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Abstract

We develop an instance of the stochastic prox-linear method for minimizing the Conditional Value-
at-Risk (CVaR) objective. CVaR is a risk measure focused on minimizing worst-case performance,
defined as the average of the top quantile of the losses. In machine learning, such a risk measure is
useful to train more robust models. Although the stochastic subgradient method (SGM) is a natural
choice for minimizing CVaR objective, we show that the prox-linear algorithm can be used to better
exploit the structure of the objective, while still providing a convenient closed form update. We then
specialize a general convergence theorem for the prox-linear method to our setting, and show that
it allows for a wider selection of step sizes compared to SGM. We support this theoretical finding
experimentally, by showing that the performance of stochastic prox-linear is more robust to the
choice of step size compared to SGM.

1. Introduction

The most common approach to fit a model parametrized by θ ∈ Rn to data, is to minimize the
expected loss over the data distribution, that is

min
θ∈Rd

RERM(θ) = Ez∼P [`(θ; z)]. (1)

But in many cases, the expected loss may not be the suitable objective to minimize. When robustness
or safety of the model are concerned, the emphasis should rather be on the extreme values of the
distribution rather than the average value. For instance, in distributionally robust optimization, the
goal is to optimize the model for the worst case distribution around some fixed distribution [14].
In extreme risk-averse settings, such as when safety is the top priority, one would minimize the
maximum loss within a training set [30]. These applications can all be formulated as minimizing the
expectation of the losses that are above some cutoff value,

min
θ∈Rd

RCVaR(θ) = Ez∼P [`(θ; z) | `(θ; z) ≥ αβ(θ)] , (2)

where αβ(θ) is the upper β–quantile of the losses. For example, for β = 0.9, the problem in Equa-
tion 2 is to minimize the expectation of the worst 10% of the losses.

In this work, we investigate the use of the stochastic prox-linear (SPL) method introduced by Duchi
and Ruan [15] for solving Equation 2. The possibility of applying SPL to CVaR minimization was
mentioned in Davis and Drusvyatskiy [13], but not explored. We first derive a closed-form update for
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SPL, and show why it is particularly well suited for minimizing CVaR. We give its convergence rates
for convex and Lipschitz losses by specializing existing results from Davis and Drusvyatskiy [13].
Through several experiments comparing the stochastic prox-linear method to stochastic subgradient
we show that the prox-linear algorithm is more robust to the choice of step size. We conclude with a
discussion on several future applications for minimizing CVaR in machine learning.

1.1. Background

The CVaR objective was first introduced in finance as an alternative measure of risk, also known as
the expected shortfall [2, 16]. Many applications in finance can be formulated as CVaR minimization
problems, such as portfolio optimization [21, 25], insurance [17] and credit risk management [1].
The seminal work of Rockafellar and Uryasev [27] proposed a variational formulation of the CVaR
objective that is amenable to standard optimization methods. This formulation has since inspired
considerable research in applications spanning machine learning and adjacent fields, such as ν-SVM
[18, 32], robust decision making and MDPs [7, 9–11, 29], influence maximization and submodular
optimization [24, 26, 33], fairness [34], and federated learning [23].

Though it finds many applications, the CVaR objective is typically difficult to minimize. It is
nonsmooth even when the individual losses `(·; z) are continuously differentiable. Indeed, if P does
not admit a density — which is the case for all empirical distributions over training data — the
variational objective is not everywhere differentiable. To address this, Laguel et al. [22] developed
subdifferential calculus for a number of equivalent CVaR formulations and proposed minimizing a
smoothed version of the dual objective. On the other hand, several works [20, 31] apply the stochastic
subgradient method directly to the variational formulation proposed by Rockafellar and Uryasev
[27], which is well-defined regardless of the distribution P . However, as we elaborate in Section 3,
this approach is oblivious to the special structure of the variational form of the CVaR objective.

2. Problem setup

Let `(θ; z) be the loss associated with the model parameters θ ∈ Rd and a measurable random
variable z(ω) on some background probability space (Ω,F ,P).

When z follows a distribution P with density p(z), the
cumulative distribution function on the loss for a fixed
θ is given by P[`(θ; z) ≤ α] =

∫
`(θ;z)≤α p(z) dz, which

we assume is everywhere continuous with respect to α.
Let β be a confidence level, for instance β = 0.9. The
Value-at-Risk (VaR) of the model is the lowest α such that
with probability β, the loss will not exceed α. Formally,

VaRβ(θ) := min {α ∈ R : P[`(θ; z) ≤ α] ≥ β} , (3)

The Conditional Value-at-Risk (CVaR) is the expectation
of the upper tail starting at VaRβ , illustrated in Figure 1:

CVaRβ(θ) := Ez∼P [`(θ; z) | `(θ; z) ≥ VaRβ(θ)]. (4)
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Figure 1: Expectation, VaR, and CVaR.
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Clearly, the CVaR always upper bounds the VaR. Our goal is to minimize CVaRβ over θ ∈ Rd, but
directly minimizing Equation 4 is not straightforward. Fortunately, Rockafellar and Uryasev [27]
introduced a variational formulation where the solution to

θ∗, α∗ ∈ arg min
θ∈Rd,α∈R

Fβ(θ, α) = α+
1

1− β
Ez∼P [max {`(θ; z)− α, 0}] (5)

is such that θ∗ is the solution to Equation 4, and we obtain α∗ = VaRβ(θ) as a byproduct.

3. The Stochastic Subgradient Method

A natural choice for minimizing Equation 5 is the stochastic subgradient method (SGM). Letting ∂f
denote the convex subdifferential of f , at each step t we sample z ∼ P uniformly and compute a
subgradient gt from the subdifferential

∂Fβ(θt, αt; z) =

(
0
1

)
+

1

1− β
∂max{u, 0}|u=`(θt;z)−αt

(
∂`(θt; z)
−1

)
. (6)

Given some step size sequence {λt} > 0, the SGM then takes the step

xt+1 = xt − λtgt, where gt ∈ ∂Fβ(θt, αt; z), and x = (θ, α)T.

For reference, the complete SGM algorithm is given in Algorithm 2. SGM is very sensitive to the
step size choice and may diverge if not carefully tuned. This issue can be explained from a modeling
perspective [13]. Indeed, SGM can be written as a model-based method where at each iteration t, it
uses the following linearization of the sampled Fβ(x; z) at the current point xt:

mt(x; z) := Fβ(xt; z) + 〈gt, x− xt〉. (7)

This provides an approximate, stochastic model of the objective Fβ(x). The SGM update is then a
proximal step on this model, that is

xt+1 = arg min
x∈Rd+1

mt(x; z) +
1

2λt
‖x− xt‖2 . (8)

The issue with this model mt(x; z) is that it uses a linearization to approximate the max{·, 0}
function. The linearization, which can take negative values, is a poor approximation of the non-
negative max{·, 0} operation. The main insight to the SPL method is to leverage the structure of
Fβ(x) as a truncated function. This structure allows for a more accurate model that still has an easily
computable proximal operator.

4. Stochastic prox-linear method for CVaR minimization

Here we introduce an alternative model for our objective that only linearizes inside the max{·, 0},
which is a strictly more accurate model when the objective is convex [3]. In particular, we use

mt(x; z) = α+
1

1− β
max {`(θt; z) + 〈vt, θ − θt〉 − α, 0} for some vt ∈ ∂`(θt; z). (9)
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Figure 2: Comparison of SGM and SPL models on the CVaR objective with a single `(θ) =
log(1 + exp(θ)) + 0.01

2 θ2. Filled contours are the level sets of the objective, while the dashed contour
lines are the level sets of the respective model mt constructed at (θt, αt). With the same step size,
the SGM model results in an update that increases the objective, whereas the SPL model does not.
Note that because the subgradient of the objective is 0 in θ, the SGM model is constant in θ.

The algorithm resulting from Equation 8 using this model is known as the stochastic prox-linear (SPL)
method [15]. Figure 2 illustrates the difference between the two models. We derive the closed-form
updates of SPL, which can be found in Algorithm 1. Furthermore, the cost of computing each
iteration of SPL is of the same order of computing an iteration of SGM. In addition, we instantiate
the convergence analyses from Davis and Drusvyatskiy [13] in the case of CVaR minimization, and
compare the rates for SGM and SPL for losses satisfying the following Assumption.

Assumption 1 (Convex, subdifferentiable, and Lipschitz) There exist square integrable random
variables M : Ω→ R such that for a.e. z ∈ Ω and all θ ∈ Rd, the sample losses `(θ; z) are convex,
subdifferentiable1, and M(z)-Lipschitz.

Theorem 1 (Convergence rates of SGM and SPL under convexity) Suppose Assumption 1 holds.
Let x∗ = (θ∗, α∗)T be a minimizer of Fβ(θ, α), and ∆ = ‖x0 − x∗‖ for an arbitrary initialization
x0. Consider the iterates (xt)

T+1
t=1 given by SGM in Algorithm 2 or by SPL in Algorithm 1. There

exists L > 0 such that by using a constant step size λt = λ√
T+1

with λ = ∆
L
√

2
, we have

E [Fβ(x̄T )− Fβ(x∗)] ≤
√

2∆L√
T + 1

. (10)

where x̄T = 1
T

∑T+1
t=1 xt is the averaged iterate. In particular, the Lipschitz constants are given by

L2 = Ez

[(
1 +

1

1− β
√
M(z)2 + 1

)2
]

(for SGM), (11)

L2 = Ez

[(
1

1− β
√
M(z)2 + 1

)2
]

(for SPL). (12)

1. Historically, the prox-linear method was proposed for composite optimization problems where the inner function is
C1 [6]. Here we slightly abuse the terminology and allow for general subdifferentiable losses `(·; z).
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This result follows from Theorem 4.4 in Davis and Drusvyatskiy [13], and we verify the assumptions
necessary in Appendix B. Note that λ > 0 can be chosen independent of L and ∆ at the cost of a
worse bound in Equation 10. Since L2 is smaller for SPL, it allows for larger step sizes and improved
constants in the convergence rate of Equation 10, though both methods enjoy the same asymptotic
rate ofO(1/

√
T ). In practice, the exact value of L is typically unavailable and λ is tuned heuristically

via a grid search. Since SPL has theoretical guarantees under a wider range of valid step sizes, it
should be easier to tune in practice. Our numerical experiments corroborate the theory, at least when
the loss functions `(·; z) are smooth. When ` is itself nonsmooth we find the benefits to be negligible,
though the performance of SPL remains at least as good as that of SGM.

5. Experiments

We now compare the empirical performance of SGM and SPL for minimizing the CVaR objective
(Equation 5) using synthetic data. Similar to the setup of Holland and Haress [20], described in detail
in Appendix C, we fix β = 0.95 and experiment with various combinations of loss functions `(·; z)
and data distributions controlled by noise ζ. We employ a decreasing step size λt = λ/

√
t+1 and

study the sensitivity of both methods to the initial step λ0 = λ, varied over a logarithmically-spaced
grid. Since the expectation in the objective is difficult to compute in closed form, we evaluate the
suboptimality gaps using an empirical average over N = 106 data points sampled i.i.d. from the
corresponding distribution under a single fixed seed. We denote this approximation by F̃β(θ, α).

Figure 3 shows the final suboptimality achieved by SGM and SPL for different λ. For smooth losses
(squared and logistic) we see that SPL is significantly more robust and admits a much larger range
of λ for which it does not diverge. Interestingly, for the absolute loss there is barely a difference.
The same stability to larger step size can be observed by instead looking at the minimum number
of iterations required to achieve ε final suboptimality F̃ (θ, α)− F̃ ∗ ≤ ε (see Figure 5). Finally, we
also include the same set of experiments on two real datasets. Details and results can be found in
Appendix C.1.

6. Conclusion and future work

Our numerical evidence suggests that for the CVaR minimization problem, while both SGM and SPL
can be tuned to achieve similar performance, SPL is strictly more tolerant to misspecified step sizes.
To further speed up SPL and make it more competitive over SGM, some natural heuristics include
the use of non-uniform sampling to bias towards training examples with higher losses (as in Curi
et al. [12], Sagawa et al. [28]), as well as updating the parameters θt and αt using different step sizes.

Efficient CVaR minimization with a stochastic algorithm opens up the possibility for new applications
in machine learning. For instance, we could now consider models that trade-off between low average
risk and heavy tails by adding the CVaR objective as a regularizer:

min
θ∈Rd

RERM(θ) + ρRCVaRβ (θ)

where ρ > 0 is a parameter that captures this trade-off. Controlling this trade-off is important
as machine learning models are increasingly deployed in safety-critical applications that call for
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Figure 3: Sensitivity of final suboptimality to step size choices under a fixed T = 105 budget.
The first two rows are regression tasks under the `1 and `2 losses, while the third row correspond
to a binary classification task under the logistic loss. The columns correspond to different noise
distributions in the data generation that controls the difficulty of the problem. More details can be
found in Appendix C.

control over the likelihood of failure. As future work, we also see applications in training neural
networks, where CVaR can be used to disincentivize the activations from being saturated too often,
and thus help in speeding up training. This would offer an alternative to normalization layers, such
as batchnorm or layernorm, which are used to bring the activations within a suitable range of the
activations and thus avoid saturation.
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Appendix A. SPL derivation for CVaR minimization

Before deriving the SPL updates, we first introduce the following lemma based on the truncated
model from Asi and Duchi [4].

Lemma 1 (Truncated model) Consider the problem

xt+1 = arg min
x∈Rn

max {c+ 〈a, x− xt〉, 0}+
1

2λ
‖x− xt‖2 .

for some scalar c and vector a ∈ Rn. The solution can be written in closed-form as

xt+1 = xt −min

{
λ,

max {c, 0}
‖a‖2

}
a

Proof Note that xt+1 is the proximal point of the function

f(x) = h(〈a, x〉+ b), with h(z) = max {z, 0} , b = c− 〈a, xt〉 .

centered at x ≡ xt. Using Beck [5, Theorem 6.15], we have

proxλf (x) = x+
a

‖a‖2
(

proxλ‖a‖2h(〈a, x〉+ b)− (〈a, x〉+ b)
)

= xt +
a

‖a‖2
(

proxλ‖a‖2 max{·, 0}(c)− c
)

(13)

In turn, the max function is the support function of the interval [0, 1]. By Beck [5, Theorem 6.46], it
follows that

proxλ‖a‖2 max{·, 0}(c) = c− λ ‖a‖2 proj[0,1]

(
c

λ ‖a‖2

)
. (14)

Plugging Equation 14 into Equation 13, we obtain

proxλf (xt) = xt −
a

‖a‖2
· λ ‖a‖2 proj[0,1]

(
c

λ ‖a‖2

)
= xt − λa · proj[0,1]

(
c

λ ‖a‖2

)
.

Writing proj[0,1](v) = min {max {v, 0} , 1} yields the result.

We now derive the the SPL updates. Recall that for the CVaR objective, using the model in Equation 9,
the stochastic model-based approach solves the following problem at each iteration:

arg min
θ,α

ft(θ, α; z) := α+
1

1− β
max {`(θt; z) + 〈vt, θ − θt〉 − α, 0}

+
1

2λ

(
‖θ − θt‖2 + (α− αt)2

)

10
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for some vt ∈ ∂`(θt; z). We can apply Lemma 1 by transforming ft into the truncated model form.
First, we combine the α with its regularization term,

α+
1

2λ
(α− αt)2 =

1

2λ
((α− αt)2 + 2λα)

=
1

2λ
((α− αt)2 + 2λα− 2λαt + λ2) +

1

2λ
(2λαt − λ2)

=
1

2λ
((α− αt)2 + 2λ(α− αt) + λ2) + Const.

=
1

2λ
(α+ λ− αt)2 + Const.

Using a change of variable

α̂ = α and α̂t = αt − λ, (15)

the quadratic regularization plus α is simplified to

α+
1

2λ
(α− αt)2 =

1

2λ

(
‖θ − θt‖2 + (α̂− α̂t)2

)
+ Const..

Adding and subtracting α̂t, the linearization inside the max {·, 0} then becomes

`(θt; z)− α̂t +

〈(
vt
−1

)
,

(
θ − θt
α̂− α̂t

)〉
.

Letting x = (θ, α̂)T and xt = (θt, α̂t)
T, we arrive at the form in Lemma 1 (up to constants) with

c =
1

1− β
(`(θt; z)− α̂t) and a =

1

1− β

(
vt
−λ

)
.

The step size from Lemma 1 is

η := min

{
λ,

max {c, 0}
‖a‖2

}
(16)

which, combined with the definition of α̂ in Equation 15, translates to the following updates:

1. If c < 0 =⇒ `(θt; z) < αt − λ , then η = 0

α̂∗ = α̂t =⇒ α∗ = αt − λ, and

θ∗ = θt.

2. If c > λ ‖a‖2 (> 0), which implies checking for the case

1

1− β
(`(θt; z)− α̂t) > λ

1

(1− β)2

(
‖vt‖2 + 1

)
`(θt; z) + λ− αt >

λ

1− β
‖vt‖2 +

λ

1− β

αt < `(θt; z)−
λ

1− β
‖vt‖2 − λ

β

1− β
.

11
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Then the step size taken is η = λ, and the updates are

α̂∗ = α̂t +
λ

1− β
=⇒ α∗ = αt − λ+

λ

1− β
= αt + λ

β

1− β

θ∗ = θt −
λ

1− β
vt.

3. Otherwise, 0 < c
‖a‖2 < λ, then η = c

‖a‖2 , and the updates are

α̂∗ = α̂t +
c

‖a‖2
1

1− β

=⇒ α∗ = αt − λ+
`(θt; z)− α̂t
‖vt‖2 + 1

= αt − λ+
`(θt; z) + λ− αt
‖vt‖2 + 1

θ∗ = θt −
c

‖a‖2
1

1− β
vt = θt −

`(θt; z) + λ− αt
‖vt‖2 + 1

vt.

Together, these give us the closed-form updates of the SPL method, collected in Algorithm 1.

Algorithm 1 SPL: Stochastic prox-linear method for CVaR minimization
1: initialize: θ0 ∈ Rd, α0 ∈ R, hyperparameter: λ > 0
2: for t = 0, 1, 2, . . . , T − 1 do
3: Sample data point z ∼ P , compute `(θt; z) and vt ∈ ∂`(θt; z)
4: λt ← λ/

√
t+ 1

5: if αt > `(θt; z) + λt then . αt too big
6: θt+1 ← θt
7: αt+1 ← αt − λt
8: else if αt < `(θt; z)− λt

1−β

(
‖vt‖2 + β

)
then . αt too small

9: θt+1 ← θt − λt
1−β vt

10: αt+1 ← αt + λt
1−ββ

11: else . αt in middle range
12: ν ← `(θt)+λt−αt

λt(‖vt‖2+1)
13: θt+1 ← θt − λtν∇`(θt; z)
14: αt+1 ← αt − λt + λtν
15: end if
16: end for
17: return x̄T = 1

T+1

∑T+1
t=1 (θt, αt)

T

We also include the closed-form updates for the stochastic subgradient method applied to CVaR
minimization in Algorithm 2.

Appendix B. Proof of Theorem 1

Proof To apply Theorem 4.4 in Davis and Drusvyatskiy [13], we must first verify their assumptions
(B1)-(B4) hold. We will enumerate these under their following general setup: writing the CVaR

12
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Algorithm 2 SGM: Stochastic subgradient method for CVaR minimization
1: initialize: θ0 ∈ Rd, α0 ∈ R, hyperparameter: λ > 0
2: for t = 0, 1, 2, . . . , T − 1 do
3: Sample data point z ∼ P , compute `(θt; z) and vt ∈ ∂`(θt; z)
4: λt ← λ/

√
t+ 1

5: if αt ≥ `(θt; z) then . αt too big
6: θt+1 ← θt
7: αt+1 ← αt − λt
8: else . αt too small
9: θt+1 ← θt − λt

1−β vt

10: αt+1 ← αt + λt
1−ββ

11: end if
12: end for
13: return x̄T = 1

T+1

∑T+1
t=1 (θt, αt)

T

objective as

Fβ(x) = f(x) + r(x), (17)

and interpret r(x) = 0 for SGM while r(x) = α for SPL. In the SPL case, we further write
f(x) = Ez[h(c(x; z))] where h(·) = 1

1−β max {·, 0} and c(x; z) = `(θ; z) − α. Recall that the
stochastic one-sided models used are

SGM ft(x; z) = Fβ(xt; z) + 〈gt, x− xt〉 where gt ∈ ∂Fβ(xt; z) (18)

SPL ft(x; z) = h(c(xt; z) + 〈ut, x− xt〉) where ut ∈ ∂c(xt; z) (19)

and the update in Equation 8 is equivalent to

xt+1 = arg min
x∈Rd+1

r(x) + ft(x; z) +
1

2λt
‖x− xt‖2 (20)

The assumptions we need to verify are the following, adapted from Davis and Drusvyatskiy [13]:

(B1) (Sampling) It is possible to generate i.i.d. realizations z1, z2, · · · ∼ P .

(B2) (One-sided accuracy) There is an open set U containing dom r and a measurable function
(x, y; z) 7→ gx(y; z), defined on U × U × Ω, satisfying

Ez [ft(xt; z)] = f(xt) ∀xt ∈ U,

and
Ez [ft(x; z)− f(x)] ≤ τ

2
‖xt − x‖2 ∀xt, x ∈ U.

Assumptions (B1) follows trivially from i.i.d. sampling, while (B2) follows from convexity of
`(·; z), which results in τ = 0.

(B3) (Weak-convexity) The function ft(x; z) + r(x) is η-weakly convex for all x ∈ U , a.e. z ∈ Ω.
Since r(x) is also convex in both methods and both models are convex, (B3) holds with η = 0.

13
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(B4) (Lipschitz property) There exists a measurable functionL : Ω→ R+ satisfying
√
Ez[L(z)2] ≤

L and such that

ft(xt; z)− ft(x; z) ≤ L(z) ‖xt − x‖ ∀xt, x ∈ U and a.e. z ∼ P.

This can be easily proved for SGM using the Lipschitz assumption on `(·; z) and that max {·, 0} is
1-Lipschitz:

ft(xt; z)− ft(y; z) ≤ ‖gt‖ ‖xt − y‖

≤
(

1 +
1

1− β
√
M(z)2 + 1

)
‖xt − y‖ ,

which gives us L2 = Ez
[(

1 + 1
1−β
√
M(z)2 + 1

)2
]

. For SPL,

(1− β)(ft(xt; z)− ft(y; z)) = max {`(θt; z)− αt, 0} −max {`(θt; z)− 〈vt, θ − θt〉 − α, 0}
≤ max {〈vt, θ − θt〉+ (α− αt), 0}

= max

{〈(
vt
1

)
,

(
θ − θt
α− αt

)〉
, 0

}
=⇒ ft(xt; z)− ft(y; z) ≤ 1

1− β

(√
M(z)2 + 1

)
‖xt − y‖

This gives us the slightly improved constant for SPL:

L2 = Ez

[(
1

1− β
√
M(z)2 + 1

)2
]
.

All assumptions for Theorem 4.4 in Davis and Drusvyatskiy [13] are satisfied, and so under the step
size λt = λ√

T+1
, with λ = ∆

L
√

2
and an averaged final iterate gives us the rate

E [Fβ(x̄T )− Fβ(x∗)] ≤
√

2∆L√
T + 1

.

Appendix C. Experiment details and additional results

For all problems we set the dimension to be d = 10. For regression problems, θgen ∼ U([0, 1]d), and
for classification (logistic regression) we use θgen ∼ U([0, 10]d) to increase linear separability. The
loss functions and target generation schemes are listed in Table 1. Each target of the corresponding
problem contains an error ε from one of the distributions Table 2, which is intended to control the
difficulty level of the problem. For each error distribution and loss function combination, we draw N
independent samples and use the following discretization as an approximation to Equation 5

F̃β(θ, α) = α+
1

1− β
1

N

N∑
i=1

max {`(θ; zi)− α, 0} . (21)

14
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Table 1: Loss functions and data generation. The error distributions for ζ are described in Table 2.
We use σ(·) to denote the sigmoid function, and all x’s are sampled uniformly from the unit sphere.

Task Loss `(θ;x, y) Target

Regression 1
2(xTθ − y)2 y = xTθgen + ζ

Regression |xTθ − y| y = xTθgen + ζ
Classification log (1 + exp (−yxTθ)) y = 1 w.p. σ(xTθgen + ζ) and −1 otherwise.

We set β = 0.95 for all experiments, and thus have omitted β from all plot descriptions. We run
full-batch subgradient method with the adaptive Polyak step size from Hazan and Kakade [19]
for a total of 2000 iterations divided into K = 100 iterations of the inner loop, using the lower
bound 0 for the initial estimate of the minimum objective value. We record the final θ∗, α∗, and
F ∗ := F̃β(θ∗, α∗).

For the SPL against SGM comparison, we set α0 = 0 and θ0 ∼ N (0, Id) at initialization. Both
algorithms are run for T = 100, 000 iterations using 5 different seeds that control the randomness
of initialization and sampling during the course of optimization. In the sensitivity plots (Figures 3
and 5), solid lines show the median values, while the shaded regions indicate the range over the
random seeds. All objective evaluations are on F̃β(θ̄t, ᾱt) using the averaged iterates.

Table 2: Error distributions (all centered at 0).

Distribution of ζ Parameters

Normal(µ, σ2) µ = 0, σ = 2
Gumbel(µ, β) µ = 0, β = 4
LogNormal(µ, σ2) µ = 2, σ = 1
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z
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0.10

0.15

0.20

0.25

p(
z)

Normal(0, 4)
Gumbel(0, 4)
LogNormal(2, 1)

Figure 4: Error distributions in 1D.

C.1. Additional experiment results

Figure 5 shows a similar sensitivity analysis to Figure 3 in the main text. Instead of the sensitivity
of final suboptimality, here we show the sensitivity of the minimum number of iterations to reach
ε-suboptimality F̃ (θ, α)− F̃ ∗ ≤ ε.
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Figure 5: Sensitivity of number of iterations to achieve ε suboptimality to step size choices. The first
two rows are regression tasks under the `1 and `2 losses, while the third row correspond to a binary
classification task under the logistic loss. The columns correspond to different noise distributions in
the data generation that controls the difficulty of the problem.
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Finally, we present the same experiment on two real datasets, YearPredictionMSD and (binary)
Covertype from the LIBSVM repository [8]. The objective now is the empirical CVaR

Fβ(θ, α) = α+
1

1− β
1

n

n∑
i=1

max {`(θ; zi)− α, 0}

where n is the number of examples in the training split. The loss function `(·; zi) is the squared loss for
YearPredictionMSD, and logistic loss for Covertype. Similar to the synthetic experiments,
we set β = 0.95 and run full-batch subgradient method with the adaptive Polyak step size from
Hazan and Kakade [19] to compute θ∗ and α∗, but for a total of 10000 iterations divided into K = 50
iterations of the inner loop, as these datasets are large and more difficult than the simulated ones. For
the comparison between SPL and SGM, we run both methods for 100n iterations. The results are in
Figure 6 and Figure 7, from which we draw similar conclusions as in the synthetic experiments.
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Figure 6: Sensitivity and convergence plots on the YearPredictionMSD linear regression task.
The convergence plot is based on the best initial step size at the end of training for each method.
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Figure 7: Sensitivity and convergence plots on the Covertype binary classification task. The
convergence plot is based on the best initial step size at the end of training for each method. The grey
dashed line is the average accuracy on the test set achieved by θ∗. Note that the reported accuracy is
averaged across the entire training set, but since SPL reached a lower CVaR objective (rather than
the average loss objective), it is reasonable that its average accuracy is lower.
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