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Abstract
The stochastic heavy ball method (SHB), also known as stochastic gradient descent (SGD) with
Polyak’s momentum, is widely used in training neural networks. However, despite the remarkable
success of such algorithm in practice, its theoretical characterization remains limited. In this paper,
we focus on neural networks with two and three layers and provide a rigorous understanding of
the properties of the solutions found by SHB: (i) stability after dropping out part of the neurons,
(ii) connectivity along a low-loss path, and (iii) convergence to the global optimum. To achieve
this goal, we take a mean-field view and relate the SHB dynamics to a certain partial differential
equation in the limit of large network widths. This mean-field perspective has inspired a recent line
of work focusing on SGD while, in contrast, our paper considers an algorithm with momentum.
More specifically, after proving existence and uniqueness of the limit differential equations, we
show convergence to the global optimum and give a quantitative bound between the mean-field
limit and the SHB dynamics of a finite-width network. Armed with this last bound, we are able to
establish the dropout-stability and connectivity of SHB solutions.

1. Introduction

Despite the exceptional empirical success of gradient-based algorithms in the training of over-
parameterized neural networks, their convergence properties are still not well understood, given that
the optimization landscape is known to be highly non-convex and to contain spurious local minima
[5, 31, 45]. A popular line of work starting from [7, 25, 30, 36] has proposed a new methodology
to analyze the behavior of stochastic gradient descent (SGD), namely, the mean-field regime. The
idea is that, as the number of neurons of the network grows, the SGD training dynamics converges
to the solution of a certain Wasserstein gradient flow. This perspective has facilitated the study of
architectures with multiple layers [4, 13, 23, 27], and it has given a rigorous justification to a num-
ber of properties displayed by SGD solutions, including convergence towards a global optimum
[6, 7, 17, 25, 28], dropout-stability and connectivity [34], and implicit bias [8, 33, 42].

Optimization with momentum, e.g., the heavy ball method [29] or Adam [18], is widely used in
practice [38]. However, all the aforementioned works consider the vanilla SGD algorithm and, in
general, the theoretical understanding of algorithms with momentum has lagged behind. To address
this gap, [20] defines a mean-field limit for the stochastic heavy ball (SHB) method – also known
as SGD with Polyak’s momentum – for a two-layer model. In particular, the convergence to the
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mean-field limit is proved, as well as that the solution of the mean-field equation approaches a
global optimum. However, [20] leaves as an open problem finding a quantitative bound between
the infinite-width limit and the finite-width network, and the analysis is restricted to two layers.

In this paper, we define a mean-field limit for the heavy ball method in two-layer and three-layer
networks. We show global convergence in the three-layer setting, and give quantitative bounds for
networks with finite widths. This last result opens the way to providing a rigorous understanding
of effects commonly observed in practice, such as the connectivity of solutions via low-loss paths
[10, 12, 14, 15]. Furthermore, we highlight that the explicit characterization of the SHB dynamics
via the mean-field limit could prove useful to analyze the robustness and reliability of the solution
found by the optimization algorithm. More specifically, our key technical contributions can be
summarized as follows:

1. We show existence and uniqueness of the mean-field equations capturing the SHB training.

2. We give non-asymptotic convergence results of the SHB dynamics of a finite-width neural
network towards the mean-field limit. Our bounds are tight in terms of the network width, and
they exhibit a mild dependence on the input dimension. As a consequence of these bounds,
we discuss how SHB solutions can be connected via a simple piece-wise linear path, along
which the increase in loss vanishes as the width of the network grows.

3. Finally, we prove a global convergence result for three-layer networks, under certain assump-
tions on the mode of convergence of the dynamics.

Related work. For two-layer networks, our approach extends the line of work [25, 26] to the
heavy ball method. Because of the presence of momentum, in this case the mean-field limit is
described by a second-order differential equation (instead of the first-order one capturing the SGD
dynamics). The mean-field limit for heavy ball methods was first considered in [20], which deals
with a setting regularized by noise and does not provide quantitative bounds. Various approaches
have been proposed to define a mean-field limit for neural networks with more than two layers
[4, 13, 36], and here we follow the “neuronal embedding” framework [27, 28]. Global optimality
for three-layer networks was shown in [28], under a convergence assumption in the same spirit of
[7]. Results for networks with more than three layers exploit a special initialization [27] or skip
connections [13, 23]. Another recent line of work has considered training neural networks in the
neural tangent kernel (NTK) regime (or lazy regime) [1, 9, 11, 16], and this type of analysis has
been adapted to the heavy ball method by [40] and to other adaptive methods by [43]. However,
we remark that, unlike in the mean-field regime, neural networks are unable to perform feature
learning in the NTK regime [44]. Beyond the training of neural networks, the continuous limit of
momentum-based stochastic gradient descent algorithms has been studied in [35, 37, 41], and such
dynamics are known to be closely related to sampling methods such as MCMC [24].

2. Problem setup

For space reasons, in the paper we focus on three-layer networks, and the results for two-layer
networks are deferred to Appendix B. The network has n1 and n2 neurons in the first and second
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hidden layer, respectively:

H1(x, j1;W ) = w1(j1)
Tx, H2(x, j2;W ) =

1

n1

n1∑
j1=1

w2(j1, j2)σ1(H1(j1;W )),

f(x;W ) =
1

n2

n2∑
j2=1

w3(j2)σ2(H2(j2;W )).

(1)

Here x,w1(j1) ∈ RD, w2(j1, j2), w3(j2) ∈ R, and we use W ∈ Rn1D+n2n1+n2 to denote the
collection of all parameters. The training data z = (x, y) is generated i.i.d. from a distribu-
tion D, and the neural network (1) is trained to minimize the population risk function R(W ) =
Ez[R(y, f(x;W ))] via the following one-pass stochastic heavy ball (SHB) method1:

W SHB(k + 1) = W SHB(k) + r(k),

r(k) = (1− γε)(W SHB(k)−W SHB(k − 1))− ε2∇̂W SHBR(y(k), f(x(k);W SHB(k))).
(2)

Here ∇̂W SHBR(y(k), f(x(k);W SHB) denotes the scaled gradient, and the choice of the scaling
factors ensures that each component of the gradients is of order 1 (i.e., independent of the layer
widths n1, n2), see Appendix A for the details. We make the following assumptions:

(A1) There exists a universal constant K > 0 such that ∥σ1∥∞, ∥σ′
1∥∞, ∥σ′′

1∥∞, ∥σ2∥∞, ∥σ′
2∥∞,

∥σ′′
2∥∞ ≤ K. The data distribution D is such that |y|, ∥x∥2 ≤ K almost surely. Furthermore,

σ′
2(x) ̸= 0 for all x, |∂2R(y, f(x;W ))| is K-Lipschitz continuous with respect to the second

argument and K-bounded for any W .

(A2) w1(0, j1), w2(0, j1, j2), w3(0, j2) have an i.i.d. initialization from ρ10×ρ20×ρ30, i.e. w1(0, j1)
i.i.d.∼

ρ10, w2(0, j1, j2)
i.i.d.∼ ρ20, w3(0, j2)

i.i.d.∼ ρ30 for j1 ∈ [n1], j2 ∈ [n2]. Furthermore, w1(0, j1) is
K2-sub-Gaussian, |w2(0, j1, j2)|, |w3(0, j2)| ≤ K almost surely, and r(0) = 0.

The assumptions above hold e.g. for tanh or sigmoid activation functions, and logistic or Huber
loss. Even if ∂2R(y, f(x;W )) is not K-bounded for the square loss, we still expect similar results
to hold, since it suffices that ∂2R(y, f(x;W )) is bounded with high probability. Finally, we remark
that the boundedness of the initialization w2(0, j1, j2), w3(0, j2) is purely to simplify the proof,
which could be generalized to a K2-sub-Gaussian initialization.

3. Derivation of the mean-field limit

We start by defining the neuronal embedding. In [28, Proposition 7], it is proved that, for the i.i.d.
initialization (A2), there exists a product probability space (Ω1×Ω2,F1×F2,P1×P2) and functions
w1(0, ·) : Ω1 −→ RD, w2(0, ·, ·) : Ω1 × Ω2 −→ R, w3(0, ·) : Ω2 −→ R s.t. for any n1, n2 > 0,

{w1(0, C1(j1)), w2(0, C1(j1), C2(j2)), w3(0, C2(j2)), for j1 ∈ [n1], j2 ∈ [n2]}
d
= {w1(0, j1), w2(0, j1, j2), w3(0, j2), for j1 ∈ [n1], j2 ∈ [n2]},

1. A similar formulation is common in the literature, see e.g. [35, Eq. 1.2].

3



MEAN-FIELD ANALYSIS FOR HEAVY BALL METHODS

where d
= denotes equality in distribution, C1(j1)

i.i.d.∼ P1, C2(j2)
i.i.d.∼ P2, for j1 ∈ [n1], j2 ∈ [n2]

and we use the short-hand [ni] := {1, . . . , ni}. The neuronal embedding is
{
(Ω1 × Ω2,F1 × F2,

P1 × P2), w1(0, ·), w2(0, ·, ·), w3(0, ·)
}

, and the mean-field limit is the ODE tracks the functions
w1(0, ·), w2(0, ·, ·), w3(0, ·):

dw3(t, c2) = r3(t, c2) dt, dr3(t, c2) = (−γr3(t, c2)− Ez∆
W
3 (z, c2;W (t))) dt,

dw2(t, c1, c2) = r2(t, c1, c2) dt, dr2(t, c1, c2) = (−γr2(t, c1, c2)− Ez∆
W
2 (z, c1, c2;W (t)))dt,

dw1(t, c1) = r1(t, c1) dt, dr1(t, c1) = (−γr1(t, c1)− Ez∆
W
1 (z, c1;W (t))) dt,

(3)

where c1 ∈ Ω1, c2 ∈ Ω2 are dummy variables. The output of the neural network under the mean-
field limit (3) is described via the following forward pass:

H1(x, c1;W (t)) = w1(t, c1)
Tx, H2(x, c2;W (t)) = EC1∼P1w2(t, C1, c2)σ1(H1(x, C1;W (t))),

f(x;W (t)) = EC2∼P2w3(t, C2)σ2(H2(x, C2;W (t))).

(4)

Furthermore, the quantities ∆W
3 ,∆W

2 ,∆W
1 appearing in (3) are described via the backward pass:

∆W
3 (z, c2;W (t)) := ∂2R(y; f(x;W (t)))σ2(H2(x, c2;W (t))),

∆H
2 (z, c2;W (t)) := ∂2R(y; f(x;W (t)))w3(t, c2)σ

′
2(H2(x, c2;W (t))),

∆W
2 (z, c1, c2;W (t)) := ∆H

2 (z, c2;W (t))σ1(H1(x, c1;W (t))),

∆H
1 (z, c1;W (t)) := EC2∆

H
2 (x, C2;W (t))w2(t, c1, C2)σ

′
1(H1(x, c1;W (t))),

∆W
1 (z, c1;W (t)) := ∆H

1 (x, c1;W (t))x.

(5)

By analyzing a Picard type of iteration [39], we can show the existence and uniqueness of the
mean-field limit (see Appendix D.2 for the proof).

Theorem 1 Under Assumptions (A1)-(A2), there exists a unique solution of the mean-field ODE
(3).

4. Convergence to the mean-field limit

Let W SHB(k) =
(
(wSHB

1 (k, j1))j1∈[n1], (w
SHB
2 (k, j1, j2))j1∈[n1],j2∈[n2], (w

SHB
3 (k, j2))j2∈[n2]

)
be ob-

tained via the SHB iteration (2). Before stating our result, let us discuss how to couple this SHB
dynamics to the mean-field ODE (3). First, sample a finite neural network w.r.t. the neuronal embed-
ding, i.e., C1(j1)

i.i.d.∼ P1, C2(j2)
i.i.d.∼ P2, for j1 ∈ [n1], j2 ∈ [n2] and w1(0, ·), w2(0, ·, ·), w3(0, ·).

Given w1(0, ·),w2(0, ·, ·),w3(0, ·), let the mean-field ODE (3) evolve up to some t, thus obtaining
w1(t, ·), w2(t, ·, ·), w3(t, ·). Next, initialize the weights corresponding to the SHB evolution accord-
ing to the initialization of the mean-field ODE, i.e., wSHB

1 (0, j1) = w1(0, C1(j1)), wSHB
2 (0, j1, j2) =

w2(0, C1(j1), C2(j2)) and wSHB
3 (0, j2) = w3(0, C2(j2)), and let them evolve according to SHB dy-

namics (2), thus obtaining wSHB
1 (k, j1), wSHB

2 (k, j1, j2),wSHB
3 (k, j2) for k = ⌈t/ϵ⌉. Finally, define

the following distance metric that measures the difference between the mean-field and the SHB
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dynamics:

DT (W ,W SHB) = max
j1∈[n1],j2∈[n2]

sup
t∈[0,T ]

max{∥w1(t, C1(j1))−wSHB
1 (⌊t/ε⌋, j1)∥2,

|w2(t, C1(j1), C2(j2))− wSHB
2 (⌊t/ε⌋, j1, j2)|, |w3(t, C2(j2))− wSHB

3 (⌊t/ε⌋, j2)|}.
(6)

Theorem 2 Let Assumptions (A1)-(A2) hold. Consider the coupled SHB dynamics (2) and mean-
field ODE (3), and the distance metric (6). Then, with probability at least 1− exp(−δ2),

DT (W ,W SHB) ≤ K(γ, T )

((√
log nmax + δ

)
√
nmin

+
√
ε(
√
D + log n1n2 + δ)

)
, (7)

where nmax = max{n1, n2}, nmin = min{n1, n2}, and K(γ, T ) is a constant depending only on
γ, T .

The proof of Theorem 2 is deferred to Appendix F. This result shows that the approximation
error between the SHB dynamics and the mean-field limit vanishes as n1, n2 grow large, with
nmax = o(enmin) and ε = o(1/

√
D + log n1n2). The bound (7) is dimension-free, in the sense

that n1, n2 do not need to scale with the input dimension D. The constant K(γ, T ) scales rather
poorly in T , i.e., K(γ, T ) = O(ee

T
), as common in existing mean-field results [25–28]. An inter-

esting open problem is to improve such dependence, e.g., by using ideas from [32].
An application of Theorem 2 consists in characterizing the dropout-stability and connectivity of

the solutions found by SHB. Given two non-empty sets A1 ⊆ [n1], A2 ⊆ [n2], we say that W is
ϵD-dropout stable if

|R(W )−Rdrop(W ;A1, A2)| ≤ ϵD, (8)

where Rdrop(W ;A1, A2) is obtained by replacing the two-layer network f(x;W ) defined in (1)
with the dropout network

1

|A2|
∑
j2∈A2

w3(j2)σ2

 1

|A1|
∑
j1∈A1

w2(j1, j2)σ1(w1(j1)
Tx)

 . (9)

Furthermore, two solutions W and W ′ are ϵC-connected if there exists a continuous path in pa-
rameter space that starts at W , ends at W ′ and along which the risk R(·) is upper bounded by
max{R(W ), R(W ′)} + ϵC . The connectivity of solutions obtained via gradient descent methods
has been empirically observed in [10, 14], and it has been related to dropout-stability in [21]. The
fact that SGD solutions enjoy dropout-stability and connectivity properties has been proved in [34]
and, by combining this analysis with Theorem 2, similarly strong guarantees can be obtained for
heavy ball methods. In particular, after k ≤ ⌊T/ε⌋ steps of the iteration (2), the resulting parameters
are ϵD-dropout stable and ϵC-connected, where

ϵD = K(γ, T )

((√
logAmax + δ

)
√
Amin

+
√
ε(
√
D + log n1n2 + δ)

)
,

ϵC = K(γ, T )

((√
log nmax + δ

)
√
nmin

+
√
ε(
√
D + log n1n2 + δ)

)
,

(10)
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with probability at least 1− exp(−δ2). Here, Amax = max{|A1|, |A2|}, Amin = min{|A1|, |A2|},
nmax = max{n1, n2} and nmin = min{n1, n2}. The path connecting the two solutions is piece-
wise linear, and it can be explicitly constructed as in [21, 34].

Finally, let us highlight that our mean-field perspective can shed light on the thought-provoking
conjecture of [12], where it is empirically observed that, after a suitable permutation, the solutions
of the optimization algorithm enjoy linear connectivity. In fact, Theorem 2 shows that, by running
the SHB training algorithm (2) multiple times, all the resulting solutions satisfy (7). This readily
implies that, after a permutation of the neurons, the distance between such solutions can also be
upper bounded by the RHS of (7).

5. Global convergence of mean-field dynamics for three-layer network

In order to show the global convergence result, we first need to make some extra assumptions.

(B1) The activation σ1 exhibits a universal approximation property, i.e., {σ1(⟨w, ·⟩) : w ∈ RD}
has dense span in L2(Dx), where Dx denotes the x-marginal of the data distribution D.

(B2) ρ10 has full support.

(B3) The mean-field ODE (3) converges to the limit
(
w1(∞, c1), w2(∞, c1, c2), w3(∞, c2)

)
s.t.

Pr [w3(∞, C2) ̸= 0] > 0. Formally, we have that, as t → ∞,

EC1,C2 [(1 + |w3(∞, C2)|)|w3(∞, C2)| |w2(∞, C1, C2)| ∥w1(t, C1)−w1(∞, C1)∥2] → 0,

EC1,C2 [(1 + |w3(∞, C2)|)|w3(∞, C2)| |w2(t, C1, C2)− w2(∞, C1, C2)|] → 0,

EC2 [(1 + |w3(∞, C2)|)|w3(t, C2)− w3(∞, C2)|] → 0,

ess sup
C1

EC2 [|Ez∆
W
2 (z, C1, C2;W (t))|] → 0.

The universal approximation property is the key assumption to obtain a global convergence result.
This requirement is mild, since most activation functions used in practice are universal approxima-
tors. The assumption on full support is also mild, since widely used initialization schemes (e.g.,
He’s or LeCun’s initialization) employ a Gaussian distribution, which indeed has full support. The
assumption on the mode of convergence is purely technical, and it is an open question whether
it can be relaxed. We remark that these requirements also appear in [28], with the exception of
Pr [w3(∞, C2) ̸= 0] > 0, which is needed to handle the heavy ball dynamics.

Theorem 3 Let Assumptions (A1)-(A2) and (B1)-(B3) hold, and assume further that R(y, f(x;W ))
is convex in f(x;W ). Let W (t) be the solution of the mean-field ODE (3). Then, we have that

lim
t−→∞

EzR(y, f(x;W (t))) = inf
ŷ:RD−→R

EzR(y, ŷ(x)). (11)

The detailed proof is deferred to Appendix G and we provide here a sketch. First, we show
a degenerate property for the mean-field ODE, i.e., there exist deterministic functions w∗

1(·, ·) :

6
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R≥0 × RD −→ RD, w∗
2(·, ·, ·, ·) : R≥0 × RD × R× R −→ R, w∗

3(·, ·) : R≥0 × R −→ R such that

w1(t, C1) = w∗
1(t,w1(0, C1)),

w2(t, C1, C2) = w∗
2(t,w1(0, C1), w2(0, C1, C2), w2(0, C2)),

w3(t, C2) = w∗
3(t, w3(0, C2)).

Next, we show that, for any finite t, w∗
1(·, ·) is continuous in both arguments and w1(t, C1) is full

support. Finally, the convergence to the global minimum is obtained by combining the argument
that w1(t, C1) is full support for all finite t with the mode of convergence assumption.

Theorem 3 is rather different from the global convergence result for the heavy ball method pre-
sented in [20]. In fact, [20] consider noisy dynamics (i.e., with additive isotropic noise), and show
the convergence of the mean-field ODE to the global minimum of a certain free energy, which rep-
resents an entropic regularization of the loss function. In this setup, the convergence is guaranteed
by the noise term in the dynamics and by the regularization term in the free energy functional.
In contrast, we consider noiseless dynamics and do not prove its convergence. Instead, we show
that, when the mean-field ODE converges, it must do so towards the global minimum of the un-
regularized loss function. At the technical level, our proof strategy is an adaptation to the heavy ball
case of the argument for SGD in [28], which also crucially relies on the universal approximation
property of the activation function. A similar idea was first proposed in [23], and it also appears in
[13]. However, our contribution is the first to tackle the case of optimization with momentum.
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Organization of the appendix. Appendix A contains the details on the training dynamics missing
from Section 2. In Appendix B, we define the mean-field limit for two-layer networks, and state the
convergence of the corresponding SHB dynamics to it. In Appendix C, we provide some a-priori
estimates that will be useful in the following arguments. In Appendix D, we prove Theorem 1 and 4,
namely, the existence and uniqueness of the mean-field limit for two-layer and three-layer networks,
respectively. In Appendix E and F, we prove Theorems 5 and 2, which show the convergence of
the SHB dynamics to the corresponding mean-field limits for two-layer and three-layer networks.
Finally in Appendix G, we prove Theorem 3, which is the global convergence result in the three-
layer setup.

Appendix A. Details on training dynamics

We recall that the training data z = (x, y) is generated i.i.d. from a distribution D. The neural
network is trained to minimize the population risk function R(W ) = Ez[R(y, f(x;W ))] via the
following one-pass stochastic heavy ball (SHB) method:

W (k + 1) = W (k) + β(W (k)−W (k − 1))− η∇̂WR(y(k), f(x(k);W (k))), (12)

where we use ∇̂WR(y(k), f(x(k);W ) to denote the scaled gradient, and the scaling factors for
each parameters are specified below. This is a one-pass method in the sense that, at each step, we
sample a new data point z(k) independent from the previous ones.

In order to define a continuous-time ODE for the heavy ball method, we pick β = (1− γε) and
η = ε2, so the one-pass SHB method can be equivalently written as follows:

W (k + 1) = W (k) + r(k),

r(k) = (1− γε)(W (k)−W (k − 1))− ε2∇̂WR(y(k), f(x(k);W (k))). (13)

which is exactly the form in (2). The formulation in [35] is similar: in [35, Eq. 1.2], β = 1−γϵ
1+γϵ ,

while here we let β = 1 − γε; hence, the two choices are basically the same when ε is small. The
corresponding continuous ODE, also studied in [20, Eq. 6], is given by

∂tW (t) = r(t), ∂tr(t) = −γr(t)− ∇̂WR(W (t)). (14)

We remark that there are different ways to derive a continuous dynamics from (12), and (2) is ob-
tained by applying the Euler scheme based on the second-order Taylor expansion. The correspond-
ing ODE (14) is denoted as the low-resolution ODE in [35]. It is an interesting and challenging
task to analyze other types of ODEs associated to the SHB method, for example the high-resolution
ODE proposed in [35]. We leave this to future works. We also remark that similar formulation of
the continuous counterpart of heavy ball methods with fixed momentum are studied in [19, 22].

We conclude this part by discussing the scaling factors for the gradient in (2):

∇̂WR(y, f(x;W )

=
(
(∆W

1 (x, j1;W ))j1∈[n1], (∆
W
2 (x, j1, j2;W ))j1∈[n1],j2∈[n2], (∆

W
3 (x, j2;W ))j2∈[n2]

)
,

(15)
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where

∆W
3 (x, j2;W ) := n2∂w3(j2)R(y, f(x;W )) = ∂2R(y, f(x;W ))σ2(H2(x, j2;W )),

∆H
2 (x, j2;W ) := n2∂H2(x,j2;W )R(y, f(x;W )) = ∂2R(y, f(x;W ))w3(j2)σ

′
2(H2(x, j2)),

∆W
2 (x, j1, j2;W ) := n1n2∂w2(j1,j2)R(y, f(x;W )) = ∆H

2 (x, j2;W )σ1(H1(x, j1;W )),

∆H
1 (x, j1;W ) := n1∂H1(x,j1;W )R(y, f(x;W ))

=
1

n2

n2∑
j2=1

∆H
2 (x, j2;W )w2(j1, j2)σ

′
1(H1(x, j1;W )),

∆W
1 (x, j1;W ) := n1∇w1(j1)R(y, f(x;W )) = ∆H

1 (x, j1;W )x.

(16)

In words, the scaling factor is n2 for the third layer, n1×n2 for the second layer, and n1 for the first
layer. Hence, the SHB dynamics can be expressed in the following more explicit form:

wSHB
3 (k + 1, j2) = wSHB

3 (0, j2) + (1− γε)(wSHB
3 (k, j2)− wSHB

3 (k − 1, j2))

− ε2∆W
3 (z(k), j2;W

SHB(k)),

wSHB
2 (k + 1, j1, j2) = wSHB

2 (0, j1, j2) + (1− γε)(wSHB
2 (k, j1, j2)− wSHB

2 (k − 1, j1, j2))

− ε2∆W
2 (z(k), j1, j2;W

SHB(k)),

wSHB
1 (k + 1, j1) = wSHB

1 (0, j1) + (1− γε)(wSHB
1 (k, j1)−wSHB

1 (k − 1, j1))

− ε2∆W
1 (z(k), j1;W

SHB(k)).

(17)

Notation. In the following sections, we will use w1(t, j) or w1(k, j) to represent the weights at
time t or time step k. The same notations also applies to w2, w3. For convenience, we will also use
the lighter notation

H1(t,x, c1), H2(t,x, c2),∆
W
3 (t, z, c2),∆

H
2 (t, z, c2),∆

W
2 (t, z, c1, c2),∆

H
1 (t, z, c1),∆

W
1 (t, z, c1)

to denote the quantities defined in (5).

Appendix B. Results for two-layer networks

B.1. Derivation of the mean-field limit

We consider a two-layer neural network with n neurons and input x ∈ RD:

H1(x, j;W ) = w1(j)
Tx, j ∈ [n],

f(x;W ) =
1

n

n∑
j=1

w2(j)σ(H1(j;W )).
(18)

Here, we use the short-hand [n] := {1, . . . , n} and, for j ∈ [n], the parameters of the j-th neuron
are denoted by θ(j) = (w1(j), w2(j)), with w1(j) ∈ RD and w2(j) ∈ R. The parameters are
updated according to (2), with

∇̂WR(y, f(x;W ) =
(
(∆W

1 (x, j;W ))j∈[n], (∆
W
2 (x, j;W ))j∈[n]

)
, (19)
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where

∆W
2 (x, j;W ) := n∂w2(j)R(y, f(x;W )) = ∂2R(y, f(x;W ))σ(H1(x, j;W )),

∆W
1 (x, j;W ) := n∇w1(j)R(y, f(x;W )) = ∂2R(y, f(x;W ))w2(j)σ

′(H1(x, j;W ))x.
(20)

We make the following assumptions:

(C1) There exists a universal constant K > 0 such that ∥σ∥∞, ∥σ′∥∞, ∥σ′′∥∞ ≤ K. The data
distribution D is such that, almost surely, |y|, ∥x∥2 ≤ K. Furthermore, |∂2R(y, f(x;W ))|
is K-Lipschitz continuous in f(x;W ) and K-bounded for any W .

(C2) At initialization, w1(0, j), w2(0, j)
i.i.d.∼ ρ0, where ρ0 is such that w1(0, j) is K2-sub-Gaussian,

and |w2(0, j)| ≤ K almost surely. Furthermore, r(0) = 0.

The idea of defining the mean-field limit in two-layer case is that the output of the network can
be viewed as an expectation over the empirical distribution of the weights, that is:

f(x;W ) =
1

n

n∑
j=1

w2(j)σ1(w1(j)
Tx) = Eθ∼ρ̂θσ

⋆(x;θ),

where σ⋆(x;θ(j)) = w2(j)σ(w1(j)
Tx) and ρ̂θ = 1

n

∑n
j=1 δθ(j). Thus, the evolution of the pa-

rameters θ(t) according to (14) can be viewed as the evolution of ρ̂θ(t) according to a certain
distributional dynamics induced by (14). Since we assume i.i.d. initialization, as the number of
neurons n −→ ∞, we expect that ρ̂θ(0) −→ ρ0. In this limit, the distributional dynamics induced by
(14), can be described by a certain PDE, with initial condition ρ0. Let

f(x; ρ) := Eθ∼ρσ
⋆(x;θ), R(z; ρ) := R(y, f(x; ρ)), R(ρ) := EzR(y, f(x; ρ)),

Ψ̂(z,θ; ρ) :=
δR(z, ρ)

δρ
(θ), Ψ(θ; ρ) :=

δR(ρ)

δρ
(θ) = EzΨ̂(z,θ; ρ).

(21)

Then, we define the mean-field PDE associated to the heavy ball method as

dθ(t) = r(t)dt, dr(t) =
(
−γr(t)−∇θΨ(θ(t); ρθ(t))

)
dt. (22)

The existence and uniqueness of the solution of (22) is given by the following result, which is
proved in Appendix D.1.

Theorem 4 Under Assumptions (C1)-(C2), there exists a unique solution of the mean-field PDE
(22).

B.2. Convergence to the mean-field limit

We recall that the mean-field PDE is defined in (22), and the SHB dynamics can be expressed as

θSHB(k + 1, j) = θSHB(k, j) + (1− γε)(θSHB(k, j)− θSHB(k − 1, j))

− ε2∇θΨ̂(z,θSHB(k, j); ρθSHB(k)),
(23)
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where θSHB(k, j) denotes the parameter associated to the j-th neuron at step k, Ψ̂ is defined in (21),
and ρθSHB(k) =

1
n

∑n
j=1 δθSHB(k,j) denotes the empirical distribution of the parameters {θSHB(k, j)}j∈[n].

We couple the mean-field PDE (22) and the SHB dynamics (23), in the sense that they share the
same initialization: θ(0) ∼ ρθ(0) and θSHB(0, j)

i.i.d.∼ ρθ(0). Let us define the following distance
metric that measures the difference between the mean-field dynamics and the SHB dynamics:

DT (θ,θ
SHB) = max

j∈[n]
sup

t∈[0,T ]
∥θSHB(⌊t/ε⌋, j)− θ(t)∥2. (24)

Theorem 5 Let Assumptions (C1)-(C2) holds. Consider the mean-field PDE (22), the SHB dynam-
ics (23) and the distance metric (24). Then, with probability at least 1− exp(−δ2),

DT (θ,θ
SHB) ≤ K(γ, T )

((√
log n+ δ

)
√
n

+
√
ε(
√
D + log n+ δ)

)
, (25)

where K(γ, T ) is a constant depending only on γ, T .

We remark that the RHS of (25) is also an upper bound on supt∈[0,T ]W2(ρ
θ(t), ρθSHB(⌊t/ε⌋)),

which follows directly from the definition of the Wasserstein W2 distance. The guarantees of The-
orem 5 are similar to those of Theorem 2, and considerations analogous to those at end of Section
4 can be done as concerns the dropout-stability and connectivity of the solutions found by SHB for
two-layer networks.

Appendix C. A-priori estimates

C.1. Two-layer networks

Lemma 6 Assume that (C1)-(C2) hold, and let f(x; ρ),Ψ(θ; ρ),∇θΨ(θ; ρ) be defined in (21).
Then, for any fixed T , there exist universal constants K,K2(γ, T ), where the latter depends only on
γ, T , such that the following results hold.

1. (Boundedness) We have that, for any θ, ρ,

f(x; ρ) ≤ KEρ|w2|,
|Ψ(θ; ρ)| ≤ K|w2|, (26)

∥∇θΨ(θ; ρ)∥2 ≤ K(1 + |w2|).

2. (Boundedness for mean-field ODE) We have that, for any t ≤ T , w2(t) as governed by (22)
satisfies

|w2(t)| ≤ K2(γ, T ). (27)

3. (Lipschitz continuity):

|Ψ(θ; ρ)−Ψ(θ′; ρ′)| ≤ K(1 + |w2|)
(
|w2 − w′

2|+ ∥w1 −w′
1∥2 +W2(ρ, ρ

′)
)
,

(28)

∥∇θΨ(θ; ρ)−∇θΨ(θ′; ρ′)∥2 ≤ K(1 + |w2|)
(
|w2 − w′

2|+ ∥w1 −w′
1∥2 +W2(ρ, ρ

′)
)
.

(29)
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Proof

1. By the definition and assumption (C1), we have that

|f(x; ρ)| = |Eρw2σ(w
T
1 x)| ≤ KEρ|w2|,

|Ψ(θ; ρ)| ≤ |Ez

[
∂2R(y, f(x; ρ))σ(wT

1 x)
]
| · |w2| ≤ K|w2|,

|∇w2Ψ(θ; ρ)| = |Ez

[
∂2R(y, f(x; ρ))σ(wT

1 x)
]
| ≤ K,

∥∇w1Ψ(θ; ρ)∥2 = ∥Ez

[
∂2R(y, f(x; ρ))w2σ

′(wT
1 x)x

]
∥2 ≤ K|w2|.

2. By writing down the integral form of the ODE, we have

|w2(t)| ≤ |w2(0)|+ γ

∫ T

0
(|w2(s)|+ |w2(0)|) ds+

∫ T

0

∫ s

0
|∇w2Ψ(θ(u); ρ(u))| du ds

≤ (K +KT +KT 2) + γ

∫ T

0
|w2(s)| ds

≤ (K +KT +KT 2)eγT .

By setting K2(γ, T ) := (K +KT +KT 2)eγT , the proof of (27) is complete.

3. For the Lipschitz continuity argument, we have

Ψ(θ; ρ) = Ez

[
∂2R(y, f(x; ρ))w2σ(w

T
1 x)

]
,

∇θΨ(θ; ρ) =

(
Ez

[
∂2R(y, f(x; ρ))w2σ

′(wT
1 x)x

]
Ez

[
∂2R(y, f(x; ρ))σ(wT

1 x)
] )

.

Thus,

|Ψ(θ; ρ)−Ψ(θ′; ρ′)| ≤ K|w2|∥w1 −w′
1∥+K|w2 − w′

2|
+K|w2||Eθ∼ρσ(x;θ)− Eθ∼ρ′σ(x;θ)|. (30)

We define the Bounded Lipschitz (BL) divergence as follows:

dBL(ρ, ρ
′) = sup{|Eθ∼ρf(θ)− Eθ∼ρ′f(θ)| : |f | ≤ 1, ∥f∥Lip ≤ 1}.

We have the following relationship between the BL-divergence and the Wasserstein distance
(see for example [7, Appendix A.1] for more details):

dBL(ρ, ρ
′) ≤ W2(ρ, ρ

′).

Hence,

|Eρσ(x;θ)− Eρ′σ(x;θ)| ≤ KdBL(ρ, ρ
′) ≤ KW2(ρ, ρ

′),

which implies that the RHS of (30) is upper bounded by

K|w2|(∥w1 −w′
1∥2 +W2(ρ, ρ

′)) +K|w2 − w′
2|

≤ K(1 + |w2|)
(
|w2 − w′

2|+ ∥w1 −w′
1∥2 +W2(ρ, ρ

′)
)
.

This concludes the proof of (28). The Lipschitz continuity of ∇θΨ(θ; ρ) follows from the
same argument.
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C.2. Three-layer networks

Lemma 7 Assume that (A1)-(A2) hold, and let H2, f,∆
W
1 ,∆W

2 ,∆W
3 ,∆H

1 ,∆H
2 be defined in (4)

and (5). Then, for any fixed T , and given a neuronal embedding

{(Ω1 × Ω2,F1 ×F2,P1 × P2), w1(0, ·), w2(0, ·, ·), w3(0, ·)}

, there exists a universal constant K and universal constants K3,2(γ, T ), K3,3(γ, T ) only depending
on γ, T such that the following results hold.

1. (Boundedness) We have that, for any W , z, for any t ∈ [0, T ] and for any c1 ∈ Ω1, c2 ∈ Ω2,

• |f(x;W (t))| ≤ K ess sup
C2

|w3(t, C2)|

• H2(x, c2;W (t))| ≤ K ess sup
C1,C2

|w2(t, C1, C2)|

• |∆W
3 (z, c2;W (t))| ≤ K

• |∆H
2 (z, c2;W (t))| ≤ K ess sup

C2

|w3(t, C2)|

• |∆W
2 (z, c1, c2;W (t))| ≤ K

(
ess sup
C1,C2

|w2(t, C1, C2)|

)
ess sup

C2

|w3(t, C2)|

• |∆H
1 (x, c1;W (t))| ≤ K ess sup

C2

|w3(t, C2)| ess sup
C1,C2

|w2(t, C1, C2)|

• ∥∆W
1 (x, c1;W (t))∥2 ≤ K ess sup

C2

|w3(t, C2)| ess sup
C1,C2

|w2(t, C1, C2)|

2. (Boundedness for mean-field ODE) We have that, for any t ≤ T ,

ess sup
C2

|w3(t, C2)| ≤ K3,3(γ, T ), ess sup
C1,C2

|w2(t, C1, C2)| ≤ K3,2(γ, T ) (31)

3. (Lipschitz continuity) We have that, for any t ≤ T ,

• |H1(x, c1;W (t))−H1(x, c1; W̃ (t))| ≤ K∥w1(t, c1)− w̃1(t, c1)∥2
• |H2(x, c2;W (t))−H2(x, c2; W̃ (t))|

≤ K ess sup
C1

(|w2(t, C1, c2)|∥w1(t, C1)− w̃1(t, C1)∥2 + |w2(t, C1, c2)− w̃2(t, C1, c2)|)

• |f(x;W (t))− f(x; W̃ (t))|
≤ K ess sup

C1,C2

(|w3(t, C2)| · |w2(t, C1, C2)| · ∥w1(t, c1)− w̃1(t, c1)∥2

+ |w3(t, c2)| · |w2(t, c1, c2)− w̃2(t, c1, c2)|+ |w3(t, c2)− w̃3(t, c2)|)
• |∆W

3 (z, c2;W (t))−∆W
3 (z, c2; W̃ (t))|

≤ K
(
|H2(x, c2;W (t))−H2(x, c2; W̃ (t))|+ |f(x;W (t))− f(x; W̃ (t))|

)
• |∆H

2 (z, c2;W (t))−∆H
2 (z, c2; W̃ (t))|

≤ K|w3(t, c2)| · |H2(x, c2;W (t))−H2(x, c2; W̃ (t))|+K|w3(t, c2)− w̃3(t, c2)|
+K|w3(t, c2)| · |f(x;W (t))− f(x; W̃ (t))|
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• |∆W
2 (z, c1, c2;W (t))−∆W

2 (z, c1, c2; W̃ (t))|
≤ K|∆H

2 (x, c2;W (t))−∆H
2 (z, c2; W̃ (t))|

+K|∆H
2 (z, c2;W (t))| · ∥w1(t, c1)− w̃1(t, c1)∥2

• ∥∆W
1 (z, c1;W (t))−∆W

1 (z, c1; W̃ (t))∥2
≤ K|EC2

[
∆H

2 (z, C2;W (t))w2(t, c1, C2)
]
| · ∥w1(t, c1)− w̃1(t, c1)∥2

+K|EC2

[
∆H

2 (z, C2; W̃ (t))w̃2(t, c1, C2)−∆H
2 (z, C2;W (t))w2(t, c1, C2)

]
|.

Proof

1. By the definition and assumption (A1), we have

• |f(x;W (t))| = |EC2w3(t, C2)σ2(H2(t,x, C2))|
≤ K|EC2w3(t, C2)| ≤ ess sup

C2

|w3(t, C2)|

• |H2(x, c2;W (t))| = |EC1w2(t, C1, c2)σ1(H1(t,x, C1))|
≤ ess sup

C1,C2

|w2(t, C1, C2)σ1(H1(x, C1;W (t)))|

≤ K ess sup
C1,C2

|w2(t, C1, C2)|

• |∆W
3 (x, c2;W (t))| = |∂2R(y; f(x;W (t)))σ2(H2(x, c2;W (t)))| ≤ K

• |∆H
2 (x, c2;W (t))| = |∂2R(y; f(x;W (t)))w3(t, c2)σ

′
2(H2(x, c2;W (t)))|

≤ ess sup
C2

|w3(t, C2)σ
′
2(H2(x, C2;W (t)))| ≤ K ess sup

C2

|w3(t, C2)|

• |∆W
2 (x, c1, c2;W (t))| = |∆H

2 (x, c2;W (t))σ2(H1(x, c1;W (t)))|
≤ K ess sup

C2

|∆H
2 (x, C2;W (t))| ≤ K ess sup

C2

|w3(t, C2)|

• |∆H
1 (x, c1;W (t))| = |EC2∆

H
2 (x, C2;W (t))w2(t, c1, C2)σ

′
1(H1(x, c1;W (t)))|

≤ ess sup
C2

|∆H
2 (x, C2;W (t))| ess sup

C1,C2

|w2(t, C1, C2)| ess sup
C1

|σ′
1(H1(x, C1;W (t)))|

≤ K ess sup
C2

|w3(t, C2)| ess sup
C1,C2

|w2(t, C1, C2)|

• ∥∆W
1 (x, c1;W (t))∥2 = ∥∆H

1 (x, c1;W (t))x∥2 ≤ ess sup
C1

|∆H
1 (x, C1;W (t))|∥x∥2

≤ K ess sup
C2

|w3(t, C2)| ess sup
C1,C2

|w2(t, C1, C2)|

2. We have that, for any t ≤ T ,

|w3(t, c2)| ≤ |w3(0, c2)|+ γ

∫ t

0
(|w3(0, c2)|+ |w3(s, c2)|) ds

+

∫ t

0

∫ s

0
|Ex∆

W
3 (u,x, c2)| du ds

≤ K +KγT +KT 2 + γ

∫ t

0
|w3(s, c2)| ds

≤ (K +KγT +KT 2)eγT := K3,3(γ, T ),

17
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which readily gives the first claim. Next, we write

|w2(t, c1, c2)| ≤ |w2(0, c1, c2)|+ γ

∫ t

0
(|w2(0, c1, c2)|+ |w2(s, c1, c2)|) ds

+

∫ t

0

∫ s

0
|Ex∆

W
2 (x, c1, c2;W (u))| du ds

≤ K +KγT + γ

∫ t

0
|w2(s, c1, c2)| ds+K3,3(γ, T )T

2,

which by Gronwall’s lemma, implies that

ess sup
C1,C2

|w2(t, C1, C2)| ≤ (K +KγT +K3,3(γ, T )T
2)eKT := K3,2(γ, T ).

3. For the Lipschitz continuity argument, we have

• |H1(x, c1;W (t))−H1(x, c1; W̃ (t))| = |xT (w1(t, c1)− w̃1(t, c1))|
≤ K∥w1(t, c1)− w̃1(t, c1)∥2

• |H2(x, c2;W (t))−H2(x, c2; W̃ (t))|
= |EC1w2(t, C1, c2)σ1(w1(t, C1)

Tx)− EC1w̃2(t, C1, c2)σ1(w̃1(t, C1)
Tx)|

≤ K ess sup
C1

(|w2(t, C1, c2)| ∥w1(t, C1)− w̃1(t, C1)∥2 + |w2(t, C1, c2)− w̃2(t, C1, c2)|)

• |f(x;W (t))− f(x; W̃ (t))|
≤ |EC2w3(t, C2)σ2(H2(x, C2;W (t)))− EC2w̃3(t, C2)σ2(H2(x, C2; W̃ (t)))|
≤ K ess sup

C1,C2

(|w3(t, C2)| · |w2(t, C1, C2)| · ∥w1(t, C1)− w̃1(t, C1)∥2

+ |w3(t, C2)| · |w2(t, C1, C2)− w̃2(t, C1, C2)|+ |w3(t, C2)− w̃3(t, C2)|)

• |∆W
3 (z, c2;W (t))−∆W

3 (z, c2; W̃ (t))|
= |∂2R(y, f(x,W (t)))

· σ2(H2(x, c2;W (t)))− ∂2R(y, f(x, W̃ (t)))σ2(H2(x, c2; W̃ (t)))|

≤ K
(
|H2(x, c2;W (t))−H2(x, c2; W̃ (t))|+ |f(x;W (t))− f(x; W̃ (t))|

)
• |∆H

2 (z, c2;W (t))−∆H
2 (z, c2; W̃ (t))|

= |∂2R(y, f(x,W (t)))w3(t, c2)σ
′
2(H2(x, c2;W (t)))

− ∂2R(y, f(x, W̃ (t)))w̃3(t, c2)σ
′
2(H2(x, c2; W̃ (t)))|

≤ K|w3(t, c2)| · |H2(x, c2;W (t))−H2(x, c2; W̃ (t))|+K|w3(t, c2)− w̃3(t, c2)|
+K|w3(t, c2)| · |f(x;W (t))− f(x; W̃ (t))|

• |∆W
2 (z, c1, c2;W (t))−∆W

2 (z, c1, c2; W̃ (t))|
= |∆H

2 (z, c2;W (t))σ1(w1(t, c1)
Tx)−∆H

2 (z, c2; W̃ (t))σ1(w̃1(t, c1)
Tx)|

≤ K|∆H
2 (x, c2;W (t))−∆H

2 (z, c2; W̃ (t))|
+K|∆H

2 (z, c2;W (t))| · ∥w1(t, c1)− w̃1(t, c1)∥2

18



MEAN-FIELD ANALYSIS FOR HEAVY BALL METHODS

• ∥∆W
1 (z, c1;W (t))−∆W

1 (z, c1; W̃ (t))∥2
≤ K|EC2∆

H
2 (z, C2;W (t))w2(t, c1, C2)σ

′
1(w1(t, c1)

Tx)

− EC2∆
H
2 (z, C2; W̃ (t))w2(t, c1, C2)σ

′
1(w̃1(t, c1)

Tx)|
≤ K|EC2

[
∆H

2 (z, C2;W (t))w2(t, c1, C2)
]
| · ∥w1(t, c1)− w̃1(t, c1)∥2

+K|EC2

[
∆H

2 (z, C2; W̃ (t))w̃2(t, c1, C2)−∆H
2 (z, C2;W (t))w2(t, c1, C2)

]
|.

Appendix D. Existence and uniqueness of the mean-field limit

D.1. Two-layer networks

In this section, we prove the existence and uniqueness of the mean-field limit for two-layer networks.
We recall the mean-field ODE again here:

dθ(t) = r(t)dt,

dr(t) =
(
−γr(t)−∇θΨ(θ(t); ρθ(t))

)
dt. (32)

The proof follows from constructing a Picard type of iteration, similarly to [36, Section 4], [17,
Theorem C.4]. Below is an adaptation of the strategy in [39, Theorem 1.1]. We first write the
integral form of the mean-field ODE:

θ(t) = θ(0)− γ

∫ t

0
(θ(s)− θ(0)) ds−

∫ t

0

∫ s

0
∇θΨ(θ(u); ρθ(u)) du ds, (33)

r(t) = r(0)− γ(θ(t)− θ(0))−
∫ t

0
Ψ(θ(s); ρθ(s)) ds, (34)

where ρ(t) is the law of (θ(t), r(t)), and we use ρθ(t), ρr(t) to denote the θ and r marginals,
respectively. We define the space P2(RD×RD) to be the space of probability measures on RD×RD

equipped with Wasserstein metric W2, and we have ρ(t) ∈ P2(RD × RD). We define the space
C
(
[0, T ],P2(RD × RD)

)
to be the space of continuous maps ρ(·;T ) : [0, T ] → P2(RD×RD). We

omit T when there’s no confusion. The space is equipped with the following metric: dT (ρ1, ρ2) =
supt∈[0,T ]W2(ρ1(t), ρ2(t)).

Note that the space
(
P2(RD × RD),W2

)
is a complete space [2, Theorem 8.7]. Thus for any

fixed 0 < T < ∞, the space
(
C
(
[0, T ],P2(RD × RD)

)
× dT

)
is also complete.

Next, we define the operator HT (·,θ(0)) : C
(
[0, T ],P2(RD × RD)

)
→ C

(
[0, T ],P2(RD × RD)

)
as follows:

HT (ρ1;θ(0)) := ρ̃, ρ̃(t) := {Law(θ̃(t), r̃(t))}t≤T

θ̃(t) = θ(0)− γ

∫ t

0
(θ̃(s)− θ(0)) ds−

∫ t

0

∫ s

0
∇θΨ(θ̃(u); ρθ1(u)) du ds, (35)

where θ(0) denotes the parameters of the mean-field ODE (33) at initialization, which means that
the stochastic process we defined in (35) is coupled with the mean-field ODE.
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Note that the ρθ1(t) in (35) is no longer the law of θ̃(t), but the input distribution. We use
HT (ρ(t)) to denote HT (ρ;θ(0))(t), that is the distribution of the solution (35) at time t. We omit
θ(0) when there is no confusion. The definition of HT can be interpreted as follows: it maps
ρ ∈ C

(
[0, T ],P2(RD × RD)

)
as input to output the law of (θ(t), r(t)) which evolves according to

the stochastic process induced by the probability measure ρ(t).
It is easy to see that the fixed point of HT is the solution of the non-linear dynamics (33). Thus,

our goal is to show that there exist a T0 such that HT0 has unique fixed point, or equivalently that
HT0 is a strict contraction.

Proposition 8 Under Assumptions (C1)-(C2), there exists a T0 only depending on K, γ and a
C(T0) ∈ (0, 1) such that, for all ρ1, ρ2 ∈ C

(
[0, T0],P2(RD × RD)

)
with the same initialization

(θ1(0), r1(0)) = (θ2(0), r2(0)), we have:

dT0(HT0 (ρ1) , HT0 (ρ2)) ≤ C(T0)dT0(ρ1, ρ2).

Proof We first fix any 0 < T<∞, and the space C
(
[0, T ],P2(RD × RD)

)
. Given ρ1, ρ2 ∈

C
(
[0, T ],P2(RD × RD)

)
, we define two dynamics as follows:

θ1(t) = θ1(0)− γ

∫ t

0
(θ1(s)− θ1(0)) ds−

∫ t

0

∫ s

0
∇θΨ(θ1(u); ρ

θ
1(u)) du ds,

θ2(t) = θ2(0)− γ

∫ t

0
(θ2(s)− θ2(0)) ds−

∫ t

0

∫ s

0
∇θΨ(θ2(u); ρ

θ
2(u)) du ds.

where θ1(t) =
(
w

(1)
1 , w

(1)
2

)
and θ2(t) =

(
w

(2)
1 , w

(2)
2

)
. We want to upper bound the difference

between these two dynamics, which will give us an upper bound on

dT (HT (ρ1) , HT (ρ2)).

For all t ∈ [0, T ], we have

∥θ1(t)− θ2(t)∥2 ≤ γ

∫ t

0
∥θ1(s)− θ2(s)∥2 ds

+

∫ t

0

∫ s

0
∥∇θΨ(θ1(u); ρ

θ
1(u))−∇θΨ(θ2(u); ρ

θ
2(u))∥2 du ds

Now, by Lemma 6, we have that

∥∇θΨ(θ1(t); ρ
θ
1(t))−∇θΨ(θ2(t); ρ

θ
2(t))∥2

≤K(1 + |w(1)
2 (t)|)

(
|w(1)

2 (t)− w
(2)
2 (t)|+ ∥w(1)

1 (t)−w
(2)
1 (t)∥2 +W2(ρ

θ
1(t), ρ

θ
2(t))

)
≤2K(1 +K2(γ, T ))

(
∥θ1(t)− θ2(t)∥2 + max

s∈[0,T ]
W2(ρ

θ
1(s), ρ

θ
2(s))

)
where θi(t) = (w

(i)
1 (t), w

(i)
2 (t)), i ∈ 1, 2

Thus we have that:

∥θ1(t)− θ2(t)∥2 ≤ 2K(1 +K2(γ, T ))T
2 max
t∈[0,T ]

W2(ρ
θ
1(t), ρ

θ
2(t)) + γ

∫ t

0
∥θ1(s)− θ2(s)∥2 ds

+ 2K(1 +K2(γ, T ))

∫ t

0

∫ s

0
∥θ1(u)− θ2(u)∥2 du ds
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Similarly for ∥r1(t)− r2(t)∥2, we have that:

∥r1(t)− r2(t)∥2 ≤ γ

∫ t

0
∥r1(s)− r2(s)∥2 ds+

∫ t

0
∥Ψ(θ1(s); ρ

θ
1(s))−Ψ(θ2(s); ρ

θ
2(s))∥2 ds

≤ 2K(1 +K2(γ, T ))T max
t∈[0,T ]

W2(ρ
θ
1(t), ρ

θ
2(t)) + γ

∫ t

0
∥r1(s)− r2(s)∥2 ds

+ 2K(1 +K2(γ, T ))

∫ t

0
∥θ1(s)− θ2(s)∥2 ds

Putting these two results together we have:∥∥∥∥(θ1(t)r1(t)

)
−
(
θ2(t)
r2(t)

)∥∥∥∥
2

≤ ∥θ1(t)− θ2(t)∥2 + ∥r1(t)− r2(t)∥2

≤ 4K(1 +K2(γ, T ))T
2 max
t∈[0,T ]

W2(ρ
θ
1(t), ρ

θ
2(t))

+ γ

∫ t

0
(∥θ1(s)− θ2(s)∥2 + ∥r1(s)− r2(s)∥2) ds

+ 4K(1 +K2(γ, T ))

∫ t

0

∫ s

0
∥θ1(u)− θ2(u)∥2 du ds

≤ 4K(1 +K2(γ, T ))T
2 max
t∈[0,T ]

W2(ρ
θ
1(t), ρ

θ
2(t)) + 2γ

∫ t

0

∥∥∥∥(θ1(s)r1(s)

)
−
(
θ2(s)
r2(s)

)∥∥∥∥
2

ds

+ 4K(1 +K2(γ, T ))

∫ t

0

∫ s

0

∥∥∥∥(θ1(u)r1(u)

)
−
(
θ2(u)
r2(u)

)∥∥∥∥
2

du ds

By Corollary 27, we have that:∥∥∥∥(θ1(t)r1(t)

)
−
(
θ2(t)
r2(t)

)∥∥∥∥
2

≤ 4K(1 +K2(γ, T ))T
2

(
1 + exp

(
4γ2 + 4K(1 +K2(γ, T ))T

2γ

))
max
t∈[0,T ]

W2(ρ
θ
1(t), ρ

θ
2(t))

Thus, we have that∥∥∥∥(θ1(t)r1(t)

)
−
(
θ2(t)
r2(t)

)∥∥∥∥
2

≤ T 2K(γ, T ) max
t∈[0,T ]

W2(ρ
θ
1(t), ρ

θ
2(t)),

which implies that

max
t∈[0,T ]

W2(HT (ρ1(t)), HT (ρ2(t))) ≤ T 2K(γ, T ) max
t∈[0,T ]

W2(ρ
θ
1(t), ρ

θ
2(t)),

where we set K(γ, T ) = 4K(1 +K2(γ, T ))
(
1 + exp 4γ2+4K(1+K2(γ,T ))T

4γ

)
.

Let C(T ) = T 2K(γ, T ). Then, we could always find a T0 such that C(T0) < 1 since C(0) = 0
and C(T ) is continuous in T , which finishes our proof.

By Banach’s fixed point theorem, there exist a T0 > 0 such that the mean-field ODE has a
unique solution in time interval [0, T0]. Now, we show the existence and uniqueness of the solution
of the mean-field ODE for any time period [0, T ].
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Theorem 9 Under Assumptions (C1)-(C2), for any T > 0, there exists a unique solution for the
mean-field ODE (22) in the interval [0, T ].

Proof The idea is to separate the time interval [0, T ] into subintervals of length T0, that is, we con-
sider the intervals [0, T0], [T0, 2T0], ..., [⌊ T

T0
⌋T0, T ] . Note that the contraction property we proved in

Proposition 8 only depends on the length of the time interval, so the proof can be done recursively.
That is:

1. In the interval [0, T0], (22) with initialization (θ(0), r(0)) has a unique solution {ρ(t)}t∈[0,T0].

2. In the interval [T0, 2T0], we consider (22) with initial distribution ρ(T0), and it has a unique
solution {ρ(t)}t∈[T0,2T0].

3. Recursively do the above steps until the interval [⌊ T
T0
⌋T0, T ].

Thus we have that, for any T > 0, there exists a unique solution for (22) in the interval [0, T ].

D.2. Three-layer networks

In this section, we prove the existence and the uniqueness of the mean-field ODE (3). The integral
form of the mean-field ODE is given by

w3(t, c2) = w3(0, c2)− γ

∫ t

0
(w3(s, c2)− w3(0, c2)) ds−

∫ t

0

∫ s

0
Ez∆

W
3 (u,x, c2) du ds,

(36)

w2(t, c1, c2) = w2(0, c1, c2)− γ

∫ t

0
(w2(s, c1, c2)− w2(0, c1, c2)) ds

−
∫ t

0

∫ s

0
Ez∆

W
2 (u, z, c1, c2) du ds, (37)

w1(t, c1) = w1(0, c1)− γ

∫ t

0
(w1(s, c1)−w1(0, c1)) ds−

∫ t

0

∫ s

0
Ez∆

W
1 (u, z, c1) du ds.

(38)

In order to prove the existence and the uniqueness, we follow the same Picard’s iteration arguments
as for the two-layers case. Given a neuronal embedding

{(Ω1 × Ω2,F1 ×F2,P1 × P2), w1(0, ·), w2(0, ·, ·), w3(0, ·)}

, we first define the following norm:

∥W ∥T = max ess sup
C1,C2

sup
t∈[0,T ]

{|w2(t, C1, C2)|, |w3(t, C2)|} (39)

where C1
i.i.d∼ P1, C2

i.i.d∼ P2

Next, we define the following metric for two sets of mean-field parameters:

DT (W , W̃ ) = max ess sup
C1,C2

sup
t∈[0,T ]

{
∥w̃1(t, C1)−w1(t, C1)∥2, (40)

|w̃2(t, C1, C2)− w2(t, C1, C2)|, |w̃3(t, C2)− w3(t, C2)|
}
. (41)
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Note that the metric we define above is not the metric induced by the norm, since in the definition
of the norm we only require the boundedness of w2 and w3.

We define the following functional space of the mean-field parameters:

WT (W (0)) = {{W̃ (t)}t∈[0,T ] : ∥W ∥T < ∞, W̃ (0) = W (0)}, (42)

which means that all the W̃ ∈ WT (W (0)) have the same initialization W (0). By Lemma 7,
we know that:

ess sup
C1,C2

|w2(t, C1, C2)| ≤ K3,2(γ, T ), ess sup
C2

|w3(t, C2)| ≤ K3,3(γ, T ). (43)

It is easy to see that the space WT (W (0)) is complete w.r.t. the metric DT (W , W̃ ). Let us define
the operator: HT : WT (W (0)) −→ WT (W (0)) as follows:

Input: {W (t)}t∈[0,T ]

Output: {W̃ (t)}t∈[0,T ], such that:

w̃3(t, c2) = w3(0, c2)− γ

∫ t

0
(w3(s, c2)− w3(0, c2)) ds−

∫ t

0

∫ s

0
Ez∆

W
3 (x, c2;W (u)) du ds,

(44)

w̃2(t, c1, c2) = w2(0, c1, c2)− γ

∫ t

0
(w2(s, c1, c2)− w2(0, c1, c2)) ds (45)

−
∫ t

0

∫ s

0
Ez∆

W
2 (z, c1, c2;W (u)) du ds, (46)

w̃1(t, c1) = w1(0, c1)− γ

∫ t

0
(w1(s, c1)−w1(0, c1))ds−

∫ t

0

∫ s

0
Ez∆

W
1 (z, c1;W (u))duds.

(47)

We aim to show the following proposition.

Proposition 10 Under Assumptions (A1)-(A2), there exists a T0 only depending on K, γ and
C(T0) ∈ (0, 1), such that, for all W 1,W 2 ∈ WT (W (0)), we have:

DT0(HT0(W
1), HT0(W

2)) ≤ C(T0)DT0(W
1,W 2). (48)

Proof For simplicity of notation, we denote the output of HT (W
1) to be W̃ 1, which is composed

of w̃1
3, w̃

1
2, w̃

1
1. The output of HT (W

2) is denoted similarly.
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By the definition of the mean-field ODE, we have that, for any t ≤ T ,

|w̃1
3(t, c2)− w̃2

3(t, c2)| ≤ γ

∫ t

0
|w1

3(s, c2)− w2
3(s, c2)| ds

+

∫ t

0

∫ s

0
Ez|∆W

3 (x, c2;W
1(u))−∆W

3 (x, c2;W
2(u))| du ds

|w̃1
2(t, c1, c2)− w̃2

2(t, c1, c2)| ≤ γ

∫ t

0
|w1

2(s, c1, c2)− w2
2(s, c1, c2)| ds

+

∫ t

0

∫ s

0
Ez|∆W

2 (x, c1, c2;W
1(u))−∆W

2 (x, c1, c2;W
2(u))| du ds

∥w̃1
1(t, c1)− w̃2

1(t, c1)∥2 ≤ γ

∫ t

0
∥w1

1(s, c1)− w2
1(s, c1)∥2 ds

+

∫ t

0

∫ s

0
Ez∥∆W

1 (x, c1;W
1(u))−∆W

1 (x, c1;W
2(u))∥2 du ds

By Lemma 7, we have that:

max{Ez|∆W
3 (x, c2;W

1(u))−∆W
3 (x, c2;W

2(u))|,
Ez|∆W

2 (x, c1, c2;W
1(u))−∆W

2 (x, c1, c2;W
2(u))|,

Ez∥∆W
1 (x, c1;W

1(u))−∆W
1 (x, c1;W

2(u))∥2} ≤ K(γ, T )Du(W
1,W 2).

Thus, we have:

Dt(W̃
1, W̃ 2) ≤ γ

∫ t

0
Ds(W

1,W 2) ds+K(γ, T )

∫ t

0

∫ s

u=0
Du(W

1,W 2) du ds

≤ (γt+ t2)K(γ, T )Dt(W
1,W 2),

which implies that

DT (W̃
1, W̃ 2) ≤ (γT + T 2)K(γ, T )DT (W

1,W 2). (49)

Since (γT + T 2)K(γ, T ) = 0 when T = 0, and (γT + T 2)K(γ, T ) is continuous in T , we can
pick a T0 such that (γT0 + T 2

0 )K(γ, T0) < 1, which finishes the proof.

Since WT (W (0)) is complete, by the Banach fixed point Theorem, there exists a unique fixed
point for the operator HT0 , which implies that the mean-field ODE (3) has a unique solution in
[0, T0]. By following the same argument of the proof of Theorem 9 (separate the interval [0, T ] into
sub-intervals of length T0 and successively apply Proposition 10 to each of them), we readily obtain
our main result concerning the existence and uniqueness of (3) in [0, T ].

Appendix E. Convergence to the mean-field limit – Two-layer networks

In this section, we prove the convergence to the mean-field limit for two-layer neural networks
(Theorem 5). Our proof’s structure is inspired from [26]. Before going into the arguments, we first
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recall the definition of the mean-field ODE and the stochastic heavy ball method (SHB) for two-
layer networks. Then, we define two auxiliary dynamics: the particle dynamics (PD) and the heavy
ball dynamics (HB).

First, recall the mean-field ODE as follows:

dθ(t) = r(t)dt,

dr(t) =
(
−γr(t)−∇θΨ(θ(t); ρθ(t))

)
dt, (50)

and the corresponding integral form

θ(t) = θ(0)− γ

∫ t

0
(θ(s)− θ(0)) ds−

∫ t

0

∫ s

0
∇θΨ(θ(u); ρθ(t)) du ds. (51)

The SHB dynamics is as follows:

θSHB(k + 1, j) = θSHB(k, j) + (1− γε)(θSHB(k, j)− θSHB(k − 1, j))

− ε2∇θΨ̂(z,θSHB(k, j); ρθSHB(k)), ∀j ∈ [n], (52)

where ρθSHB(k) =
1
n

∑n
j=1 δθ(k,j) is the empirical measure.

In order to describe the convergence to mean-field limit, we define the following particle dy-
namics (PD):

dθPD(t, j) = rPD(t, j)dt

drPD(t, j) =
(
−γrPD(t, j)−∇θΨ(θPD(t, j); ρθPD(t))

)
dt, ∀j ∈ [n], (53)

where ρθPD(t) =
1
n

∑n
j=1 δθPD(t,j) is the empirical distribution at time t. Furthermore, the heavy ball

(HB) dynamics is defined as

θHB(k + 1, j) = θHB(k, j) + (1− γε)(θHB(k, j)− θHB(k − 1, j))

− ε2∇θΨ(θHB(k, j); ρθHB(k)), ∀j ∈ [n]. (54)

We remark that (52), (53) and (54) have the same initialization, that is :

θPD(0, j) = θHB(0, j) = θSHB(0, j), ∀j ∈ [n].

Define the following distance metrics:

DT (θ,θ
PD) := max

j∈[n]
sup

t∈[0,T ]

∥∥θPD(t, j)− θ(t, j)
∥∥
2
, (55)

DT (θ
PD,θHB) := max

j∈[n]
sup

t∈[0,T ]

∥∥θHB(⌊t/ε⌋, j)− θPD(t, j)
∥∥
2
, (56)

DT,ε(θ
HB,θSHB) := max

j∈[n]
max

k∈⌊T/ε⌋
∥θHB(k, j)− θSHB(k, j)∥2. (57)
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E.1. Bound between mean-field ODE and particle dynamics

In this section, we bound the difference between the mean-field ODE defined in (51) and the particle
dynamics defined in (53), whose integral form is as follows:

θPD(t, j) = θPD(0, j)− γ

∫ t

0
(θPD(s, j)− θPD(0, j))ds−

∫ t

0

∫ s

0
∇θΨ(θPD(u, j); ρθPD(u))duds.

Proposition 11 Under Assumptions (C1) - (C2), we have that, with probability at least 1−exp(−δ2),

DT (θ,θ
PD) ≤ K(γ, T )

(
δ +

√
log n√
n

)
, (58)

where K(γ, T ) is a constant depending only on γ, T .

Before proving Proposition 11, we first prove the following lemma, which characterizes the
Lipschitz continuity of the mean-field ODE and the particle dynamics.

Lemma 12 Under Assumptions (C1) - (C2), there exists a universal constant K(γ, T ) depending
only on γ, T such that, for any t, τ > 0 such that t, t+ τ < T ,

∥θ(t+ τ)− θ(t)∥2 ≤ K(γ, T )τ,

W2(ρ
θ(t+ τ), ρθ(t)) ≤ K(γ, T )τ.

(59)

The same holds for the particle dynamics θPD(t, j), ∀j ∈ [n].

Proof We only prove the results for the mean-field ODE, and the proof for the particle dynamics
follows from the same arguments.

We first try to bound the increments ∥θ(t)−θ(0)∥2. By the definition of the mean-field dynam-
ics, we have that:

∥θ(t)− θ(0)∥2 ≤ γ

∫ t

0
∥θ(s)− θ(0)∥2 ds+

∫ t

0

∫ s

0
∥∇θΨ(θ(u); ρθ(u))∥2 du ds

≤ γ

∫ t

0
∥θ(s)− θ(0)∥2 ds+K1(γ, T ),

where in the last step we use that ∥∇θΨ(θ(u); ρθ(u))∥2 ≤ K1(γ, T ), which follows from Lemma
6. By Gronwall’s lemma, this implies that, for any t ≤ T ,

∥θ(t)− θ(0)∥2 ≤ K1(γ, T ) exp(γT ) := K2(γ, T ).

Next, by definition of the mean-field ODE, we have that:

∥θ(t+ τ)− θ(t)∥2 ≤ γ

∫ t+τ

t
∥θ(s)− θ(0)∥2 ds+

∫ t+τ

t

∫ s

0
∥∇θΨ(θ(u); ρθ(u))∥2 du ds.

Thus,

∥θ(t+ τ)− θ(t)∥2 ≤ K4(γ, T )τ,
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where we use that fact that

∥θ(s)− θ(0)∥2 ≤ K3(γ, T )∫ s

0
∥∇θ,Ψ(θ(u); ρθ(u))∥2 du ≤ K3(γ, T ).

For the Lipschitz continuity of ρθ, we just note that by definition of the W2 distance, we have:

W2(ρ
θ(t+ τ), ρθ(t)) ≤ E

[
∥θ(t+ τ)− θ(t)∥22

]1/2
.

Now we are ready to prove Proposition 11.
Proof In order to bound the difference, we first define n i.i.d mean-field dynamics:

θ(t, j) = θ(0, j)− γ

∫ t

0
(θ(s, j)− θ(0, j)) ds−

∫ t

0

∫ s

0
∇θΨ(θ(u, j); ρθ(u, j)) du ds,

where ρθ(t, j) is the law of θ(t, j), and we coupled the n i.i.d dynamics with the particle dynamics
at initialization, that is, we let:

θ(0, j) = θPD(0, j), ∀j ∈ [n].

We also define the empirical distribution of θ(t, j), that is: ρ̂θ(t) = 1
n

∑n
j=1 δθ(t,j). Since the n

mean-field dynamics are i.i.d, we have that ρθ(t, j) = ρθ(t), ∀j ∈ [n], thus we use the notation of
ρθ(t) to denote the the law of θ(t, j) for each j ∈ [n]. By Lemma 6 and Lemma 12, we know that:

sup
t∈[T ]

max
j∈[n]

∥w2(t, j)∥2 ≤ K(γ, T ),

sup
t∈[T ]

max
j∈[n]

∥θ(t+ τ, j)− θ(t, j)∥2 ≤ K(γ, T )τ.

We have that

∥θPD(t, j)− θ(t, j)∥2 ≤(1 + γt)∥θPD(0, j)− θ(0, j)∥2 + γ

∫ t

0
∥θPD(s, j)− θ(s, j)∥2 ds

+

∫ t

0

∫ s

0
∥∇θΨ(θPD(u, j); ρθPD(u))−∇θΨ(θ(u, j); ρθ(u))∥2 du ds,

and our goal is to bound:

sup
t∈[0,T ]

max
j∈[n]

∥θPD(t, j)− θ(t, j)∥2.

Now we aim to bound the quantity

sup
t∈[0,T ]

max
j∈[n]

∥∇θΨ(θPD(u, j); ρθPD(u, j))−∇θΨ(θ(u, j); ρθ(u))∥2.
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An application of the triangle inequality gives

∥∇θΨ(θ(u, j); ρθ(u))−∇θΨ(θPD(u, j); ρθPD(u, j))∥2
≤ ∥∇θΨ(θ(u, j); ρ̂θ(u))−∇θΨ(θ(u, j); ρθ(u))∥2 (60)

+ ∥∇θΨ(θ(u, j); ρ̂θ(u))−∇θΨ(θPD(u, j); ρθPD(u))∥2. (61)

Recall by definition that

∇w1Ψ(θ(u, j); ρθ(u)) = Ez

[
∂2R(y, f(x; ρθ(u)))w2(u, j)σ

′(w1(u, j)
Tx)x

]
,

∇w2Ψ(θ(u, j); ρθ(u)) = Ez

[
∂2R(y, f(x; ρθ(u)))σ(w1(u, j)

Tx)
]
.

Similarly,

∇w1Ψ(θ(u, j); ρ̂θ(u)) = Ez

[
∂2R(y, f(x; ρ̂θ(u)))w2(u, j)σ

′(w1(u, j)
Tx)x

]
,

∇w2Ψ(θ(u, j); ρ̂θ(u)) = Ez

[
∂2R(y, f(x; ρ̂θ(u)))σ(w1(u, j)

Tx)
]
.

For the term in (60) , we use concentration inequalities to give an upper bound. By the Lipschitz
continuity of ∂2R in Assumption (C1), we have

∥∇θΨ(θ(u, j); ρ̂θ(u))−∇θΨ(θ(u, j); ρθ(u))∥2

≤ K

∥∥∥∥Ez

(
w2(u, j)σ

′(w1(u, j)
Tx)x

σ(w1(u, j)
Tx)

)∥∥∥∥
2

|f(x; ρθ(u))− f(x; ρ̂θ(u))|

≤ K1(γ, T )|f(x; ρθ(u))− f(x; ρ̂θ(u))|.

For the term |f(x; ρ(u))− f(x; ρ̂θ(u))|, we have

|f(x; ρθ(u))− f(x; ρ̂θ(u))| =

∣∣∣∣∣∣ 1n
n∑

j=1

w2(u, j)σ(w1(u, j)
Tx)− Eρ(u)w2(u)σ(w1(u)

Tx)

∣∣∣∣∣∣ .
Note that, by Lemma 6, we know that∣∣w2(u, j)σ(w1(u, j)

Tx)− Eρ(u)w2(u)σ(w1(u)
Tx)

∣∣ ≤ K2(γ, T ).

By Lemma 24, we have that, with probability at least 1− exp(−n(δ′)2),∣∣∣∣∣ 1n
n∑

i=1

w2(u, j)σ(w1(u, j)
Tx)− Eρ(u)w2(u)σ(w1(u)

Tx)

∣∣∣∣∣ ≤ K2(γ, T )

(
1√
n
+ δ′

)
.

By Lemma 12, we know that∣∣∣∣∣ 1n
n∑

i=1

w2(u, j)σ(w1(u, j)
Tx)− Eρ(u)w2(u)σ(w1(u)

Tx)

∣∣∣∣∣
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is K(γ, T )-Lipschitz continuous in u. Thus, by taking a union bound over j ∈ [n] and t ∈{
0, η, ..., ⌊Tη ⌋η

}
, we have that, with probability at least 1− nT

η exp(−n(δ′)2),

max
j∈[n]

sup
t∈[0,T ]

∣∣∣∣∣ 1n
n∑

i=1

w2(u, j)σ(w1(u, j)
Tx)− Eρ(u)w2(u)σ(w1(u)

Tx)

∣∣∣∣∣
≤ K3(γ, T )

(
1√
n
+ δ′ + η

)
.

Take η = 1√
n

, δ′ =

√
δ2+log

(
n

3
2 T

)
n . Then, with probability at least 1− exp(−δ2),

max
j∈[n]

sup
t∈[0,T ]

∣∣∣∣∣ 1n
n∑

i=1

Eρ(u)w2(u)σ(w1(u)
Tx)− w2(u, j)σ(w1(u, j)

Tx)

∣∣∣∣∣
≤ K4(γ, T )

δ +
√
log n√
n

,

which implies that, for term (60),

max
j∈[n]

sup
t∈[0,T ]

∥∇θΨ(θ(u, j); ρ̂θ(u))−∇θΨ(θ(u, j); ρθ(u))∥2 ≤ K5(γ, T ))
δ +

√
log n√
n

,

with probability 1− exp(−δ2).
For the term in (61), we use the Lipschitz continuity of ∇θΨ. By Lemma 6, we have that, for

each j ∈ [n],

∥∇θΨ(θ(t, j); ρ̂θ(t))−∇θΨ(θPD(t, j); ρθPD(t))∥2 ≤ K6(γ, T )(Dt(θ,θ
PD) +W2(ρ̂

θ(t), ρθPD(t))).

Note that ρ̂θ(t), ρθPD(t) are discrete measures, thus we have:

W2(ρ̂
θ(t), ρθPD(t)) ≤

 1

n

n∑
j=1

∥θ(t, j)− θPD(t, j)∥22

1/2

≤ Dt(θ,θ
PD).

Hence,

∥∇θΨ(θ(t, j); ρ̂θ(t))−∇θΨ(θPD(t, j); ρθPD(t))∥2 ≤ K7(γ, T )Dt(θ,θ
PD).

Combining the above results, we have that, with probability 1− exp(−δ2),

Dt(θ,θ
PD) ≤ K8(γ, T )

δ +
√
log n√
n

+ γ

∫ t

0
Ds(θ,θ

PD)ds+K8(γ, T )

∫ t

0

∫ s

0
Du(θ,θ

PD)duds.

An application of Corollary 27 concludes the proof.
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E.2. Bound between particle dynamics and heavy ball dynamics

In this section, we bound the difference between the particle dynamics defined in (53) and the heavy
ball dynamics defined in (54). We recall that the distance we aim to bound is defined in (56). Note
that the heavy ball dynamics is a discretization of the particle dynamics. Thus we aim to bound the
difference at time point kε.

Proposition 13 Under Assumptions (C1)-(C2), there exist a universal constant K(γ, T ) depending
only on γ, T , such that

DT (θ
PD,θHB) ≤ K(γ, T )ε. (62)

Proof By the Taylor expansion, we have the following approximation for the particle dynamics:

θPD((k + 1)ε, j) = θPD(kε, j) + rPD(kε, j)ε+
1

2
∂tr

PD(kε, j)ε2 +O(ε3). (63)

Also by Taylor expansion we have:

rPD(kε, j)ε = θPD(kε, j)− θPD((k − 1)ε, j) +
1

2
∂tr

PD(kε, j)ε2 +O(ε3). (64)

By plugging (61) into (63), we have that

θPD((k + 1)ε, j) = θPD(kε, j) + θPD(kε, j)− θPD((k − 1)ε, j) + ∂tr
PD(kε, j)ε2 +O(ε3)

= θPD(kε, j) + θPD(kε, j)− θPD((k − 1)ε, j)

+

(
− γr(kε, j)−∇θΨ(θPD(kε, j); ρθPD(kε))

)
ε2 +O(ε3)

= θPD(kε, j) + (1− γε)(θPD(kε, j)− θPD((k − 1)ε, j))

−∇θΨ(θPD(kε, j); ρθPD(kε))ε
2 +O(ε3).

Now we get a discrete iteration equation for the particle dynamics, with an approximation error of
at most O(ε3). By accumulating the ∇θΨ(θPD(lε, j); ρθPD(lε)) term from l = 1, ..., k, we have

θPD(kε, j) = θPD(0, j)−
k−1∑
l=0

c
(k)
l (∇θΨ(θPD(lε, j); ρθPD(lε)) +O(ε)), (65)

where c
(k)
l = ε2

∑k−1−l
i=0 (1− γε)i = ε2 1−(1−γε)k

γε ≤ ε
γ .

The heavy ball dynamics can be written in a similar fashion:

θHB(kε, j) = θHB(0, j)−
k−1∑
l=0

c
(k)
l ∇θΨ(θHB(lε, j); ρθHB(lε)). (66)

Thus, we have that

∥θPD(kε, j)− θHB(kε, j)∥2

≤
k−1∑
l=0

c
(k)
l

(
∥∇θΨ(θPD(lε, j); ρθPD(lε))−∇θΨ(θHB(lε, j); ρθHB(lε))∥2 +O(ε)

)
.
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By Lemma 6, we have that

∥∇θΨ(θPD(lε, j); ρθPD(lε))−∇θΨ(θHB(lε, j); ρθHB(lε))∥2
≤ K1(γ, T )(∥θPD(lε, j)− θHB(lε, j)∥2 +W2(ρ

θ
PD(lε), ρ

θ
HB(lε))).

Since ρθPD(lε), ρ
θ
HB(lε)) are discrete distributions, we have that

W2(ρ
θ
PD(lε), ρ

θ
HB(lε))) ≤

 1

n

n∑
j=1

∥θPD(lε, j)− θHB(lε, j)∥22

1/2

≤ Dlε(θ
PD,θHB),

which implies that

∥∇θΨ(θPD(lε, j); ρθPD(lε))−∇θΨ(θHB(lε, j); ρθHB(lε))∥2 ≤ K2(γ, T )Dlε(θ
PD,θHB).

As a result, we have

Dkε(θ
PD,θHB) ≤ K2(γ, T )

ε

γ

k−1∑
l=1

(
Dlε(θ

PD,θHB) +O(ε)
)
.

Finally, an application of the discrete Gronwall’s lemma concludes the proof.

E.3. Bound between heavy ball dynamics and stochastic heavy ball dynamics

In this section, we bound the difference between the heavy ball dynamics defined in (54) and the
stochastic heavy ball dynamics defined in (52). We recall that the distance we aim to bound is
defined in (57). The manipulations of the previous section imply that the heavy ball dynamics can
be written as

θHB(k, j) = θHB(0, j)−
k−1∑
l=1

c
(k)
l ∇θΨ(θHB(l, j); ρθHB(l)). (67)

Similarly, the stochastic heavy ball dynamics can be written as

θSHB(k, j) = θSHB(0, j)−
k−1∑
l=0

c
(k)
l ∇θΨ̂(z(l),θSHB(l, j); ρθSHB(l)). (68)

Proposition 14 Under Assumptions (C1)-(C2), there exists a universal constant K(γ, T ) depend-
ing only on γ, T , such that, with probability 1− exp(−δ2),

DT,ε(θ
HB,θSHB) ≤ K(γ, T )

√
ε(
√
D + log n+ δ). (69)

Proof By using (67) and (68), we have∥∥θHB(k, j)− θSHB(k, j)
∥∥
2

≤

∥∥∥∥∥
k−1∑
l=0

c
(k)
l (∇θΨ(θHB(l, j); ρθHB(l))−∇θΨ̂(z(l),θSHB(l, j); ρθSHB(l)))

∥∥∥∥∥
2

.
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By triangle inequality, we have that∥∥∥∥∥
k−1∑
l=0

c
(k)
l (∇θΨ(θHB(l, j); ρθHB(l))−∇θΨ̂(z(l),θSHB(l, j); ρθSHB(l)))

∥∥∥∥∥
2

≤
k−1∑
l=0

c
(k)
l ∥∇θΨ̂(z(l),θSHB(l, j); ρθSHB(l))−∇θΨ̂(z(l),θHB(l, j); ρθHB(l))∥2 (70)

+

∥∥∥∥∥
k−1∑
l=0

c
(k)
l (∇θΨ̂(z(l),θHB(l, j); ρθHB(l))−∇θΨ(θHB(l, j); ρθHB(l)))

∥∥∥∥∥
2

.

(71)

For the term in (70), by the Lipschitz continuity of ∇θΨ̂, we obtain

∥∇θΨ̂(z(l),θSHB(l, j); ρθSHB(l))−∇θΨ̂(z(l),θHB(l, j); ρθHB(l))∥2
≤ K1(γ, T )(Dlε,ε(θ

HB,θSHB) +W2(ρ
θ
HB(l), ρ

θ
SHB(l))).

Since ρθHB, ρ
θ
SHB are discrete distributions, we have that

W2(ρ
θ
HB(l), ρ

θ
SHB(l)) ≤ Dlε,ε(θ

HB,θSHB).

Thus,

∥∇θΨ̂(z(l),θSHB(l, j); ρθSHB(l))−∇θΨ̂(z(l),θHB(l, j); ρθHB(l))∥2 ≤ K2(γ, T )Dlε,ε(θ
HB,θSHB).

For the term in (71), note that, since the z(l)’s are sampled i.i.d. at each step by definition, we
have

Ez(l)

[
∇θΨ̂(z(l),θHB(l, j); ρθHB(l))

]
= ∇θΨ(θHB(l, j); ρθHB(l)).

Thus,

∇θΨ̂(z(l),θHB(l, j); ρθHB(l))−∇θΨ(θHB(l, j); ρθHB(l))

is a martingale difference. By Lemma 6, we have that, for all l ∈ {1, ..., ⌊T/ε⌋},

∥∇θΨ̂(z(l),θHB(l, j); ρθHB(l))−∇θΨ(θHB(l, j); ρθHB(l))∥2 ≤ K3(γ, T ).

Hence, an application of Lemma 25 gives that, with probability at least 1− exp(−δ2),

max
l∈{1,...,⌊T/ε⌋}

∥∇θΨ̂(z(l),θHB(l, j); ρθHB(l))−∇θΨ(θHB(l, j); ρθHB(l))∥2 ≤ K4(γ, T )
√
ε(
√
D + δ).

By taking a union bounds on j ∈ [n], we have that, with probability at least 1− exp(−δ2),

max
j∈[n]

max
l∈{1,...,⌊T/ε⌋}

∥∇θΨ̂(z(l),θHB(l, j); ρθHB(l))−∇θΨ(θHB(l, j); ρθHB(l))∥2

≤ K4(γ, T )
√
ε(
√
D + log n+ δ).

By combining the above result, we conclude that

DT,ε(θ
HB,θSHB) ≤ K4(γ, T )

√
ε(
√

D + log n+ δ) +
K2(γ, T )

γ
ε

⌊T
ε
⌋∑

l=0

Dlε,ε(θ
HB,θSHB). (72)

Finally, an application of the discrete Gronwall’s lemma concludes the proof.
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E.4. Proof of Theorem 5

Proof The proof follows from combining Proposition 11, 13, 14, and the fact that:

DT (θ,θ
SHB) ≤ DT (θ,θ

PD) +DT (θ
PD,θHB) +DT,ε(θ

HB,θSHB).

Appendix F. Convergence to the mean-field limit – Three-layer networks

In this section, we prove the convergence of the training dynamics to the mean-field limit for a
three-layer neural network. Our proof’s structure is inspired from [28].

Before going into the proofs, let’s first recall the definition of the mean-field ODE and the
SHB dynamics, and then define two auxiliary dynamics, namely the HB dynamics and the particle
dynamics. For the convenience of further computation, we define these continuous dynamics in
integral form. We define the random variable corresponding to the stochastic heavy ball dynamics,
the heavy ball dynamics, the particle dynamics, and the mean-field ODE as W SHB,W HB,W PD,W
respectively.

The mean-field ODE (3) in integral form is the following:

w3(t, c2) = w3(0, c2)− γ

∫ t

0
(w3(s, c2)− w3(0, c2)) ds−

∫ t

0

∫ s

0
Ez∆

W
3 (z, c2;W (u)) du ds,

w2(t, c1, c2) = w2(0, c1, c2)− γ

∫ t

0
(w2(s, c1, c2)− w2(0, c1, c2)) ds

−
∫ t

0

∫ s

0
Ez∆

W
2 (z, c1, c2;W (u)) du ds,

w1(t, c1) = w1(0, c1)− γ

∫ t

0
(w1(s, c1)−w1(0, c1)) ds−

∫ t

0

∫ s

0
Ez∆

W
1 (z, c1;W (u)) du ds.

(73)

The SHB dynamics is as follows:

wSHB
3 (k + 1, j2) = wSHB

3 (k, j2) + (1− γε)(wSHB
3 (k, j2)− wSHB

3 (k − 1, j2))

− ε2∆W
3 (z(k), j2;W

SHB(k)),

wSHB
2 (k + 1, j1, j2) = wSHB

2 (k, j1, j2) + (1− γε)(wSHB
2 (k, j1, j2)− wSHB

2 (k − 1, j1, j2)),

− ε2∆W
2 (z(k), j1, j2;W

SHB(k))

wSHB
1 (k + 1, j1) = wSHB

1 (k, j1) + (1− γε)(wSHB
1 (k, j1)−wSHB

1 (k − 1, j1))

− ε2∆W
1 (z(k), j1;W

SHB(k)),

(74)
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where z(k) is the data point sampled at time step k. We define the particle dynamics as a continuous
dynamics without mean-field interaction:

wPD
3 (t, j2) = wPD

3 (0, j2)− γ

∫ t

0
(wPD

3 (s, j2)− wPD
3 (0, j2)) ds

−
∫ t

0

∫ s

0
Ez∆

W
3 (z, j2;W

PD(u)) du ds,

wPD
2 (t, j1, j2) = wPD

2 (0, j1, j2)− γ

∫ t

0
(wPD

2 (s, j1, j2)− wPD
2 (0, j1, j2)) ds

−
∫ t

0

∫ s

0
Ez∆

W
2 (z, j1, j2;W

PD(u)) du ds,

wPD
1 (t, j1) = wPD

1 (0, j1)− γ

∫ t

0
(wPD

1 (s, j1)−wPD
1 (0, j1)) ds

−
∫ t

0

∫ s

0
Ez∆

W
1 (z, j1;W

PD(u)) du ds.

(75)

We define the HB dynamics by replacing the stochastic gradient in the SHB dynamics by the
true gradient. That is:

wHB
3 (k + 1, j2) = wHB

3 (k, j2) + (1− γε)(wHB
3 (k, j2)− wHB

3 (k − 1, j2))

− ε2Ez∆
W
3 (z, j2;W

HB(k)),

wHB
2 (k + 1, j1, j2) = wHB

2 (k, j1, j2) + (1− γε)(wHB
2 (k, j1, j2)− wHB

2 (k − 1, j1, j2))

− ε2Ez∆
W
2 (z, j1, j2;W

HB(k)),

wHB
1 (k + 1, j1) = wHB

1 (k, j1) + (1− γε)(wHB
1 (k, j1)−wHB

1 (k − 1, j1))

− ε2Ez∆
W
1 (z, j1;W

HB(k)).

(76)

Note that the HB dynamics can be viewed as the discrete version of the PD dynamics. In order
to present our theoretical results, we define the following distance metrics to quantify the level of
correspondence of these dynamics:

DT (W ,W PD) = max sup
t∈[0,T ]

{
∥∥wPD

1 (t, j1)−w1(t, C1(j1))
∥∥
2
,∣∣wPD

2 (t, j1, j2)− w2(t, C1(j1), C2(j2))
∣∣ ,∣∣wPD

3 (t, j2)− w3(t, C2(j2))
∣∣ : j1 ∈ [n1], j2 ∈ [n2]}

(77)

DT (W
PD,W HB) = max sup

t∈[0,T ]
{
∥∥wHB

1 (⌊t/ε⌋, j1)−wPD
1 (t, j1)

∥∥
2
,∣∣wHB

2 (⌊t/ε⌋, j1, j2)− wPD
2 (t, j1, j2)

∣∣ ,∣∣wHB
3 (⌊t/ε⌋, j2)− wPD

3 (t, j2)
∣∣ : j1 ∈ [n1], j2 ∈ [n2]}

(78)
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DT,ε(W
HB,W SHB) = max max

k∈⌊T/ε⌋
{∥wHB

1 (k, j1)−wSHB
1 (k, j1)∥2,

|wHB
2 (k, j1, j2)− wSHB

2 (k, j1, j2)|,
|wHB

3 (k, j2)− wSHB
3 (k, j2)| : j1 ∈ [n1], j2 ∈ [n2]}

(79)

We acknowledge the abuse in notation from reusing DT for multiple metrics, which is done to
avoid proliferation of notation. It is clear that:

DT (W ,W SHB) ≤ DT (W ,W PD) +DT (W
PD,W HB) +DT,ε(W

HB,W SHB), (80)

where DT (W ,W SHB) is defined in (24).
In the following subsections, we bound the terms DT (W ,W PD), DT (W

PD,W HB) and finally
DT,ε(W

HB,W SHB).

F.1. Bound between mean-field ODE and particle dynamics

In this section, we bound the difference between the mean-field ODE defined in (73) and the particle
dynamics defined in (75). We recall that the distance we aim to bound is defined in (77).

Proposition 15 Under Assumptions (A1)-(A2), we have that, with probability at least 1−exp(−δ2),

DT (W ,W PD) ≤ K(γ, T )
√
nmin

(√
log nmax + δ

)
, (81)

where K(γ, T ) is a universal constant depending only on γ, T , nmin = min{n1, n2} and nmax =
max{n1, n2}.

In order to prove Proposition 15, we need the following auxiliary lemma, which characterizes
the Lipschitz continuity of the mean-field ODE and of the particle dynamics.

Lemma 16 Under Assumptions (A1)-(A2), there exists a universal constant K(γ, T ) depending
only on γ, T such that, for any t, τ > 0 with t, t+ τ ≤ T ,

ess sup
c2

|w3(t+ τ, c2)− w3(t, c2)| ≤ K(γ, T )τ,

ess sup
c1,c2

|w2(t+ τ, c1, c2)− w2(t, c1, c2)| ≤ K(γ, T )τ,

ess sup
c1

∥w1(t+ τ, c1)−w1(t, c1)∥2 ≤ K(γ, T )τ.

(82)

The same holds for the particle dynamics wPD
1 (t, j1), w

PD
2 (t, j1, j2), w

PD
3 (t, j2).

Proof We do the proof for w1(t, c1), and the same argument applies to w2(t, c1, c2), w3(t, c2).
First, we derive a bound on the increments up to time t, ∥w1(t, c1)−w1(0, c1)∥2. By the definition
of the mean-field ODE (73), we have that

w1(t, c1)−w1(0, c1) = −γ

∫ t

0
(w1(s, c1)−w1(0, c1)) ds−

∫ t

0

∫ s

0
Ez∆

W
1 (z, c1;W (u)) du ds,
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which implies that

∥w1(t, c1)−w1(0, c1)∥2 = γ

∫ t

0
∥w1(s, c1)−w1(0, c1)∥2 ds

+

∫ t

0

∫ s

0
∥Ez∆

W
1 (z, c1;W (u))∥2 du ds

≤ γ

∫ t

0
∥w1(s, c1)−w1(0, c1)∥2 ds+ T 2K1(γ, T ),

where in the last step we use that, for some constant K1(γ, T ) depending only on γ, T ,

∥Ez ess sup
c1

sup
u∈[0,T ]

∆W
1 (z, c1;W (u))∥2 ≤ K1(γ, T ),

which holds by Lemma 7. Thus, by Gronwall’s lemma, we have that

sup
t∈[0,T ]

∥w1(t, c1)−w1(0, c1)∥2 ≤ eγTT 2K1(γ, T ) := K2(γ, T ). (83)

Now, by using again the definition of the mean-field ODE (73), we have that:

∥w1(t+ τ, c1)−w1(t, c1)∥2

=

∥∥∥∥−γ

∫ t+τ

t
(w1(s, c1)−w1(0, c1)) ds−

∫ t+τ

t

∫ s

0
Ez∆

W
1 (z, c1;W (u)) du ds

∥∥∥∥
2

≤ γ sup
t∈[0,T ]

∥w1(t, c1)−w1(0, c1)∥2τ +K1(γ, T )Tτ

≤ K2(γ, T )τ +K1(γ, T )Tτ,

where in the second line we use that ∥Ez ess supc1 supu∈[0,T ]∆
W
1 (z, c1;W (u))∥2 ≤ K1(γ, T ) by

Lemma 7, and in the last passage we use (83). By setting K(γ, T ) = K2(γ, T ) +K1(γ, T )T , we
obtain the desired result and the proof is complete.

By the above Lemma 16 and Lemma 7, we immediately get the following corollary.

Corollary 17 Under Assumptions (A1)-(A2), there exists a universal constant K(γ, T ) depending
only on γ, T such that, for any t, τ > 0 with t, t+ τ ≤ T , the following functions

f(x;W (t)), H2(x, c2;W (t)), EC2

[
∆H

2 (z, C2;W (t))w2(t, c1, C2)
]

are K(γ, T )-Lipschitz continuous in t. The same holds for the particle dynamics, i.e., the functions

f(x;W (t)), H2(x, j2;W (t)),
1

n2

n2∑
j2=1

∆H
2 (z, j2;W (t))w2(t, j1, j2)

are K(γ, T )-Lipschitz continuous in t.
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Proof We do the proof for f(x;W (t)), and the same argument applies to the other cases. By
Lemma 7, we have that

|f(x;W (t+ τ))− f(x;W (t))|
≤ K ess sup

c1,c2
(|w3(t+ τ, c2)| · |w2(t+ τ, c1, c2)| · ∥w1(t+ τ, c1)−w1(t, c1)∥2

+ |w3(t+ τ, c2)| · |w2(t+ τ, c1, c2)− w2(t, c1, c2)|+ |w3(t+ τ, c2)− w3(t, c2)|).

By Lemma 16, we have that

max(∥w1(t+ τ, c1)−w1(t, c1)∥2, |w2(t+ τ, c1, c2)− w2(t, c1, c2)|, |w3(t+ τ, c2)− w3(t, c2)|)
≤ K(γ, T )τ.

Furthermore, by Lemma 7, we have that:

ess sup
c2

|w3(t+ τ, c2)| ≤ sup
t∈[0,T ]

ess sup
c2

|w3(t, c2)| ≤ K3,3(γ, T ),

ess sup
c1,c2

|w2(t+ τ, c1, c2)| ≤ sup
t∈[0,T ]

ess sup
c1,c2

|w2(t, c1, c2)| ≤ K3,2(γ, T ).

Thus, we conclude

|f(x;W (t+ τ))− f(x;W (t))| ≤ K(γ, T )τ,

which gives the desired result.

Now we are ready to prove Proposition 15.
Proof Let us recall that the quantity ∆W

3 is defined in (5). We start with computing the difference
in the term ∆W

3 :

|Ez∆
W
3 (z, C2(j2);W (t))− Ez∆

W
3 (z, j2;W

PD(t))|
≤Ez|∆W

3 (z, C2(j2);W (t))−∆W
3 (z, j2;W

PD(t))|
=Ez|∂2R(y, f(x;W (t)))σ2(H2(x, C2(j2);W (t)))

− ∂2R(y, f(x;W PD(t)))σ2(H2(x, j2;W
PD(t)))|

≤KEz|f(x;W (t))− f(x;W PD(t))|+K|H2(x, C2(j2);W (t))−H2(x, j2;W
PD(t))|,

(84)

where in the last inequality we use the boundedness and Lipschitz continuity of ∂2R and σ2 obtained
from Lemma 7.

Similarly, for ∆W
1 ,∆W

2 , we have that

|Ez∆
W
2 (z, C1(j1), C2(j2);W (t))− Ez∆

W
2 (z, j1, j2;W

PD(t))|
≤Ez|∆W

2 (z, C1(j1), C2(j2);W (t))−∆W
2 (z, j1, j2;W

PD(t))|
≤EzK|w3(t, C2(j2))| ·

(
|f(x;W (t))− f(x;W PD(t))|
+ |H2(x, C2(j2);W (t))−H2(x, j2;W

PD(t))|
)

+ |w3(t, C2(j2))| · ∥w1(t, C1(j1))−wPD
1 (t, j1)∥2 +K|w3(t, C2(j2))− wPD

3 (t, j2)|
≤EzK3,3(γ, T )

(
|f(x;W (t))− f(x;W PD(t))|

+ |H2(x, C2(j2);W (t))−H2(x, j2;W
PD(t))|

)
+K3,3(γ, T )∥w1(t, C1(j1))−wPD

1 (t, j1)∥2 +K|w3(t, C2(j2))− wPD
3 (t, j2)|,

(85)
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and that

|Ez∆
W
1 (z, C1(j1);W (t))− Ez∆

W
1 (z, j1;W

PD(t))|

≤ K · Ez

[∣∣∣EC2

[
∆H

2 (z, C2;W (t))w2(t, C1(j1), C2)
]

− 1

n2

n2∑
j2=1

∆H
2 (z, j2;W

PD(t))wPD
2 (t, j1, j2)

∣∣∣]
+K · Ez

[
|EC2∆

H
2 (z, C2;W (t))w2(t, C1(j1), C2)|

]
· ∥w1(t, C1(j1))−wPD

1 (t, j1)∥2

≤ K · Ez

[∣∣∣EC2

[
∆H

2 (z, C2;W (t))w2(t, C1(j1), C2)
]

− 1

n2

n2∑
j2=1

∆H
2 (z, j2;W

PD(t))wPD
2 (t, j1, j2)

∣∣∣]
+K(T, γ) · ∥w1(t, C1(j1))−wPD

1 (t, j1)∥2.

(86)

Here, we remark that the expectation EC2 [∆
H
2 (·, C2; ·)w2(·, ·, C2)] for the mean-field ODE corre-

sponds to the average 1
n2

∑n2
j2=1∆

H
2 (·, j2; ·)w2(·, ·, j2) for the particle dynamics. Now, our goal is

to upper bound the following quantities:

|f(x;W (t))− f(x;W PD(t))|,
|H2(x, C2(j2);W (t))−H2(x, j2;W

PD(t))|,∣∣∣∣∣∣EC2

[
∆H

2 (z, C2;W (t))w2(t, C1(j1), C2)
]
− 1

n2

n2∑
j2=1

∆H
2 (z, j2;W

PD(t))wPD
2 (t, j1, j2)

∣∣∣∣∣∣
To do so, we follow [28, Appendix C.2, Proof of Theorem 14, Claim 2]. Then, we have that, for

any δ1, δ2, δ3 > 0,

max

{
|f(x;W (t))− f(x;W PD(t))|,

max
j2

|H2(x, C2(j2);W (t))−H2(x, j2;W
PD(t))|,

max
j1

∣∣∣∣EC2

[
∆H

2 (z, C2;W (t))w2(t, C1(j1), C2)
]
− 1

n2

n2∑
j2=1

∆H
2 (z, j2;W

PD(t))wPD
2 (t, j1, j2)

∣∣∣∣
}

≤ K1(γ, T )
(
DT (W ,W PD) + δ1 + δ2 + δ3

)
with probability at least

1−
(
n2

δ1
exp

{
− n1δ

2
1

K1(γ, T )

}
+

1

δ2
exp

{
− n2δ

2
2

K1(γ, T )

}
+

n1

δ3
exp

{
− n2δ

2
3

K1(γ, T )

})
.

By Corollary 17, we know that f(x;W (t)), H2(x, c2;W (t)), EC2

[
∆H

2 (z, C2;W (t))w2(t, c1, C2)
]

are K(γ, T )-Lipschitz continuous, and the corresponding quantities for the particle dynamics are
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also K(γ, T )-Lipschitz continuous. Thus, by taking a union bound on t ∈ {0, η, ..., ⌊T/η⌋}, we
have

max sup
t∈[0,T ]

{
|f(x;W (t))− f(x;W PD(t))|,

max
j2

|H2(x, C2(j2);W (t))−H2(x, j2;W
PD(t))|,

max
j1

∣∣∣∣EC2

[
∆H

2 (z, C2;W (t))w2(t, C1(j1), C2)
]

− 1

n2

n2∑
j2=1

∆H
2 (z, j2;W

PD(t))wPD
2 (t, j1, j2)

∣∣∣∣
}

≤ K2(γ, T )
(
DT (W ,W PD) + δ1 + δ2 + δ3 + η

)
,

with probability at least

1− T

η

(
n2

δ1
exp

{
− n1δ

2
1

K2(γ, T )

}
+

1

δ2
exp

{
− n2δ

2
2

K2(γ, T )

}
+

n1

δ3
exp

{
− n2δ

2
3

K2(γ, T )

})
.

In particular, we pick

η =
1

√
nmax

, δ1 =
K3(γ, T )√

n1

(√
log nmax + δ

)
, δ2 = δ3 =

K3(γ, T )√
n2

(√
log nmax + δ

)
.

Then,

max sup
t∈[0,T ]

{
|f(x;W (t))− f(x;W PD(t))|,

max
j2

|H2(x, C2(j2);W (t))−H2(x, j2;W
PD(t))|,

max
j1

∣∣∣∣EC2

[
∆H

2 (z, C2;W (t))w2(t, C1(j1), C2)
]
− 1

n2

n2∑
j2=1

∆H
2 (z, j2;W

PD(t))wPD
2 (t, j1, j2)

∣∣∣∣
}

≤ K4(γ, T )

(
DT (W ,W PD) +

K4(γ, T )√
nmin

(√
log nmax + δ

))
(87)

with probability at least 1− exp(−δ2).
Next, we combine (87) with (84), (85) and (86) to provide high-probability bounds on ∆W

3 ,
∆W

2 , ∆W
1 . By recalling the definition of the mean-field ODE (73) and the analogous definition of the

particle dynamics (75), we finally obtain that, for all t ≤ T , with probability at least 1− exp(−δ2),

Dt(W ,W PD) ≤ K(γ, T )
√
nmin

(√
log nmaxT + δ

)
+ γ

∫ t

0
Ds(W ,W PD) ds

+

∫ t

0

∫ s

0
Du(W ,W PD) du ds.

An application of Corollary 27 gives the desired result (81) and concludes the proof.
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F.2. Bound between particle dynamics and heavy ball dynamics

In this part we bound the difference between the particle dynamics defined in (75) and the heavy
ball dynamics defined in (76). We recall that the distance we aim to bound is defined in (78).

Proposition 18 Under Assumptions (A1)-(A2), there exists a universal constant K(γ, T ) depend-
ing only on γ, T such that

DT (W
PD,W HB) ≤ K(γ, T )ε. (88)

Proof Note that the heavy ball dynamics is just a discretization of the particle dynamics, so we first
bound the difference at each time point kε. By a second order Taylor expansion, we have the fol-
lowing approximation for the particle dynamics. We do the computation for w3 as a representative,
and the proofs for w1, w2 are the same.

We have that

wPD
3 ((k + 1)ε, j2) = wPD

3 (kε, j2) + ∂tw
PD
3 (kε, j2)ε+

1

2
∂2
tw

PD
3 (kε, j2)ε

2 +O(ε3). (89)

Also by Taylor expansion, we have that

∂tw
PD
3 (kε, j2)ε = wPD

3 (kε, j2)− wPD
3 ((k − 1)ε, j2) +

1

2
∂2
tw

PD
3 (kε, j2)ε

2 +O(ε3). (90)

By plugging (90) into (89), we obtain

wPD
3 ((k + 1)ε, j2) = wPD

3 (kε, j2) + wPD
3 (kε, j2)− wPD

3 ((k − 1)ε, j2) + ∂2
tw

PD
3 kε, j2)ε

2 +O(ε3)

= wPD
3 (kε, j2) + wPD

3 (kε, j2)− wPD
3 ((k − 1)ε, j2) + (−γ∂tw

PD
3 (ε, j2)

− Ez∆
W
3 (z, j2;W

PD(kε)))ε2 +O(ε3)

= wPD
3 (kε, j2) + (1− γε)(wPD

3 (kε, j2)− wPD
3 ((k − 1)ε, j2))

− Ez∆
W
3 (z, j2;W

PD(kε))ε2 +O(ε3),

where in the last step we use again (90). By unrolling the recursion, we can write the particle
dynamics in the following form:

wPD
3 (kε, j2) = wPD

3 (0, j2)−
k−1∑
l=0

c
(k)
l Ez∆

W
3 (z, j2;W

PD(lε)) +O(ε),

where

c
(k)
l = ε2

k−1−l∑
i=0

(1− γε)i =
1− (1− γε)k−l

γε
ε2 ≤ ε

γ
.

Similarly for w2,w1, we have:

wPD
2 (kε, j1, j2) = wPD

2 (0, j1, j2)−
k−1∑
l=0

c
(k)
l Ez∆

W
2 (z, j1, j2;W

PD(lε)) +O(ε),

wPD
1 (kε, j1) = wPD

1 (0, j1)−
k−1∑
l=0

c
(k)
l Ez∆

W
1 (z, j1;W

PD(lε)) +O(ε).
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We can write analogous expressions for the heavy ball dynamics:

wHB
3 (k, j2) = wHB

3 (0, j2)−
k−1∑
l=0

c
(k)
l Ez∆

W
3 (z, j2;W

HB(l)),

wHB
2 (k, j1, j2) = wHB

2 (0, j1, j2)−
k−1∑
l=0

c
(k)
l Ez∆

W
2 (z, j1, j2;W

HB(l)),

wHB
1 (k, j1) = wHB

1 (0, j1)−
k−1∑
l=0

c
(k)
l Ez∆

W
1 (z, j1;W

HB(l)).

(91)

Let us define the following notation, for k ∈
{
1, ..., ⌊Tε ⌋

}
,

DT (W
PD,W HB; k) = max{∥wHB

1 (k, j1)−wPD
1 (kε, j1)∥2,

|wHB
2 (k, j1, j2)− wPD

2 (kε, j1, j2)|,
|wHB

3 (k, j2)− wPD
3 (kε, j2)| : j1 ∈ [n1], j2 ∈ [n2]}}.

Recall that, by construction, wPD
3 (0, j2) = wHB

3 (0, j2), wPD
2 (0, j1, j2) = wHB

2 (0, j1, j2) and
wPD

1 (0, j1) = wHB
1 (0, j1) for all j1, j2. Thus, by computing the difference between wPD

1 , wPD
2 , wPD

3

and wHB
1 , wHB

2 , wHB
3 , we have that DT (W

PD,W HB; k) satisfies the following induction inequality:

DT (W
PD,W HB; k) ≤

k−1∑
l=0

c
(k)
l K1(γ, T )DT (W

PD,W HB; l) +O(ε), (92)

where we have used the Lipschitz continuity of ∆W
3 ,∆W

2 and ∆W
1 obtained via Lemma 7. Thus,

by the discrete Gronwall’s lemma, we obtain that, for any k ∈
{
1, ..., ⌊Tε ⌋

}
,

DT (W
PD,W HB; k) ≤ K2(γ, T )ε

Finally, an application of Lemma 16 gives that wPD
1 , wPD

2 , wPD
3 are K3(γ, T )-Lipschitz continuous

in time. Thus, for any t ≤ T ,

|wPD
3 (t, j2)− wHB

3 (⌊t/ε⌋, j2)| ≤ |wPD
3 (t, j2)− wPD

3 (⌊t/ε⌋ε, j2)|
+ |wPD

3 (⌊t/ε⌋ε, j2)− wHB
3 (⌊t/ε⌋, j2)|

≤ |wPD
3 (⌊t/ε⌋ε, j2)− wHB

3 (⌊t/ε⌋, j2)|+K3(γ, T )ε.

Similar results hold also for |wPD
2 (t, j1, j2)−wHB

2 (⌊t/ε⌋, j1, j2)| and |wPD
1 (t, j1)−wHB

1 (⌊t/ε⌋, j1)|.
As a result, we conclude that

DT (W
PD,W HB) ≤ max

k∈{1,...,⌊T
ε
⌋}

DT (W
PD,W HB; k) +K3(γ, T )ε ≤ K(γ, T )ε,

which gives the desired result.
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F.3. Bound between heavy ball dynamics and stochastic heavy ball dynamics

In this part we bound the difference between the heavy ball dynamics defined in (76) and the stochas-
tic heavy ball dynamics defined in (74). We recall that the distance we aim to bound is defined in
(79).

Proposition 19 Under Assumptions (A1)-(A2), we have that, with probability at least 1−exp(−δ2),

DT,ϵ(W
HB,W SHB) ≤ K(γ, T )

√
ε(
√
D + log(n1n2) + δ), (93)

where K(γ, T ) is a universal constant depending only on γ, T .

Before proving Proposition 19, we state and prove a result concerning the boundedness of the
SHB dynamics.

Lemma 20 Under Assumptions (A1)-(A2), we have that, for any k ∈ {1, . . . , ⌊Tε ⌋},

|wSHB
3 (k, j2)| ≤ K

(
1 +

1

γ

)
T,

|wSHB
2 (k, j1, j2)| ≤ K

(
1 +

1

γ

)(
1 +

T 2

γ

)
,

where K is a universal constant.

Proof By following passages analogous to those leading to (91), we have that the SHB dynamics
can be written as

wSHB
3 (k, j2) = wSHB

3 (0, j2)−
k−1∑
l=0

c
(k)
l ∆W

3 (z(l), j2;W
SHB(l)),

wSHB
2 (k, j1, j2) = wSHB

2 (0, j1, j2)−
k−1∑
l=0

c
(k)
l ∆W

2 (z(l), j1, j2;W
SHB(l)).

(94)

Recall that

∆W
3 (z(l), j2;W

SHB(l)) = ∂2R(y(l), f(x(l);W SHB(l))) · σ2(H2(x(l), j2;W
SHB(l))),

which implies that

|∆W
3 (z(l), j2;W

SHB(l))| = |∂2R(y(l), f(x(l);W SHB(l))) · σ2(H2(x(l), j2;W
SHB(l)))| ≤ K.

Thus, we have

|wSHB
3 (k, j2)| ≤ |wSHB

3 (0, j2)|+
k−1∑
l=0

c
(k)
l K ≤ K +

kε

γ
K ≤ K

(
1 +

1

γ

)
T,

where in the last step we use that kε ≤ T .
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For |wSHB
2 (k, j1, j2)|, we recall that

|∆W
2 (z(l), j1, j2;W

SHB(l))|
=|∂2R(y(l), f(x(l);W SHB(l))) · wSHB

3 (l, j2) · σ′
2(H2(x(l), j2;W

SHB(l)))σ1((w
SHB
1 (l, j1))

Tx(l))|
≤K|wSHB

3 (l, j2)|.

Thus, we have

|wSHB
2 (k, j1, j2)| ≤ |wSHB

2 (0, j1, j2)|+
k−1∑
l=0

c
(k)
l |wSHB

3 (l, j2)|

≤ K +K

(
1 +

1

γ

)
T
kε

γ

≤ K

(
1 +

1

γ

)(
1 +

T 2

γ

)
,

which gives the desired result.

At this point, we are ready to prove Proposition 19.
Proof Throughout this argument, we fix ε and consider k ∈ ⌊Tε ⌋. Recall that the HB and SHB
dynamics can be written as in (91) and (94), respectively. Furthermore,

wSHB
1 (k, j1) = wSHB

1 (0, j1)−
k−1∑
l=0

c
(k)
l ∆W

1 (z(l), j1;W
SHB(l)). (95)

Recall that, by construction, wHB
3 (0, j2) = wSHB

3 (0, j2), wHB
2 (0, j1, j2) = wSHB

2 (0, j1, j2) and
wHB

1 (0, j1) = wSHB
1 (0, j1) for all j1, j2. Thus, by computing the difference between the expres-

sions in (91) and (94)-(95), we have

|wHB
3 (k, j2)− wSHB

3 (k, j2)| =

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆

W
3 (z, j2;W

HB(l))]−∆W
3 (z(l), j2;W

SHB(l))
)∣∣∣∣∣

≤

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆

W
3 (z, j2;W

HB(l))]− Ez[∆
W
3 (z, j2;W

SHB(l))]
)∣∣∣∣∣
(96)

+

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆

W
3 (z, j2;W

SHB(l))]−∆W
3 (z(l), j2;W

SHB(l))
)∣∣∣∣∣ ,

(97)
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|wHB
2 (k, j1, j2)− wSHB

2 (k, j1, j2)| (98)

=

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆

W
2 (z, j1, j2;W

HB(l))]−∆W
2 (z(l), j1, j2;W

SHB(l))
)∣∣∣∣∣

≤

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆

W
2 (z, j1, j2;W

HB(l))]− Ez[∆
W
2 (z, j1, j2;W

SHB(l))]
)∣∣∣∣∣ (99)

+

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆

W
2 (z, j1, j2;W

SHB(l))]−∆W
2 (z(l), j1, j2;W

SHB(l))
)∣∣∣∣∣ , (100)

∥wHB
1 (k, j1)−wSHB

1 (k, j1)∥2 =

∥∥∥∥∥
k−1∑
l=0

c
(k)
l

(
Ez[∆

W
1 (z, j1;W

HB(l))]−∆W
1 (z(l), j1;W

SHB(l))
)∥∥∥∥∥

2

≤

∥∥∥∥∥
k−1∑
l=0

c
(k)
l

(
Ez[∆

W
1 (z, j1;W

HB(l))]− Ez[∆
W
1 (z, j1;W

SHB(l))]
)∥∥∥∥∥

2

(101)

+

∥∥∥∥∥
k−1∑
l=0

c
(k)
l

(
Ez[∆

W
1 (z, j1;W

SHB(l))]−∆W
1 (z(l), j1;W

SHB(l))
)∥∥∥∥∥

2

.

(102)

To bound (96), (99) and (101), we use the Lipschitz continuity of ∆W
3 , ∆W

2 and ∆W
1 , together with

the fact that c(k)l ≤ ε/γ. In particular,∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez∆

W
3 (z, j2;W

HB(l))− Ez∆
W
3 (z, j2;W

SHB(l))
)∣∣∣∣∣

≤ ε

γ

k−1∑
l=0

∣∣(Ez[∆
W
3 (z, j2;W

HB(l))]− Ez[∆
W
3 (z, j2;W

SHB(l))]
)∣∣

≤ K(γ, T )
ε

γ

k−1∑
l=0

Dlε,ε(W
HB,W SHB).

(103)

Similarly, we have∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆

W
2 (z, j1, j2;W

HB(l))]− Ez[∆
W
2 (z, j1, j2;W

SHB(l))]
)∣∣∣∣∣

≤ K(γ, T )
ε

γ

k−1∑
l=0

Dlε,ε(W
HB,W SHB),∥∥∥∥∥

k−1∑
l=0

c
(k)
l

(
Ez∆

W
1 (z, j1;W

HB(l))− Ez∆
W
1 (z, j1;W

SHB(l))
)∥∥∥∥∥

2

≤ K(γ, T )
ε

γ

k−1∑
l=0

Dlε,ε(W
HB,W SHB).

(104)
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To bound (102),(100) and (97), we first define the filtration F3(k) as the sigma-algebra generated by
({w3(0, j2)}j2∈[n2], z(0), ...,z(k)). We define the filtration F2(k),F1(k) in the same way. Recall
that, in a one-pass algorithm, we take i.i.d. samples at each step and, hence, we can write, for all
l ∈
{
1, ..., ⌊Tε ⌋

}
,

Ez(l)

[
∆W

3 (z(l), j2;W
SHB(l))

∣∣F3(l − 1)
]
= Ez∆

W
3 (z, j2;W

SHB(l)),

Ez(l)

[
∆W

2 (z(l), j1, j2;W
SHB(l))

∣∣F2(l − 1)
]
= Ez∆

W
2 (z, j1, j2;W

SHB(l)),

Ez(l)

[
∆W

1 (z(l), j1;W
SHB(l))

∣∣F1(l − 1)
]
= Ez∆

W
1 (z, j1;W

SHB(l)).

Clearly, we have that
{
∆W

3 (z(l), j2;W
SHB(l)), l ∈

{
1, ..., ⌊Tε ⌋

}}
are mutually independent, which

implies that

∆W
3 (z(l), j2;W

SHB(l))− Ez∆
W
3 (z, j2;W

SHB(l))

is a martingale difference with respect to the filtration F3(l). Thus,{ k−1∑
l=0

c
(k)
l ∆W

3 (z(l), j2;W
SHB(l))− Ez∆

W
3 (z, j2;W

SHB(l)) | k ∈
{
1, . . . , ⌊T

ε
⌋
}}

is a martingale (same for ∆W
2 and ∆W

1 ). Next, we show that the martingale differences are bounded,
so that we can use martingale convergence results to bound these terms.

Combining Lemma 20 with the same strategy of the a-priori estimations of Lemma 7, we have
the following upper bounds:

|Ez∆
W
3 (z, j2;W

SHB(k))−∆W
3 (z(k), j2;W

SHB(k))| ≤ K1,

|Ez∆
W
2 (z, j1, j2;W

SHB(k)−∆W
2 (z(k), j1, j2;W

SHB(k)| ≤ K1(γ, T ),

|Ez∆
W
1 (z, j1;W

SHB(k))−∆W
1 (z(k), j1;W

SHB(k))| ≤ K1(γ, T ).

Thus, an application of Lemma 25 gives

Pr

[
max

k∈⌊T/ε⌋

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez∆

W
3 (z, j2;W

SHB(l))−∆W
3 (z(l), j2;W

SHB(l))
)∣∣∣∣∣ ≥ K

√
Tϵ(1 + δ3)

]
≤ exp(−δ23),

Pr

[
max

k∈⌊T/ε⌋

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez∆

W
2 (z, j1, j2;W

SHB(l))−∆W
2 (z(l), j1, j2;W

SHB(l))
)∣∣∣∣∣

≥ K(γ, T )
√
Tϵ(1 + δ2)

]
≤ exp(−δ22),

Pr

[
max

k∈⌊T/ε⌋

∥∥∥∥∥
k−1∑
l=0

c
(k)
l

(
Ez∆

W
1 (z, j1;W

SHB(l))−∆W
1 (z(l), j1;W

SHB(l))
)∥∥∥∥∥

2

≥ K(γ, T )
√
Tϵ(

√
D + δ1)

]
≤ exp(−δ21).
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By taking a union bound over j1, j2, we have that, with probability at least 1− exp(−δ2),

max
j1,j2

max
k∈⌊T/ε⌋

{ ∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez∆

W
3 (z, j2;W

SHB(l))−∆W
3 (z(l), j2;W

SHB(l))
)∣∣∣∣∣ ,∣∣∣∣∣

k−1∑
l=0

c
(k)
l

(
Ez∆

W
2 (z, j1, j2;W

SHB(l))−∆W
2 (z(l), j1, j2;W

SHB(l))
)∣∣∣∣∣ ,∥∥∥∥∥

k−1∑
l=0

c
(k)
l

(
Ez∆

W
1 (z, j1;W

SHB(l))−∆W
1 (z(l), j1;W

SHB(l))
)∥∥∥∥∥

2

}
≤ K(γ, T )

√
Tϵ(
√
D log(n1n2) + δ).

Combining the results, we conclude that, with probability at least 1− exp(−δ2),

DT,ε(W
HB,W SHB) ≤ K(γ, T )

√
Tϵ(
√
D log(n1n2) + δ) +K(γ, T )

ε

γ

k−1∑
l=0

Dlε,ε(W
HB,W SHB).

An application of the discrete Gronwall’s lemma gives the desired result (93) and concludes the
proof.

F.4. Proof of Theorem 2

Proof The proof follows from combining Proposition 15, 18, 19 and the fact that:

DT (W ,W SHB) ≤ DT (W ,W PD) +DT (W
PD,W HB) +DT,ε(W

HB,W SHB).

Appendix G. Global convergence of the mean-field ODE

In this section, we aim to prove the global convergence result through the recipe below:

1. We show the following degenerate property for the mean-field ODE: there exist deterministic
functions w∗

1(·, ·) : R≥0 × RD −→ RD, w∗
2(·, ·, ·, ·) : R≥0 × RD × R × R −→ R, w∗

3(·, ·) :
R≥0 × R −→ R such that

w1(t, C1) = w∗
1(t,w1(0, C1)),

w2(t, C1, C2) = w∗
2(t,w1(0, C1), w2(0, C1, C2), w3(0, C2)),

w3(t, C2) = w∗
3(t, w3(0, C2)).

(105)

2. We show that (i) w∗
1(·, ·) is continuous in both arguments for any finite t, and that (ii) if

w1(0, C1) is full support, then w1(t, C1) is full support for any finite t.

3. Combining the argument that w1(t, C1) is full support for all finite t and the mode of conver-
gence assumption, we show that the mean-field ODE must convergence to the global mini-
mum.
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We first show the degenerate property of the mean-field ODE in the following lemma:

Lemma 21 Under Assumptions (A1)-(A2), there exist deterministic functions w∗
1(·, ·) : R≥0 ×

RD −→ RD, w∗
2(·, ·, ·, ·) : R≥0 × RD × R× R −→ R, w∗

3(·, ·) : R≥0 × R −→ R such that

w1(t, C1) = w∗
1(t,w1(0, C1)),

w2(t, C1, C2) = w∗
2(t,w1(0, C1), w2(0, C1, C2), w3(0, C2)),

w3(t, C2) = w∗
3(t, w3(0, C2)).

Proof We follow the proof in [28, Appendix D.2]. To shorten the notations, we make the following
definition: we define the sigma-algebras generated by

w1(0, C1)), (w1(0, C1), w2(0, C1, C2), w3(0, C2)) , w3(0, C2)

as S1, S123, S3 respectively. The lemma is equivalent to prove that w1(t, C1), w2(t, C1, C2), w3(t, C2)
are S1, S123, S3-measurable, respectively.

In order to prove the measurability result, we define a reduced dynamics as follows:

wRD
3 (t, c2) = wRD

3 (0, c2)− γ

∫ t

0
(wRD

3 (s, c2)− wRD
3 (0, c2)) ds

−
∫ t

0

∫ s

0
E
[
∆W

3 (z, C2;W (u))|S3

]
du ds,

wRD
2 (t, c1, c2) = wRD

2 (0, c1, c2)− γ

∫ t

0
(wRD

2 (s, c1, c2)− wRD
2 (0, c1, c2)) ds

−
∫ t

0

∫ s

0
E
[
∆W

2 (z, C1, C2;W (u))|S123

]
du ds,

wRD
1 (t, c1) = wRD

1 (0, c1)− γ

∫ t

0
(wRD

1 (s, c1)−wRD
1 (0, c1)) ds

−
∫ t

0

∫ s

0
E
[
∆W

1 (z, C1;W (u))|S1

]
du ds.

Note that the reduced dynamics wRD
1 , wRD

2 , wRD
3 is clearly S1, S123, S3-measurable. Furthermore,

the reduced dynamics is not self-contained, namely, the gradient terms E
[
∆W

3 (z, C2;W (t))|S3

]
,

E
[
∆W

2 (z, C1, C2;W (t))|S123

]
and E

[
∆W

1 (z, C1;W (t))|S1

]
are induced by the mean-field ODE

W (t).
In order to state the next result, we define the following metric :

DT (W ,W ′) = max
{

sup
t∈[0,T ]

ess sup
C1

∥w1(t, C1)−w′
1(t, C1)∥2,

sup
t∈[0,T ]

ess sup
C1,C2

|w2(t, C1, C2)− w′
2(t, C1, C2)|,

sup
t∈[0,T ]

ess sup
C2

|w3(t, C2)− w′
3(t, C2)|

}
.

Next, we aim to show that the reduced dynamics is equivalent to the mean-field ODE, i.e., for any
T > 0,

DT (W ,W RD) = 0.
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The key step is to prove that

ess sup sup
t∈[0,T ]

|E
[
∆W

3 (z, C2;W (t))|S3

]
− Ez∆

W
3 (z, C2;W (t))| ≤ K(γ, T )DT (W ,W RD),

(106)

ess sup sup
t∈[0,T ]

|E
[
∆W

2 (z, C1, C2;W (t))|S123

]
− Ez∆

W
2 (z, C1, C2;W (t))|

≤ K(γ, T )DT (W ,W RD), (107)

ess sup sup
t∈[0,T ]

∥E
[
∆W

1 (z, C1;W (t))|S1

]
− Ez∆

W
1 (z, C1;W (t))∥2 ≤ K(γ, T )DT (W ,W RD),

(108)

where K(γ, T ) is a universal constant depending only on T, γ. Here, |E
[
∆W

3 (z, C2;W (t))|S3

]
−

Ez∆
W
3 (z, C2;W (t))| is a random variable, and the ess sup in (106) is taken with respect to it. The

same remark applies to the ess sup in (107) and in (108), which are intended to be taken with respect
to the corresponding random variables.

We now prove that (106) holds. Note that

|E
[
∆W

3 (z, C2;W (t))|S3

]
− Ez∆

W
3 (z, C2;W (t))|

≤ |E
[
∆W

3 (z, C2;W (t))|S3

]
− E

[
∆W

3 (z, C2;W
RD(t))|S3

]
|

+ |E
[
∆W

3 (z, C2;W
RD(t))|S3

]
− Ez∆

W
3 (z, C2;W

RD(t))|
+ |Ez∆

W
3 (z, C2;W

RD(t))− Ez∆
W
3 (z, C2;W (t))|.

(109)

Using the Lipschitz-continuity of ∆W
3 , we have that:

|E
[
∆W

3 (z, C2;W (t))|S3

]
− E

[
∆W

3 (z, C2;W
RD(t))|S3

]
| ≤ K(γ, T )DT (W ,W RD),

|∆W
3 (z, C2;W

RD(t))−∆W
3 (z, C2;W (t))| ≤ K(γ, T )DT (W ,W RD).

(110)

By following the argument in [28, Appendix D.2] (which does not depend on the dynamics, but
only on the structure of the gradient), we have that Ez∆

W
3 (z, C2;W

RD(t)) is S3-measurable, i.e.,

|E
[
∆W

3 (z, C2;W
RD(t))|S3

]
− Ez∆

W
3 (z, C2;W

RD(t))| = 0. (111)

By combining (109), (110) and (111), we obtain that (106) holds. The arguments giving (107) and
(108) are analogous.

From this, we can compute the difference between the reduced dynamics and the mean-field
ODE as

DT (W ,W RD) ≤ γ

∫ T

0
Ds(W ,W RD) ds+K(γ, T )

∫ T

0

∫ s

0
Du(W ,W RD) dv ds,

which, after applying Corollary 27, gives that DT (W ,W RD) = 0. This implies that W = W RD

and, hence, w1(t, C1), w2(t, C1, C2), w3(t, C2) are S1, S123, S3-measurable, respectively.

Next, we show the continuity of the function w∗
1(·, ·) : R≥0 × RD −→ RD in both arguments.

48



MEAN-FIELD ANALYSIS FOR HEAVY BALL METHODS

Lemma 22 Under Assumptions (A1)-(A2), we have that, for all t ∈ [0, T ] and for all u1,u
′
1 ∈ RD,

∥w∗
1(t,u1)−w∗

1(t
′,u1)∥2 ≤ K(γ, T )|t− t′|, (112)

∥w∗
1(t,u1)−w∗

1(t,u
′
1)∥2 ≤ K(γ, T )∥u1 − u′

1∥2. (113)

Proof In order to prove the lemma, we first need to derive the dynamics that characterize the
evolution of the functions w∗

1(t,u1), w
∗
2(t,u1, u2, u3), w

∗
3(t, u3). This dynamics is induced by the

mean-field ODE, whose form we recall below:

w3(t, c2) = w3(0, c2)− γ

∫ t

0
(w3(s, c2)− w3(0, c2)) ds−

∫ t

0

∫ s

0
Ez∆

W
3 (z, c2;W (v)) dv ds,

(114)

w2(t, c1, c2) = w2(0, c1, c2)− γ

∫ t

0
(w2(s, c1, c2)− w2(0, c1, c2)) ds

−
∫ t

0

∫ s

0
Ez∆

W
2 (z, c1, c2;W (v)) dv ds,

(115)

w1(t, c1) = w1(0, c1)− γ

∫ t

0
(w1(s, c1)−w1(0, c1)) ds−

∫ t

0

∫ s

0
Ez∆

W
1 (z, c1;W (v)) dv ds.

(116)

Recall also that w3(t, c2) = w∗
3(t, w3(0, c2)). Thus, in order to get the dynamics of w∗

3(t, u3), we
replace w3(0, c2) by u3, w2(0, c1, c2) by u2, and w1(0, c1) by u1 into (114). By doing the same
replacements into (115) and (116) for w2(t, c1, c2) and w1(t, c1), respectively, we obtain

w∗
3(t, u3) = u3 − γ

∫ t

0
(w∗

3(s, u2)− u3) ds−
∫ t

0

∫ s

0
Ez∆

W
3 (v, z, u3) dv ds,

w∗
2(t,u1, u2, u3) = u2 − γ

∫ t

0
(w∗

2(s,u1, u2, u3)− u2)ds−
∫ t

0

∫ s

0
Ez∆

W
2 (v, z,u1, u2, u3)dvds,

w∗
1(t,u1) = u1 − γ

∫ t

0
(w∗

1(s,u1)− u1) ds−
∫ t

0

∫ s

0
Ez∆

W
1 (v,z,u1) dv ds,

where we have the following modified forward and backward paths:

H1(t,x,u1) = (w∗
1(t,u1))

Tx,

H2(t,x, u3) = Eu1∼ρ10,u2∼ρ20
w∗
2(t,u1, u2, u3)σ1(H1(t,x,u1)),

f(x;W (t)) = Eu3∼ρ30
w3(t, u3)H2(t,x, u3),

∆W
3 (t, z, u3) = ∂2R(y, f(x;W (t)))σ2(H2(t,x, u3)),

∆W
2 (t, z,u1, u2, u3) = ∂2R(y, f(x;W (t)))w3(t, u3)σ

′
2(H2(t,x, u3))σ1(H1(t,x,u1)),

∆W
1 (t, z,u1) = Eu2,u3

[
∂2R(y, f(x;W (t)))w3(t, u3)σ

′
2(H2(t,x, u3))

· w2(t,u1, u2, u3)σ
′
1(H1(t,x,u1))x

]
.
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Thus, we have that

∥w∗
1(t,u1)−w∗

1(t,u
′
1)∥2 ≤ (1 + γt)∥u1 − u′

1∥2 + γ

∫ t

0
∥w∗

1(s,u1)−w∗
1(s,u

′
1)∥2 ds

+

∫ t

0

∫ s

0
∥Ez∆

W
1 (v,z,u1)− Ez∆

W
1 (v, z,u′

1)∥2 dv ds. (117)

An application of Lemma 7 gives that

∥Ez∆
W
1 (v, z,u1)− Ez∆

W
1 (v, z,u′

1)∥2 ≤ K1(γ, T )(|w∗
2(v,u1, u2, u3)− w∗

2(v,u
′
1, u2, u3)|

+ ∥w∗
1(v,u1)−w∗

1(v,u
′
1)∥2).

(118)

Similarly for w∗
2, we have that

|w∗
2(t,u1, u2, u3)− w∗

2(t,u
′
1, u2, u3)| ≤ γ

∫ t

0
|w∗

2(s,u1, u2, u3)− w∗
2(s,u

′
1, u2, u3)| ds

+

∫ t

0

∫ s

0
∥Ez∆

W
2 (v, z,u1, u2, u3)− Ez∆

W
2 (v, z,u′

1, u2, u3)∥2 dv ds, (119)

and another application of Lemma 7 gives that

∥Ez∆
W
2 (v, z,u1, u2, u3)− Ez∆

W
2 (v, z,u′

1, u2, u3)∥2
≤ K2(γ, T )(|w∗

2(v,u1, u2, u3)− w∗
2(v,u

′
1, u2, u3)|+ ∥w∗

1(v,u1)−w∗
1(v,u

′
1)∥2).

(120)

By combining (117), (118), (119) and (120), we obtain

|w∗
2(t,u1, u2, u3)− w∗

2(t,u
′
1, u2, u3)|+ ∥w∗

1(t,u1)−w∗
1(t,u

′
1)∥2

≤ (1 + γt)∥u1 − u′
1∥2

+ γ

∫ t

0
(|w∗

2(s,u1, u2, u3)− w∗
2(s,u

′
1, u2, u3)|+ ∥w∗

1(s,u1)−w∗
1(s,u

′
1)∥2) ds

+K3(γ, T )

∫ t

0

∫ s

0
(|w∗

2(v,u1, u2, u3)− w∗
2(v,u

′
1, u2, u3)|+ ∥w∗

1(v,u1)−w∗
1(v,u

′
1)∥2) dv ds.

Thus, by Corollary 27, we have that:

|w∗
2(t,u1, u2, u3)− w∗

2(t,u
′
1, u2, u3)|+ ∥w∗

1(t,u1)−w∗
1(t,u

′
1)∥2 ≤ K4(γ, T )∥u1 − u′

1∥2,

which implies that ∥w∗
1(t,u1) − w∗

1(t,u
′
1)∥2 ≤ K4(γ, T )|u1 − u′

1|, and concludes the proof of
(113). The Lipschitz continuity (112) of w∗

1(t,u1) is already proved in Lemma 16.

At this point, we show that, if w1(0, c1) : Ω −→ RD has full support, then w∗
1(t,u1) has full

support.

Lemma 23 Under Assumptions (A1)-(A2) and (B1)-(B3), we have that w∗
1(t,u1) has full support

for any t < ∞.
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Proof By the continuity argument in Lemma 22, we have that

∥w∗
1(t,u1)− u1∥2 = ∥w∗

1(t,u1)−w∗
1(0,u1)∥2 ≤ K(γ, T )t, (121)

∥w∗
1(t,u1)−w∗

1(t,u
′
1)∥2 ≤ K(γ, T )∥u1 − u′

1∥2. (122)

We want to show that, for any x ∈ RD, there exist a v such that w∗
1(t,v) = x. For any x ∈ RD,

define a map gx(t,v) = x− (w∗
1(t,v)− v). It is easy to see that if v a fixed point of gx(t, ·), then

w∗
1(t,v) = x as

gx(t,v) = v ⇐⇒ x− (w∗
1(t,v)− v) = v ⇐⇒ w∗

1(t,v) = x.

By (121), we have that gx(t, ·) : RD −→ B(x,K(γ, T )t), where B(x,K(γ, T )t) is the closed ball
centered at x with radius K(γ, T )t. Now, if we restrict gx(t,v) on B(x,K(γ, T )t), we have that it
is a map from B(x,K(γ, T )t), which is a compact set, to itself. Furthermore, gx(t,v) is continuous
in v, since w∗

1(t,v) is continuous in v by (122). Thus, by the Brouwer fixed point theorem, we have
that there exist a fixed point v ∈ B(x,K(γ, T )t), which finishes the argument.

Finally, we are ready to prove Theorem 3. Our proof follows similar steps as that of [28, Proof
of Theorem 8].
Proof By Assumption (B3), we have that

lim
t−→∞

ess sup
C1

EC2 [|Ez∆
W
2 (z, C1, C2;W (t))|] = 0.

By the definition of ∆W
2 (t, z, C1, C2), we have

lim
t−→∞

ess sup
C1

EC2 [|Ez∆
H
2 (z, C2;W (t))σ1(w1(t, C1)

Tx)|] = 0.

Recall from Lemma 23 that, for all finite t, w1(t, C1) has full support. Hence, we have that, for u1

in a dense subset of RD,

lim
t−→∞

EC2 [|Ez∆
H
2 (z, C2;W (t))σ1(u

T
1 x)|] = 0.

Our aim is to conclude that, for almost all x, we have that Ez [∂2R(y, f(x;W (∞)))|x] = 0. By
definition of the backward path, we have that

EC2 [
∣∣Ez∆

H
2 (z, C2;W (t))σ1(u

T
1 x)

∣∣− ∣∣Ez∆
H
2 (z, C2;W (∞))σ1(u

T
1 x)

∣∣]
≤EC2 [

∣∣(Ez∆
H
2 (z, C2;W (t))− Ez∆

H
2 (z, C2;W (∞))

)
σ1(u

T
1 x)

∣∣]
≤KEC2 [Ez

[∣∣∆H
2 (z, C2;W (t))−∆H

2 (z, C2;W (∞))
∣∣]]

≤KEC1,C2

[
(1 + |w3(∞, C2)|) ·

(
|w3(∞, C2)− w3(t, C2)|

+ |w3(∞, C2)| · |w2(∞, C1, C2)− w2(t, C1, C2)|
+ |w3(∞, C2)| · |w2(∞, C1, C2)| · ∥w1(∞, C1)−w1(t, C1)∥2

)]
.

(123)

By Assumption (B3), the RHS of (123) converges to 0 as t → ∞. Hence, by taking the limit on
both sides, we have that, for u1 in a dense subset of RD,

EC2 [|Ez∆
H
2 (z, C2;W (∞))σ1(u

T
1 x)|] = lim

t−→∞
EC2 [|Ez∆

H
2 (z, C2;W (t))σ1(u

T
1 x)|] = 0,

51



MEAN-FIELD ANALYSIS FOR HEAVY BALL METHODS

which implies that, for almost all c2,∣∣Ez∆
H
2 (z, C2;W (∞))σ1(u

T
1 x)

∣∣ = 0.

By definition of ∆H
2 (z, C2;W (∞)) we have that, for almost all c2,

Ez

[
∂2R(y, f(x;W (∞)))w3(∞, c2)σ

′
2(H2(x, c2;W (∞)))σ1(u

T
1 x)

]
= 0. (124)

Note that Assumption (A1) gives that σ′
2 ̸= 0, and Assumption (B3) that w3(∞, c2) ̸= 0 with

probability > 0 (where the probability is intended over c2). Hence, we have that, with probability
> 0 (over c2),

Ez

[
∂2R(y, f(x;W (∞)))σ′

2(H2(x, c2;W (∞)))σ1(u
T
1 x)

]
= 0. (125)

Recall that σ1(uT
1 x) is a function of x, but ∂2R(y, f(x;W (∞))) depends on both y and x. Thus,

we can re-write (125) as

Ex

[
Ey

[
∂2R(y, f(x;W (∞)))|x

]
σ′
2(H2(x, c2;W (∞)))σ1(u

T
1 x)

]
= 0. (126)

Now, we want to use the universal approximation property of σ1 to conclude that, for almost every
x,

Ey

[
∂2R(y, f(x;W (∞)))|x

]
σ′
2(H2(x, c2;W (∞))) = 0. (127)

The idea is that linear combinations of σ1(uT
1 x) can approximate any function in L2(Dx). Thus,

if Ey

[
∂2R(y, f(x;W (∞)))|x

]
σ′
2(H2(x, c2;W (∞))) is in L2(Dx), we have that there exist a se-

quence of index sets {Ik}k∈N, such that:

lim
k−→∞

Ex

∣∣∣∣∣∣Ey

[
∂2R(y, f(x;W (∞)))|x

]
σ′
2(H2(x, c2;W (∞)))−

∑
ik∈Ik

aikσ1(u
T
ik
x)

∣∣∣∣∣∣
2 = 0.

To simplify the notation, we define:

g(x) = Ey

[
∂2R(y, f(x;W (∞)))|x

]
σ′
2(H2(x, c2;W (∞))),

hk(x) =
∑
ik∈Ik

aikσ1(u
T
ik
x).

From (126) and by linearity of expectation, we have that, for all k,

Ex [g(x)hk(x)] = 0.

Thus we have

0 = lim
k−→∞

Ex

[
|g(x)− hk(x)|2

]
= lim

k−→∞
Ex

[
|g(x)|2 + |hk(x)|2 − 2g(x)hk(x)

]
= lim

k−→∞
Ex

[
|g(x)|2 + |hk(x)|2

]
,
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which implies that

Ex

[
|g(x)|2

]
= 0.

Hence, we have that

Ex

[∣∣Ey

[
∂2R(y, f(x;W (∞)))|x

]
σ′
2(H2(x, c2;W (∞)))

∣∣2] = 0,

which implies that (127) holds. Furthermore, to see that Ey

[
∂2R(y, f(x;W (∞)))|x

]
σ′
2(H2(x, c2;W (∞)))

is indeed in L2(Dx), it suffices to note that, by Assumption (A1),

Ey

[
∂2R(y, f(x;W (∞)))|x

]
σ′
2(H2(x, c2;W (∞))) ≤ K2.

By Assumption (A1), we also have that σ′
2(x) ̸= 0 for all x. Hence, (127) implies that, for almost

every x,

Ey

[
∂2R(y, f(x;W (∞)))|x

]
= 0. (128)

Since the loss is convex in f(x;W (∞)), we have

Ez

[
R(y, f̃(x))−R(y, f(x;W (∞)))

]
≥ Ex

[
Ey

[
∂2R(y, f(x;W (∞)))

∣∣x](f̃(x)− f(x;W (∞)))
]
= 0,

where the last passage follows from (128). Thus, we conclude that

EzR(y, f(x;W (∞))) = inf
f̃

Ez

[
R(y, f̃(x))

]
. (129)

Finally, we want to show that

lim
t−→∞

EzR(y, f(x;W (t))) = EzR(y, f(x;W (∞))). (130)

To see this, we write

|EzR(y, f(x;W (t)))− EzR(y, f(x;W (∞)))|
≤KEz|f(x;W (t))− f(x;W (∞))|
≤KEC1,C2

[
|w3(∞, C2)− w3(t, C2)|+ |w3(∞, C2)| · |w2(∞, C1, C2)− w2(t, C1, C2)|

+ |w3(∞, C2)| · |w2(∞, C1, C2)| · ∥w1(∞, C1)−w1(t, C1)∥2
]
,

and use again Assumption (B3). By combining (129) and (130), we obtain the desired result.

Appendix H. Technical lemmas

Lemma 24 (Corollary of McDiarmid inequality) [26, Lemma 30]
Let {Xi}i∈[n] ∈ Rd be a sequence of i.i.d random variable, with ∥Xi∥2 ≤ K ans E[Xi] = 0,

then we have:

Pr

(∥∥∥∥∥ 1n
n∑

i=1

Xi

∥∥∥∥∥
2

≥ K(
√
1/n+ z)

)
≤ exp (−nz2)
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Lemma 25 (Azuma-Hoeffding bound) [26, Lemma 31] Let (Xk)k≥0 is a martingale taking value
in RD with respect to the filtration (Fk), with X0 = 0. Assume that the martingale difference at
time k is Lk-subgaussian, which means the following holds almost surely for all λ ∈ RD:

E [exp{⟨λ,Xk −Xk−1⟩}|Fk−1] ≤ exp

{
L2
k∥λ∥2

2

}
.

Then, we have

Pr

max
k∈[n]

∥Xk∥ ≥ 2

√√√√ n∑
k=1

L2
k

(√
D + δ

) ≤ exp{−δ2}.

Note that, if Lk ≤ L for all k, then

Pr

[
max
k∈[n]

∥Xk∥ ≥ 2
√
nL2

(√
D + δ

)]
≤ exp{−δ2}.

Lemma 26 (Pachpatte’s inequality) [3, Chapter 1, Theorem 1.7.1]
Let u, f and g be non-negative continuous functions defined on [0, T ], for which the inequality

u(t) ≤ u0 +

∫ t

0
f(s)u(s) ds+

∫ t

0
f(s)

(∫ s

0
g(r)u(r) dr

)
ds

holds, where u0 is a non-negative constant. Then we have:

u(t) ≤ u0

[
1 +

∫ t

0
f(s) exp

(∫ s

0
(g(r) + f(r)) dr

)
ds

]
.

Corollary 27 (Pachpatte’s inequality for constants) Let u be a non-negative continuous function
defined on [0, T ], and γ,K be positive real numbers. Assume the following inequality holds:

u(t) ≤ u0 + γ

∫ t

0
u(s) ds+K

∫ t

0

∫ s

0
u(r) dr ds.

Then, we have

u(t) ≤ u0

(
1 +

γ2

γ2 +K
exp

(
γ2 +K

γ
t

))
≤ u0

(
1 + exp

(
γ2 +K

γ
t

))
.
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