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Abstract
In this study, we propose a global optimization algorithm based on quantizing the energy level

of an objective function in an NP-hard problem. According to the white noise hypothesis for a
quantization error with a dense and uniform distribution, we can regard the quantization error as
i.i.d. white noise. According to stochastic analysis, the proposed algorithm converges weakly only
under conditions satisfying Lipschitz continuity, instead of local convergence properties such as the
Hessian constraint of the objective function. This shows that the proposed algorithm ensures global
optimization by Laplace’s condition. Numerical experiments show that the proposed algorithm
outperforms conventional learning methods in solving NP-hard optimization problems such as the
traveling salesman problem.

1. Introduction

Finding the global optimum in a non-deterministic polynomial-time hardness problem(NP-hard
problem) such as the traveling salesman problem (TSP) has been a critical research theme ([3,
6, 10, 20, 28, 34, 36, 38]). Since Kirkpatrick et al. [29] presented the simulated annealing (SA)
in the 1980s, researchers have developed and applied various heuristic algorithms to combinatorial
optimization problems, including NP-hard problems ([2, 11, 12, 14, 15, 17, 18, 26, 27, 35, 37, 39,
43, 44]). Despite regarding such heuristic algorithms as alternatives to a stochastic optimization
technique, the fundamental dynamics of some of these algorithms remain unclear([1, 4, 8, 22]).
Those unclear dynamics result in problems such as the selection of suitable hyperparameters for
high optimization performance[19].

In contrast to conventional natural phenomenon-based optimization algorithms, we propose a
quantization-based optimization algorithm with a monotonically increasing quantization resolution
in this study. As shown in [5, 31, 42], the main research topic for quantization has been minimizing
the effect of the quantization error in signal processing, and this approach is the same for artifi-
cial intelligence and machine learning, as described in [9, 25, 40]. However, if the distribution of
the quantization error is sufficiently dense and uniform, we can let the quantization error be white
noise, as presented in Gray and Neuhoff [16]’s paper. In addition, [23] proved that it is i.i.d white
noise if components of a dense quantization error vector are asymptotically pairwise independent
and distributed uniformly. This property is known as the quantization error’s white noise hypothe-
sis(WNH). Accordingly, we can constitute a proper stochastic global optimization algorithm based
on the quantization error. We provide stochastic analysis to prove the proposed algorithm’s weak
convergence for global optimization based on Laplace’s theorem presented by [7, 13, 32, 33, 41],
and we apply the proposed algorithm to the TSP to validate the algorithm’. In particular, in the
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TSP with many cities, the proposed algorithm outperforms the SA and the quantum annealing (QA)
algorithm in terms of the optimization effect.

2. Preliminaries

2.1. Definitions of quantization

Before illustrating the proposed algorithm, we establish the following definitions and assumptions.

Definition 1 For f ∈ R, we define the quantization of f as follows:

fQ ≜
1

Qp
⌊Qp · (f + 0.5 ·Q−1

p )⌋ = 1

Qp
(Qp · f + ε) = f + εQ−1

p , fQ ∈ Q (1)

, where ⌊f⌋ ∈ Z denotes the floor function such that ⌊f⌋ ≤ f for all f ∈ R, Qp ∈ Q+ denotes the
quantization parameter, and ε ∈ R represents the quantization error.

Definition 2 We define the quantization parameter Qp ∈ Q+ to be a monotone increasing function
Qp : R

++ 7→ Z+ such that
Qp(t) = η · bh̄(t) (2)

, where η ∈ Q++ denotes the fixed constant parameter of the quantization parameter, b represents
the base, and h̄ : R++ 7→ Z+ denotes the power function such that h̄(t) ↑ ∞ as t→∞.

Assumption 1 For a numerical sequence {f(t)}∞t=0 where each f(t) ∈ R+ ∀t > 0, suppose that
f(t) is defined on a dense topology space. Following the WNH and (1), the quantization error εt
corresponding to t > 0 is i.i.d. white noise defined on the probability space (Ω,Ft,Pε).

Under Assumption 1, we can regard the sequence of the fQ
t corresponding to f(t) as a stochastic

process {fQ
t }∞t=0. As a next step, to analyze the properties of the stochastic process {fQ

t }∞t=0, we
calculate the mean and variance of the quantization error.

Theorem 1 If the quantization error εt ∈ Rn satisfying the WNH, the mean and variance of the
quantization error at t > 0 is

∀εt ∈ R, EFtQp(t)εt = 0, EFtQ
−2
p (t)ε2t = Q−2

p (t) · EFtε
2
t =

1

12 ·Q2
p(t)

. (3)

To discuss the main algorithm, we consider the optimization problem for an objective function f
such that

minimize f : Rn 7→ R+. (4)

In various combinatorial optimization problems, we deal with an actual input represented as xr ∈
[0, 1]m. Thus, we suppose that there exists a proper transformation from a binary input to a proper
real vector space such that T : [0, 1]m → X ⊆ Rn., where X represents the virtual domain of the
objective function f . Under the transformation assumption, we assume that f ∈ C∞ fulfills the
Lipschitz continuity as follows:

Assumption 2 For xt ∈ Bo(x∗, ρ), there exists a positive value L w.r.t. a scalar field f(x) : Rn →
R such that

∥f(xt)− f(x∗)∥ ≤ L∥xt − x∗∥, ∀t > t0, (5)

where Bo(x∗, ρ) denotes an open ball Bo(x∗, ρ) = {x|∥x − x∗∥ < ρ} for all ρ ∈ R++, and
x∗ ∈ Rn denotes the globally optimal point.
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Algorithm 1: Blind Random Search (BRS) with the proposed quantization scheme

Input: Objective function f(x) ∈ R+

Output: xopt, f(xopt)
Data: x ∈ Rn

Initialization
t← 0 and h̄(0)← 0
Set initial candidate x0 and xopt ← x0
Compute the initial objective function f(x0)

Set b = 2 and η = b−⌊logb(f(x0)+1)⌋, Qp ← η

fQ
opt ← 1

Qp
⌊Qp · (f + 0.5 ·Q−1

p )⌋

while Stopping condition is satisfied do
Set t← t+ 1
Select xt randomly and compute f(xt)
fQ ← 1

Qp
⌊Qp · (f + 0.5 ·Q−1

p )⌋
if fQ ≤ fQ

opt then
xopt ← xt

h̄(t)← h̄(t) + 1, Qp ← η · bh̄(t)

fQ
opt ← 1

Qp
⌊Qp · (f + 0.5 ·Q−1

p )⌋
end

end

2.2. Primitive algorithm

As the most elementary implementation, we apply the proposed quantization scheme to the blind
random search(BRS) algorithm.

First, as shown in Algorithm 1, we randomly select an input point xt and quantize the value of
the objective function f(xt) such that fQ(xt) with the quantization parameter Qp(t−1). Comparing
both quantization values fQ(x̄t−1) and fQ(xt), if fQ(x̄t−1) is greater than or equal to fQ(xt), we
set xt to be the optimal value and substitute x̄t to the xt. Following this procedure, we update the
quantization parameter as Qp(t−1) by increasing the power function h̄(t) defined in (2). We denote
it as the re-quantization process. Because we update the quantization parameter, the quantization
value of fQ(xt) is re-quantized with Qp(t). Consecutively, we select another input point as a part
of the BRS.

Furthermore, we propose a simple initialization of the quantization parameter to implement the
BRS using the proposed scheme. We want the transition probability of the initial state P(x1|x0) to
be a high such as P(x1|x0) = 1. Therefore, the quantization of the other objective function value
fQ(x1)∀x1 ̸= x0 should be lower than the quantization of the initial objective function. For this
purpose, we set the initial parameter of the quantization parameter η, as represented in the following
theorem:

Theorem 2 Suppose that the initial value of a given objective function f(x0) ∈ R is supx∈R f(x).
The transition probability to the next step, P(x1|x0), yielded by the proposed algorithm, is one when
the initial parameter η ∈ Q+ satisfies the following equation:

η = b−⌊logb(f(x0)+1)⌋ (6)

, where b represents a base in Definition 2 for Qp(t).

3. Analysis of the proposed algorithm

3.1. Fundamental dynamics of the proposed algorithm

Let a subset of the virtual domain X ⊆ Rn such that LQ(t) ≜ {xt|f(x) − fQ(x̄t) ≤ 0, Qp(t)}.
Following the procedure in Algorithm 1 and the definition of the subset LQ(t), we note that the
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proposed algorithm can yield the following containment relationship between subsets:

∃t > t0, L
Q(t) ⊇ LQ(t+ 1) · · · ⊇ LQ(t+ k) (7)

The above equation can lead to the measure of LQ(t) being proportional to Q−1
p (t) following the

Lipschitz continuous property represented in Assumption 2. In addition, as Q−1
p (t) decreases mono-

tonically by Definition 2, we can obtain the following inequalities about the measure of each subset:

∃t > t0, m(LQ(t)) ≥ m(LQ(t+ 1)) · · · ≥ m(LQ(t+ k)). (8)

Suppose that there exists a unique optimizer x∗ such that ∀x ∈ X , f(x∗) ≤ f(x) ≤ fQ(x). If (8)
results in limt↑∞m(LQ(t+k)) = 0, fQ(x)→ f(x). Accordingly, following the above assumption
of a unique optimizer, we can obtain fQ(x)→ f(x∗) intuitively.

To prove the above consideration, we establish the following assumption.

Assumption 3 The power summation to the base bh̄(t+k) is bounded such that

lim
k→∞

n∑
k=0

b−h̄(t+k) = b̄(t) <∞, b̄(t) ↓ 0 as t ↑ ∞ (9)

Under Assumption 3, we can establish the following theorem

Theorem 3 For a large k > n0, if the proposed algorithm provides a sufficiently finite resolution
for fQ such that

fQ(xt+k)− fQ(xt+k+1) = Qp(t+ k)−1 (10)

, for all xt ∈ Rn and t > 0, there exists n < n0 satisfying the following

∥f(xt+n)− f(xt+n+1)∥ ≥ ∥f(xt+k)− f(x∗)∥. (11)

For the stochastic analysis of the proposed algorithm, we can obtain the following lemma associated
with the difference of quantization errors to the quantized objective functions.

Lemma 4 Suppose that there exist two equal quantized objective functions for two distinguished
inputs xt, xt+1 ∈ Rn such that fQ(xt) = fQ(xt+1). Under this condition, the quantization error
ε̄tQ

−1
p (t) of fQ(xt)− fQ(xt+1) is evaluated as follows:

ε̄tQ
−1
p = −(εt+1 − εt) · (xt+1 − xt) · vt · Q̃−1

p , ε̄t ≜ εt+1 − εt (12)

, where vt represents a normalized vector defined as vt = − xt+1−xt

∥xt+1−xt∥ and Q̃p(t) denotes a scaled
quantization parameter to Qp(t) with a constant value C ∈ R+ such that

Q̃−1
p (t) = C · bh̄(t). (13)

With the above theorem and lemma, we can establish the stochastic differential equation(SDE) for
the proposed algorithm as follows:

Theorem 5 For a given objective function f(xt) ∈ R, suppose that there exist the quantized
objective functions fQ(xt), fQ(xt+1) at a current state xt and the following state xt+1 such that
fQ(xt) ≥ fQ(xt+1), for all xt+1 ̸= xt; we can obtain the differential equation of the state transition
as follows:

dXt = −∇xf(Xt)dt+
√

Cq ·Q−1
p (t)dWt (14)

where Wt represents a standard Wiener process, which has a zero mean and variance with one, Xt

denotes a random variable corresponding to xt, and Cq ∈ R is a constant value.
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3.2. Weak convergence of the proposed algorithm

Equation (14) is the typical Langevine SDE, so we can expect that the transition probability yielded
by the proposed algorithm follows Gibb’s distribution based on a Gaussian function. In addition,
we note that the proposed algorithm exhibits the hill-climbing effect resulting from the Wiener pro-
cess dWt; thus, the proposed algorithm is robust to local minima [32, 33]. However, an asymptotic
analysis of the Hilbert space always represents the possibilities of divergence in an optimization
algorithm with the hill-climbing property. Therefore, we demonstrate a global optimization of the
algorithm, including the hill-climbing, which is robust to local minima so that we prove the conver-
gence of the transition probability yielded by the proposed algorithm to the global optimum. This
convergence is known as a weak convergence. In particular, based on the Laplace theorem, the proof
of weak convergence to the transition probability represented by Gibbs’s distribution is clear . In
the proposed algorithm, as shown in (14), the variance of the transition probability is in proportional
to the inverse of the quantization parameter Q−1

p (t). The inverse of the quantization parameter is
a monotone decreasing function to time t, as represented in Definition 2, and the limit of the sum-
mation to time is finite, as shown in Assumption 3. Consequently, we can expect that the proposed
algorithm fulfills Laplace’s theorem([7, 13, 21, 32]), and we can prove the weak convergence as
follows:

Theorem 6 If the dynamics of the state transition by the proposed algorithm follow (14), the state
xt weakly converges to the global minimum when the quantization parameter decreases to the fol-
lowing schedule:

inf
t≥0

Q−1
p (t) =

Co

log(t+ 2)
, Co ∈ R+, Co ≫ 0 (15)

With the assumption of an objective function’s Lipschitz continuous property, we can prove Theo-
rem 6 without any convex assumptions. Another property shown by Theorem 6 is that the proposed
primitive algorithm contains more strong convergence conditions than Theorem 6 represents. In
addition, because Q−1

p is not a rational number, the implementation of the proposed algorithm may
be elusive. Therefore, by letting (15) be an upper bound and another equation be a lower bound,
we can set h̄(t) as the following theorem for the global convergence and implementation of the
proposed algorithm.

Theorem 7 Suppose that there exists an integer valued annealing schedule σ(t) ∈ Z+ such that
σ(t) ≥ inf σ(t) ≜ c/ log(t + 2). If the power function h̄(t) of the quantization parameter Q−1

p (t)
fulfills the following condition, the proposed algorithm weakly converges to the global optimum.

logb

(
C0 · b−

2β
t+2 · inf σ(t)

)
≤ h̄(t) ≤ logb (C1 log(t+ 2)) (16)

, where C0 ≡ η
√
Cq and C1 ≡

√
Cqη/C.

Theorem 7 illustrates that if the algorithm controls the power function h̄(t) for the quantization un-
der the condition in Theorem 7, we can find the global optimum with a weak convergence property.

4. Simulation Results

To verify the optimization performance of the proposed algorithm for combinatorial optimization
problems, including NP-hard problems, we perform the TSP simulation of 100 cities located in a
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Table 1: Simulation Results to TSP for 100 cities
Criterion Simulated Annealing Quantum Annealing Proposed Algorithm

Average Minimum Cost 1729.50 1721.07 1648.26
Improvement Ratio to the Initial setting 19.90% 20.29% 23.67 %

Table 2: Simulation Results to TSP beyond 100 cities
Number of Cities Nearest Neighbor(Initial) Simulated Annealing Quantum Annealing Proposed Algorithm Improve Ratio

100 2159.27 1729.50 1721.07 1648.26 23.67
125 2297.86 2027.52 2028.2 1923.65 16.28
150 2497.65 2255.15 2252.82 2032.21 18.63
175 2380.52 2380.52 2380.29 2147.17 9.80
200 2769.73 2769.34 2769.42 2366.72 14.55

2-dimensional squared space with the range [0, 200]. We use the OPT-2 algorithm, which is the
city selection method in the TSP for cost evaluation as presented by [24]. The OPT-2 algorithm is
one of the transform functions for real binary input space to a virtual real vector space such as T :
{0, 1}m → Rn, where m represents the number of cities minus 1, n represents a virtual dimension
of the virtual space. Using such a transformation, we can assume that an objective function fulfills
Lipschitz continuity in that the OPT-2 algorithm changes the location of only two cities[13]. In all
attempts, we use a fixed location of cities to guarantee the generality of the simulation. Moreover, to
guarantee objective optimization performance for all algorithms in the simulation, we set an initial
route for each city in the TSP using the nearest neighbor algorithm, and we set the initial route as a
start Hamiltonian H0 for QA. The simulation results in Table 1 show that the average optimization
performance of the proposed algorithm is superior to that of SA and QA.

Furthermore, we evaluate the optimization performance of the algorithms in solving a TSP
involving more than 100 cities. Generally, the difficulties in a TSP involving more than 100 cities
increase dramatically. For instance, the possible number of routes in the TSP from 100 to 110 cities
increase approximately 1020 times (from 9.33× 10157 to 1.58× 10178). Such increasing difficulties
in the TSP lead to high computational costs and optimization failure. The simulation results in Table
2 show that the proposed algorithm can find a feasible solution even when the number of cities is
200, whereas other algorithms are unable to outperform the nearest neighbor method in finding a
better solution.

5. Conclusion

We present a quantization-based optimization scheme with an increase in the quantization resolu-
tion to optimize an objective function globally. Through stochastic analysis, particularly the SDE,
the dynamics of the proposed algorithm, are described. Using the SDE and feasible assumptions,
we present the analysis of the weak convergence of the proposed algorithm, enabling global op-
timization. The proposed algorithm is based on the mathematical feature of quantization error,
whereas other heuristic algorithms simulate natural phenomena. Therefore, we expect to develop
an alternative global optimization methodology by numerical analysis based on number theory. In
future work, we will research an effective iterative difference learning equation based on a quantized
optimization scheme for a continuous function defined on the differential manifold.
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Appendix B. Introduction

We set notations, proof of lemmas and theorems and more detailed information about the simulation
in the manuscript to the following sections.

Appendix C. Notations

• Rn The n-dimensional space with real numbers

• R Rn|n=1

• R[α, β] {x ∈ R|α ≤ x ≤ β, α, β ∈ R}

• R(α, β] {x ∈ R|α < x ≤ β, α, β ∈ R}

• R[α, β) {x ∈ R|α ≤ x < β, α, β ∈ R}

• R(α, β) {x ∈ R|α < x < β, α, β ∈ R}

• Qn The n-dimensional space with rational numbers

• Q Qn|n=1

• Z The 1-dimensional space with integers.

• N The 1-dimensional space with natural numbers.

• R+ {x|x ≥ 0, x ∈ R}

• R++ {x|x > 0, x ∈ R}

• Q+ {x|x ≥ 0, x ∈ Q}

• Q++ {x|x > 0, x ∈ Q}

• Z+ {x|x ≥ 0, x ∈ Z}

• Z++ {x|x > 0, x ∈ Z}, Z++ is equal to N.

• ⌊x⌋ max{y ∈ Z|y ≤ x, ∀x ∈ R}

• ⌈x⌉ min{y ∈ Z|y ≥ x,∀x ∈ R}
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Appendix D. Auxiliary Lemma

We use the following lemma to prove the theorems represented in the next chapters.

Lemma : Auxiliary 1 For all x ∈ R,

(1− x) ≤ exp(−x). (17)

Proof By the definition of the exponent, we write the exponential function as the following funda-
mental series :

exp(−x) =
∞∑
n=0

1

n!
(−1)nxn =

∞∑
k=0

(
1

2k!
x2k − 1

(2k + 1)!
x2k+1

)
. (18)

Let uk as follows:

uk =
1

2k!
x2k

(
1− 1

2k + 1
x

)
(19)

then we can rewrite the series of exponents such that

exp(−x) = u0 +

∞∑
k=1

uk. (20)

For all k > 0, since each uk is positive, we have

1− x = u0 ≤ u0 +

∞∑
k=0

uk. (21)

Alternatively, we can prove the lemma with differentiation. Let g(x) = (1 − x) − exp(−x).
Differentiating g(x) to x, we get

dg

dx
(x) = −1 + exp(−x), d2g

dx2
= − exp(−x) (22)

We note that g(x) is a concave function from the fact that d2g
dx2 < 0, ∀x ∈ R. In addition, the

maximum of g(x) is zero at x = 0 from which dg
dx(x) = −1 + exp(−x) = 0. Therefore, g(x) ≤ 0,

so that it fulfills the Lemma.

Appendix E. Proofs of Theorems in Section 2

E.1. Proof of theorem 1

Theorem 1 If the quantization error εt ∈ Rn satisfying the WNH, the mean and variance of the
quantization error at t > 0 is

∀εt ∈ R, EFtQp(t)εt = 0, EFtQ
−2
p (t)ε2t = Q−2

p (t) · EFtε
2
t =

1

12 ·Q2
p(t)

. (23)
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Proof The theorem is explicit according to the WNH. Let ∆ be the brief notation of εtQ−1
p (t).

According to Jiménez et al. [23], εt is uniformly distributed in [−Q−1
p (t), Q−1

p (t)) under the WNH
and Definition 1. Therefore, we can obtain the expectation value of ∆ = εtQ

−1
p (t) as follows:

EFt∆ =

∫ Q−1
p (t)/2

−Q−1
p (t)/2

∆Pεd∆ =
1

Q−1
p (t)

·
∫ Q−1

p (t)/2

−Q−1
p (t)/2

∆d∆ =
1

2Q−1
p (t)

(
Q−1

p (t)2

22
−

Q−1
p (t)2

(−2)2

)
= 0.

(24)
In a similar way, we can obtain the variance such that

EFt∆
2 =

1

Q−1
p (t)

∫ Q−1
p (t)/2

−Q−1
p (t)/2

∆2d∆ =
1

Q−1
p (t)

· 1
3

(
Q−1

p (t)3

8
−
−Q−1

p (t)3

8

)
=

1

12 ·Q2
p(t)

(25)

From the WNH, the square of εt is one, so that we obtain the result of the theorem.

E.2. Proof of theorem 2

Theorem 2 Suppose that the initial value of a given objective function f(x0) ∈ R is supx∈R f(x).
The transition probability to the next step, P(x1|x0), yielded by the proposed algorithm, is one when
the initial parameter η ∈ Q+ satisfies the following equation:

η = b−⌊logb(f(x0)+1)⌋ (26)

, where b represents a base in Definition 2 for Qp(t).

Proof By the assumption in Theorem 2, we can establish the following inequality for all x1 ̸= x0

f(x0) +Q−1
p (0) ≥ f(x1) +Q−1

p (1). (27)

By the definition of the quantization parameter Qp, Qp(0) = ηb0 = η and Qp(1) = ηb−1; thus,

f(x0) + η−1 ≥ f(x1) + η−1b =⇒ f(x0)− f(x1) ≥ η−1(b− 1). (28)

Suppose that η is the power of b, i.e., η = bk, where k ∈ Z+, we can get

f(x0)− f(x1) ≥ b−k(b− 1) =⇒ f(x0)− f(x)

b− 1
≥ b−k

=⇒ − logb
f(x0)− f(x1)

b− 1
≤ k =⇒ k ≥ logb(b− 1)− logb(f(x0)− f(x)).

(29)

Since logb(b− 1) ≥ 0 and logb(f(x0)− f(x1)) ≥ logb f(x0) for all x1 ̸= x0, we obtain

k ≥ logb(b− 1)− logb(f(x0)− f(x)) > −1− logb f(x0) ≥ −⌊1 + logb f(x0)⌋ (30)

Therefore, if f(x0) ∈ R is supx∈R f(x), the initial transition probability is one, andwe can set
establish initial value of quantization parameter η = Qp(0) to be

η = b−⌊logb(f(x0)+1⌋ (31)

9
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Appendix F. Proof of Lemma and Theorems in Section 3

F.1. Proof of theorem 3

Theorem 3 For a large k > n0, if the proposed algorithm provides a sufficiently finite resolution
for fQ such that

fQ(xt+k)− fQ(xt+k+1) = Qp(t+ k)−1 (32)

, for all xt ∈ Rn and t > 0, there exists n < n0 satisfying the following

∥f(xt+n)− f(xt+n+1)∥ ≥ ∥f(xt+k)− f(x∗)∥. (33)

Proof Assume that fQ(x∗) = f(x∗), and fQ(x) ̸= fQ(y) for all x, y ∈ Rn and x ̸= y. From the
definition of the algorithm, we let Qp(τ)

−1 denote the infimum of the difference between fQ(x)
and fQ(y) when fQ(x) ̸= fQ(y); thus, we can obtain

fQ(xs)− fQ(xs+1) ≥ Qp(s)
−1 = η−1 · b−h̄(s), ∀b ∈ Z(1,∞) (34)

, where s ∈ Z+. By the assumption in Theorem 3, the difference fQ(xτ )−fQ(xτ+1) is equal to the
each quantization step i.e. fQ(xτ ) − fQ(xτ+1) = η−1 · b−h̄(τ), for an positive real integer τ > s.
Accordingly, (34) leads

fQ(xτ )− fQ(x∗) = fQ(xτ )− fQ(xτ+1) + fQ(xτ+1)− · · · − fQ(xτ+n) + fQ(xτ+n)− fQ(x∗)

= η−1
n−1∑
k=0

b−h̄(τ+k) + fQ(xτ+n)− fQ(x∗).

(35)
If we can find the optimal point at the step τ + n, we can obtain the supremum of the bound to

the difference fQ(xτ+n)− fQ(x∗) as follows:

sup inf
xτ+n

∥fQ(xτ+n)− fQ(x∗)∥ = sup inf
xτ+n

∥fQ(xτ+n)− f(x∗)∥

= sup inf
xτ+n

∥f(x∗) + εQ−h̄(τ+n)
p − f(x∗)∥

= Q−h̄(τ+n)
p = η−1 · b−h̄(τ+n).

(36)

Thus, we can obtain

fQ(xτ )− fQ(x∗) ≤ η−1
n−1∑
k=0

b−h̄(τ+k) + η−1 · b−h̄(τ+n)

= η−1
n∑

k=0

b−h̄(τ+k) < η−1
∞∑
k=0

b−h̄(τ+k) = η−1 · b̄(τ).
(37)

Since the b̄(t) is a monotone decreasing function with respect to t, there exists δ > 0 such that
δ > b̄(τ). Therefore, there exists s > τ such that

fQ(xs)− fQ(xs+1) ≥ η−1 · b−h̄(s) ≥ η−1 · δ > η−1 · b̄(τ) > fQ(xτ )− fQ(x∗). (38)

10
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Figure 1: Conceptual diagram for Lemma 4. In an equal quantization level, we can dismiss correct
value of f(x) since fQ(x) = fQ(y), ∀x ̸= y.Thus, we can let f(x) as a simple low-order
function such as the first-order function, within an equal quantization level instead of the
correct f(x)

F.2. Proof of lemma 4

Lemma 4 Suppose that there exist two equal quantized objective functions for two distinguished
inputs xt, xt+1 ∈ Rn such that fQ(xt) = fQ(xt+1). Under this condition, the quantization error
ε̄tQ

−1
p (t) of fQ(xt)− fQ(xt+1) is evaluated as follows:

ε̄tQ
−1
p = −(εt+1 − εt) · (xt+1 − xt) · vt · Q̃−1

p , ε̄t ≜ εt+1 − εt (39)

, where vt represents a normalized vector defined as vt = − xt+1−xt

∥xt+1−xt∥ and Q̃p(t) denotes a scaled
quantization parameter to Qp(t) with a constant value C ∈ R+ such that

Q̃−1
p (t) = C · bh̄(t). (40)

Proof According to the assumption, we can consider the case represented in the figure 1 as follows:

0 = fQ(xt+1)− fQ(xt) = f(xt+1)− f(xt) + (εt+1 − εt)Q
−1
p

=⇒ f(xt+1)− f(xt) = −(εt+1 − εt)Q
−1
p .

(41)

11
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Furthermore, considering the line across the points (xt, f(xt)) and (xt+1, f(xt+1)), we get the
following equation:

f̄ ′(x) = −f(xt+1)− f(xt)

∥xt+1 − xt∥
vt · (x− xt) + f(xt), ∵ vt = −

xt+1 − xt
∥xt+1 − xt∥

. (42)

By the definition of the quantization parameter, we note that Qp(t) = η ·bh̄(t). In addition, Theorem
2 illustrates that η = b−⌊logb(f(x0)+1)⌋. Without losing generality, we can establish η as follows:

η = b−⌊logb(f(x0)−f(x∗))+1⌋, ∀x ∈ Rn, f(x∗) < f(x). (43)

Practically, we cannot know the optimal point correctly in most optimization problems, so the above
definition for η is an ideal and theoretical case. Therefore, we can let Q−1

p (t) = η−1 · b−h̄(t). Under
the condition of Q−1

p (t), we can get

Q−1
p = blogb(f(x0)−f(x∗))+ϵ · bh̄(t) = (f(x0)− f(x∗)) · bh̄(t)+ϵ (44)

, where ϵ denotes an error led by the floor operation. Spanning f(x0) − f(x∗) for a finite value
n > n0, we get

f(x0)− f(x∗) = f(x0)− f(x1) + f(x1)− f(x2) · · ·+ f(xt+n)− f(x∗)

≤ ∥f(x0)− f(x1)∥+ ∥f(x1)− f(x2)∥ · · ·+ ∥f(xt+n−1)− f(x∗)∥
(45)

Holding Theorem 3, we can rewrite the final term of the right side such that

f(x0)− f(x∗) ≤ ∥f(x0)− f(x1)∥+ ∥f(x1)− f(x2)∥ · · ·+ ∥f(xt+n)− f(xt+n−1)∥
≤ n · ∥f(xτ+1)− f(xτ )∥

(46)

, where τ ∈ Z+ is defined as

∀t > t0, ∃τ ∈ Z[t0, t] such that ∥f(xτ+1)− f(xτ )∥ > ∥f(xt+1)− f(xt)∥. (47)

By Lipschitz continuity, we note ∥f(xτ+1) − f(xτ )∥ < L∥xτ+1 − xτ∥, so that we can obtain the
following inequality:

f(x0)− f(x∗) < n · L · ∥xτ+1 − xτ∥ ∵ τ ∈ Z+. (48)

Thus, we can partition the Qp as follows:

Q−1
p = (f(x0)− f(x∗)) · bh̄(t)+ϵ < ∥xτ+1 − xτ∥ · n · L · bh̄(t)+ϵ = ∥xτ+1 − xτ∥ · Q̄−1

p (49)

, where Q̄−1
p ≜ C0 ·bh̄(t)+ϵ and C0 = nL. From the fact that ∥xτ+1−xτ∥ > ∥xt+k+1−xt+k∥, ∀k ∈

Z[1, n], we can establish a positive value p > 1 such that

∥xτ+1 − xτ∥ = p · ∥xt+1 − xt∥ (50)

, for an arbitrary t > 0. By (41) and (42), we get

f(xt+1)− f(xt) = −(εt+1 − εt)Q
−1
p (51)

12
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and

f(xt+1)− f(xt) = −
f(xt+1)− f(xt)

∥xt+1 − xt∥
vt · (xt+1 − xt). (52)

Therefore,

f(xt+1)− f(xt) = −(εt+1 − εt)Q
−1
p

= −(εt+1 − εt) · ∥xτ+1 − xτ∥ · Q̄−1
p

= −(εt+1 − εt) · ∥xτ+1 − xτ∥ · vt · vt · Q̄−1
p

= (εt+1 − εt) · ∥xτ+1 − xτ∥ ·
(xt+1 − xt)

∥xt+1 − xt∥
· vt · Q̄−1

p

= (εt+1 − εt) · p · ∥xt+1 − xt∥ ·
(xt+1 − xt)

∥xt+1 − xt∥
· vt · Q̄−1

p

= (εt+1 − εt) · (xt+1 − xt) · vt · Q̃−1
p

(53)

, where Q̃−1
p = pC0 b

h̄(t)+ϵ = p Q̄−1
p . Consequently, we can obtain

ε̄tQ
−1
p = −(εt+1 − εt) · (xt+1 − xt) · vt · Q̃−1

p (54)

, where ε̄t ≜ εt+1 − εt.

F.3. Proof of theorem 5

Theorem 5 For a given objective function f(xt) ∈ R, suppose that there exist the quantized ob-
jective functions fQ(xt), fQ(xt+1) at a current state xt and the following state xt+1 such that
fQ(xt) ≥ fQ(xt+1), for all xt+1 ̸= xt; we can obtain the differential equation of the state transi-
tion as follows:

dXt = −∇xf(Xt)dt+
√

Cq ·Q−1
p (t)dWt (55)

where Wt ∈ Rn represents a standard Wiener process, which has a zero mean and variance with
one, Xt ∈ Rn denotes a random variable corresponding to xt ∈ Rn, and Cq ∈ R is a constant
value.

Proof By Definition 1, we can write the quantized objective function fQ(xt) as follows:

fQ(xt) = f(xt) + εt ·Q−1
p (t). (56)

According to (56), the difference of the quantized objective function represents

fQ(xt+1)− fQ(xt) = f(xt+1)− f(xt) + (εt+1 − εt) ·Q−1
p (t). (57)

By the definition of Taylor expansion, we get

f(xt+1)−f(xt) = ∇xf(xt)(xt+1−xt)+

∫ 1

0
(1−s)

∂2f

∂x2
(xt+s(xt+1−xt))(xt+1−xt)

2ds. (58)

13
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From (57), we can evaluate the difference of the objective function when fQ(xt+1) = fQ(xt) such
that

0 = fQ(xt+1)−fQ(xt) = f(xt+1)−f(xt)+ ε̄t ·Q−1
p (t)⇒ f(xt+1)−f(xt) = −ε̄t ·Q−1

p (t) (59)

, where ε̄t denotes a difference of εt such that ε̄t ≜ εt+1 − εt and ε̄t ∈ R[−1, 1]. Following
Lipschitz continuous condition (Assumption 2) and fQ(xt+1)− fQ(xt) ≤ 0, there exists a positive
value m ∈ R+ such that

m ≜ inf
x

∣∣∣∣∂2f

∂x2
(x)

∣∣∣∣ , ∀x = xt + s(xt+1 − xt), s ∈ R[0, 1]. (60)

Using (54) and (60), we rewrite (58) as follows:

0 ≥ f(xt+1)− f(xt) > ∇xf(xt)(xt+1 − xt) +m(xt+1 − xt)
2

∫ 1

0
(1− s)ds+ ε̄tQ

−1
p (t)

= (xt+1 − xt) · ∇xf(xt) +
m

2
(xt+1 − xt)

2 + ε̄tQ
−1
p (t)

= −(xt+1 − xt) ·
(
−∇xf(xt) + vt · ε̄tQ̃−1

p (t)
)
+

m

2
(xt+1 − xt)

2

(61)

, where vt denotes a normalized vector such that vt = − (xt+1−xt)
∥xt+1−xt∥ .

In (61), if we choose (xt+1 − xt) appropriately, we note that there exist a positive m satisfying
the inequality condition f(xt+1) ≤ f(xt). Thereby, when we set xt+1 − xt as follows

xt+1 − xt = −∇xf(xt) + vt · ε̄tQ̃−1
p (t) (62)

, we can obtain the following inequality:

0 ≥ f(xt+1)− f(xt) > (xt+1 − xt)
2
(m
2
− 1
)
. (63)

Consequently, when the infimum to the second derivation of the objective function f(x) fulfills
0 ≤ m < 2, we can find the state xt+1 satisfying the inequality f(xt+1) − f(xt). Conversely, if
m ≥ 2, it contradicts f(xt+1) ≤ f(xt). In other words, (63) turns to the follwoing inequality:

f(xt+1)− f(xt) > (xt+1 − xt)
2
(m
2
− 1
)
≥ 0, ∀m ≥ 2. (64)

(64) implies f(xt+1) > f(xt), and it means that the proposed algorithm brings a hill-climbing ef-
fect within the domain fillfills the quantized range such as x ∈ {x|fQ(x) = fQ(xt+1) = fQ(xt)}.
Since the proposed algorithm serves the bounded range provided by the quantization for each itera-
tion, the hill-climbing effect cannot lead to divergence of the algorithm.

To obtain a differential form of the difference to xt, we let Z(s) = xt+s(xt+1−xt) and rewrite
(62) as following integral equation:

xt+1 − xt = (xt+1 − xt)

∫ 1

0
ds =

∫ 1

0
(xt+1 − xt)ds =

∫ 1

0

∂Z(s)

∂s
ds =

∫ 1

0
dZ(s). (65)

14
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From (62), we can get

xt+1 − xt =

∫ 1

0
dZ(s) =

∫ 1

0
(xt+1 − xt)ds =

∫ 1

0
(−∇xf(xt) + vt · ε̄tQ̃−1

p (t))ds =

∫ t+1

t
dxs.

(66)
Herein, since vt is a normalized vector, we can get the variance of vt · ε̄tQ̃−1

p (t) such that

EFt⟨vt, vt⟩ · ε̄2t Q̃−2
p (t) = Q̃−2

p (t)EFt ε̄
2
t =

4

12 · Q̃2
p(t)

= CqQ̃
−2
p (t) ∵ ∥vt∥ = 1, Cq = 1/3

(67)
Differentiating the two right-most terms in (66), we obtain

∂

∂s

∫
dxs

∣∣∣∣
s=t

=
∂

∂s

∫
(−∇xf(xt) + vt · ε̄tQ̃−1

p (t))ds

∣∣∣∣
s=t

=⇒ dXt = −∇xf(Xt)dt+ vt · ε̄tQ̃−1
p (t)dt

=⇒ dXt = −∇xf(Xt)dt+
√

Cq · Q̃−1
p dWt

(68)

Theorem 5 gives the fundamental stochastic differential form to evaluate the optimal quantiza-
tion schedule for global optimization.

In (63), you can argue that, if m is larger than two, then the inequality is broken. However, since
m is just an infimum of the second derivation of the objective function, not the correct value, we
can regard it as a quadratic approximated function to the objective function. Thus, the proposition
holds sufficiently when the objective function is locally convex on some domain around xt. The
more important point is that the proposition also holds when m is negative or zero. Negative m is
that the objective function is a concave function on a local domain of xt. In a conventional convex
optimization theory, we cannot obtain a less value of an objective function at a next state xt+1 based
on a negative gradient than a current value. However, since the proposed algorithm can get a lower
objective function value at the next state despite a concave function, m can be equal to or less than
zero. Additionally, when the value of the objective function on the next state is larger than the
current state, the quantization makes the next and the current value of the objective function equal
so that the proposition still holds.

Even though the proposed algorithm does not have any scheduler similar to the temperature
scheduler in simulated annealing, if the quantization parameter decreases to the schedule provided
by the following proposition, the proposed algorithm can find the global optimum.

Appendix G. Proof of Theorems in Section 4

G.1. Proof of theorem 6

Theorem 6 If the dynamics of the state transition by the proposed algorithm follow (14), the state
xt weakly converges to the global minimum when the quantization parameter decreases to the fol-
lowing schedule:

inf
t≥0

Q−1
p (t) =

Co

log(t+ 2)
, Co ∈ R+, Co ≫ 0 (69)
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Proof For the proof of the theorem, we depend on the lemmas in works of Geman and Hwang [13].
First, we prove the following convergence of the transition probability:

lim
τ→∞

sup
xt,xt+τ∈Rn

∥p(t, x̄t, t+ τ, x∗)− p(t, xt, t+ τ, x∗)∥ = 0 (70)

, where t and τ is the current time index and the process time index, respectively. x∗ represents an
global optimum for the objective function f(xt).

Let the infimum of the transition probability from t to t+ 1 such that

δt = inf
x,y∈Rn

p(t, x, t+ 1, y) (71)

According to the lemma in Geman and Hwang [13], we can evaluate the upper bound of (70) as
follows:

lim
t→∞

sup
v,w
|p(s, v, t, f)− p(s, w, t, f)|

= lim
t→∞

sup
v,w

∣∣∣∣∫ p(s, v, s+ 1, z)p(s+ 1, z, t, f)dz −
∫

p(s, w, s+ 1, z)p(s+ 1, z, t, f)dz

∣∣∣∣
= lim

t→∞
sup
v,w

∣∣∣∣∫ p(s, v, s+ 1, z)p(s+ 1, z, t, f)dz −
∫

p(s, w, s+ 1, z)p(s+ 1, z, t, f)dz − (δs − δs)p(s+ 1, z, t, f)

∣∣∣∣
= lim

t→∞
sup
v,w

∣∣∣∣∫ (p(s, v, s+ 1, z)− δs)p(s+ 1, z, t, f)dz −
∫
(p(s, w, s+ 1, z)− δs)p(s+ 1, z, t, f)dz

∣∣∣∣
≤ lim

t→∞
sup
v,w

∣∣∣∣∫ (p(s, v, s+ 1, z)− δs) sup
z

p(s+ 1, z, t, f)dz −
∫
(p(s, w, s+ 1, z)− δs) inf

z
p(s+ 1, z, t, f)dz

∣∣∣∣
= lim

t→∞
sup
v,w

∣∣∣∣sup
z

p(s+ 1, z, t, f)

∫
(p(s, v, s+ 1, z)− δs)dz − inf

z
p(s+ 1, z, t, f)

∫
(p(s, w, s+ 1, z)− δs)dz

∣∣∣∣
≤ lim

t→∞
sup
v,w

∣∣∣∣(1− δs) sup
z

p(s+ 1, z, t, f)− (1− δs) inf
z
p(s+ 1, z, t, f)

∣∣∣∣
= lim

t→∞
sup
v,w

(1− δs)

∣∣∣∣sup
z

p(s+ 1, z, t, f)− inf
z
p(s+ 1, z, t, f)

∣∣∣∣
· · ·

≤ lim
t→∞

(t−s)−1∏
k=0

(1− δs+k)

 · sup
v,w
|p(s+ (t− s), v, t, f)− p(s+ (t− s), w, t, f)|

≤ lim
t→∞

(t−s)−1∏
k=0

(1− δs+k)

 =

∞∏
k=0

(1− δs+k).

(72)
Thus, we obtain

lim
τ→∞

sup
xt,xt+τ∈Rn

∥p(t, x̄t, t+ τ, x∗)− p(t, xt, t+ τ, x∗)∥ ≤
∞∏
k=0

(1− δt+k). (73)
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From the exponential approximation (1) in Lemma:Auxiliary, we rewrite (73) as follows:

lim
τ→∞

sup
xt,xt+τ∈Rn

∥p(t, x̄t, t+ τ, x∗)− p(t, xt, t+ τ, x∗)∥ ≤ exp(−
∞∑
k=0

δt+k)). (74)

Herein, to obtain the bound of δt+k, we rewrite the SDE for the dynamics of the proposed algorithm
from Theorem 6:

dXs = −∇f(Xs)ds+ σ(s)
√
CqdWs, s ∈ R(t, t+ 1). (75)

, where σ(s) ≜ Q−1
p (s).

Define a domain F{f : [t, t+ 1]→ Rn, f continuous }, Let Px be the probability measures on
F induced by (75) and the probability distribution Qx given by the following equation:

dX̄s = σ(s)
√

CqdWs, s ∈ R(t, t+ 1). (76)

According to the Girsanov theorem (Klebaner [30], Øksendal [45]), we obtain

dPx

dQx
= exp

{
−
∫ t+1

t

C−1
q

σ2(s)
∇xf(Xs)dX̄s −

1

2

∫ t+1

t

C−1
q

σ2(s)
∥∇xf(Xs)∥2ds

}
. (77)

To compute the upper bound of (77), we will check the upper bound of ∥∇xf∥. Considering As-
sumption 2, the gradient of f(xt) ∈ C2 fulfills the Lipschitz continuous condition as well. Thereby,
there exist a positive value L′ such that

∥∇f(ws)−∇f(x∗)∥ ≤ L′∥ws − x∗∥, ∀s > 0. (78)

Successively, since∇xf(x
∗) = 0, the Lipschitz condition forms simply as follows :

∥∇xf(xt)∥ ≤ L′ρ = C0 (79)

, where ρ = ∥xt − x∗∥.
Consequently, for all s ∈ R[t, t+1), we compute the upper bound of the first term in exponential

function in (77) as follows:∥∥∥∥∥
∫ t+1

t

C−1
q

σ2(s)
∇xf(Xs)dX̄s

∥∥∥∥∥ ≤
∫ t+1

t

∥∥∥∥∥ C−1
q

σ2(s)
∇xf(Xs)dX̄s

∥∥∥∥∥
≤
∫ t+1

t

C−1
q

σ2(s)
∥∇xf(Xs)∥σ(s)

√
CqdWs

≤

√
C−1
q

σ(s)
sup ∥∇xf(Xs)∥

∫ t+1

t
dWs

≤

√
C−1
q

σ(s)
C0∥Wt −

1

2
∥ ≤ 1

σ(s)
C0

√
C−1
q (ρ+

1

2
).

(80)

(80) implies that ∥∥∥∥∥−
∫ t+1

t

C−1
q

σ(s)
∇xf(Xs)dX̄s

∥∥∥∥∥ ≤ C1

σ(s)
(81)
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, where C1 denotes positive value such that C1 > C0

√
C−1
q (ρ+ 1

2).
In addition, the upper bound of the second term represents

1

2

∥∥∥∥∥
∫ t+1

t

C−1
q

σ2(s)
∥∇xf(Xs)∥2ds

∥∥∥∥∥ ≤ 1

2

∫ t+1

t

C−1
q

σ2(s)
∥∇xf(Xs)∥2ds

≤ 1

2

C−1
q

σ2(s)
sup ∥∇xf(Xs)∥2

∫ t+1

t
ds

≤ 1

2σ2(s)
C−1
q · C2

0 ≤
C2

2σ2(s)
, ∵ C2 > C−1

q · C2
0 .

(82)

Because σ(s) ≜ Q−1
p (t) is monotone decreasing function, the supremum of σ(s) is σ(0) for all

s ∈ R[0,∞), i.e. sups∈R[0,∞] σ(s) = σ(0) ≜ σ. With the supremum of each term in (77), we can
obtain the lower bound of the Radon-Nykodym derivative (77) such that

dPw

dQw
≥ exp

(
− 1

σ(s)

(
C1 +

C2

2σ(s)

))
≥ exp

(
− C3

σ(s)

)
, ∵ C3 > 2σ(0)C2 + C1. (83)

Accordingly, for any ε > 0 and xt, x
∗ ∈ Rn, the infimum of Px(|Xt+1 − x∗| < ε) is

Px(|Xt+1 − x∗| < ε) ≥ exp

(
− C3

σ(s)

)
Qx(|Xt+1 − x∗| < ε). (84)

As Qw is a normal distribution based on (76), we have

Px(|Xt+1 − x∗| < ε) ≥ exp

(
− C3

σ(s)

)∫
∥x−x∗∥<ε

1

σ
√

2π
∫ t+1
t Cqdτ

exp

(
− (x− x∗)2

2
∫ t+1
t Cqdτ

)
dx

≥ exp

(
− C3

σ(s)

)∫
∥x−x∗∥<ε

1

σ
√

2πCq

∫ t+1
t dτ

exp

(
−

(
√
ρ+ ε)2

2Cq

∫ t+1
t dτ

)
dx

≥ exp

(
− C3

σ(s)

)
1

σ(0)
√

2πCq

exp

(
−
(
√
ρ+ ε)2

2Cq

)∫
∥x−x∗∥<ε

dx

= exp

(
− C3

σ(s)

)
1

σ(0)
√

2πCq

exp

(
−
(
√
ρ+ ε)2

2Cq

)
2ε

≥ exp

(
− C3

σ(s)

)
1

σ(0)
√

2πCq

(
1 +

(
√
ρ+ ε)2

2Cq

)
2ε

≥ exp

(
− C3

σ(s)

)
1

σ(0)
√

2πCq

(
2Cq + (

√
ρ+ ε)2

Cq

) ∣∣∣∣∣
ρ=0,ε=0

· ε

≥ exp

(
− C3

σ(s)

)
· C4 · ε, ∵ C4 =

√
2

σ(0)
√
πCq

.

(85)
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Finally, we obtain the lower bound of the transition probability such that

δt = inf
x,y∈Rn

p(t, x, t+ 1, y)

∣∣∣∣
x=xt, y=x∗

= inf
x,y∈Rn

lim
ε→0

1

ε
Px(|Xt+1 − x∗| < ε)

≥ inf
x,y∈Rn

lim
ε→0

1

ε
· C4 · exp

(
− C3

σ(t)

)
· ·ε

≥ exp

(
− C5

σ(t)

)
, ∵ C5 > C3 + σ(0) · | lnC4|

The above inequality implies that, if there exists a monotone decreasing function such that σ(s) ≥
C5

log(t+2) , it satisfies that the convergence condition given by (74) such that

∞∑
k=0

δt+k ≥
∞∑
k=0

exp

(
−C5

C5
log(t+ 2 + k)

)
=

∞∑
k=0

1

t+ 2 + k
=∞, ∀k ≥ 0. (86)

Substitute (86) into (74), we obtain

lim
τ→∞

sup
xt,xt+τ∈Rn

∥p(t, x̄t, t+ τ, x∗)− p(t, xt, t+ τ, x∗)∥ ≤ 2∥x∗∥∞ exp(−
∞∑
k=0

δt+k)) = 0. (87)

G.2. Proof of theorem 7

Although Theorem 6 provides the scheduler of the quantization parameter obtaining the global
minimum, the scheduler is not practical. Whereas the quantization parameter is a rational number,
the value of the scheduler is a real number. Therefore, we have to set an appropriate bound of the
scheduler for the quantization parameter. The following theorem gives one instance.

Theorem 7 Suppose that there exists an integer valued annealing schedule σ(t) ∈ Z+ such that
σ(t) ≥ inf σ(t) ≜ c/ log(t + 2). If the power function h̄(t) of the quantization parameter Q−1

p (t)
fulfills the following condition, the proposed algorithm weakly converges to the global optimum.

logb

(
C0 · b−

2β
t+2 · inf σ(t)

)
≤ h̄(t) ≤ logb (C1 log(t+ 2)) (88)

, where C0 ≡ η
√
Cq and C1 ≡

√
Cqη/C.

Proof From the Theorem 5, 6, we obtain the infimum of σ(t) ≜
√
CqQ

−1
p (t). To evaluate the

integer value of the quantization resolution Qp(t), we set T (t) to be a supremum of σ(t) such that

C

log(t+ 2)
≤ σ(t) ≤ T (t). (89)
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In (89), T (t) is a monotone decreasing function, such as T (t) ↓ 0 with respect to t ↑ 0. Moreover,
when ∆ is given as ∆ ≡ supx,y∈R(f(x)− f(y), T (t) includes the following properties:

d

dt
exp

(
− 2∆

T (t)

)
=

dT (t)

dt
· 1

T 2(t)
exp

(
− 2∆

T (t)

)
→ 0, as t ↑ ∞ (90)

From Definition 2, we note Qp = η ·b−h̄(t), so that we substitute σ(t) with Qp(t) in (89), as follows:

C

log(t+ 2)
≤
√
Cq · η · b−h̄(t) ≤ T (t). (91)

Applying the log function to each term and rearranging, we obtain

logb

(√
Cqη

T (t)

)
≤ h̄(t) ≤ logb

(√
Cqη · log(t+ 2)

C

)
. (92)

Let T (t) ≜ b
2β
t+2 · (inft≥0 σ(t))

−1, then we get

logb

(
η
√

Cq · b−
2β
t+2 inf

t≥0
σ(t)

)
≤ h̄(t) ≤ logb

(√
Cqη · log(t+ 2)

C

)
. (93)

Since C0 ≡ η
√

Cq and C1 ≡
√

Cqη/C, the theorem holds.

Appendix H. Detailed Information of Simulation Results

As mentioned in the manuscript, we perform the optimization test with equal and fixed locations of
cities for all attempts. Figure 2 shows the initial path given by the nearest neighbor algorithm, the
final route given by SA, QA, and the proposed optimization algorithm.

Figure 3 shows the trends of the minimum cost produced by each tested algorithm. Because
SA and QA exploit an acceptance probability, the trends of the errors in both algorithms represent
fluctuation in the early stage of optimization. However, the proposed algorithm does not include
acceptance probability, so that the minimum cost decreases with relatively small fluctuation seen in
SA and QA.

In addition, the slight fluctuation given by the proposed algorithm provides a fast convergence
to a feasible (or global) solution compared to other algorithms. The quantization used in the pro-
posed algorithm gives a hill-climbing effect as other heuristic algorithms do. However, the proposed
algorithm suppresses the hill climbing effect reasonably so that the candidates selected by the op-
timization algorithm cannot diverge to an unfeasible solution so far. On the other hand, the other
algorithms permit the candidate to diverge under the acceptance probability. Therefore, those algo-
rithms require more computation time to converge, even if the algorithm can find the global minima.

The reasonable hill-climbing provided by the proposed algorithm represents robust optimization
performance compared to other algorithms using an acceptance probability.
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(a) Initial path given by the nearest neighbor-
hood algorithm (cost is 2159)
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(b) Final path given by the simulated annealing
algorithm (the minimum cost is 1731)
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(c) Final path given by the quantum annealing
algorithm (the minimum cost is 1706)
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(d) Final path given by the proposed algorithm
(the minimum cost is 1636)

Figure 2: Comparison of TSP routes provided by each optimization algorithm
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