xt)

)
−
(

1

2η
− L

2
− 15C9

1ηζ
2n
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, we obtain
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t=1 ∥∇f(xt−1)∥2 ≤ ε2 with probability at least 1− 3ν, which implies that there exists some t

such that 0 ≤ t ≤ T − 1 and ∥∇f(xt)∥2 ≤ ε2. From this, the desired conclusion is obtained.
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Then, by taking T ≥ 4∆

ηε2
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)
, there exists some t such that 0 ≤ t ≤ T −1 and ∥∇f(xt)∥2 ≤

ε2, with probability at least 1− 3ν. Accordingly, we get the assertion for Option II.

D.3. Finding Second-order Stationary Points (Proof of Theorem 11)

The goal of this subsection is to show that SLEDGE is the single-loop algorithm with theoretical
guarantee for finding second-order stationary points.

The argument follows that of [12, 15, 26]; Let xτ0 be a point such as λmin(∇f(xτ0)) ≤ −δ.
Around that point, we consider two points x1 and x2 such that ⟨x1, e⟩ ≈ ⟨x2, e⟩, where e is the
eigenvector of λmin(∇f(xτ0)). Then, two coupled sequences that SLEDGE generates from the two
initial points (x1 and x2) will be separated exponentially, as long as they are in a small region around
the initial points. This means that if we add some noise to the sequence around a saddle point, then
with a certain probability, the algorithm can move away from the saddle point.

We again emphasize that, although this proof outline has been popular, we face the difficulties
arising from the single-loop structure of the algorithm. Many existing algorithms compute periodic
full gradient and can refresh their gradient estimators around saddle points. In contrast, our single-
loop algorithm does not use full gradient, meaning that we have to deal with the error accumulated
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before that point, and it is not trivial whether such errors can be sufficiently small so that the direc-
tion of the negative eigenvalue can be found by the gradient estimator. This is the first difficulty, and
we found that taking minibatch size as large as b ≳

√
n+ ζ2

δ2
is sufficient. When δ = O(

√
ε), ζ2

δ2
is

about O(
√
n+ 1

ε ), which is usually assumed in existing literature [12, 26]. Secondly, our estimator
is more correlated due to the |Ĩts| term, thus requiring more delicate analysis than that for SSRGD
[26], which is based on SARAH [34, 35].

We formalize the exponential separation of two sequences in the following lemma.

Lemma 18 (Small stuck region) Let {xt} be a sequence generated by SLEDGE and suppose that
there exists a step τ0 such that −γ := λmin(∇2f(xτ0)) ≤ −δ holds. We denote the smallest
eigenvector direction of λmin(∇2f(xτ0)) by e. Moreover, we define a coupled sequence {x̃t} by
running SLEDGE with x̃0 = x0 and share the same choice of randomness, i.e., minibatches and
noises with {xt}, except for the noise at some step τ(> τ0): ξ̃τ = ξτ − ree with re ≥ rν

T
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is the counterpart of yti and corresponds to {x̃t}.
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.

In order to show Lemma 18, we need the following lemma, which is analogous to Lemmas 15 to 17.

Lemma 19 Under the same assumption as that of Lemma 18, we assume maxτ0≤t≤τ+T2{∥xt −
xτ∥, ∥x̃t − xτ∥} < δ

C2ρ
. Then, the following holds uniformly for all t ≤ τ + T2 with probability at
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where T1 =
n
bC1. Here C4 = Õ(1) is a sufficiently large constant.

Proof of Lemma 19 As for the case t < τ , the assertion directly follows from the definition of
{x̃t}. For the proof of the rest cases, we use notations as follows:

H = ∇2f(xτ0),

Hi = ∇2fi(x
τ0),

dHt =

∫ 1

0
(∇2f(x̃t + θ(xt − x̃t))−H)dθ,

dHt
i =

∫ 1

0
(∇2fi(x̃

t + θ(xt − x̃t))−Hi)dθ.
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Moreover, to simplify the notation, we denote

usi := (∇fi(xs)−∇fi(x̃s))− (∇fi(xs−1)−∇fi(x̃s−1))
− (∇f(xs)−∇f(x̃s)) + (∇f(xs−1)−∇f(x̃s−1)).

We have that Ei[u
s
i ] = 0, where the expectation is taken over the choice of i. Furthermore, for

s ≥ τ + 1, by using the Hessian-heterogenity (Assumption 5) and the Hessian Lipschitzness (As-
sumption 4), we have that
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where we use maxτ0≤t≤τ+T2{∥xt − xτ∥, ∥x̃t − xτ∥} < δ
C2ρ

for the last inequality. For s = τ , by
Assumption 5, we have ∥uτi ∥ = ∥(∇fi(xτ )−∇fi(x̃τ ))− (∇f(xτ )−∇f(x̃τ ))∥ ≤ 2ζ∥xτ − x̃τ∥ =
2ζre.
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Recall the discussion in Lemma 13, we have
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by using Proposition 6 and ∥uτi ∥ ≤ 2ζre, with probability at least 1− ν
4T for all t.

For the second term in the case t ≥ τ + 1, we follow the same line as the proof of Lemma 16.
We just replace∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)) by usi and use (19) to obtain that∥∥∥∥∥∥ 1n
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|Ĩts|
b

∑
i∈Is

usi

∥∥∥∥∥∥
≤ 2C4

1√
b

√√√√ t∑
s=max{1,t−T1+1}

(
ζ∥ws − ws−1∥+ 2δ

C2
∥ws∥+ 2δ

C2
∥ws−1∥

)2

≤ 2C4
1√
b

√√√√ t∑
s=max{1,t−T1+1}

(
ζ∥ws − ws−1∥+ 2δ

C2
∥ws∥+ 2δ

C2
∥ws−1∥

)2

. (21)

with probability at least 1− ν
4T for all t.
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Finally, we bound the last term in the case t ≥ τ + 1. By using Proposition 6, we obtain∥∥∥∥∥∥ 1n
t∑

s=max{τ+1,t−T1+1}

∑
i∈Ĩts
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with probability at least 1− ν
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Combining (20), (21), and (22), we have
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with probability at least 1 − ν
T for all t > τ . Here we take C4 = Õ(1). For t = τ , (20) directly

implies the desired bound.

Now, we move to prove Lemma 18.
Proof of Lemma 18 We assume the contrary, i.e., maxτ0≤t≤τ+T2{∥xt−xτ∥, ∥x̃t−xτ∥} < δ

C2ρ
,

and show the following by induction: for τ ≤ t ≤ τ + T2,

(a)
1

2
(1 + ηγ)t−τre ≤ ∥wt∥ ≤ 2(1 + ηγ)t−τre

(b) ∥wt − wt−1∥ ≤

{
re (for t = τ)

3ηγ(1 + ηγ)t−τre (for t ≥ τ + 1)

(c) ∥gt∥ ≤ 3C
1
2
1 C4γ

C2
(1 + ηγ)t−τre.

Then, (a) yields contradiction by taking t− τ = T2 = O

(
log δ

C2ρre

ηδ

)
since it holds that

max
τ0≤t≤τ+T2

{∥xt − xτ∥, ∥x̃t − xτ∥} ≥ 1

2
∥xt − x̃t∥ = 1

2
∥wt∥ ≥ δ

C2ρ
.
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It is easy to check (a) and (b) for t = τ . As for (c), by taking b ≥ ζ2

δ2
, ∥gt∥ ≤ C4δre ≤ C4γ(1 +

ηγ)t−τre holds with probability at least 1− ν
T by Lemma 19.

Now, we derive that (a), (b), and (c) are true for t + 1 if they are true for t = τ, τ + 1, · · · , t.
For t ≥ τ + 1, we can decompose wt as

wt

= wt−1 − η
(
vt−1 − ṽt−1

)
= wt−1 − η

(
∇f(xt−1)−∇f(x̃t−1) + vt−1 −∇f(xt−1)− ṽt−1 +∇f(x̃t−1)

)
= wt−1−

η

(∫ 1

0
∇2f(x̃t−1 + θ(xt−1 − x̃t−1))(xt−1 − x̃t−1)dθ + vt−1 −∇f(xt−1)− ṽt−1 +∇f(x̃t−1)

)
= wt−1 − η

(
(dHt−1 +H)wt−1 + vt−1 −∇f(xt−1)− ṽt−1 +∇f(x̃t−1)

)
= (I − ηH)wt−1 − η(dHt−1wt−1 + gt−1)

= (I − ηH)t−τwτ − η
t−1∑
s=τ

(I − ηH)t−1−s(dHsws + gs)

= (1 + ηγ)t−τree− η
t−1∑
s=τ

(I − ηH)t−1−s(dHsws + gs), (23)

where we use the same notation as the proof of Lemma 19. According to this decomposition, we
verify (a), (b), and (c).

Verifying (a) The first term of (23) satisfies

∥(1 + ηγ)t+1−τree∥ = (1 + ηγ)t+1−τre.

Thus, it suffices to bound the norm of η
∑t−1

s=τ (I−ηH)t−1−s(dHsws+ys) by 1
2(1+ηγ)t−τre. We

have ∥∥∥∥∥η
t∑

s=τ

(I − ηH)t−sdHsws

∥∥∥∥∥ ≤ η
t∑

s=τ

∥I − ηH∥t−s ∥dHs∥ ∥ws∥

≤ η(1 + ηγ)t−τre

t∑
s=τ

∥dHs∥ (24)

≤ η(1 + ηγ)t−τreT2
δ

C2
(25)

≤ δηT2

C2
(1 + ηγ)t−τre (26)

≤ 1

4
(1 + ηγ)t−τre. (27)

For (24), we used the facts that the maximum eigenvalue of ηH is at most ηL ≤ 1 when η ≤ 1
L

and that the minimum eigenvalue is −ηγ, which imply ∥I − ηH∥ ≤ 1 + ηγ. (25) follows from the
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assumptions on ∥ws∥. For (26), we use t ≤ τ + T2 and

∥dHs∥ =
∥∥∥∥∫ 1

0
(∇2f(x̃s + θ(xs − x̃s))−H)dθ

∥∥∥∥
≤ max

0≤θ≤1
ρ∥x̃s + θ(xs − x̃s)− xτ0∥

= max
0≤θ≤1

ρmax{∥xs − xτ0∥, ∥x̃s − xτ0∥} < ρ
δ

C2ρ
=

δ

C2
,

where the first inequality follows from the hessian Lipschitzness (Assumption 4). The final inequal-
ity (27) holds when we take C2 as C2 ≤ 4C3 log

δ
C2ρre

(this is satisfied by taking C2 = Õ(C3) =

Õ(1)).
In addition, we have∥∥∥∥∥η

t∑
s=τ

(I − ηH)t−sgs

∥∥∥∥∥ ≤ η

t∑
s=τ

∥I − ηH∥t−s ∥gs∥

≤ η

t−1∑
s=τ

(1 + ηγ)t−s
3C4γ

C2
(1 + ηγ)s−τre (28)

= ηT2
3C4γ

C2
(1 + ηγ)t−τre

≤
3C4C3 log

δ
C2ρre

C2
(1 + ηγ)t−τ (C4δ + γ) re

≤ 1

4
(1 + ηγ)t−τre. (29)

Note that (28) can be checked by the same argument as (24) and the inductive hypothesis. (29)

holds when we take C2 sufficiently large such that
3C4C3 log

δ
C2ρre

C2
≤ 1

4 holds.
Combining (27) and (29), we can bound the second term of (23) as desired, which concludes (a)

holds for t ≥ τ + 1.

Verifying (b) For t ≥ τ + 1, we have

wt+1 − wt

= (1 + ηγ)t−τ+1ree− η

t∑
s=τ

(I − ηH)t−s(dHsws + gs)

−

(
(1 + ηγ)t−τree− η

t−1∑
s=τ

(I − ηH)t−1−s(dHsw
s + gs)

)

= ηγ(1 + ηγ)t−τree− η
t−1∑
s=τ

ηH(I − ηH)t−1−s(dHsws + gs)− η(dHtwt + gt).

As for the first term, we can bound its norm as

∥ηγ(1 + ηγ)t−τree∥ ≤ ηγ(1 + ηγ)t−τre.
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The norm of the second term can be bounded by using (a) and (b) for τ +1, · · · , t−1 and Lemma 9
as follows:∥∥∥∥∥η

t−1∑
s=τ

ηH(I − ηH)t−1−s(dHsws + ys)

∥∥∥∥∥
≤

t−1∑
s=τ

η
∥∥ηH(I − ηH)t−1−s

∥∥ (∥dHs∥∥ws∥+ ∥ys∥)

≤
t−1∑
s=τ

η
∥∥ηH(I − ηH)t−1−s

∥∥ δ

C2
(1 + ηγ)s−τre +

3C
1
2
1 C4γ

C2
(1 + ηγ)s−τre


≤

t−1∑
s=τ

η
∥∥ηH(I − ηH)t−1−s

∥∥ δ

C2
+

3C
1
2
1 C4γ

C2

 (1 + ηγ)s−τre

≤
t−1∑
s=τ

η

(
ηγ(1 + ηγ)t−1−s +

1

t− s

) δ

C2
+

3C
1
2
1 C4γ

C2

 (1 + ηγ)s−τre

≤ η (ηγT2 + log T2)

 δ

C2
+

3C
1
2
1 C4γ

C2

 (1 + ηγ)t−τre.

Since T2 = Õ
(

1
ηδ

)
and γ ≥ δ, setting C2 = Õ(1) and η = Õ

(
1
L

)
with sufficiently large hidden

constants yields (ηγT2 + log T2)

(
δ
C2

+
3C

1
2
1 C4γ
C2

)
≤ γ. Thus, the second term is bounded by

ηγ(1 + ηγ)t−τre.
Finally, we consider the third term. We have ∥dHtwt∥ ≤ δ

C2
re(1 + ηγ)t−τre and ∥gt∥ ≤

3C
1
2
1 C4γ
C2

(1+ηγ)t−τre by the inductive hypothesis. Thus, taking C2 sufficiently large, the third term
is bounded by ηγ(1 + ηγ)t−τre.

Combining these bounds, we get (b) for t+ 1.

Verifying (c) By using Lemma 19 and the inductive hypothesis, we have

∥gt+1∥ ≤ C4ζre√
b

+
C4ζ√

b

√√√√ t∑
s=max{τ,t−T1+1}

∥ws − ws−1∥2 + C4δ

C2

√
b

√√√√ t∑
s=max{τ,t−T1+1}

∥ws∥2

≤ C4ζ√
b
re +

3C1C4ζ
√
nηγ

b
(1 + ηγ)t−τre +

C
1
2
1 C4
√
nδ

C2b
(1 + ηγ)t−τre

≤

C4ζ√
b
+ 3C1C4ζηγ +

C
1
2
1 C4δ

C2

 (1 + ηγ)t−τre

with probability at least 1− ν
T for all t. Taking b ≥ C2

2ζ
2

δ2
, η = Θ̃

(
1
L

)
, and C2 = O(C1C4) = Õ(1)

gives C4ζ√
b
+ C1C4ζηγ +

C
1
2
1 C4δ
C2

≤ 3C
1
2
1 C4

C2
γ. Thus, we obtain that (c) holds for t+ 1.
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Thus, we complete the induction step, and hence, the assertion follows.

From Lemma 18, we can ensure that SLEDGE escapes saddle points with high probability.

Lemma 20 Let {xt} be a sequence generated by SLEDGE and τ0(≥ 0) be a step where −γ :=
λmin(∇2f(xτ0)) ≤ −δ holds. We denote the eigenvector with the eigenvalue λmin(∇2f(xτ0)) by e.

We take b ≥
√
n + ζ2

δ2
, η = Θ̃

(
1
L

)
, and T2 =

C3 log
δ

C2ρre

ηγ ≲ Õ
(
L
δ

)
with a constant C3 = O(1).

Then, for arbitrary τ > τ0, it holds that

P
[

max
τ0≤t≤τ+T2

∥xt − xτ0∥ ≥ δ

C2ρ
| I0, · · · , Iτ , ξ1, · · · , ξτ

]
≥ 1− 2ν

T
,

Proof
Let A be a subset of B(0, r) such that each a ∈ A satisfies

P
[

max
τ0≤t≤τ+T2

∥xt − xτ0∥ > δ

C2ρ
| I0, · · · , Iτ , ξ1, · · · , ξτ , ξτ+1 = a

]
≤ 1− ν

T
.

Then, no two elements, ξτ+1 and ξ̃τ+1 such that ξτ+1− ξ̃τ+1 = ree with re ≥ rν
T
√
d

, can be elements
of A at the same time since by Lemma 18, it holds that

max
τ0≤t≤τ+T2

{∥xt − xτ0∥, ∥x̃t − xτ0∥} ≥ δ

C2ρ

with probability at least 1− ν
T . Let Vd(r) be the volume of Euclidean ball with radius r in Rd. Then,

we have

Vol(A)

Vd(r)
≤ reVd−1(r)

Vd(r)
=

reΓ(
d
2 + 1)

√
πrΓ(d2 + 1

2)
≤ re

πr

(
d

2
+ 1

) 1
2

≤ re
√
d

r
≤ ν

T
.

This means that A occupies at least 1− ν
T of the volumes of B(0, r). From this fact and the definition

of A, we have

P
[

max
τ0≤t≤τ+T2

∥xt − xτ0∥ ≥ δ

C2ρ
| I0, · · · , Iτ , ξ1, · · · , ξτ

]
≥ 1− ν

T
− ν

T
= 1− 2ν

T
,

which gives the conclusion.

Then, we move to the proof of the main theorem of this subsection, which guarantees that the
algorithm finds (ε, δ)-second-order stationary point with high probability.

Proof of Theorem 11 Since T2 =
C3 log

δ
C2ρre

ηγ depends on xτ0 (since γ depends on ∇2f(xτ0)),

we take T2 =
C3 log

δ
C2ρre

ηδ instead from now. Note that this replacement does not affect whether
Lemma 20 holds.

We devide {t = 0, 1, · · · , T − 1} into ⌈ T
2T2
⌉ phases: P τ = {2τT2 ≤ t < 2(τ + 1)T2}(

τ = 0, · · · , ⌈ T
2T2
⌉ − 1

)
. For each phase, we define aτ as a random variable defined by

aτ =
1
(
if
∑

t∈P τ 1[∥∇f(xt)∥ > ε] > T2

)
,

2
(
if there exists t such that 2τT2 ≤ t < (2τ + 1)T2, ∥∇f(xt)∥ ≤ ε and λmin(∇2f(xt)) ≤ −δ

)
,

3
(
if there exists t such that 2τT2 ≤ t < (2τ + 1)T2, ∥∇f(xt)∥ ≤ ε and λmin(∇2f(xt)) > −δ

)
.
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Note that P[aτ ∈ {1, 2, 3}] = 1 for each τ . This is because if there does not exist t between
2τT2 ≤ t < (2τ + 1)T2 such that ∥∇f(xt)∥ ≤ ε (i.e., neither aτ = 2 nor 3), then we have∑

t∈P τ 1[∥∇f(xt)∥ > ε] ≥
∑(2τ+1)T2−1

t=2τT2
1[∥∇f(xt)∥ > ε] = T2, meaning aτ = 1. We denote

N1 =
∑ T

2T2
−1

τ=0 1[aτ = 1], N2 =
∑ T

2T2
−1

τ=0 1[aτ = 2], and N3 =
∑ T

2T2
−1

τ=0 1[aτ = 3].
According to Lemma 20, with probability 1 − 2ν over all τ , it holds that if aτ = 2 then that

phase successes escaping saddle points; i.e., there exists 2τT2 ≤ t < (2τ + 1)T2 such that

max
t≤s≤t+T2

∥xs − xt∥ > δ

C2ρ
(30)

holds. (30) further leads to

T2

2(τ+1)T2−1∑
t=2τT2

∥xt+1 − xt∥2 >
(

δ

C2ρ

)2
⇐⇒ 2(τ+1)T2−1∑

t=2τT2

∥xt+1 − xt∥2 > δ2

T2C2
2ρ

2

 . (31)

On the other hand, in Theorem 10, we derived that

T∑
t=1

∥∇f(xt−1)∥2 ≤ 2

η

[(
f(x0)− f(xt)

)
−
(

1

2η
− L

2
− 15C9

1ηζ
2n

b2

) T∑
t=1

∥xt − xt−1∥2
]
+

2Tr2

η2

+


2C3

1T1

b

(
σ2
c +

G2
c

b

)
(Option I)

0 (Option II)

with probability 1 − 3ν. By taking η = Θ̃
(
1
L

)
, applying b ≥

√
n and f(x0) − f(xt) ≤ ∆, and

rearranging terms, we obtain

T∑
t=1

∥∇f(xt−1)∥2 + 1

2η2

T∑
t=1

∥xt − xt−1∥2

≤


2

η

[
∆+

12ηC3
1n

b2

(
σ2
c +

G2
c

b

)]
+

2Tr2

η2
(Option I),

2∆

η
+

2Tr2

η2
(Option II).

From the definition of aτ = 1 and (31), that the left-hand side is bounded as

T∑
t=1

∥∇f(xt−1)∥2 + 1

2η2

T∑
t=1

∥xt − xt−1∥2 ≥ N1T2ε
2 +

δ2N2

2η2T2C2
2ρ

2
.

Thus, it holds that

max

{
N1T2ε

2, N2T2 ·
δ2

2η2T 2
2C

2
2ρ

2

}
≤


2

η

[
∆+

12ηC3
1n

b2

(
σ2
c +

G2
c

b

)]
+

2Tr2

η2
(Option I),

2∆

η
+

2Tr2

η2
(Option II).

(32)
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By the parameter settings, we have 2η2T 2
2C

2
2ρ

2

δ2
= Õ

(
ρ2

δ4

)
. From this, (N1+N2)T2 ≤ Õ

(
1
ε2

+ ρ2

δ4

)
×

(the right-hand side of (32)). Taking T ≥ 2(N1+N2+1)T2, there exists τ such that aτ = 3, which
concludes the proof.

Remark 21 Although our main interest in this paper is to develop a simple algorithm with conver-
gence to second-order stationary points, it can be easily shown that adaptive selection of minibatch
size can reduce the gradient complexity. In Lemma 18, if we carefully check the proof, we can
see that the condition b ≳

√
n + ζ2

δ2
is needed only for the step τ . On the other hand, for all

τ0 ≤ t ≤ τ + T2 except for t = τ , b =
√
n is sufficient.

If we take b =
√
n + ζ2

δ2
only at t = (2τ + 1)T2

(
τ = 0, · · · , T

2T2
− 1
)

and b =
√
n at the

other steps, the above argument still holds with a slight modification. Then, the gradient complexity
is reduced to

Õ

((
L∆+ σ2

c +
G2

c

b

)(√
n

ε2
+

ρ2
√
n

δ4
+

ζ2

Lε2δ
+

ζ2ρ2

Lδ5

))
(Option I),

Õ

(
n+ L∆

(√
n

ε2
+

ρ2
√
n

δ4
+

ζ2

Lε2δ
+

ζ2ρ2

Lδ5

))
(Option II).

In the classical setting δ = O(
√
ρε), this bound is no worse than SPIDER-SFO+(+Neon2) [2, 10],

no matter what n and δ are.
Finally, we note that if δ is too small, L2

δ2
can be as large as n. In such case, it is more efficient

to replace sampling such number of samples is replaced by full gradient computation. Then, the
complexity gets

Õ

((
L∆+ σ2

c +
G

b

)(√
n

ε2
+

ρ2
√
n

δ4
+

nδ

Lε2
+

nρ2

Lδ3

))
(Option I),

Õ

(
n+ L∆

(√
n

ε2
+

ρ2
√
n

δ4
+

nδ

Lε2
+

nρ2

Lδ3

))
(Option II).

When δ = O(
√
ρε), this bound is no worse than NestedSVRG+Neon2 [2, 50]. However, it is

unusual to assume L2

δ2
= n in the first place. In fact, carefully looking the proof of SSRGD [26], we

find that they implicitly limits their analysis to the case of L2

δ2
≲ n.

D.4. Convergence under PL condition (proof of Theorem 12)

In this subsection, we provide the proof of the convergence under Assumption 6, i.e., PL condition
holds for the objective function.
Proof According to the descent lemma (Lemma 14) and PL condition (Assumption 6), we have
that

f(xt)

≤ f(xt−1) + η∥∇f(xt−1)− vt−1∥2 − η

2
∥∇f(xt−1)∥2 −

(
1

2η
− L

2

)
∥xt − xt−1∥2 + r2

η

≤ f(xt−1) + η∥∇f(xt−1)− vt−1∥2 − ηµ(f(xt−1)− f(x∗))−
(

1

2η
− L

2

)
∥xt − xt−1∥2 + r2

η
.
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Rearranging the terms yields

f(xt)− f∗

≤ (1− ηµ)(f(xt−1)− f∗) + η∥∇f(xt−1)− vt−1∥2 −
(

1

2η
− L

2

)
∥xt − xt−1∥2 + r2

η
.

By applying Lemma 13 to this, we obtain that with probability at least 1− 3ν,

f(xt)− f∗

≤ (1− ηµ)(f(xt−1)− f∗)−
(

1

2η
− L

2

)
∥xt − xt−1∥2 + r2

η

+


15C8

1ηζ
2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2 + 12C2
1η1[t < T1]

b
·
(
σ2
c +

G2
c

b

)
(Option I)

15C8
1ηζ

2

b

t∑
s=max{1,t−T1+1}

∥xs − xs−1∥2 (Option II)

holds for all t = 1, · · · , T . Multiplying both sides by (1 − ηµ)T−t and summing up over all
t = 1, 2, · · · , T and arranging the terms, we get

f(xT )− f∗

≤ (1− ηµ)T (f(x0)− f∗) +
T∑
t=1

(1− ηµ)T−t
r2

η

−
T∑
t=1

(1− ηµ)T−t
(

1

2η
− L

2
− 15C9

1ηζ
2n(1− ηµ)−T1

b2

)
∥xt − xt−1∥2

+

(1− ηµ)T−T1
12C3

1ηn

b2

(
σ2
c

G2
c

b

)
(Option I)

0 (Option II).

Note that T1 =
n
bC1. According to this, we take η as

η = Θ

(
1

L
∧ b

C4.5
1 ζ
√
n
∧ b

µC1n

)

so that 1
2η −

L
2 −

15C9
1ηζ

2n(1−ηµ)−T1

b2
≥ 0 holds. Then, we have that

f(xt)− f∗ ≤ (1− ηµ)T (f(x0)− f∗) +
T∑
t=1

(1− ηµ)T−t
r2

η

+

(1− ηµ)T−T1
12C3

1ηn

b2

(
σ2
c +

G2
c

b

)
(Option I)

0 (Option II)
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The first term (1− ηµ)T (f(x0)− f∗) is smaller than ε
3 if we take T = O

(
1
ηµ log ∆

ε

)
. The second

term is bounded by r2

η2µ
, which is smaller than ε

3 if we take r ≤ η
√

εµ
3 . The third term for Option I,

(1−ηµ)T−T1
12ηC3

1n
b2

(
σ2
c +

G
b

)
, is also bounded by ε

3 , if we take T = T1+O
(

1
ηµ log

C3
1ηn

b2

(
σ2
c+

G2
c
b

)
ε

)
=

O
(
n
bC1 +

C1
ηµ log (σc+Gc)

ε

)
.

Thus, for Option I, taking

T = O∗
(
n

b
C1 + C1

(
L

µ
∨ C4.5

1 ζ
√
n

µb
∨ C1n

b

)
log

∆ + σc +Gc

ε

)
,

yields the desired bound with probability at least 1− 3ν.
And for Option II, taking

T = O

((
L

µ
∨ C4.5

1 ζ
√
n

µb
∨ C1n

b

)
log

∆

ε

)
yields the desired bound.

Note that T depends on ε−1 only logarithmically, which means that C1 depends on ε−1 in only
log log order and C1 = O∗(log(n+ µ−1 + ν−1)), where O∗ suppresses log log factors.

Appendix E. Missing Statements and Proofs for FLEDGE

This section provides the missing information of FLEDGE that we abbreviate in section 3 and
gives the proofs of the theorems on FLEDGE about the convergence property of FLEDGE. First,
we provide the full version of FLEDGE in the following, including Option I. Note that B(0, r) is
the uniform distribution on the Euclidean ball in Rd with radius r. As the case of SLEDGE, we
divide Theorem 2 into Theorem 22 (first-order optimality), Theorem 28 (second-order optimality),
Theorem 34 (exponential convergence under the PL condition), each of which will be presented in
one of the following subsections in order.

E.1. Finding First-order Stationary Points (Proof of Theorem 22)

In this subsection, we show that Algorithm 2 finds first-order stationary points with high probability.
First, we describe the formal statement of Theorem 22.

Theorem 22 Let r ≤ ηε

2
√
2

and PKb ≥ Ω̃
(
σ2

ε2
+ G

ε

)
. Under Assumptions 1 to 3 and 5, if we

choose

η = Θ̃

(
1

L
∧ p

√
b

ζ
√
PK

∧ 1

ζK
∧
√
b

L
√
K

)
,
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Algorithm 3 FLEDGE(x0, η, p, b, T,K, r) (formal)

1: Option I:
2: Randomly select p agents I0

3: for i ∈ I0 in parallel do
4: Randomly select bK samples J0

i

5: y0i ← 1
bK

∑
j∈J0

i
∇fi,j(x0)

6: Communicate {y0i }i∈I0 between I0

7: y0i ← 1
p

∑
i∈I0 y

0
i (i = 1, · · · , n) // we do not need to explicitly communicate this between all the clients

8: Option II:
9: for i ∈ I0 = I in parallel do

10: Randomly select bK samples J0
i

11: y0i ← 1
bK

∑
j∈J0

i
∇fi,j(x0)

12: for t = 1 to T do
13: Randomly sample one agent it
14: Communicate { 1

P

∑P
i=1 y

t−1
i }, and xt−1 between It−1 ∪ {it} and the server

15: xt,0 ← xt−1, zt,0 ← 0
16: for k = 1 to K do

17: xt,k ← xt,k−1 −

(
1

P

P∑
i=1

yt−1i + zt,k−1

)
+ ξt,k (ξt,k ∼ B(0, r))

18: randomly select b samples J t,k
it

19: zt,k ← zt,k−1 + 1
b

∑
j∈Jt,k

it

(∇fit,j(xt,k)−∇fit,j(xt,k−1))

20: xt ← xt,K

21: Randomly select p agents It

22: Communicate xt between I ∪ {it}
23: for i ∈ It in parallel do
24: Randomly select b samples J t

i

25: yti ← 1
bK

∑
j∈Jt

i
∇fi,j(xt)

26: ∆yti ← 1
bK

∑
j∈Jt

i
(∇fi,j(xt)− fi,j(x

t−1))

27: Communicate {∆yti}i∈It between It and the server
28: yti ← yt−1i + 1

p

∑
i∈It ∆yti (for i /∈ It) // Practically, we update only 1

P

∑P
i=1 y

t
i in the server in O(p) time.

Algorithm 2 with Option I finds an ε-first-order stationary point for problem (2) by using

Õ

((
L ∨ ζ

√
PK

p
∨ ζ
√
PK

p
√
b
∨ ζK ∨ L

√
K√
b

)
∆pb

ε2
∧
(
σ2P

p2b
∨ PG2

p3Kb2
∨ PKσ2

c

p2
∨ PKG2

c

p3

)
pb

ε2

)
stochastic gradients and

Õ

((
L

K
∨ ζ
√
P

p
∨ ζ
√
P

p
√
Kb
∨ ζ ∨ L√

Kb

)
∆

ε2
∧
(

σ2P

p2Kb
∨ PG2

p3K2b2
∨ Pσ2

c

p2
∨ PG2

c

p3

)
1

ε2

)
communication rounds

with probability at least 1− 8ν.
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Moreover, under the same assumptions, Algorithm 2 with Option II finds an ε-first-order sta-
tionary point for problem (2) by using

Õ

(
PKb+

(
L ∨ ζ

√
PK

p
∨ ζ
√
PK

p
√
b
∨ ζK ∨ L

√
K√
b

)
∆pb

ε2

)
stochastic gradients and

Õ

(
1 +

(
L

K
∨ ζ
√
P

p
∨ ζ
√
P

p
√
Kb
∨ ζ ∨ L√

Kb

)
∆

ε2

)
communication rounds

with probability at least 1− 8ν.

Let vt,k−1 = 1
P

∑P
i=1 y

t−1
i + zt,k−1 and K(t) be the last inner loop step in the t-th outer loop as

stated in the algorithm. The descent lemma (Lemma 14) also works here: as was discussed for
Algorithm 1, for each t and k (1 ≤ t ≤ T, 1 ≤ k ≤ K(t)), it holds that

f(xt,k) ≤ f(xt,k−1) + η∥∇f(xt,k−1)− vt,k−1∥2

− η

2
∥∇f(xt,k−1)∥2 −

(
1

2η
− L

2

)
∥xt,k − xt,k−1∥2 + r2

η
. (33)

Our strategy is to bound the variance term ∥vt,k−∇f(xt,k)∥2 with high probability, as summarized
in the following lemma.

Lemma 23 Let vt,k = 1
P

∑P
i=1 y

t−1
i + zt,k and all the other variables be as stated in algorithm 3.

Then, with taking T3 =
P
pC1, we have∥∥∥vt,k −∇f(xt,k)∥∥∥2

≤
(
120C8

1ζ
2K

p
+

32C10
1 ζ2

pb

) t−1∑
s=max{1,t−T3}

K∑
l=1

∥xs,l − xs,l−1∥2

+

(
4ζ2K +

4C2
1L

2

b

) k∑
l=1

∥xt,l − xt,l−1∥2

+
8C2

1

PKb

(
σ2 +

G2

PKb

)
+

96C2
11[t ≤ T3]

(
σ2

pKb
+

G2

p2K2b2
+

σ2
c

p
+

G2
c

p2

)
(Option I)

0 (Option II)

for all t, k (1 ≤ t ≤ T, 0 ≤ k ≤ K − 1), with probability at least 1− 8ν.

For the proof of Lemma 23, we utilize the four following auxiliary lemmas. Below, we define ỹ0i by

ỹ0i :=

{
1
p

∑
i∈I0 ∇fi(x0) (Option I),

∇fi(x0) (Option II).

As well as the previous section, we define Ĩts := [n] \
⋃t

τ=s I
t for 1 ≤ s ≤ t. In addition, for each

s, t (s ≤ t) and i ∈ [P ], we let T4(t, i) as T4(t, i) := max{s | s = 0 or 1 ≤ s ≤ t with s ∈ Is},
i.e., the last step when ysi is updated before t. We remark that the setting T3 = P

pC1 gives Ĩts = ∅
with probability at least 1− ν for all t and s ≤ t− T3.
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Lemma 24 With probability at least 1− ν, the following holds for all t = 1, · · · , T :∥∥∥∥∥∥
t∑

s=max{1,t−T3+1}

|Ĩts|
PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(xs)−∇fi,j(xs−1)− (∇fi(xs)−∇fi(xs−1)))

∥∥∥∥∥∥
2

≤ 4C10
1 ζ2

pKb

t∑
s=max{1,t−T3+1}

∥xs − xs−1∥2.

Proof First, we decompose the left hand side as∥∥∥∥∥∥
t∑

s=max{1,t−T3+1}

|Ĩts|
PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(x
s)−∇fi,j(x

s−1)− (∇fi(x
s)−∇fi(x

s−1)))

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥
t∑

s=max{1,t−T3+1}

E[|Ĩts|]
PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(x
s)−∇fi,j(x

s−1)− (∇fi(x
s)−∇fi(x

s−1)))

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
t∑

s=max{1,t−T3+1}

|Ĩts| − E[|Ĩts|]
PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(x
s)−∇fi,j(x

s−1)− (∇fi(x
s)−∇fi(x

s−1)))

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥
t∑

s=max{1,t−T3+1}

E[|Ĩts|]
PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(x
s)−∇fi,j(x

s−1)− (∇fi(x
s)−∇fi(x

s−1)))

∥∥∥∥∥∥
2

+ 2

t∑
s=max{1,t−T3+1}

T3
(
|Ĩts| − E[|Ĩts|]

)2
P 2p2K2b2

∥∥∥∥∥∥
∑
i∈Is

∑
j∈Js

i

(∇fi,j(x
s)−∇fi,j(x

s−1)− (∇fi(x
s)−∇fi(x

s−1)))

∥∥∥∥∥∥
2

= 2

∥∥∥∥∥∥
t∑

s=max{1,t−T3+1}

E[|Ĩts|]
PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(x
s)−∇fi,j(x

s−1)− (∇fi(x
s)−∇fi(x

s−1)))

∥∥∥∥∥∥
2

+ 2

t∑
s=max{1,t−T3+1}

C1

(
|Ĩts| − E[|Ĩts|]

)2
Pp3K2b2

∥∥∥∥∥∥
∑
i∈Is

∑
j∈Js

i

(∇fi,j(x
s)−∇fi,j(x

s−1)− (∇fi(x
s)−∇fi(x

s−1)))

∥∥∥∥∥∥
2

.

(34)

To bound the first term, by applying Proposition 4 to the choice of Is and Js
i , we have∥∥∥∥∥∥

∑
i∈Is

∑
j∈Js

i

(∇fi,j(xs)−∇fi,j(xs−1)− (∇fi(xs)−∇fi(xs−1)))

∥∥∥∥∥∥
2

≤ C4
1ζ

2pKb∥xs − xs−1∥2.

(35)

with probability at least 1− ν
4T 2 . Then, we use Proposition 7 to obtain∥∥∥∥∥∥

t∑
s=max{1,t−T3+1}

E[|Ĩts|]
PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(xs)−∇fi,j(xs−1)− (∇fi(xs)−∇fi(xs−1)))

∥∥∥∥∥∥
2

≤ C6
1ζ

2

pKb
∥xs − xs−1∥2 (36)
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with probability at least 1− ν
4T − T · ν

4T 2 = 1− ν
2T .

For the second term, following the same argument in Lemma 16, we can show that |Ĩts −
E[Ĩts]|2 ≤ C5

1P with probability at least 1 − ν
4T 2 for each s, t. Combining this with (35), we

have

t∑
s=max{1,t−T3+1}

||Ĩts| − E[|Ĩts|]|2C1

Pp3K2b2

∥∥∥∥∥∥
∑
i∈Is

∑
j∈Js

i

(∇fi,j(xs)−∇fi,j(xs−1)− (∇fi(xs)−∇fi(xs−1)))

∥∥∥∥∥∥
2

≤
t∑

s=max{1,t−T3+1}

C10
1 ζ2P

p2Kb
∥xs − xs−1∥2 (37)

with probability at least 1− T · ν
4T 2 − T · ν

4T 2 = 1− ν
2T .

Finally, substituting (36) and (37) for (34), we obtain the assertion.

Lemma 25 With probability at least 1− ν, the following holds for all t = 1, · · · , T :∥∥∥∥∥∥∥
1

PbK

P∑
i=1

1[T4(t, i) ≥ t− T3]
∑

j∈JT4(t,i)
i

(∇fi,j(xT4(t,i))−∇fi(xT4(t,i)))

∥∥∥∥∥∥∥
2

≤ C2
1

PKb

(
σ2 +

G2

PKb

)
.

Proof We condition the events on {T4(i, s)} and apply the Bernstein’s inequality to obtain the
desired bound.

Lemma 26 With probability at least 1− ν, the following holds for all t = 1, · · · , T :

∥∥∥∥∥∥1[t ≤ T3]

P

∑
i∈Ĩt1

(y0i − ỹ0i )

∥∥∥∥∥∥
2

≤


C2
11[t ≤ T3]

pKb

(
σ2 +

G2

pKb

)
(Option I)

C2
1

PKb

(
σ2 +

G2

PKb

)
(Option II)

Proof Recall the definition of ỹ0i :

Option I By conditioning I0, Proposition 4 yields that∥∥∥∥∥∥1[t ≤ T3]

P

∑
i∈Ĩt1

(y0i − ỹ0i )

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ |Ĩ
t
1|1[t ≤ T3]

P
· 1

pKb

∑
i∈I0

∑
j∈J0

i

(∇fi,j(x0)−∇fi(x0))

∥∥∥∥∥∥
2

≤ C2
11[t ≤ T3]

pKb

(
σ2 +

G2

pKb

)
,

with probability at least 1− ν
T for each t.
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Option II In this case, Proposition 4 directly yields that∥∥∥∥∥∥1[t ≤ T3]

P

∑
i∈Ĩt1

(y0i − ỹ0i )

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ |Ĩ
t
1|1[t ≤ T3]

P
· 1

PKb

∑
i∈I

∑
j∈J0

i

(∇fi,j(x0)−∇fi(x0))

∥∥∥∥∥∥
2

≤ C2
1

PKb

(
σ2 +

G2

PKb

)
,

with probability at least 1− ν
T for each t.

Lemma 27 With probability at least 1 − ν, the following holds for all t = 1, · · · , T − 1 and
k = 1, · · · ,K − 1:

∥zt,k − (∇f(xt,k)−∇f(xt,0))∥2 ≤
(
2ζ2K +

2C2
1L

2

b

) k∑
l=1

∥xt,l − xt,l−1∥2

Proof We decompose the zt,k − (∇f(xt,k)−∇f(xt,0)) as

∥zt,k − (∇f(xt,k)−∇f(xt,0))∥2

≤ 2∥zt,k − (∇fit(xt,k)−∇fit(xt,0))∥2 + 2∥∇fit(xt,k)−∇fit(xt,0)− (∇f(xt,k)−∇f(xt,0))∥2

≤ 2

∥∥∥∥∥∥∥
k∑

l=1

1

b

∑
j∈Jt,l

it

(∇fit,j(xt,l)−∇fit,j(xt,l−1))

∥∥∥∥∥∥∥
2

+ 2ζ2∥xt,k − xt,0∥2

≤ 2

∥∥∥∥∥∥∥
k∑

l=1

1

b

∑
j∈Jt,l

it

(∇fit,j(xt,l)−∇fit,j(xt,l−1))

∥∥∥∥∥∥∥
2

+ 2ζ2K
k∑

l=1

∥xt,l − xt,l−1∥2, (38)

where we use Assumption 5 for the second inequality.
We apply Proposition 4 to 1

b

∑
j∈Jt,l

it

(∇fit,j(xt,l)−∇fit,j(xt,l−1)) and obtain that

∥∥∥∥∥∥∥
1

b

∑
j∈Jt,l

it

(∇fit,j(xt,l)−∇fit,j(xt,l−1))

∥∥∥∥∥∥∥
2

≤ C2
1L

2

b
∥xt,l − xt,l−1∥2

with probability at least 1 − 1
2TK2 for each (t, l). Using Proposition 7, with probability 1 − K ·

1
2TK2 − 1

2TK = 1− 1
TK , we have∥∥∥∥∥∥∥

k∑
l=1

1

b

∑
j∈Jt,l

it

(∇fit,j(xt,l)−∇fit,j(xt,l−1))

∥∥∥∥∥∥∥
2

≤ C4
1L

2

b

k∑
l=1

∥xt,l − xt,l−1∥2 (39)
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for each (t, k).
By substituting (39) to (38), we obtain the desired bound.

Proof of Lemma 23 First, we observe that∥∥∥∥∥ 1P
P∑
i=1

yt−1i + zt,k −∇f(xt,k)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1P
P∑
i=1

yt−1i −∇f(xt−1) + zt,k − (∇f(xt,k)−∇f(xt,0))

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1P
P∑
i=1

yt−1i −∇f(xt−1)

∥∥∥∥∥
2

+ 2
∥∥∥∇f(xt−1) + zt,k − (∇f(xt,k)−∇f(xt,0))

∥∥∥2
(40)

We first bound
∥∥∥ 1
P

∑P
i=1 y

t−1
i −∇f(xt−1)

∥∥∥2.

Similarly to Lemma 13, with probability at least 1− ν, Ĩts = ∅ holds for all s ≤ t− T3 and we
can expand 1

P

∑P
i=1 y

t
i −∇f(xt) as

1

P

P∑
i=1

yti −∇f(xt)

=
1

P

t∑
s=max{1,t−T3+1}

 |Ĩts|
p

∑
i∈Is

(∇fi(xs)−∇fi(xs−1))−
∑
i∈Ĩts

(∇fi(xs)−∇fi(xs−1))


︸ ︷︷ ︸

(a)

+
1[t ≤ T3]

P

∑
i∈Ĩt1

(ỹ0i −∇fi(x0))

︸ ︷︷ ︸
(a)

+
1

P

t∑
s=max{1,t−T3+1}

|Ĩts|
pKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(xs)−∇fi,j(xs−1)− (∇fi(xs)−∇fi(xs−1)))︸ ︷︷ ︸
(b)

+
1

PKb

P∑
i=1

1[T4(t, i) ≥ t− T3]
∑

j∈JT4(t,i)
i

(∇fi,j(xT4(t,i))−∇fi(xT4(t,i)))

︸ ︷︷ ︸
(c)

+
1[t ≤ T3]

P

∑
i∈Ĩt1

(y0i − ỹ0i )

︸ ︷︷ ︸
(d)

for all t.
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The norm of the part (a) can be bounded by using Lemma 13, just replacing n by P , i.e.,

∥(a)∥2 ≤ 15C8
1ζ

2

p

∑
s=max{1,t−T3+1}

∥xs − xs−1∥2 + 12C2
11[t ≤ T3]

p

(
σ2
c +

G2
c

p

)

for Option I and

∥(a)∥2 ≤ 15C8
1ζ

2

p

∑
s=max{1,t−T3+1}

∥xs − xs−1∥2

for Option II, with probability at least 1 − 3ν for all t. For the bound of (b), (c) and (d), we apply
Lemma 24, Lemma 25, and Lemma 26, respectively.

Then, by summarizing all these and using ∥xs − xs−1∥2 ≤ K
∑K

l=1 ∥xs,l − xs,l−1∥2, we get∥∥∥∥∥ 1P
P∑
i=1

yti −∇f(xt)

∥∥∥∥∥
2

≤ 4∥(a)∥2 + 4∥(b)∥2 + 4∥(c)∥2 + 4∥(d)∥2

≤
(
60C8

1ζ
2

p
+

16C10
1 ζ2

pKb

) t∑
s=max{1,t−T3+1}

∥xs − xs−1∥2 + 4C2
1

PKb

(
σ2 +

G2

PKb

)

+ 48C2
11[t ≤ T3]

(
σ2

pKb
+

G2

p2K2b2
+

σ2
c

p
+

G2
c

p2

)
≤
(
60C8

1ζ
2K

p
+

16C10
1 ζ2

pb

) t∑
s=max{1,t−T3+1}

K∑
l=1

∥xs,l − xs,l−1∥2 + 4C2
1

PKb

(
σ2 +

G2

PKb

)

+ 48C2
11[t ≤ T3]

(
σ2

pKb
+

G2

p2K2b2
+

σ2
c

p
+

G2
c

p2

)
for Option I and∥∥∥∥∥ 1P

P∑
i=1

yti −∇f(xt)

∥∥∥∥∥
2

≤
(
60C8

1ζ
2

p
+

16C10
1 ζ2

pKb

) t∑
s=max{1,t−T3+1}

∥xs − xs−1∥2 + 4C2
1

PKb

(
σ2 +

G2

PKb

)

≤
(
60C8

1ζ
2K

p
+

16C10
1 ζ2

pb

) t∑
s=max{1,t−T3+1}

K∑
l=1

∥xs,l − xs,l−1∥2 + 4C2
1

PKb

(
σ2 +

G2

PKb

)

for Option II, with probability 1− 7ν for all t.
Also, we have ∥zt,k − (∇f(xt,k −∇f(xt,0))∥2 ≤

(
2ζ2K +

2C2
1L

2

b

)∑k
l=1 ∥xt,l − xt,l−1∥2 by

Lemma 27, with probability 1− ν over all t, k.
By substituting these bound to (40), we obtain the desired bound.
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Now, we are ready to prove the first-order convergence of FLEDGE.
Proof of Theorem 22 Summing up (33) over all t and k and rearranging the terms, we get

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2

≤ 2

η

[(
f(x0)− f(xT )

)
−

T∑
t=1

K∑
k=1

(
1

2η
− L

2

)
∥xt,k − xt,k−1∥2 + η

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)− vt,k−1∥2 +
2TKr2

η2

]
.

Applying Lemma 23 to this, we have that

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2 ≤ 2

η

(
f(x0)− f(xT )

)
− 2

η

T∑
t=1

K∑
k=1

(
1

2η
− L

2
− η

(
120C9

1ζ
2PK2

p2
+

128C11
1 ζ2PK

p2b
+ 4ζ2K2 +

4C2
1L

2K

b

))
∥xt,k − xt,k−1∥2

+
16C2

1T

Pb

(
σ2 +

G2

PKb

)
+

2TKr2

η2

+

{
192C3

1

(
σ2P
p2b + PG2

p3Kb2 +
PKσ2

c

p2 +
PKG2

c

p3

)
(Option I)

0 (Option II)

with probability at least 1− 8ν.

Option I We set η as

η = min

{
1

2L
,

(
480C9

1ζ
2P

p2
+

604C11
1 ζ2PK

p2b
+ 16ζ2K2 +

16C2
1L

2K

b

)− 1
2

}

= Θ̃

(
1

L
∧ p

ζ
√
PK

∧ p
√
b

ζ
√
PK

∧ 1

ζK
∧
√
b

L
√
K

)
,

so that 1
2η −

L
2 − η

(
152C11

1 ζ2PK
p2b

+ 4ζ2K2 +
4C2

1L
2K

b

)
≥ 0 holds. By taking r ≤ ηε

2
√
2

and PKb ≥
128C2

1σ
2

ε2
+ 8

√
2C1G
ε , we obtain 2TKr2

η2
≤ TKε2

4 and 16C2
1T

Pb

(
σ2 + G2

PKb

)
≤ TKε2

4 , respectively.

Moreover, we apply f(x0)− f(xt) ≤ ∆. Summarizing these, we get

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2 ≤ 2∆

η
+

TKε2

2
+ 192C3

1

(
σ2P

p2b
+

PG2

p3Kb2
+

PKσ2
c

p2
+

PKG2
c

p3

)
.

Hence, taking

TK

≥ 4∆

ηε2
+

384C3
1

ε2

(
σ2P

p2b
+

PG2

p3Kb2
+

PKσ2
c

p2
+

PKG2
c

p3

)
= Õ

((
L ∨ ζ

√
PK

p
∨ ζ
√
PK

p
√
b
∨ ζK ∨ L

√
K√
b

)
∆

ε2
∧
(
σ2P

p2b
∨ PG2

p3Kb2
∨ PKσ2

c

p2
∨ PKG2

c

p3

)
1

ε2

)
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results in

1

TK

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2 ≤ ε2,

which implies that FLEDGE can find ε-first order stationary points with probability at least 1− 8ν.
Thus, the gradient complexity and the communication complexity are bounded as stated.

Option II We set η as the same as that for Option I, so that 1
2η−

L
2−η

(
152C11

1 ζ2PK
p2b + 4ζ2K2 +

4C2
1L

2K
b

)
≥ 0 holds as well. We take r ≤ ηε

2
√
2

and PKb ≥ 128C2
1σ

2

ε2
+ 8
√
2C1G
ε . Then, we get

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2 ≤ 2∆

η
+

TKε2

2
.

Therefore, by the similar argument to Option I, taking TK ≥ 2∆
ηε2

= Õ
((

L ∨ ζ
√
PK
p ∨ ζ

√
PK

p
√
b
∨ ζK

∨L
√
K√
b

)
∆
ε2

)
ensures that FLEDGE finds ε-first order stationary points with probability at least

1− 8ν.

E.2. Finding Second-order Stationary Points (Proof of Theorem 28)

Here, we show that FLEDGE can efficiently find second-order stationary points. With a slight abuse
of notations, we sometimes identify (t, k) with (t′, k′) when tK + k = t′K + k′ holds. Moreover,
we say (t1, k1) > (t2, k2) when t1K + k1 > t2K + k2.

First, we state the formal theorem as follows:

Theorem 28 We assume Assumptions 1 to 5, and δ < 1
ζ . Let p ≥

√
P +

C2
5ζ

2

δ2
+

C2
5L

2

Kbδ2
with

C5 = Õ(1), b ≥ K, K = Õ
(
L
ζ

)
, η = Θ̃

(
1
L

)
, r = Õ

(
ε
L

)
, PKb ≥ O

(
σ2

ε2
+ G

ε

)
and ν ∈ (0, 1).

Then, FLEDGE with Option I finds (ε, δ)-second-order stationary points using

Õ

((
L∆+

(
σ2

pb
+

G2

pKb2
+Kσ2

c +
KG2

c

p

))(
1

Kε2
+

ρ2

Kδ4

)
pKb

)
stochastic gradients and

Õ

((
L∆+

(
σ2

pb
+

G2

pKb2
+Kσ2

c +
KG2

c

p

))(
1

Kε2
+

ρ2

Kδ4

))
communication rounds,

with probability at least 1− 12ν.
Moreover, FLEDGE with Option II finds (ε, δ)-second-order stationary points using

Õ

(
PKb+ L∆

(
1

ε2
+

ρ2

δ4

)
pKb

)
stochastic gradients and

Õ

(
L∆

(
1

ε2
+

ρ2

δ4

))
communication rounds,

with probability at least 1− 12ν.
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Similarly to the previous section, the key argument is the exponential separation of two coupled
trajectories with different initial values.

Lemma 29 (Small Stuck Region) Assume δ < 1
ζ . Let {xt,k} be a sequence generated by FLEDGE

and (τ0, κ0) (0 ≤ κ0 < K) be a step where −γ := λmin(∇2f(xτ0,κ0)) ≤ −δ holds. We denote
the eigenvector with the eigenvalue λmin(∇2f(xτ0,κ0)) by e. Moreover, let {x̃t,k} by a coupled se-
quence that is generated by FLEDGE with x̃0 = x0 and shares the same choice of randomness with
{xt} i.e., client samplings, minibatches and noises, except for the noise at a step (τ0,K) > (τ0, κ0):
ξ̃τ0,K = ξτ0,K − ree with re ≥ rν

TK
√
d

. Let wt,k = xt,k− x̃t,k, wt = xt− x̃t, vt,k = 1
P

∑P
i=1 y

t−1
i +

zt,k, ṽt,k = 1
P

∑P
i=1 ỹ

t−1
i + zt,k, gt = 1

P

∑P
i=1 y

t
i − ∇f(xt) −

(
1
P

∑P
i=1 ỹ

t
i −∇f(x̃t)

)
, and

ht,k = (zt,k − (∇f(xt,k)−∇f(xt,0)))− (z̃t,k − (∇f(x̃t,k)−∇f(x̃t,0))). Using these notations,
vt,k −∇f(xt,k)− (ṽt,k −∇f(x̃t,k)) = gt−1 + ht,k holds.

Then, there exists a sufficiently large constants C5 = Õ(1) and C6 = O(1) with which the
following holds: If we take p ≥

√
P +

C2
5ζ

2

δ2
+

C2
5L

2

Kbδ2
, b ≥ K,K = O(Lζ ), η = Θ̃

(
1
L

)
, and

T5 =
C6 log

δ
C5ρre

ηγ ≲ Õ
(
L
δ

)
, with probability 1− 3ν

TK (ν ∈ (0, 1)), we have

max
(τ0,κ0)≤(t,k)<(τ0+1,T5)

{∥xτ,k − xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} ≥ δ

C5ρ
.

In order to show Lemma 29, we prepare the two following lemmas, which bound the difference
between gradient estimation errors of the two sequence.

Lemma 30 Under the same assumption as that of Lemma 29, we assume max(τ0,κ0)≤(t,k)<(τ0+1,T5)

{∥xτ,k − xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} < δ
C5ρ

. Then, the following holds uniformly for all (τ0, κ0) ≤
(t, k) ≤ (τ0 + 1, T5) with probability at least 1− ν

TK :

∥∥gt∥∥ ≤


0 (t < τ0),(
ζ√
p + L√

pKb

)
C7re (t = τ0),(

ζ√
p + L√

pKb

)
C7re +

(
ζ
√
K√
p + L√

pb

)
C7

√∑t
s=max{τ0+1,t−T3+1}

∑K
k=1 ∥ws,k − ws,k−1∥2

+ C7δ
C5

√
p

√∑t
s=max{τ0,t−T3+1} ∥ws∥2 (t ≥ τ0 + 1),

where T3 =
P
pC1, and C7 = Õ(1) is a sufficiently large constant.

Lemma 31 Under the same assumption as that of Lemma 29, the following holds uniformly for all
t ≥ τ0 + 1 and k ≥ 0 with probability at least 1− 2ν

TK :

∥∥∥ht,k∥∥∥ ≤ ζ
k∑

l=1

∥wt,l − wt,l−1∥+ 2δ

C5
∥wt,k∥+ 2δ

C5
∥wt,0∥

+
C2
1√
b

√√√√ k∑
l=1

(
L∥wt,l − wt,l−1∥+ 2δ

C5
∥wt,l∥+ 2δ

C5
∥wt,l−1∥

)2

.

For t < τ0 + 1, we have
∥∥ht,k∥∥ = 0.
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Proof of Lemma 30 As for the case t < τ0, the assertion directly follows from the definition of
{x̃t,k}. For the proof of the rest cases, we use notations as follows:

H = ∇2f(xτ0,κ0),

Hi = ∇2fi(x
τ0,κ0)

Hi,j = ∇2fi,j(x
τ0,κ0),

dHt,k =

∫ 1

0
(∇2f(x̃t,k + θ(xt,k − x̃t,k))−H)dθ,

dHt,k
i =

∫ 1

0
(∇2fi(x̃

t,k + θ(xt,k − x̃t,k))−Hi)dθ,

dHt,k
i,j =

∫ 1

0
(∇2fi,j(x̃

t,k + θ(xt,k − x̃t,k))−Hi,j)dθ.

Moreover, we denote

usi := (∇fi(xs)−∇fi(x̃s))− (∇fi(xs−1)−∇fi(x̃s−1))
−(∇f(xs)−∇f(x̃s)) + (∇f(xs−1)−∇f(x̃s−1))

and

usi,j := (∇fi,j(xs)−∇fi,j(x̃s))− (∇fi,j(xs−1)−∇fi,j(x̃s−1))
−(∇fi(xs)−∇fi(x̃s)) + (∇fi(xs−1)−∇fi(x̃s−1)).

Note that Ei[u
s
i ] = 0 (expectation with respect to the choice of i) and Ej [u

s
i,j ] = 0 (expectation with

respect to the choice of j) hold. Using Assumptions 1, 4 and 5 and max(τ0,κ0)≤(t,k)<(τ0+1,T5){∥xτ,k−
xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} < δ

C5ρ
, we can derive that

∥usi∥ ≤ ζ∥ws − ws−1∥+ 2δ

C5
∥ws∥+ 2δ

C2
∥ws−1∥ and

∥usi,j∥ ≤ L∥ws − ws−1∥+ 2δ

C5
∥ws∥+ 2δ

C2
∥ws−1∥

for s ≥ τ0 + 1, by similar argument to the proof of Lemma 19. For t = τ0, we have ∥uτ0i ∥ =
∥(∇fi(xτ0)−∇fi(x̃τ0))−(∇f(xτ0)−∇f(x̃τ0))∥ ≤ ζ∥xτ0−x̃τ0∥ = ζre and ∥uτ0i,j∥ = ∥(∇fi,j(xτ0)−
∇fi,j(x̃τ0))− (∇f(xτ0)−∇f(x̃τ0))∥ ≤ L∥xτ0 − x̃τ0∥ = Lre.
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As we did in Lemma 19, for t ≥ τ0 + 1, we have

gt =
1

P

 |Ĩtτ0 |
p

∑
i∈Iτ0

uτ0i −
∑
i∈Ĩtτ0

uτ0i


︸ ︷︷ ︸

(a)

+
1

PKb

 |Ĩτ0τ0 |
p

∑
i∈Iτ0

∑
j∈Jτ0

i

uτ0i,j −
∑
i∈Ĩτ0τ0

∑
j∈Jτ0

i

uτ0i,j


︸ ︷︷ ︸

(b)

+
1

P

t∑
s=max{τ0+1,t−T1+1}

(
|Ĩts|
p

∑
i∈Is

usi

)
− 1

P

t∑
s=max{τ0+1,t−T1+1}

∑
i∈Ĩts

usi︸ ︷︷ ︸
(c)

+
1

PKb

t∑
s=max{τ0+1,t−T1+1}

 |Ĩts|
p

∑
i∈Is

∑
j∈Js

i

usi,j

− 1

PKb

t∑
s=max{τ0+1,t−T1+1}

∑
i∈Ĩts

∑
j∈Js

i

usi,j︸ ︷︷ ︸
(d)

with probability 1− ν
8TK for all t. For t = τ0, gτ0 = (a) + (b) holds.

Recall the argument in Lemma 19. We have that

∥(a)∥ ≤ 2C1ζre√
p

and

∥(c)∥ ≤ 2C4
1 + C

3
2
1√

p

√√√√ ∑
s=max{τ0+1,t−T3+1}

(
ζ∥ws − ws−1∥+ 2δ

C5
∥ws∥+ 2δ

C5
∥ws−1∥

)2

hold with probability at least 1− 1
8TK for all t.

Moreover, observe that (b) and (d) are obtained just by replacing uti in (a) and (c) by 1
Kb

∑
j∈Jt

i
usi,j .

Note that 1
Kb

∑
j∈Jτ0

i
uτ0i,j is mean-zero and its norm is bounded by C1Lre√

Kb
for s = τ0, with proba-

bility 1− 1
8T 2K

. Thus, Proposition 7 yields that

∥(b)∥ ≤

∥∥∥∥∥∥ 1P |Ĩ
t
τ0 |
p

∑
i∈Iτ0

∑
j∈J

τ0
i

uτ0
i,j

∥∥∥∥∥∥+
∥∥∥∥∥∥∥
1

P

∑
i∈Ĩt

τ0

∑
j∈J

τ0
i

uτ0
i,j

∥∥∥∥∥∥∥ ≤
|Ĩtτ0 |
P

C2
1Lre√
pKb

+

√
|Ĩtτ0 |C

2
1Lre

P
√
Kb

≤ 2C2
1Lre√
pKb

,

with probability 1− 1
8TK − T · 1

8T 2K
= 1− 1

4TK , where we use |Ĩtτ0 | ≤ P and p ≤ P for the last
inequality.

For the first term of (d), we first observe that 1
Kb

∑
i∈Is

∑
j∈Jt

i
usi,j is mean-zero and its norm is

bounded by C1
√
p√

Kb
L∥ws−ws−1∥+ 2C1δ

√
p

C5

√
Kb
∥ws∥+ 2C1δ

√
p

C5

√
Kb
∥ws−1∥ (for s ≥ τ0+1) with probability

at least1− 1
8T 2K

. Then, we apply the same argument as Lemma 16. This yields∥∥∥∥∥∥ 1

PKb

t∑
s=max{τ0+1,t−T1+1}

|Ĩts|
p

∑
i∈Is

∑
j∈Js

i

usi,j

∥∥∥∥∥∥
≤ 2C4

1√
pKb

√√√√ t∑
s=max{τ0+1,t−T1+1}

(
L∥ws − ws−1∥+ 2δ

C5
∥ws∥+ 2δ

C5
∥ws−1∥

)2

.
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with probability 1−T · ν
8T 2K

− ν
8TK = 1− ν

4TK for all t. As for the second term of (d), by applying
Proposition 6, we get∥∥∥∥∥∥ 1

PKb

t∑
s=max{τ0+1,t−T1+1}

∑
i∈Ĩts

∑
j∈Js

i

usi,j

∥∥∥∥∥∥
≤
√
T3

P

√√√√√ t∑
s=max{τ0+1,t−T1+1}

∥∥∥∥∥∥ 1

Kb

∑
i∈Ĩts

∑
j∈Js

i

usi,j

∥∥∥∥∥∥
2

≤ C
1
2
1√
Pp

√√√√ t∑
s=max{τ0+1,t−T1+1}

C2
1p

Kb

(
L∥ws − ws−1∥+ 2δ

C5
∥ws∥+ 2δ

C5
∥ws−1∥

)2

≤ C
3
2
1√

pKb

√√√√ t∑
s=max{τ0+1,t−T1+1}

(
L∥ws − ws−1∥+ 2δ

C5
∥ws∥+ 2δ

C5
∥ws−1∥

)2

with probability 1− T · ν
8T 2K

− ν
8TK = 1− ν

4TK for all t.
By combining all these, we have

∥gt∥ ≤
(

ζ
√
p
+

L√
pKb

)
C7ζre +

(
ζ
√
p
+

L√
pKb

)
C7

√√√√ t∑
s=max{τ0+1,t−T3+1}

∥ws − ws−1∥2

+
C7δ

C5

√√√√ t∑
s=max{τ0,t−T3+1}

∥ws∥2

≤
(

ζ
√
p
+

L√
pKb

)
C7ζre +

(
ζ
√
K
√
p

+
L√
pb

)
C7

√√√√ t∑
s=max{τ0+1,t−T3+1}

K∑
k=1

∥ws,k − ws,k−1∥2

+
C7δ

C5
√
p

√√√√ t∑
s=max{τ0,t−T3+1}

∥ws∥2

with probability at least 1− ν
TK for all t ≥ τ0+1. Here we take C7 = Õ(1), which is independent

of C5. Thus, we get the assertion for t ≥ τ0 + 1. For t = τ0, the bounds on (a) and (b) imply the
desired bound.

Proof of Lemma 31 Let

ut,li := (∇fi(xt,l)−∇fi(x̃t,l))− (∇fi(xt,0)−∇fi(x̃t,0))
− (∇f(xt,l)−∇f(x̃t,l)) + (∇f(xt,0)−∇f(x̃t,0))

and

ut,li,j :=(∇fi,j(xt,l)−∇fi,j(x̃t,l))− (∇fi,j(xt,l−1)−∇fi,j(x̃t,l−1))

− (∇fi(xt,l)−∇fi(x̃t,l)) + (∇fu(xt,l−1)−∇fi(x̃t,l−1))
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By their definitions, ht,k = ut,lit + 1
b

∑k
l=1

∑
j∈Jit

ut,lit,j holds. We can bound the norm of them as

∥ut,ki ∥ ≤ ζ∥wt,k − wt,0∥+ 2δ

C5
∥wt,k∥+ 2δ

C5
∥wt,0∥

≤ ζ

k∑
l=1

∥wt,l − wt,l−1∥+ 2δ

C5
∥wt,k∥+ 2δ

C5
∥wt,0∥ (41)

and

∥ut,lit ∥ ≤ L∥wt,l − wt,l∥+ 2δ

C5
∥wt,l∥+ 2δ

C5
∥wt,l−1∥.

Thus, applying Proposition 4 and Proposition 7 to 1
b

∑k
l=1

∑
j∈Jit

ut,lit,j , we get∥∥∥∥∥∥1b
k∑

l=1

∑
j∈Jit

ut,lit,j

∥∥∥∥∥∥ ≤ C2
1√
b

√√√√ k∑
l=1

(
L∥wt,l − wt,l−1∥+ 2δ

C5
∥wt,l∥+ 2δ

C5
∥wt,l−1∥

)2

(42)

with probability at least 1− 1
TK for all t and K.

Substituting (41) and (42) to ht,k = ut,lit + 1
b

∑k
l=1

∑
j∈Jit

ut,lit,j , we get the desired bound.

Now, we are ready to prove Lemma 29.
Proof of Lemma 29 We assume the contrary and show the following by induction, for (τ0 +
1, 0) ≤ (t, k) ≤ (τ0 + 1, T5):

(a)
1

2
(1 + ηγ)(t−τ0−1)K+kre ≤ ∥wt,k∥ ≤ 2(1 + ηγ)(t−τ0−1)K+kre

(b) ∥wt,k − wt,k−1∥ ≤

{
re (for (t, k) = (τ0 + 1, 0))

3ηγ(1 + ηγ)(t−τ0−1)K+kre (for (t, k) > (τ0 + 1, 0))

(c) ∥gt−1 + ht,k∥ ≤ 2C8γ

C5
(1 + ηγ)(t−τ0−1)K+kre.

Here C8 = Õ(1) is a sufficiently large constant independent of C5. Then, (a) yields contradiction

by taking (t, k)− (τ0 + 1, 0) = T5 = O

(
1 +

log δ
C2ρre

ηδK

)
to break the assumption.

It is easy to check (a) and (b) for and t = τ0 + 1 and k = 0. As for (c), checking the initial
condition at (t, k) = (τ0 + 1, 0) requires assumption on the size of p. According to Lemma 30,
taking p ≥ ζ2

δ2
+ L2

δ2Kb
, ∥gτ0∥ ≤ 2C7δre ≤ 2C7γre holds.

Now, we derive that (a), (b) and (c) are true for (t, k + 1), assuming that they are true for all
(τ0 + 1, 0), · · · , (t, k). To this end, we consider the decomposition of wt,k as follows:

wt,k+1

= wt,k − η
(
vt,k − ṽt,k

)
= (1 + ηγ)(t−τ0−1)K+k+1ree− η

(t,k)∑
(s,l)=(τ0+1,0)

(I − ηH)(t−s)K+(k−l)(dHs,lws,l + gs−1 + hs,l),

(43)

for (t, k + 1) ≥ (τ0 + 1, 1).
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Verifying (a) The first term (1 + ηγ)(t−τ0−1)K+k+1ree of (43) satisfies

∥(1 + ηγ)(t−τ0−1)K+k+1ree∥ = (1 + ηγ)(t−τ0−1)K+k+1re.

Then, focus on bounding η
∑t,k

(s,l)=(τ0+1,0)(I−ηH)(t−s)K+(k−l)(dHs,lws,l+gs−1+hs,l) by 1
2(1+

ηγ)(t−τ0−1)K+k+1re. We have∥∥∥∥∥∥η
(t,k)∑

(s,l)=(τ0+1,0)

(I − ηH)(t−s)K+(k−l)dHs,lws,l

∥∥∥∥∥∥
≤ η

(t,k)∑
(s,l)=(τ0+1,0)

∥I − ηH∥(t−s)K+(k−l)
∥∥∥dHs,l

∥∥∥∥∥∥ws,l
∥∥∥

≤ 2η(1 + ηγ)(t−s)K+(k−l)+(s−τ0−1)K+lre

t,k∑
(s,l)=(τ0+1,0)

∥∥∥dHs,l
∥∥∥

≤ 2η(1 + ηγ)(t−τ0−1)K+kreT5K
δ

C5

≤ 2ηδT5

C5
(1 + ηγ)(t−τ0−1)K+kre

≤ 1

4
(1 + ηγ)(t−τ0−1)K+kre. (44)

The last inequality follows from the definition of T5 =
C6 log

δ
C5ρre

ηγ and sufficiently large C5.
In addition, we have∥∥∥∥∥∥η

(t,k)∑
(s,l)=(τ0+1,0)

(I − ηH)(t−s)K+(k−l)(gs−1 + hs,l)

∥∥∥∥∥∥
≤ η

(t,k)∑
(s,l)=(τ0+1,0)

∥I − ηH∥(t−s)K+(k−l)
∥∥∥gs−1 + hs,l

∥∥∥
≤ η

(t,k)∑
(s,l)=(τ0+1,0)

(1 + ηγ)(t−s)K+(k−l) 2C8γ

C5
(1 + ηγ)(s−τ0−1)K+l

≤ 2ηγT5

C5
(1 + ηγ)(t−τ0−1)K+k

≤ 1

4
(1 + ηγ)(t−τ0−1)K+kre. (45)

For the final inequality, we again use T5 =
C6 log

δ
C5ρre

ηγ with sufficiently large C5.
Combining (44) and (45), we get (a) for (t, k + 1) as desired.
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Verifying (b) For (t, k) ≥ (τ0 + 1, 0), we have

wt,k+1 − wt,k

= (1 + ηγ)(t−τ0−1)K+k+1ree− η

(t,k)∑
(s,l)=(τ0+1,0)

(I − ηH)(t−s)K+(k−l)(dHs,lws,l + gs−1 + hs,l)

− (1 + ηγ)(t−τ0−1)K+kree− η

(t,k−1)∑
(s,l)=(τ0+1,0)

(I − ηH)(t−s)K+(k−l)(dHs,lws,l + gs−1 + hs,l)

= ηγ(1 + ηγ)(t−τ0−1)K+kree

− η

(t,k−1)∑
(s,l)=(τ0+1,0)

ηH(I − ηH)(t−s)K+(k−l)(dHs,lws,l + gs−1 + hs,l)− η(dHtwt + gt−1 + ht,k).

As for the first term, we can bound it as

∥ηγ(1 + ηγ)(t−τ0−1)K+kree∥ ≤ ηγ(1 + ηγ)(t−τ0−1)K+kre.

Evaluating the second term requires (a) and (b) for (τ0 + 1, 0), · · · , (t, k − 1) and Lemma 9:∥∥∥∥∥∥η
(t,k−1)∑

(s,l)=(τ0+1,0)

ηH(I − ηH)(t−s)K+(k−l)(dHs,lws,l + gs−1 + hs,l)

∥∥∥∥∥∥
≤

(t,k−1)∑
(s,l)=(τ0+1,0)

η
∥∥∥ηH(I − ηH)(t−s)K+(k−l)

∥∥∥(∥dHs,l∥∥ws,l∥+ ∥gs−1 + hs,l∥
)

≤
(t,k−1)∑

(s,l)=(τ0+1,0)

η
∥∥∥ηH(I − ηH)(t−s)K+(k−l)

∥∥∥( δ

C5
(1 + ηγ)(s−τ0−1)K+lre +

2C8γ

C5
(1 + ηγ)(s−τ0−1)K+lre

)

≤
(t,k−1)∑

(s,l)=(τ0+1,0)

η

(
ηγ(1 + ηγ)(t−s)K+(k−l) +

1

(t− s)K + (k − l)

)(
δ

C5
+

2C8γ

C5

)
(1 + ηγ)(s−τ0−1)K+lre

≤ η (ηγT5 + log T5)

(
δ

C5
+

2C8γ

C5

)
(1 + ηγ)(t−τ0−1)K+kre.

Since T5 = Õ
(

1
ηδ

)
and γ ≥ δ, setting C5 = Õ(1) with sufficiently large C5 yields

(ηγT5 + log T5)
(

δ
C5

+ 2C8γ
C5

)
≤ γ. Thus, the second term is bounded by ηγ(1+ηγ)(t−τ0−1)K+kre.

Finally, we consider the third term. We have ∥dHt,kwt,k∥ ≤ δ
C5

re(1 + ηγ)(t−τ0−1)K+kre and
∥gt−1 + ht,k∥ ≤ 2C8γ

C5
(1 + ηγ)(t−τ0−1)K+kre. Thus, by taking C5 sufficiently large, the third term

is bounded by ηγ(1 + ηγ)(t−τ0−1)K+kre.
By combining these bounds, we get (b) for (t, k + 1).
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Verifying (c) Using Lemma 30 and assumptions, we have

∥gt+1∥

≤
(

ζ
√
p
+

L√
pKb

)
C7re +

(
ζ
√
K
√
p

+
L√
pb

)
C7

√√√√ t∑
s=max{τ0+1,t−T3+1}

K∑
k=1

∥ws,k − ws,k−1∥2

+
C7δ

C5
√
p

√√√√ t∑
s=max{τ0,t−T3+1}

∥ws∥2

≤

ζC7√
p
+

LC7√
pKb

+

C7ζKT
1
2
3√

p
+

C7LK
1
2T

1
2
3√

pb

 3ηγ(1 + ηγ)(t−τ0−1)K+K

 re

+
2C7T

1
2
3 δ

C5
√
pK

(1 + ηγ)(t−τ0−1)K+Kre

=

ζC7√
p
+

LC7√
pKb

+

C
1
2
1 C7ζP

1
2K

p
+

C
1
2
1 C7L

√
PK

p
√
b

 3ηγ(1 + ηγ)(t−τ0−1)K+K

 re

+
2C

1
2
1 C7

√
Pδ

C5p
(1 + ηγ)(t−τ0−1)K+Kre

with probability at least 1− ν
TK for all t. Taking p ≥

√
P +

C2
5ζ

2

δ2
+

C2
5L

2

δ2Kb
, η = Θ( 1L), b ≥ K,K =

O
(
L
ζ

)
, and ∥gt+1∥ ≤ C8γ

C5
(1 + ηγ)(t−τ0)K with sufficiently large constant C8, that only depends

on C1, C7, and sufficiently small η = Θ̃( 1L).
Moreover, Lemma 31 states that, for k < K,∥∥∥ht,k+1

∥∥∥
≤ ζ

k+1∑
l=1

∥wt,l − wt,l−1∥+ 2δ

C5
∥wt,k+1∥+ 2δ

C5
∥wt,0∥

+
C2
1√
b

√√√√k+1∑
l=1

(
L∥wt,l − wt,l−1∥+ 2δ

C5
∥wl,k∥+ 2δ

C5
∥wt,l−1∥

)2

holds with probability at least 1− ν
TK . If (a) and (b) hold for all (s, l) ≤ (t, k + 1), then we have∥∥∥ht,k+1

∥∥∥ ≤ 3ζKηγ(1 + ηγ)(t−τ0−1)K+k+1 +
8δ

C5
(1 + ηγ)(t−τ0−1)K+k+1

+
3C2

1

√
K√

b
Lηγ(1 + ηγ)(t−τ0−1)K+k+1 +

8C2
1

√
Kδ√
b

(1 + ηγ)(t−τ0−1)K+k+1.

Taking b ≥ K and K = O
(
L
ζ

)
, with sufficiently large C8 and sufficiently small η, we have

∥ht,k+1∥ ≤ C8γ
C5

(1 + ηγ)(t−τ0−1)K+k+1.
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Thus, we obtain that (c) holds for (t, k + 1).
Therefore, we have completed the induction step and have 1

2(1 + ηγ)(t−τ0−1)K+kre ≤ ∥wt∥

for all (τ0 + 1, 0) ≤ (t, k) < (τ0 + 1, T5) with T5 =
C6 log

δ
C5ρre

ηγ . Taking C6 sufficiently large, we
have 1

2(1+ηγ)(τ0+1−τ0−1)K+T5re ≥ δ
C5ρ

. This yields contradiction against the assumption and the
desired assertion follows.

From Lemma 29, we can show that FLEDGE escapes saddle points with high probability. We
have the following lemma, and the proof is essentially the same as that of Lemma 20.

Lemma 32 Let {xt,k} be a sequence generated by FLEDGE and (τ0, κ0) (0 ≤ κ0 < K) be a step
where −γ := λmin(∇2f(xτ0,κ0)) ≤ −δ holds. We take p ≥

√
P +

C2
5ζ

2

δ2
+

C2
5L

2

Kbδ2
, b ≥

√
K and,

η = Θ̃
(
1
L

)
, and T5 =

C6 log
δ

C5ρre

ηγ ≲ Õ
(
L
δ

)
, with sufficiently large C5, C6 = Õ(1). Then,

P
[

max
(τ0,κ0)≤(t,k)<(τ0+1,T5)

∥xt,k − xτ0,κ0+1∥ ≥ δ

C5ρ
| I0, · · · , Iτ , i0, · · · , iτ0 , ξ0,0, · · · , ξτ0,κ0

]
≥ 1− 4ν

TK
.

Finally, we show the main theorem of this subsection, which guarantees that the algorithm finds
(ε, δ)-second-order stationary point with high probability.

Proof of Theorem 28 Since T5 =
C6 log

δ
C5ρre

ηγ depends on xτ0 , we take T5 =
C6 log

δ
C5ρre

ηδ from
now instead. This change does not affect whether Lemma 32 holds. Also, we let T6 = ⌈1 + T5

K ⌉.
We divide {t = 0, 1, · · · , T − 1} into the following ⌊ T

2T6
⌋ phases: P τ = {2τT6 ≤ t <

2(τ + 1)T6}
(
τ = 0, · · · , ⌊ T

2T6
⌋ − 1

)
. For each phase, we define aτ as a random variable taking

values

aτ =



1
(

if
∑

t∈P τ

∑K
k=0 1[∥∇f(xt,k)∥ > ε] > KT6

)
2

(
if there exists t such that (2τT6, 0) ≤ (t, k) < ((2τ + 1)T6, 0), ∥∇f(xt,k)∥ ≤ ε

and λmin(∇2f(xt,k)) ≤ −δ

)

3

(
if there exists t such that (2τT6, 0) ≤ (t, k) < ((2τ + 1)T6, 0), ∥∇f(xt,k)∥ ≤ ε

and λmin(∇2f(xt,k)) > −δ

)
.

Note that P[aτ = 1, 2, 3] = 1 for each τ . This is because if there does not exist t between
(2τT6, 0) ≤ (t, k) < ((2τ + 1)T6, 0) such that ∥∇f(xt,k)∥ ≤ ε (i.e., neither aτ = 2 nor 3), then
we have

∑
t∈P τ

∑K
k=0 1[∥∇f(xt,k)∥ > ε] ≥

∑(2τ+1)T6−1
t=2τT2

∑K
k=0 1[∥∇f(xt,k)∥ > ε] = T6K,

meaning aτ = 1. We denote N1 =
∑⌊ T

2T6
⌋

τ=0 1[aτ = 1], N2 =
∑⌊ T

2T6
⌋

τ=0 1[aτ = 2], and N3 =∑⌊ T
2T6
⌋

τ=0 1[aτ = 3].
According to Lemma 32, with probability 1 − 4ν over all τ , it holds that if aτ = 2 then that

phase successes escaping saddle points; i.e., there exists (2τT6, 0) ≤ (t, k) < ((2τ + 1)T6, 0) and

max
(t,k)≤(s,l)<((2τ+2)T6,0)

∥xs,l − xt,k∥ > δ

C5ρ
(46)
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holds. Eq. (46) further leads to

T6K

2(τ+1)T6−1∑
t=2τT6

K∑
k=1

∥xt,k − xt,k−1∥2 >
(

δ

C5ρ

)2

⇔
2(τ+1)T6−1∑

t=2τT6

K∑
k=1

∥xt,k − xt,k−1∥2 > δ2

T6KC2
5ρ

2
.

(47)

On the other hand, in Theorem 22, we derived that

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2

≤ 2

η

(
f(x0)− f(xT )

)
− 2

η

T∑
t=1

K∑
k=1

(
1

2η
− L

2
− η

(
120C9

1ζ
2PK2

p2
+

128C11
1 ζ2PK

p2b
+ 4ζ2K2 +

4C2
1L

2K

b

))
∥xt,k − xt,k−1∥2

+


16C2

1T
Pb

(
σ2 + G2

PKb

)
+ 2TKr2

η2
+ 192C3

1

(
σ2P
p2b

+ PG2

p3Kb2
+ PKσ2

c
p2

+ PKG2
c

p3

)
(Option I)

16C2
1T

Pb

(
σ2 + G2

PKb

)
+ 2r2

η2
(Option II)

with probability 1 − 8ν. Taking η = Θ̃
(
1
L

)
sufficiently small, applying p ≥

√
P , K = O

(
L
ζ

)
,

K ≤ b and f(x0)− f(xt) ≤ ∆, and arranging terms yields

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2 + 1

2η2

T∑
t=1

K∑
k=1

∥xt,k − xt,k−1∥2 (48)

≤ 2∆

η
+


16C2

1T
Pb

(
σ2 + G2

PKb

)
+ 2TKr2

η2
+ 192C3

1

(
σ2

b + G2

pKb2
+Kσ2

c +
KG2

c
p

)
(Option I)

16C2
1T

Pb

(
σ2 + G2

PKb

)
+ 2TKr2

η2
(Option II)

(49)

From the definition of aτ = 1 and (47), We know that (48) is bounded as

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2 + 1

2η2

T∑
t=1

K∑
k=1

∥xt,k − xt,k−1∥2 ≥ N1T6Kε2 +
δ2N2

2η2T6KC2
5ρ

2
.

Thus, N1T6K ≤ 1
ε2
× (the RHS of (49)) and N2T6K ≤

2η2C2
2ρ

2K2T 2
6

δ2
× (the RHS of (32)) holds.

Here, 2η2T 2
6K

2C2
5ρ

2

δ2
= Õ

(
ρ2

δ4
+ η2K2

δ2

)
≲ Õ

(
ρ2

δ4

)
, when K = O

(
L
ζ

)
≤ O

(
L
δ

)
. From this,

(N1 +N2)T6 ≤ Õ
(

1
Kε2

+ ρ2

Kδ4

)
× (the right-hand side of (49)). Taking T ≥ 2(N1 +N2 + 1)T6,

there exists τ such that aτ = 3, which concludes the proof.

65



REDUCING COMMUNICATION IN FL WITH A NOVEL SINGLE-LOOP VARIANCE REDUCTION METHOD

E.3. Finding Second-Order Stationary Points When Clients are Homogeneous (ζ ≪ 1
δ )

In the previous subsection, we assumed that ζ ≥ 1
δ . Here, we introduce a simple trick to remove

this assumption and give its convergence analysis.
Let T7 = Θ̃

(
L
δ

)
with a sufficiently large hidden constant. In line 18-19 of FLEDGE, when

k ≡ T7, we randomly select C2
5L

2

δ2
+ b (not b) samples J t,k

it
, and update zt,k as zt,k ← zt,k−1 +

1

|Jt,k
it
|

∑
j∈Jt,k

it

(∇fit,j(xt,k)−∇fit,j(xt,k−1)). This increases the number of gradient evaluations in

each inner-loop by Õ(K/(L/δ)) × Õ(L2/δ2) = Õ(KL/δ) ≲ Õ(K2) ≲ Õ(Kb). Thus, this does
not affect the inner-loop complexity more than by constant factors.

Then, the following lemma holds, which stands as generalization of Lemma 29.

Lemma 33 (Small stuck region) Let {xt,k} be a sequence generated by FLEDGE and (τ0, κ0) be
a step where −γ := λmin(∇2f(xτ0,κ0)) ≤ −δ holds. We denote the smallest eigenvector direction
of λmin(∇2f(xτ0,κ0)) as e. Moreover, we define a coupled sequence {x̃t,k} by running FLEDGE
with x̃0 = x0 and the same choice of all randomness i.e., client samplings, minibatches and noises,
but the noise at some step (τ, κ) > (τ0, κ0), satisfying κ ≡ T7; We let ξ̃τ,κ = ξτ,κ − ree with re ≥

rν
TK
√
d

. Let wt,k = xt,k− x̃t,k, wt = xt− x̃t, vt,k = 1
P

∑P
i=1 y

t−1
i + zt,k, ṽt = 1

P

∑P
i=1 ỹ

t−1
i + zt,k,

gt = 1
P

∑P
i=1 y

t
i−∇f(xt)−

(
1
P

∑P
i=1 ỹ

t
i −∇f(x̃t)

)
, and ht,k = (zt,k−(∇f(xt,k)−∇f(xt,0)))−

(z̃t,k − (∇f(x̃t,k)−∇f(x̃t,0))). Then, vt,k −∇f(xt,k)− (ṽt,k −∇f(x̃t,k)) = gt−1 + ht,k.
There exists a sufficiently large constants C5 = Õ(1), C6 = O(1), with which the following

holds: If we take p ≥
√
P +

C2
5ζ

2

δ2
+

C2
5L

2

Kbδ2
, b ≥

√
K and, η = Θ̃

(
1
L

)
, with probability 1− 3ν

TK (ν ∈
(0, 1)), we have

max
(τ0,κ0)≤(t,k)<(τ0,κ0+3T7)

{∥xτ,k − xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} ≥ δ

C5ρ
.

Proof of Lemma 33 We assume K is at least as large as 3T7. When K − 2T7 ≤ κ0 < K − 1,
taking T7 ≥ T5 yields the assertion, considering the two coupled sequence initialized at (κ0,K),
according to a slight modification of Lemma 29.

Otherwise, we let (τ, κ) as the first step after (τ0, κ0) with κ ≡ T7. Then, it suffice to show that,
with probability at least 1− 3ν

TK ,

max
(τ,κ)≤(t,k)<(τ,κ+T7)

{∥xτ,k − xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} ≥ δ

C5ρ
. (50)

Since K ≥ 3T7 and κ0 < K− 2T7 imply gt−1 = 0 for all (τ, κ) ≤ (t, k) < (τ, κ+T7), gt−1+

ht,k = ht,k holds. Then, ∥hτ,κ∥ =
∥∥∥∥uτ,κit

+ 1
|Jτ,κ

it
|
∑

j∈Jτ,κ
it

uτ,κit,j

∥∥∥∥ ≤ ζre +
L√
|Jτ,κ

it
|
re ≤ 2δre, using

Proposition 4. Moreover, for (τ, k) > (τ, κ), when we assume max(τ,κ)≤(t,k)<(τ,κ+T7){∥xτ,k −
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xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} < δ
C5ρ

,

∥hτ,k∥

=

∥∥∥∥∥∥∥uτ,kiτ
+

k∑
l=κ

1

|Jτ,l
it
|

∑
j∈Jτ,κ

it

uτ,lit,j

∥∥∥∥∥∥∥
≤ ζ

k∑
l=τ

∥wτ,l − wτ,l−1∥+ 2δ

C5
∥wτ,k∥+ 2δ

C5
∥wτ,0∥+ δre

+
C2
1√
b

√√√√ k∑
l=1

(
L∥wτ,k − wτ,k−1∥+ 2δ

C5
∥wτ,k∥+ 2δ

C5
∥wτ,k−1∥

)2

.

Assuming that (a) 1
2(1 + ηγ)k−κre ≤ ∥wt,k∥ ≤ 2(1 + ηγ)k−κre and (b) ∥wt,k − wt,k−1∥ ≤

3ηγ(1 + ηγ)k−κre for (τ, κ) < (t, k) < (τ, κ + T7), we get ∥ht,k∥ ≤ 2C8γ
C5

(1 + ηγ)k−κ. Thus,
following the discussion in Lemma 29 and taking T7 similarly to T5, we have (50).

Previously, we only focused on the noise at the last local step (κ0,K). Thus, if the number of steps
required to escape saddle points T5 = Õ(Lδ ) is smaller than the local steps K = Õ(Lζ ), the algorithm
sometimes have to wait more than O(T5) steps for the last local step. Therefore, taking K ≥ T5 was
useless to reduce the number of communication rounds. On the other hand, based on Lemma 33,
when FLEDGE comes to a saddle point, FLEDGE does not need to wait next communication, and
can escape the stack region within 2T7 local steps, even if T7 ≪ K. This allows to us to take K
larger than O(Lδ ), and leads to removal of the assumption δ < 1

ζ from Theorem 28.

E.4. Convergence under PL condition

Theorem 34 Under Assumptions 1 to 3, 5 and 6, if we choose PKb ≥ Ω
(
C2

1σ
2

ε2
+ C1G

ε

)
and r ≤

ε
√
η

8 , η = Θ̃
(

1
L ∧

p
√
b

ζ
√
PK
∧ p

µPK ∧
1
ζK ∧

√
b

L
√
K

)
, Algorithm 3 with Option I finds an ε-first-order

stationary points for problem (2) using

Õ

(
PKb+

(
Lpb

µ
∧ ζ
√
PKb

µ
∧ PKb ∧ ζpKb

µ
∧ Lp

√
Kb

µ

)
log

∆ + σ +G+ σc +Gc

ε

)
stochastic gradients and

Õ

(
P

p
+

(
L

µK
∧ ζ
√
P

µp
∧ P

p
∧ ζ

µ
∧ L

µ
√
Kb

)
log

∆ + σ +G+ σc +Gc

ε

)
communication rounds
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with probability at least 1 − 8ν. Moreover, under the same conditions, algorithm 3 with Option II
finds an ε-first-order stationary points for problem (2) using

Õ

(
PKb+

(
Lpb

µ
∧ ζ
√
PKb

µ
∧ PKb ∧ ζpKb

µ
∧ Lp

√
Kb

µ

)
log

∆

ε

)
stochastic gradients and

Õ

(
1 +

(
L

µK
∧ ζ
√
P

µp
∧ P

p
∧ ζ

µ
∧ L

µ
√
Kb

)
log

∆

ε

)
communication rounds

with probability at least 1 − 8ν. Here Õ hides only at most log6.5(P + K + µ−1 + ν−1) and
polyloglog factors.

Proof According to eq. (33) and PL condition,

f(xt,k)

≤ f(xt,k−1) + η∥∇f(xt,k−1)− vt,k−1∥2 − η

2
∥∇f(xt,k−1)∥2 −

(
1

2η
− L

2

)
∥xt,k − xt,k−1∥2 + r2

η

≤ f(xt,k−1) + η∥∇f(xt,k−1)− vt,k−1∥2

− η

4
∥∇f(xt,k−1)∥2 − ηµ

2
(f(xt,k−1)− f∗)−

(
1

2η
− L

2

)
∥xt,k−1 − xt,k−1∥2 + r2

η
.

Rearranging the above yields that

f(xt,k)− f∗ +
η

4
∥∇f(xt,k−1)∥2 (51)

≤
(
1− ηµ

2

)
(f(xt,k−1)− f∗) + η∥∇f(xt,k−1)− vt,k−1∥2 −

(
1

2η
− L

2

)
∥xt,k − xt,k−1∥2 + r2

η
.

holds for all t, k (1 ≤ t ≤ T, 0 ≤ k ≤ K − 1) with probability at least 1− 8ν.
Applying Lemma 23 to this, for all t = 1, · · · , T with probability at least 1− 8ν,

f(xt)− f(x∗) +
η

4

K∑
k=1

(1− ηµ

2
)K−k∥∇f(xt,k−1)∥2

≤ (1− ηµ

2
)K(f(xt−1)− f(x∗))−

K∑
k=1

(1− ηµ

2
)K−k

(
1

2η
− L

2

)
∥xt,l − xt,l−1∥2

+ η
K∑
k=1

(1− ηµ

2
)K−k

(120C8
1ζ

2K

p
+

32C10
1 ζ2

pb

) t−1∑
s=max{1,t−T3}

K∑
l=1

∥xs,l − xs,l−1∥2

+

(
4ζ2K +

4C2
1L

2

b

)K−1∑
l=1

∥xt,l − xt,l−1∥2
)

+

K∑
k=1

(1− ηµ

2
)K−k

(
r2

η
+

8C2
1η

PKb

(
σ2 +

G2

PKb

))

+


η

K∑
k=1

(1− ηµ

2
)K−k96C2

11[t ≤ T3]

(
σ2

pKb
+

G2

p2K2b2
+

σ2
c

p
+

G2
c

p2

)
(Option I)

0 (Option II)
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By using this bound repeatedly, we get

f(xT )− f(x∗) +
η

4

T∑
t=1

K∑
k=1

(1− ηµ

2
)(T−t+1)−k∥∇f(xt,k−1)∥2

≤ (1− ηµ

2
)TK(f(x0)− f(x∗))

−
T∑

t=1

K∑
k=1

(1− ηµ

2
)(T−t+1)K−k

(
1

2η
− L

2
−

T3∑
s=1

(1− ηµ

2
)−(s+1)K

(
120C8

1ζ
2ηK2

p
+

32C10
1 ζ2ηK

pb

)

−η
K∑
l=1

(1− ηµ

2
)l−K

(
4ζ2K +

4C2
1L

2

b

))
∥xt,k − xt,k−1∥2

+
T∑

t=1

K∑
k=1

(1− ηµ

2
)(T−t+1)K−k

(
r2

η
+

8C2
1η

PKb

(
σ2 +

G2

PKb

))

+

{
η
∑T

t=1

∑K
k=1(1−

ηµ
2 )(T−t+1)K−k96C2

11[t ≤ T3]
(

σ2

pKb +
G2

p2K2b2 +
σ2
c

p +
G2

c

p2

)
(Option I)

0 (Option II).

We take η as

η = Θ

(
1

L
∧ p

C4.5
1 ζ
√
PK

∧ p
√
b

C5.5
1 ζ
√
PK

∧ p

µC1PK
∧ 1

ζK
∧

√
b

C1L
√
K

)

so that 1
2η −

L
2 −

∑T3
s=1(1−

ηµ
2 )−(s+1)K

(
120C8

1ζ
2ηK2

p +
32C10

1 ζ2ηK
pb

)
− η

∑K
k=1(1−

ηµ
2 )k−K(

4ζ2K +
4C2

1L
2

b

)
≥ 0 holds. We also take r ≤ ε

√
η

8 and PKb ≥ 512C2
1σ

2

ε2
+ 64C1G

ε , then∑T
t=1

∑K
k=1(1−

ηµ
2 )(T−t+1)K−k

(
r2

η +
8C2

1η
PKb

(
σ2 + G2

PKb

))
≤ ε2

8µ holds.
Then, we have that

f(xT )− f(x∗) +
η

4

T∑
t=1

K∑
k=1

(1− ηµ

2
)(T−t+1)−k∥∇f(xt,k−1)∥2

≤ ε2

8
+ (1− ηµ

2
)TK(f(x0)− f∗)

+

(1− ηµ

2
)(T−t+1−T3)K−k96C3

1

(
σ2P

p2b
+

G2P

p3Kb2
+

σ2
cPK

p2
+

G2
cPK

p3

)
(Option I)

0 (Option II)

For Option I, the first term (1 − ηµ
2 )TK(f(x0) − f(x∗)) is smaller than ε2

32 if we take TK =

O
(

1
ηµ log ∆

ε

)
. The third term is bounded by ε2

32 , if we take T = T3 +O( 1
ηµK

log
C3

1 (
σ2P
p2b

+ G2P
p3Kb2

+
σ2
cPK

p2
+

G2
cPK

p3
)

ε ) = O
(
P
pC1 +

C1
ηµK log σ+G+σc+Gc

ε

)
. Moreover, note that f(xT )−

f(x∗)+ η
4

∑T
t=1

∑K
k=1 (1−

ηµ
2 )(T−t+1)−k∥∇f(xt,k−1)∥2 ≤ 6

32µ mint,k ∥∇f(xt,k−1)∥2 holds when

we take T = O
(

1
ηµK

)
.
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Thus, for Option I, if we take

T =O

(
P

p
C1

+C1

(
L

µK
∧ C4.5

1 ζ
√
P

µp
∧ C5.5

1 ζ
√
P

µp
√
bK

∧ C1P

p
∧ ζ

µ
∧ C1L

µ
√
Kb

)
log

∆ + σ +G+ σc +Gc

ε

)
,

we obtain the desired bound with probability at least 1− 8ν.
For Option II, taking

T = O

((
L

µK
∧ C4.5

1 ζ
√
P

µp
∧ C5.5

1 ζ
√
P

µp
√
bK

∧ C1P

p
∧ ζ

µ
∧ C1L

µ
√
Kb

)
log

∆

ε

)
,

yields the desired bound.
Note that T depends on ε−1 only logarithmically, which means that C1 depends on ε−1 in only

log log order and C1 = O∗(log(P +K + µ−1 + ν−1)) (where O∗ suppresses log log factors).

Remark 22 In order to find ε-solutions (i.e., f(xt,k) − f∗ ≤ ε), the same statement holds, except
for slight change on the assumptions on PKb and r: PKb ≥ Ω

(
C2

1σ
2

µε + C1G
ε
√
εµ

)
and r ≤ η

√
εµ
2 .

In fact, we can derive

f(xt,k)− f∗

≤ (1− ηµ) (f(xt,k−1)− f∗) + η∥∇f(xt,k−1)− vt,k−1∥2 −
(

1

2η
− L

2

)
∥xt,k − xt,k−1∥2 + r2

η

similarly to (51), and using this, we have

f(xt)− f(x∗)

≤ (1− ηµ)TK(f(x0)− f(x∗))

−
T∑

t=1

K∑
k=1

(1− ηµ)(T−t+1)K−k

(
1

2η
− L

2
−

T3∑
s=1

(1− ηµ)−(s+1)K

(
120C8

1ζ
2ηK2

p
+

32C10
1 ζ2ηK

pb

)

−η
K∑
l=1

(1− ηµ)l−K

(
4ζ2K +

4C2
1L

2

b

))
∥xt,k − xt,k−1∥2

+
T∑

t=1

K∑
k=1

(1− ηµ)(T−t+1)K−k

(
r2

η
+

8C2
1η

PKb

(
σ2 +

G2

PKb

))

+

{
η
∑T

t=1

∑K
k=1(1− ηµ)(T−t+1)K−k96C2

11[t ≤ T3]
(

σ2

pKb +
G2

p2K2b2 +
σ2
c

p +
G2

c

p2

)
(Option I)

0 (Option II)

Taking η similary to the previous theorem, r ≤ η
√
εµ
2 and PKb ≥ Ω

(
C2

1σ
2

µε + C1G√
µε

)
yields
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∑T
t=1

∑K
k=1(1−ηµ)(T−t+1)K−k( r

2

η +
8C2

1η
PKb (σ

2+ G2

PKb)) ≤
ε
2 . Thus, we finally have the following:

f(xt)− f(x∗)

≤ ε

2
+ (1− ηµ)TK(f(x0)− f∗)

+

(1− ηµ)(T−t+1−T3)K−k96C3
1

(
σ2P

p2b
+

G2P

p3Kb2
+

σ2
cPK

p2
+

G2
cPK

p3

)
(Option I)

0 (Option II).

Now it is trivial to see that the desired bound holds.

Appendix F. Lower bound

In this section, we provide the gradient complexity lower bound of O(n+ ∆(ζ
√
n∨L)

ε2
) under Hessian

heterogeneity, which recovers the usual lower bound for L-smooth functions by setting ζ = 2L.
Note that the gradient complexity, or the total number of gradient communicated, of FLEDGE is
Õ(P + ζ

√
P

ε2
). Thus, this almost matches the lower bound of gradient complexity of the finite-sum

case if we identify P with n.
Note that the lower bound is proven under averaged gradient L-Lipshitzness and averaged Hes-

sian ζ-heterogeneity, while we assume gradient L-Lipshitzness of each fi for the upper bounds.
However, we expect that averaged gradient L-Lipshitzness and averaged Hessian ζ-heterogeneity
would suffice for deriving the first-order optimality in expectation.

First, we give a definition of the linear-span first-order algorithms.

Definition 36 (Linear-span first-order algorithm) Fix some x0. Let A be a (randomized) algo-
rithm with the initial point x0, and xt be the point at the t-th iteration. We assume A select one
individual function it at each iteration t and computes ∇fit(xt). Then A is called a linear-span
first-order algorithm if

xt ∈ span{x0, x1, · · · , xt−1,∇fi0(x0),∇fi1(x1), · · · ,∇fit−1(x
t)}

holds for all t with probability one.

Note that this definition includes minibatch updade, by letting xsb = xsb+1 =, · · · ,= x(s+1)b−1

with the minibatch size b.
We also define problem classes FL

n,∆ and FL,ζ
n,∆ for (1), as follows.

Definition 37 (A class of finite-sum optimization problems) Fix some x0. For an integer n, L >
0, we define a problem class FL

n as

FL
n,∆ =

f =
1

n

∑
i=1

fi : Rd → R

∣∣∣∣∣
d ∈ N, 1

n

∑n
i=1 ∥∇fi(x)−∇fi(y)∥2 ≤ L2∥x− y∥2 for all

x, y (averaged gradient L-Lipschitzness), and
f(x0)− infx f(x) = ∆.


Moreover, for an integer n, L > 0, and ζ > 0, a problem class FL,ζ

n is defined as

FL,ζ
n =

f =
1

n

∑
i=1

fi : Rd → R

∣∣∣∣∣∣
d ∈ N. 1

n

∑n
i=1 ∥∇fi(x)−∇fi(y)∥2 ≤ L2∥x− y∥2 for all

x, y, 1
n2

∑n
i,j=1 ∥∇2fi(x)−∇2fi(y)∥2 ≤ ζ2 (averaged

Hessian ζ-heterogenity), and f(x0)− infx f(x) = ∆.

 .
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We now state our lower bound theorem as follows.

Proposition 35 Assume Assumptions 1, 2 and 5. For any L > 0, ∆ > 0, and ε > 0, there exists a
function f ∈ FL,ζ

n,∆ such that any linear-span first-order algorithm requires

Ω

(
n+

∆(ζ
√
n+ L)

ε2

)
stochastic gradient accesses to find ε-first-order stationary points of the problem (1).

Proposition 35 can be derived by using the bounds of Carmon et al. [4], Fang et al. [10], Li et al.
[27].

Carmon et al. [4] proved the following lower bound.

Proposition 38 (Carmon et al. [4]) Fix x0. For any L > 0, ∆ > 0, and ε > 0, there exists
a function f ∈ FL

1,∆ such that any linear-span first-order algorithm requires Ω
(
∆L
ε2

)
stochastic

gradient accesses in order to find ε-first-order stationary points.

Fang et al. [10], Li et al. [27] extended this to the lower bound on the finite-sum optimization
problem.

Proposition 39 (Fang et al. [10], Li et al. [27]) Fix x0. For n > 0, L > 0, ∆ > 0, and ε > 0,
there exists a function f ∈ FL

n,∆ such that any linear-span first-order algorithm requires Ω
(
n+ ∆L

√
n

ε2

)
stochastic gradient accesses in order to find ε-first-order stationary points.

Based on these, we give the lower bound under the additional assumption of ζ-Hessian-heterogeneity.
Proof It is easy to see that the lower bound of Proposition 38 also applies to FL

n,∆, by letting
f1 = f2 = · · · = fn = f∗ where f∗ is the function that gives the bound of Proposition 38. On

the other hand, we have F
ζ
2
n,∆ ⊆ F

L,ζ
n,∆. Thus, Proposition 39 yields that there exists a function

f ∈ F
ζ
2
n,∆ ⊆ F

L,ζ
n,∆ that requires Ω

(
n+ ∆ζ

√
n

ε2

)
stochastic gradients to find ε-first-order stationary

points. Therefore, by combining these two bounds, we have the desired lower bound.
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