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Abstract
We study monotone inclusions and monotone variational inequalities, as well as their generaliza-
tions to non-monotone settings. We first show that the Extra Anchored Gradient (EAG) algorithm,
originally proposed by Yoon and Ryu [37] for unconstrained convex-concave min-max optimiza-
tion, can be applied to solve the more general problem of Lipschitz monotone inclusion. More
specifically, we prove that the EAG solves Lipschitz monotone inclusion problems with an acceler-
ated convergence rate of O( 1

T ), which is optimal among all first-order methods [9, 37]. Our second
result is an accelerated forward-backward splitting algorithm (AS), which not only achieves the ac-
celerated O( 1

T ) convergence rate for all monotone inclusion problems, but also exhibits the same
accelerated rate for a family of general (non-monotone) inclusion problems that concern negative
comonotone operators. As a special case of our second result, AS enjoys the O( 1

T ) convergence
rate for solving a non-trivial class of nonconvex-nonconcave min-max optimization problems. Our
analyses are based on simple potential function arguments, which might be useful for analysing
other accelerated algorithms.

1. Introduction

We study the constrained single-valued monotone inclusion problem and the monotone variational
inequality, as well as their generalizations in non-monotone settings. Given a closed convex set
Z ⊆ R

n and a single-valued and monotone operator F : Z → R
n, i.e.,〈

F (z)− F (z′), z − z′
〉
≥ 0, ∀z, z′ ∈ Z,

the constrained single-valued monotone inclusion problem (MI) consists in finding a z∗ ∈ Z such
that

0 ∈ F (z∗) + ∂IZ(z
∗),

where IZ(·) is the indicator function for set Z ,1 and ∂IZ(·) is the subdifferential operator of IZ . 2

The corresponding monotone variational inequality shares the same input, and asks for a z∗ ∈ Z
such that

⟨F (z∗), z∗ − z⟩ ≤ 0, ∀z ∈ Z.

1. I(z) = 0 for all z ∈ Z and +∞ otherwise.
2. In general, a monotone inclusion problem refers to finding a zero of a set-valued maximally monotone operator.

When there is no confusion, we use monotone inclusion problems to refer to the constrained single-valued monotone
inclusion problems.
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The monotone inclusion problem (MI) and the related monotone variational inequality play a
crucial role in mathematical programming, providing unified settings for the study of optimization
and equilibrium problems. They also serve as computational frameworks for numerous important
applications in fields such as economics, engineering, probability and statistics, and machine learn-
ing [2, 12, 31].

Although the set of exact solutions to the monotone inclusion problem (MI) coincides with
the set of exact solutions to the corresponding variational inequality, the approximate solutions
to these two problems differ due to different performance measures. An approximate solution to
the monotone inclusion problem (MI) must have a small natural residual,3 while an approximate
solution to the variational inequality only satisfies a weaker condition, i.e., its gap function is small.4

Indeed, it is well-known that an approximate solution to the monotone inclusion problem (MI) is
also an approximate solution to the monotone variational equality, but the reverse is not true in
general.

An important special case of the monotone inclusion problem (MI) is the convex-concave min-
max optimization problem:

min
x∈X

max
y∈Y

f(x, y),

where X and Y are a closed convex sets in Rnx and Rny respectively, and f(·, ·) is smooth, con-
vex in x, and concave in y.5 Besides its central importance in game theory, convex optimization,
and online learning, the convex-concave min-max optimization problem has recently received a
lot of attention from the machine learning community due to several novel applications such as
the generative adversarial networks (GANs) (e.g., [1, 14]), adversarial examples (e.g., [24]), robust
optimization (e.g., [4]), and reinforcement learning (e.g., [6, 11]).

Given the importance of the monotone inclusion problem (MI) , it is crucial to understand the
following open question.

What is the optimal convergence rate achievable by a first-order method for monotone inclusions?
(*)

We provide the first algorithm that achieves the optimal convergence rate and further extend it
to inclusion problems with negatively comonotone operators, an important family of non-monotone
operators. This generalization allows us to obtain the optimal convergence rate for a family of
structured nonconvex-nonconcave min-max optimization problems. Prior to our work, even for
the special case of convex-concave min-max optimization, the optimal convergence rate is only
known for the relatively weak notion of duality gap [26, 27], which is also difficult to generalize to
nonconvex-nonconcave settings, see [37] for more discussion.

3. The natural residual of a point z is simply the operator norm ∥F (z)∥ in the unconstrained case, i.e., Z = R
n, and

equals to the norm of its natural map z −ΠZ [z − F (z)] [12].
4. There are several variations of the gap function. Depending on the exact definition, a small gap function value could

mean an approximate weak solution, i.e., approximately solve the Minty Variational Inequality (MVI), or an approx-
imate strong solution, i.e., approximately solve the Stampacchia Variational Inequality (SVI). Formal definitions and
discussions are in Section 2.1.

5. If we set F (x, y) =

(
∇xf(x, y)
−∇yf(x, y)

)
and Z = X × Y , then (i) F (x, y) is a Lipschitz and monotone operator, and

(ii) the set of saddle points coincide with the solutions to the monotone inclusion (MI) problem for operator F and
domain Z .

2



ACCELERATED ALGORITHMS FOR MI AND CONSTRAINED NONCONVEX-NONCONCAVE MIN-MAX OPTIMIZATION

1.1. Our Contributions

A point z ∈ Z is an ϵ-approximate solution to the constrained single-valued monotone inclusion
problem (MI) if

0 ∈ F (z) + ∂IZ(z) + B(0, ϵ),

where B(0, ϵ) is the ball with radius ϵ centered at 0. As we argue in Section 2.3, this is equivalent
to the tangent residual of z, a notion introduced in [5], being no more than ϵ. Our first contribution
provides an answer to question (*).

Contribution 1: We extend the Extra Anchored Gradient algorithm (EAG), originally pro-
posed by Yoon and Ryu [37] for unconstrained convex-concave min-max problems, to solve
constrained single-valued monotone inclusion problems (MI) . Note that constrained convex-
concave min-max optimization is a special case. We show in Theorem 1 that (EAG) finds
an O(LT )-approximate solution in T iterations for monotone inclusions (MI) , where L is the
Lipschitz constant of the operator F . The convergence rate we obtain for (EAG) matches the
lower bound by [9, 37], and is therefore optimal for any first-order method.

For the second part of the paper, we go beyond the monotone case and study inclusion problems
(CMI) with operators that are not necessarily monotone and only satisfy the weaker ρ-comonotoncity
(Assumption 2) condition. Given a single-valued, L-Lipschitz, and possibly non-monotone operator
F and a set-valued maximally monotone operator A, we denote E = F +A. The inclusion problem
(CMI) consists in finding a point z∗ ∈ R

n that satisfies

0 ∈ E(z∗) = F (z∗) +A(z∗),

under the assumption that E is a set-valued negatively comonotone operator.
The inclusion problem (CMI) captures (MI) (when ρ = 0 and A = ∂IZ ) and a class of non-

smooth nonconvex-nonconcave min-max optimization problems (when ρ < 0 and A chosen appro-
priately, see Example 2). Our second contribution is a new algorithm that achieves accelerated rate
for solving (CMI).

Contribution 2: We design an accelerated forward-backward splitting algorithm (AS) that
finds a O(LT )-approximate solution to the inclusion problem (CMI) in T iterations as long as
E = F+A is a ρ-comonotone operator with ρ > − 1

2·L . See Theorem 2 for a formal statement.

Our algorithm is inspired by the Fast Extra-Gradient (FEG) algorithm [20]. In particular, (AS) is
identical to FEG in the unconstrained setting, i.e., A(z) = 0 for all z, and can be viewed as a gener-
alization of FEG to accommodate arbitrary set-valued maximally monotone operator A. Our result
is the first to obtain accelerated rate for constrained nonconvex-nonconcave min-max optimization
and inclusion problems with negatively comonotone operators. Splitting methods are a family of
algorithms for solving inclusion problems where the goal is to find a zero of an operator that can
be represented as the sum of two or more operators. These methods only invoke each operator in-
dividually rather than their sum directly, and hence the name. There is a rich literature on splitting
methods. See [32] and the references therein for more detailed discussion.

1.2. Related Work

There is a vast literature on inclusion problems and variational inequalities, e.g., see [2, 12, 31] and
the references therein. We summarize most relevant results in Table 1 and provided more detailed
discussion in Appendix A.
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Table 1: Existing results for min-max optimization problem with monotone or non-monotone oper-
ators. The convergence rate is in terms of the operator norm (in the unconstrained setting)
and the residual (in the constrained setting). (∗): the result only holds for MVI but not
weak MVI.

Algorithm Setting Monotone
Non-Monotone

Comonotone Weak MVI

Normal
EG [7] general O( 1√

T
) O( 1√

T
)∗

EG+ [10] unconstrained O( 1√
T
) O( 1√

T
) O( 1√

T
)

CEG+ [30] general O( 1√
T
) O( 1√

T
) O( 1√

T
)

Accelerated

Halpern [9] general O( log TT )
EAG [37] unconstrained O( 1

T )
FEG [20] unconstrained O( 1

T ) O( 1
T )

EAG [This paper] general O( 1
T )

AS [This paper] general O( 1
T ) O( 1

T )

2. Preliminaries

We consider the Euclidean Space (Rn, ∥ · ∥), where ∥ · ∥ is the ℓ2 norm and ⟨·, ·⟩ denotes inner
product on Rn.

Basic Notions about Monotone Operators. A set-valued operator A : Rn ⇒ R
n maps z ∈ R

n

to a subset A(z) ⊆ R
n. We say A is single-valued if |A(z)| ≤ 1 for all z ∈ R

n. Tha graph of an
operator A is defined as GraA = {(z, u) : z ∈ R

n, u ∈ A(z)}. The inverse operator of A is denoted
as A−1 whose graph is GraA−1 = {(u, z) : (z, u) ∈ GraA}. For two operators A and B, we denote
A+B as the operator with graph GraA+B = {(z, uA + uB) : (z, uA) ∈ GraA, (z, uB) ∈ GraB}.
We denote the identity operator as I : Rn → R

n.
For L ∈ (0,∞), a single-valued operator A : Rn → R

n is L-Lipschitz if∥∥A(z)−A(z′)
∥∥ ≤ L ·

∥∥z − z′
∥∥, ∀z, z′ ∈ R

n.

Moreover, A is non-expansive if it is 1-Lipschitz. A set-valued operator A : Rn ⇒ R
n is monotone

if 〈
u− u′, z − z′

〉
≥ 0, ∀(z, u), (z′, u′) ∈ GraA .

For a closed convex set Z ⊆ R
n and point z ∈ R

n, we denote the normal cone operator as
NZ :

NZ(z) =

{
∅, z /∈ Z,

{v ∈ R
n : ⟨v, z′ − z⟩ ≤ 0, ∀z′ ∈ Z}, z ∈ Z.

Define the indicator function

IZ(z) =

{
0 if z ∈ Z,

+∞ otherwise.
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Then it is not hard to see that the subdifferential operator ∂IZ = NZ . The projection operator
ΠZ : Rn → R

n is defined as ΠZ [z] := argminz′∈Z ∥z − z′∥2.

Maximally Monotone Operator. A is maximally monotone if A is monotone and there is no
other monotone operator B such that GraA ⊂ GraB . When f : Rn → R is a convex closed proper
function, then the subdifferential operator ∂f is maximally monotone. Therefore, ∂IZ = NZ is
maximally monotone. We denote the resolvent of an operator A as JA := (I +A)−1.

ρ-comonotonicity. A generalized notion of monotonicity is the ρ-comonotonicity [3]: For ρ ∈ R,
an operator A : Rn ⇒ R

n is ρ-comonotone if〈
u− u′, z − z′

〉
≥ ρ

∥∥u− u′
∥∥2, ∀(z, u), (z′, u′) ∈ GraA .

Note that when A is 0-comonotone, then A is monotone. If A is ρ-comonotone for ρ > 0, we
also say A is ρ-cocoercive (a stronger assumption than monotonicity). When A satisfies negative
comonotonicity, i.e., ρ-comonotonicity with ρ < 0, then A is possibly non-monotone. Negative
comonotonicity is the focus of this paper in the non-monotone setting.

2.1. Monotone Inclusion and Variational Inequality

Constrained single-valued monotone Inclusion. Given a closed convex set Z ⊆ R
n and a

single-valued monotone operator F , the constrained single-valued monotone inclusion problem is
to find a point z∗ ∈ R

n that satisfies

0 ∈ F (z∗) + ∂IZ(z
∗). (MI)

We focus on monotone inclusion problems of Lipschitz operators that have a solution.

Assumption 1 In (MI) problem,

1. F is monotone and L-Lipschitz on Z , i.e.,〈
F (z)− F (z′), z − z′

〉
≥ 0 and

∥∥F (z)− F (z′)
∥∥ ≤ L ·

∥∥z − z′
∥∥, ∀z, z′ ∈ Z.

2. There exists a solution z∗ ∈ Z such that 0 ∈ F (z∗) + ∂IZ(z
∗).

We define the Minty Variational Inequality problem (MVI) and the Stampacchia Variational In-
equality problem (SVI) and show how their solutions relate in Appendix B.

2.2. Inclusion Problems with Negatively Comonotone Operators.

We study inclusion problem (CMI) with (non)-monotone operators that satisfies ρ-comonotoncity
(Assumption 2), which captures (MI) (when ρ = 0) and a class of nonconvex-nonconcave min-max
optimization problems (when ρ < 0). Given a single-valued and possibly non-monotone operator
F and a set-valued maximally monotone operator A, we denote E = F +A. The inclusion problem
is to find a point z∗ ∈ R

n that satisfies

0 ∈ E(z∗) = F (z∗) +A(z∗). (CMI)

Similar to (MI) , we say z is an ϵ-approximate solution to (CMI) if

0 ∈ F (z) +A(z) + B(0, ϵ).

We summarize the assumptions on (CMI) below.
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Assumption 2 In (CMI) ,

1. F : Rn → R
n is L-Lipschitz.

2. A : Rn ⇒ R
n is maximally monotone.

3. E = F +A is ρ-comonotone, i.e., there exists ρ ≤ 0 such that〈
u− u′, z − z′

〉
≥ ρ

∥∥u− u′
∥∥2, ∀(z, u), (z′, u′) ∈ GraE .

4. There exists a solution z∗ ∈ R
n such that 0 ∈ E(z∗).

The formulation of (CMI) provides a unified treatment for a range of problems, such as min-max
optimization and multi-player games. We present one detailed example in Example 2 in Appendix B
and refer readers to [12] for more examples.

2.3. Convergence Criteria

An appropriate convergence criterion is the tangent residual defined in [5] rtanF,A(z) := minc∈A(z) ∥F (z) + c∥.
It is not hard to see that rtanF,A(z) ≤ ϵ implies that z is an ϵ-approximate solution to (CMI) . If
A = ∂IZ , and Z is bounded and has diameter no more than D, then z is an ϵ-approximate solution
to (MI) .

Another commonly-used convergence criterion that captures the stationarity of a solution is
the natural residual rnatF,A := ∥z − JA[z − F (z)]∥. Note that z∗ is a solution to (CMI) iff z∗ =

JA[z
∗ − F (z∗)]. The definition of the natural residual for (MI) is similar: rnatF,∂IZ

:= ∥z −ΠZ [z − F (z)]∥.

Fact 1 In (CMI) , rnatF,A(z) ≤ rtanF,A(z).

We provide a proof of Fact 1 in Appendix B. In this paper, we state our convergence rates in
terms of the tangent residual rtanF,A(z), which implies (i) convergence rates in terms of the natural
residual rnatF,A(z), and (ii) z is an approximate solution to (CMI) or (MI) . 6

3. Optimal Monotone Inclusion via EAG

In this section, we study the constrained single-valued monotone inclusion problem (MI) with closed
convex feasible set Z ⊆ R

n and monotone and L-Lipschitz operator F , as summarized in Assump-
tion 1. We analyse the (projected) Extra Anchored Gradient Method (EAG) , which is proposed
by [37] in the unprojected form for Z = R

n. Let z0 ∈ Z be an arbitrary starting point and
{zk, zk+ 1

2
}k≥0 be the iterates of (EAG) with step size η > 0, whose update rule is as follows:

zk+ 1
2
= ΠZ

[
zk − ηF (zk) +

1

k + 1
(z0 − zk)

]
,

zk+1 = ΠZ

[
zk − ηF (zk+ 1

2
) +

1

k + 1
(z0 − zk)

]
.

(EAG)

6. We also provice convergence rates for approximate solutions of the Minty Variational Inequality problem (MVI)
and the Stampacchia Variational Inequality problem (SVI). Please see Appendix B for the definition and solution
concepts of the Minty Variational Inequality and the Stampacchia Variational Inequality problem and Theorem 12 in
Appendix C.3 for the corresponding convergence rates.
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Theorem 1 Suppose Assumption 1 holds. Let z0 ∈ Z be any starting point and {zk, zk+ 1
2
}k≥0 be

the iterates of (EAG) with step size η ∈ (0, 1√
3L

). Denote D := ∥z0 − z∗∥2. Then for any T ≥ 1,

rtanF,Z(zT )
2 ≤ 44

η2L2(1− 3η2L2)
· D

2L2

T 2

We prove a more general version of Theorem 1 in Appendix C.3 where we also provide conver-
gence rates for the Minty Variational Inequality and the Stampacchia Variational Inequality problem.

4. Accelerated Algorithm for Inclusion Problems with Negatively Comonotone
Operators

In this section, we focus on the inclusion problem (CMI) with a single-valued L-Lipschitz (possibly
non-monotone) operator F and a set-valued maximally monotone operator A, where F +A satisfies
ρ-comonotonicity with ρ > − 1

2L (Assumption 2). We propose an accelerated forward-backward
splitting algorithm (AS) that is applicable to any maximally monotone operator A. Our algorithm
(AS) generalizes previous algorithms such as EAG and FEG, which are limited to the unconstrained
setting. We show that (AS) enjoys the optimal convergence rate of O( 1

T ) via a potential function
argument.

In splitting methods, the update steps in each iteration of can be categorized as the forward
steps, where they involve the forward evaluation of a single-valued operator, or backward steps,
where they require computing the resolvent of an operator.

Accelerated Forward-Backward Splitting (AS). Given any initial point z0 ∈ R
n and step size

η > 0, (AS) sets c0 = 0 and updates {zk+ 1
2
, zk+1, ck+1}k≥0 as follows: for k ≥ 0,

zk+ 1
2
= zk +

1

k + 1
(z0 − zk)−

k(η + 2ρ)

k + 1
· (F (zk) + ck)

zk+1 = JηA

[
zk +

1

k + 1
(z0 − zk)− ηF (zk+ 1

2
)− 2kρ

k + 1
· (F (zk) + ck)

]

ck+1 =
zk +

1
k+1(z0 − zk)− ηF (zk+ 1

2
)− 2kρ

k+1 · (F (zk) + ck)− zk+1

η

(AS)

Note that by definition we have ck ∈ A(zk) for all k ≥ 1. Our algorithm is inspired by FEG [20]. In
particular, when A(z) = 0 for all z, i.e., the unconstrained setting, ck is always 0, and our algorithm
is identical to FEG.

It is worth noting that (AS) only requires the computation of the resolvent for operator A and
only computes it once in each iteration. When A is the subdifferential of the indicator function of
a closed convex set Z , the resolvent operator is exactly the projection to Z . Compared to (EAG) ,
(AS) has an additional feature that it only performs one projection (rather than two) in each iteration
when applied to (MI) . Kim [17] achieves the same accelerated rate in the monotone setting, i.e.,
F + A is monotone, by assuming the ability to compute the resolvent of the operator F + A (i.e.,
the accelerated proximal point method) or the resolvents of both F and A (i.e., the Accelerated
Douglas-Rachford method). These resolvents could be substantially more difficult to compute in
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many applications than the resolvent of A, for example, when A = ∂IZ . We prove Theorem 2 in
Appendix D.1.

Theorem 2 Suppose Assumption 2 holds for some ρ ∈ (− 1
2L , 0]. Let z0 ∈ R

n be any starting
point and {zk, zk+ 1

2
}k≥1 be the iterates of (AS) with step size η ∈ (max(0,−2ρ), 1

L). Then for
any T ≥ 1,

min
c∈A(zT )

∥F (zT ) + c∥2 = rtanF,A(zT )
2 ≤ 4

(η + 2ρ)2L2

H2
0L

2

T 2
,

where H2
0 = 4∥z1 − z0∥2 + ∥z0 − z∗∥2 ≤ 4·rtan(z0)2

L2 + ∥z0 − z∗∥2.

Remark 3 To interpret the convergence rate, one can think of a properly selected η such that (η +

2ρ)L is an absolute constant, and the rate is O(
H2

0L
2

T 2 ).
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Appendix A. Detailed Related Works

There is a vast literature on inclusion problems and variational inequalities, e.g., see [2, 12, 31] and
the references therein. We only provide a brief discussion of the most relevant and recent results.

A.1. Convex-Concave and Monotone Settings

Convergence in Gap Function. Nemirovski and Nesterov [26, 27] show that the average iter-
ate of extragradient-type methods has O( 1

T ) convergence rate in terms of gap function defined as
maxz′∈Z ⟨F (z′), z − z′⟩, which means that their result only provides an approximate solution to the
weak solution. The O( 1

T ) rate is optimal for first-order methods due to the lower bound by Ouyang
and Xu [28].
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Convergence of the Extragradient Method in Stronger Performance Measures. For stronger
performance measures such as the norm of the operator (when Z = R

n) or the residual (in con-
strained setting), classical results [12, 19] show that the best-iterate of the extragradient method
converges at a rate of O( 1√

T
). Recently, the same convergence rate is shown to hold even for the

last-iterate of the extragradient method [5, 15]. Although O( 1√
T
) convergence on the residual is op-

timal for all p-SCIL algorithms [13], a subclass of first-order methods that includes the extragradient
method and many of its variations, faster rate is possible for other first-order methods.

Faster Convergence Rate in Operator Norm or Residual. We provide a brief overview of re-
sults that achieve faster convergence rate in terms of the operator norm or residual. Note that these
results also imply essentially the same convergence rate in terms of the gap function. The literature
here is rich and fast-growing, we only discuss the ones that are close related to our paper. Recent
results show accelerated rates through Halpern iteration [16] or a similar mechanism – anchor-
ing. Implicit versions of Halpern iteration have O( 1

T ) convergence rate [17, 21, 29] for monotone
operators and explicit variants of Halpern iteration achieve the same convergence rate when F is
cocoercive [9, 17]. Diakonikolas [9] also provide a double-loop implementation of the algorithm
for monotone operators at the expense of an additional logarithmic factor in the convergence rate.
Yoon and Ryu [37] propose the extra anchored gradient (EAG) method, which is the first explicit
method with accelerated O( 1

T ) rate in the unconstrained setting for monotone operators. They also
established a matching Ω( 1

T ) lower bound that holds for all first-order methods. Convergence anal-
ysis of past extragradient method with anchoring in the unconstrained setting is provided in [36].
Lee and Kim [20] proposed a generalization of EAG called fast extraradient (FEG), which applies
to comonotone operators and improves the constants in the convergence rate, but their result only
applies to the unconstrained setting. Very recently, Tran-Dinh [35] studies the connection between
Halpern iteration and Nesterov accelerated method, and provides new algorithms for monotone op-
erators and alternative analyses for EAG and FEG in the unconstrained setting. In Theorem 1, we
show the projected version of EAG has O( 1

T ) convergence rate under arbitrary convex constraints,
achieving the optimal convergence rate for all first-order methods in the constrained setting.

A.2. Nonconvex-Nonconcave Min-Max Optimization and Inclusions with Non-Monotone
Operators

Many practical applications of min-max optimization in modern machine learning, such as GANs
and multi-agent reinforcement learning, are nonconvex-nonconcave. Without any additional struc-
ture, the problem is intractable [8]. Hence, recent works study nonconvex-nonconcave min-max
optimization problems under several structural assumptions. We only introduce the definitions in
the unconstrained setting, as that is the setting considered by several recent results, and all con-
vergence rates are with respect to the the operator norm. The Minty variational inequality (MVI)
condition (also called coherence or variationally stable): there exits z∗ such that

⟨F (z), z − z∗⟩ ≥ 0, ∀z ∈ R
n

is studied in e.g., [7, 22, 23, 25, 34, 38]. Extragradient-type algorithms has O( 1√
T
) convergence

rate for Lipschitz operators that satisfy the MVI condition [7]. Diakonikolas [10] proposes a weaker
condition called weak MVI: there exits z∗ and ρ < 0 such that

⟨F (z), z − z∗⟩ ≥ ρ · ∥F (z)∥2, ∀z ∈ R
n.
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The weak MVI condition includes both MVI and negative comonotonicity [3] as special cases.
Diakonikolas [10] proposes the EG+ algorithm, which has O( 1√

T
) convergence rate under the weak

MVI condition in the unconstrained setting. Recently, Pethick et al [30] generalized EG+ to CEG+
algorithm which has O( 1√

T
) convergence rate under weak MVI condition in general (constrained)

setting. The result for accelerated algorithms in the nonconvex-nonconcave setting is sparser. FEG
achieves O( 1

T ) convergence rate for comonotone operators in the unconstrained setting [20]. In
general (constrained) setting with comonotone operators, implicit methods such as the proximal
point algorithm has been shown to converge [3, 18]. To the best of our knowledge, (AS) is the first
explicit and efficient method that achieves the accelerated and optimal O( 1

T ) convergence rate in
the constrained nonconvex-nonconcave setting (Theorem 2). We summarize previous results and
our results in Table 1.

Appendix B. Additional Preliminaries

Maximally Monotone Operator. When A is maximally monotone, useful properties of JA (See
e.g., [31, 33]) include:

1. JA is well-defined on Rn;

2. JA is non-expansive thus single-valued;

3. when z = JA(z
′), then z′ − z ∈ A(z);

4. when A = ∂IZ is the normal cone operator of a closed convex set Z ⊆ R
n, then JηA = ΠZ

is the projection operator for all η > 0.

Monotone Inclusion

Remark 4 We remind readers that in general, monotone inclusion problem is to find z∗ ∈ R
n

such that 0 ∈ A(z∗), where A is a set-valued maximally monotone operator. To ease notation, we
sometimes refer to the constrained single-valued monotone inclusion problem stated in (MI) as the
monotone inclusion problem.

Variational Inequality. A closely related problem to (MI) is the monotone variational inequality
(VI) with operator F and feasible set Z , which has two variants. The Stampacchia Variational
Inequality (SVI) problem is to find z∗ ∈ Z such that

⟨F (z∗), z∗ − z⟩ ≤ 0, ∀z ∈ Z. (SVI)

Such z∗ is called a strong solution to VI. The Minty Variational Inequality (MVI) problem is to find
z∗ ∈ Z such that

⟨F (z), z∗ − z⟩ ≤ 0, ∀z ∈ Z. (MVI)

Such z∗ is called a weak solution to VI. When F is continuous, then every solution to (MVI) is
also a solution to (SVI). When F is monotone, every solution to (SVI) is also a solution to (MVI)
and thus the two solution sets are equivalent. Moreover, the solution set to (MI) is the same as the
solution set to (SVI).
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Approximate Solutions. We say z ∈ Z is an ϵ-approximate solution to (MI) if

0 ∈ F (z) + ∂IZ(z) + B(0, ϵ),

where we use B(u, r) to denote a ball in Rn centered at u with radius r. We say z ∈ Z is an
ϵ-approximate solution to (SVI) or (MVI) if〈

F (z), z − z′
〉
≤ ϵ,∀z′ ∈ Z, or〈

F (z′), z − z′
〉
≤ ϵ,∀z′ ∈ Z, respectively.

When F is monotone, it is clear that every ϵ-approximate solution to (SVI) is also an ϵ-approximate
solution to (MVI); but the reverse does not hold in general. When F is monotone and Z is bounded
by D, then any ϵ

D -approximate solution to (MI) is an ϵ-approximate solution to (SVI) [9, Fact 1].
Note that when Z is unbounded, neither (SVI) nor (MVI) can be approximated. If we restrict the
domain to be a bounded subset of (possibly unbounded) Z , then we can define the (restricted) gap
functions as

GAPSV I
F,D (z) := max

z′∈Z∩B(z,D)

〈
F (z), z − z′

〉
,

GAPMV I
F,D (z) := max

z′∈Z∩B(z,D)

〈
F (z′), z − z′

〉
.

The O( 1
T ) convergence rate for extragradient-type algorithm [26, 27] is provided in terms of GAPMV I

F,D (z),
which means convergence to an approximate weak solution. Prior to our work, the O( 1

T ) conver-
gence rate on GAPSV I

F,D (z) was only known in the unconstrained setting [37]. When F is monotone,
then the tangent residual rtanF,D(z) ≤ ϵ

D (definition in section 2.3) implies GAPSV I
F,D (z) ≤ ϵ [5,

Lemma 2]. Therefore, our result also implies an O( 1
T ) convergence rate on GAPSV I

F,D (z) when Z is
arbitrary convex set (Theorem 1).

Example 1 (Gap function is weaker than natural residual) Consider an instance of the Mono-
tone VI problem on the identity operator F (x) = x in Z = [0, 1].

• Observe that the natural residual on x ∈ Z is ∥x−ΠZ [x− F (x)]∥ = x.

• Moreover, since Z = [0, 1], observe that for any x ∈ Z and D ≥ 0,

GAPSV I
F,D (x) ≤ GAPSV I

F,1 (x) = max
x′∈[0,1]

x · (x− x′) = x2, and

GAPMV I
F,D (x) ≤ GAPMV I

F,1 (x) = max
x′∈[0,1]

x′ · (x− x′) =
x2

4
.

As a result, any algorithm with O( 1
T ) convergence rate with respect to the gap function only implies

a O( 1√
T
) convergence rate for the corresponding (MI) or the natural residual.

Inclusion Problems with Negatively Comonotone Operators
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Example 2 (Min-Max Optimization) The following structured min-max optimization problem
captures a wide range of applications in machine learning such as GANs, adversarial examples,
robust optimization, and reinforcement learning:

min
x∈Rnx

max
y∈Rny

f(x, y) + g(x)− h(y), (1)

where f(·, ·) is possibly non-convex in x and non-concave in y. Regularized and constrained min-
max problems are covered by appropriate choices of lower semicontinuous and convex functions g
and h. Examples include ℓ1-norm, ℓ2-norm, and indicator function of a convex feasible set. Let
z = (x, y), if we define F (z) = (∂xf(x, y),−∂yf(x, y)) and A(z) = (∂g(x), ∂h(y)), where A is
maximally monotone, then the first-order optimality condition of (1) has the form of (CMI) . See
[20, Example 1] for examples of nonconvex-nonconcave conditions that are implied by negative
comonotonicity.

Proof of Fact 1 Proof For any c ∈ A(z), we have

rnatF,A(z) = ∥z − JA[z − F (z)]∥
= ∥JA[z + c]− JA[z − F (z)]∥ (z = JA[z + c])

≤ ∥F (z) + c∥. (non-expansiveness of JA)

Thus rnatF,A(z) ≤ minc∈A(z) ∥F (z) + c∥ = rtanF,A(z).

Appendix C. Missing Proofs in Section 3: Optimal Monotone Inclusion via EAG

Our analysis is based on the following potential function Vk: for k ≥ 1,

Vk :=
k(k + 1)

2
· ∥ηF (zk) + ηck∥2 + k · ⟨ηF (zk) + ηck, zk − z0⟩

where ck :=
zk−1 − ηF (zk− 1

2
) + 1

k (z0 − zk−1)− zk

η
.

(2)

From the update rule of (EAG) , we know ck ∈ NZ(zk). Thus ∥F (zk) + ck∥ ≥ minc∈NZ(zk) ∥F (zk) + c∥ =
rtan(zk). In Theorem 9, we show Vk is “approximately” non-increasing, i.e., Vk+1 ≤ Vk + O(1) ·
∥ηF (zk+1) + ηck+1∥2 for all k ≥ 1. From this property, we get O( 1

T ) last-iterate convergence rate
in terms of ∥F (zT ) + cT ∥ and thus the same convergence rate in rtan(zT ) (Theorem 1).

Potential functions in a similar form as Vk have been used to analyse (MI) by Diakonikolas [9]
for the Halpern iteration algorithm, and by Yoon and Ryu [37] for (EAG) in the unconstrained
setting (Z = R

n). We emphasize that we use a different potential function with different analysis.
Diakonikolas [9] studied the Halpern iteration with operator P := I − JF+∂IZ , which is 1

2 -
cocoercive but can not be computed efficiently in general. She showed that the follwoing potential
function is non-increasing.

Pk :=
k(k + 1)

2
· ∥P (zk)∥2 + k · ⟨P (zk), zk − z0⟩,
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which leads to O( 1
T )-approximate solution to (MI) after T iterations. However, since P can not

be computed efficiently in general, the algorithm needs O(log(1ϵ )) oracle queries for an O(ϵ)-
approximate value of P in each iteration, thus total oracle complexity O(LDϵ · log(1ϵ )) for an ϵ-
approximate solution to (MI) . In contrast, we use operator F in the potential function Vk, and we
prove Vk is only ”approximately” non-increasing (see Theorem 5 and 9). Moreover, (EAG) needs
only 2 oracle queries in each iteration and achieves optimal O(LDϵ ) oracle complexity for an ϵ-
approximate solution to (MI) (Theorem 1) matching the lower complexity bound Ω(LDϵ ) [9].

Yoon and Ryu [37] studied convergence of (EAG) for (MI) in the unconstrained setting (Z =
R

n). The specific algorithm they analysed uses anchoring term 1
k+2(z0−zk) while we use 1

k+1(z0−
zk) (see Remark 10 for more discussion on the choice of the constant in the anchoring term). They
use the following potential function

Pk := Ak · ∥F (zk)∥2 +Bk · ⟨F (zk), zk − z0⟩,

where Bk = k + 1, and Ak = O(k2) is updated adaptively in a sophisticated way for each k.
Their potential function Pk is more complicated compared to Vk as we choose Bk = k and Ak =
k(k+1)

2 . For the analysis, their proof of the monotonicity of Pk is relatively involved. In contrast, we
use a simple proof to show that Vk is “approximately” non-increasing (Theorem 5) which suffices
to establish the O( 1

T ) convergence rate. Moreover, our analysis can be naturally extended to the
constrained setting where Z ⊆ R

n is an arbitrary closed convex set (Theorem 9).

C.1. Warm Up: Unconstrained Case

We begin with the unconstrained setting Z = R
n, which illustrates our main idea and proof tech-

niques. Yoon and Ryu [37] also analyse the unconstrained setting but our proof is much simpler.
In the unconstrained setting, ck = 0 by definition. Thus

Vk =
k(k + 1)

2
∥ηF (zk)∥2 + k⟨ηF (zk), zk − z0⟩, ∀k ≥ 1.

It is not hard to see that V1 ≤ (η2L2 + 2ηL)∥z0 − z∗∥2: since the update rule for z 1
2

and z1 of

(EAG) coincides with the update rule of EG, by [5, Theorem 1], we have ∥ηF (z1)∥2 ≤ ∥ηF (z0)∥2 ≤
η2L2∥z0 − z∗∥2; by [19] and [12, Lemma 12.1.10 ], we have ∥z1 − z∗∥ ≤ ∥z0 − z∗∥

V1 = ∥ηF (z1)∥2 + ⟨ηF (z1), z1 − z0⟩
≤ ∥ηF (z0)∥2 + ∥ηF (z1)∥(∥z1 − z∗∥+ ∥z0 − z∗∥)
≤ (η2L2 + 2ηL)∥z0 − z∗∥2.

Theorem 5 Suppose Assumption 1 holds with Z = R
n. Then for any k ≥ 1, (EAG) with any step

size η ∈ (0, 1
L) satisfies Vk+1 ≤ Vk +

η2L2

1−η2L2 ∥ηF (zk+1)∥2.

Proof Since F is monotone and L-Lipschitz, we have the following inequalities

⟨F (zk+1)− F (zk), zk − zk+1⟩ ≤ 0

and ∥∥∥F (zk+ 1
2
)− F (zk+1)

∥∥∥2 − L2
∥∥∥zk+ 1

2
− zk+1

∥∥∥2 ≤ 0.
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We simplify them using the update rule of (EAG) .
In particular, we replace zk − zk+1 with ηF (zk+ 1

2
) − 1

k+1(z0 − zk) and zk+ 1
2
− zk+1 with

ηF (zk+ 1
2
)− ηF (zk).〈

ηF (zk+1)− ηF (zk), ηF (zk+ 1
2
)− 1

k + 1
(z0 − zk)

〉
≤ 0, (3)∥∥∥ηF (zk+ 1

2
)− ηF (zk+1)

∥∥∥2 − η2L2
∥∥∥ηF (zk+ 1

2
)− ηF (zk)

∥∥∥2 ≤ 0. (4)

It is not hard to verify that the following identity holds.

Vk − Vk+1 + k(k + 1) · LHS of Inequality(3) +
k(k + 1)

2η2L2
· LHS of Inequality(4)

=
k + 1

2η2L2

∥∥∥∥∥(η2L2 − 1)k + η2L2√
(1− η2L2)k

· ηF (zk+1) +
√

(1− η2L2)k · ηF (zk+ 1
2
)

∥∥∥∥∥
2

− k + 1

2k
· η2L2

1− η2L2
∥ηF (zk+1)∥2.

Note that k+1
2k ≤ 1 holds for all k ≥ 1. Thus, Vk+1 ≤ Vk +

η2L2

1−η2L2 ∥ηF (zk+1)∥2.

Lemma 6 For all k ≥ 2,(
k(k + 1)

4
− η2L2

1− η2L2

)
∥ηF (zk)∥2

≤ (1 + ηL)2∥z0 − z∗∥2 + η2L2

1− η2L2

k−1∑
t=2

∥ηF (zt)∥2.

Moreover, when η ∈ (0, 1√
3L

), we have

k2

4
· ∥ηF (zk)∥2 ≤ (1 + ηL)2∥z0 − z∗∥2 + η2L2

1− η2L2

k−1∑
t=2

∥ηF (zt)∥2.

Proof Fix any k ≥ 2. By definition, we have

Vk =
k(k + 1)

2
∥ηF (zk)∥2 + k⟨ηF (zk), zk − z0⟩

≥ k(k + 1)

2
∥ηF (zk)∥2 + k⟨ηF (zk), z

∗ − z0⟩ ( ⟨F (zk), z
∗ − zk⟩ ≤ 0)

≥ k(k + 1)

2
∥ηF (zk)∥2 −

k(k + 1)

4
∥ηF (zk)∥2 −

k2

k(k + 1)
∥z0 − z∗∥2

( ⟨a, b⟩ ≥ − c
4∥a∥

2 − 1
c∥b∥

2)

≥ k(k + 1)

4
∥ηF (zk)∥2 − ∥z0 − z∗∥2. ( k

k+1 ≤ 1)

18



ACCELERATED ALGORITHMS FOR MI AND CONSTRAINED NONCONVEX-NONCONCAVE MIN-MAX OPTIMIZATION

Using Theorem 5, we have

Vk ≤ V1 +
η2L2

1− η2L2

k∑
t=2

∥ηF (zt)∥2.

Combining the two inequalities above and the fact that V1 ≤ (2ηL + η2L2)∥z0 − z∗∥2 yields the
first inequality in the statement. When ηL ∈ (0, 1√

3
), we have η2L2

1−η2L2 ≤ 1
2 ≤ k

4 for k ≥ 2. Hence
the second inequality in the statement holds.

Theorem 7 Suppose Assumption 1 holds with Z = R
n. Let z0 ∈ R

n be arbitrary starting
point and {zk, zk+ 1

2
}k≥0 be the iterates of (EAG) with any step size η ∈ (0, 1√

3L
). Denote

D := ∥z0 − z∗∥. Then for any T ≥ 1,

∥F (zT )∥2 ≤
4(1 + ηL)2

η2L2(1− 3η2L2)
· D

2L2

T 2
,

GAPSV I
F,D (zT ) ≤

2(1 + ηL)

ηL
√
1− 3η2L2

· D
2L

T
.

If we set η = 1
3L , then ∥F (zT )∥2 ≤ 96·D2L2

T 2 .

Proof Note that the second inequality is implied by the first inequality since GAPSV I
F,D (z) ≤ D ·

∥F (zT )∥ [5, Lemma 2]. Denote ak := ∥ηF (zk)
2∥

∥z0−z∗∥2 . It suffices to prove for all k ≥ 1,

ak ≤ 4(1 + ηL)2

(1− 3η2L2)k2
. (5)

Since the update rule for z 1
2

and z1 of (EAG) coincides with the update rule of EG, by [5, Theorem

1], we have ∥ηF (z1)∥2 ≤ ∥ηF (z0)∥2 ≤ η2L2∥z0 − z∗∥2 and thus a1 ≤ η2L2 < 1
3 . Thus (5) holds

for k = 1.
From Lemma 6, we know for k ≥ 2,

k2

4
· ak ≤ (1 + ηL)2 +

η2L2

1− η2L2

k−1∑
t=2

at.

Applying Proposition 16 with C1 = (1 + ηL)2 and p = η2L2 < 1
3 completes the proof.

C.2. Convergence of EAG with Arbitrary Convex Constraints

In this section, we show how to extend the analysis in the unconstrained setting to the arbitrary
convex constrained setting. Recall that the potential function Vk and ck are defined in (2). We use
the fact that ck ∈ NZ(zk) extensively.

Proposition 8 V1 ≤ (1+ηL+η2L2)(2+2ηL+η2L2)
1−η2L2 ∥z0 − z∗∥2.
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Proof We first upper bound ∥ηF (z1) + ηc1∥ and ∥z1 − z0∥ . Note that z 1
2
, z1 are updated exactly

as original EG. By definition, we have

∥ηF (z1) + ηc1∥ =
∥∥∥ηF (z1) + z0 − ηF (z 1

2
)− z1

∥∥∥
≤

∥∥∥ηF (z1)− ηF (z 1
2
)
∥∥∥+ ∥z0 − z1∥

≤ ηL
∥∥∥z1 − z 1

2

∥∥∥+ ∥z0 − z1∥ (L-Lipschitzness of F )

≤ (1 + ηL)
∥∥∥z1 − z 1

2

∥∥∥+
∥∥∥z 1

2
− z0

∥∥∥
≤ (1 + ηL+ η2L2)

∥∥∥z 1
2
− z0

∥∥∥
≤ 1 + ηL+ η2L2√

1− η2L2
∥z0 − z∗∥,

where in the last inequality we use a well-known result regarding EG [12, Lemma 12.1.10 ]:
∥z 1

2
− z0∥2 ≤ ∥z0−z∗∥2−∥z1−z∗∥2

1−η2L2 . Note that in the above sequence of inequalities, we also prove

that ∥z1 − z0∥ ≤ 1+ηL√
1−η2L2

∥z0 − z∗∥.

By definition of V1 and the above upper bound for ∥ηF (z1) + ηc1∥ and ∥z1 − z0∥, we have

V1 = ∥ηF (z1) + ηc1∥2 + ⟨ηF (z1) + ηc1, z1 − z0⟩
≤ ∥ηF (z1) + ηc1∥2 + ∥ηF (z1) + ηc1∥ · ∥z1 − z0∥

≤ (1 + ηL+ η2L2)(2 + 2ηL+ η2L2)

1− η2L2
∥z0 − z∗∥2.

Theorem 9 Suppose Assumption 1 holds. Let z0 ∈ Z be any starting point and {zk, zk+ 1
2
}k≥0 be

the iterates of (EAG) with step size η ∈ (0, 1
L). Then for any k ≥ 1, Vk+1 ≤ Vk+

η2L2

1−η2L2 ∥ηF (zk+1) + ηck+1∥2,
where Vk and ck are defined in (2).

Proof We first present several inequalities. From the monotonicity and L-Lipschitzness of F , we
have

(−k(k + 1)

2η2L2
) ·

(
η2L2 ·

∥∥∥zk+ 1
2
− zk+1

∥∥∥2 − ∥∥∥ηF (zk+ 1
2
)− ηF (zk+1)

∥∥∥2) ≤ 0, (6)

(−k(k + 1)) · ⟨ηF (zk+1)− ηF (zk), zk+1 − zk)⟩ ≤ 0. (7)

Since zk+ 1
2
= ΠZ [zk − ηF (zk) +

1
k+1(z0 − zk)], we can infer that zk − ηF (zk) +

1
k+1(z0 −

zk) − zk+ 1
2
∈ NZ(zk+ 1

2
). Moreover, by definition of ck and ck+1, we know ck ∈ NZ(zk) and

ck+1 ∈ NZ(zk+1). Therefore, we have

(−k(k + 1)) ·
〈
zk − ηF (zk)− zk+ 1

2
+

1

k + 1
(z0 − zk), zk+ 1

2
− zk+1

〉
≤ 0, (8)

(−k(k + 1)) · ⟨ηck+1, zk+1 − zk⟩ ≤ 0, (9)

(−k(k + 1)) ·
〈
ηck, zk − zk+ 1

2

〉
≤ 0. (10)
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The following identity holds when we substitute ηck+1 on both sides using ηck+1 = zk−ηF (zk+ 1
2
)+

1
k+1(z0−zk)−zk+1, which follows from the definition. The correctness of the identity follows from
Identity (19) in Proposition 15: we treat x0 as z0; xt as zk+ t−1

2
for t ∈ {1, 2, 3}; yt as ηF (zk+ t−1

2
)

for t ∈ {1, 2, 3}; u1 as ηck and u3 as ηck+1; p as η2L2 and q as k.

Vk − Vk+1 + LHS of Inequality (6) + LHS of Inequality (7)

+ LHS of Inequality (8) + LHS of Inequality (9) + LHS of Inequality (10)

=
k(k + 1)

2
·
∥∥∥∥zk+ 1

2
− zk + ηF (zk) + ηck +

1

k + 1
(zk − z0)

∥∥∥∥2 (11)

+
(1− η2L2)k(k + 1)

2η2L2
·
∥∥∥ηF (zk+ 1

2
)− ηF (zk+1)

∥∥∥2 (12)

+ (k + 1) ·
〈
ηF (zk+ 1

2
)− ηF (zk+1), ηF (zk+1) + ηck+1

〉
. (13)

Since ∥a∥2 + ⟨a, b⟩ = ∥a+ b
2∥

2 − ∥b∥2
4 , we have

Expression(12) + Expression(13)

=
∥∥∥A ·

(
ηF (zk+ 1

2
)− ηF (zk+1)

)
+B · (ηF (zk+1) + ηck+1)

∥∥∥2
− k + 1

2k
· η2L2

1− η2L2
∥ηF (zk+1) + ηck+1∥2,

where A =
√

(1−η2L2)k(k+1)
2η2L2 and B =

√
η2L2(k+1)
2(1−η2L2)k

. Since k ≥ 1, we have k+1
2k ≤ 1. Hence, we

have Vk+1 ≤ Vk +
η2L2

1−η2L2 ∥ηF (zk+1) + ηck+1∥2.

Remark 10 The proof of Theorem 9 naturally extends to the following algorithm and potential
function: Fix any z0 ∈ Z and η ∈ (0, 1

L), δ ≥ 0. Update z 1
2
, z1, c1, V1 as (EAG) and for k ≥ 1:

zk+ 1
2
= ΠZ

[
zk − ηF (zk) +

1

k + δ + 1
(z0 − zk)

]
,

zk+1 = ΠZ

[
zk − ηF (zk+ 1

2
) +

1

k + δ + 1
(z0 − zk)

]
,

ck+1 =
zk − ηF (zk+ 1

2
) + 1

k+δ+1(z0 − zk)− zk+1

η
,

Vk+1 =
(k + δ + 1)(k + δ + 2)

2
∥ηF (zk+1) + ηck+1∥2

+ (k + δ + 1) · ⟨ηF (zk+1) + ηck+1, zk+1 − z0⟩.

Since the identity in Proposition 15 holds for any q ̸= 0, we only need to change every k to be k+ δ
in the proof of Theorem 9. It is possible that a choice of δ > 0 leads to a better upper bound (better
constant) than δ = 0 which is chosen for (EAG) , but we do not optimize over δ here.
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Lemma 11 For k ≥ 2,(
k(k + 1)

4
− η2L2

1− η2L2

)
· ∥ηF (zk) + ηck∥2

≤ V1 + ∥z0 − z∗∥2 + η2L2

1− η2L2

k−1∑
t=2

∥ηF (zt) + ηct∥2.

Moreover, when η ∈ (0, 1√
3L

), then

k2

4
· ∥ηF (zk) + ηck∥2 ≤ V1 + ∥z0 − z∗∥2 + η2L2

1− η2L2

k−1∑
t=2

∥ηF (zt) + ηct∥2.

Proof Fix any k ≥ 2. By definition, we have

Vk =
k(k + 1)

2
∥ηF (zk) + ηck∥2 + k⟨ηF (zk) + ηck, zk − z0⟩

≥ k(k + 1)

2
∥ηF (zk) + ηck∥2 + k⟨ηF (zk) + ηck, z

∗ − z0⟩
(F + ∂IZ is monotone and 0 ∈ F (z∗) + ∂IZ(z∗))

≥ k(k + 1)

2
∥ηF (zk) + ηck∥2 −

k(k + 1)

4
∥ηF (zk) + ηck∥2 −

k

k + 1
∥z0 − z∗∥2

( ⟨a, b⟩ ≥ − c
4∥a∥

2 − 1
c∥b∥

2)

≥ k(k + 1)

4
∥ηF (zk) + ηck∥2 − ∥z0 − z∗∥2. (14)

According to Theorem 9, Vt+1 − Vt ≤ η2L2

1−η2L2 ∥ηF (zt+1) + ηct+1∥2 for all t ≥ 1. Through a
telescoping sum, we obtain the following inequality:

Vk ≤ V1 +
η2L2

1− η2L2
·

k∑
t=2

∥ηF (zt) + ηct∥2. (15)

The first inequality in the statement follows from the combination of Inequality (14) and (15). The
second inequality in the statement follows from the fact that η2L2

1−η2L2 ≤ 1
2 ≤ k

4 when η ∈ (0, 1√
3L

).

C.3. Proof of Theorem 1

Theorem 12 [More general version of Theorem 1.] Suppose Assumption 1 holds. Let z0 ∈ Z be
any starting point and {zk, zk+ 1

2
}k≥0 be the iterates of (EAG) with step size η ∈ (0, 1√

3L
). Denote

D := ∥z0 − z∗∥2. Then for any T ≥ 1,

rtanF,Z(zT )
2 ≤ 44

η2L2(1− 3η2L2)
· D

2L2

T 2

GAPSV I
F,D (zT ) ≤

√
44

ηL
√
1− 3η2L2

· D
2L

T
.
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Proof
The bound on GAPSV I

F,D (zT ) follows from the bound on rtanF,A(zT ) since GAPSV I
F,D (zT ) ≤ D ·

rtanF,A(zT ) [5, Lemma 2].

Denote ak := ∥ηF (zk)+ηck∥2

∥z0−z∗∥2 . It suffices to prove that for all k ≥ 1,

ak ≤ 44

(1− 3η2L2)k2
. (16)

Note that from the proof of Proposition 8, we have

∥ηF (z1) + ηc1∥2 ≤
(1 + ηL+ η2L2)2

1− η2L2
∥z0 − z∗∥2

which implies a1 ≤ (1+ηL+η2L2)2

1−η2L2 ≤ 6. Thus (16) holds for k = 1.
From (8), we also have

V1 ≤
(1 + ηL+ η2L2)(2 + 2ηL+ η2L2)

1− η2L2
∥z0 − z∗∥2 ≤ 10 · ∥z0 − z∗∥2.

Thus by Lemma 11, we have

k2

4
· ∥ηF (zk) + ηck∥2 ≤ 11 · ∥z0 − z∗∥2 + η2L2

1− η2L2

k−1∑
t=2

∥ηF (zt) + ηct∥2

⇒k2

4
· ak ≤ 11 +

η2L2

1− η2L2

k−1∑
t=2

at.

Applying Proposition 16 with C1 = 11 and p = η2L2 ∈ (0, 13), we have (16) holds for any k ≥ 2.
This completes the proof.

Appendix D. Missing Proofs in Section 4: Accelerated Algorithm for Inclusion
Problems with Negatively Comonotone Operators

To analyze (AS), we adopt the following potential function: for k ≥ 1,

Uk :=

(
k2

2

(
1 +

2ρ

η

)
− ρ

η
k

)
· ∥ηF (zk) + ηck∥2 + k · ⟨ηF (zk) + ηck, zk − z0⟩.

The potential function is the same as the one used in the analysis for FEG [20] when ck is always
0, and we properly adapted for non-zero ck’s. The convergence analysis builds on the following two
properties of the potential function: Proposition 13 establishes an upper bound of U1; Lemma 14
shows Uk+1 ≤ Uk for all k ≥ 1.

Proposition 13 U1 ≤ (1+ηL)(3+ηL)
2 · ∥z1 − z0∥2 and ∥z1 − z0∥2 ≤ η2 · rtanF,A(z0)

2.
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Proof Note that z 1
2
= z0 and z1 = JηA[z0 − ηF (z0)]. Thus we have ηc1 = z0 − ηF (z0)− z1. We

first bound ∥ηF (z1) + ηc1∥ as follows:

∥ηF (z1) + ηc1∥ = ∥z0 − z1 + ηF (z1)− ηF (z0)∥
≤ ∥z0 − z1∥+ ∥ηF (z1)− ηF (z0)∥ (Triangle inequality)

≤ (1 + ηL) · ∥z0 − z1∥. (F is L-Lipschitz)

Then we can bound U1 as follows:

U1 =
1

2
· ∥ηF (z1) + ηc1∥2 + ⟨ηF (z1) + ηc1, z1 − z0⟩

≤ 1

2
· ∥ηF (z1) + ηc1∥2 + ∥ηF (z1) + ηc1∥ · ∥z1 − z0∥ (Cauchy-Schwarz Inequality)

≤
(
(1 + ηL)2

2
+ (1 + ηL)

)
· ∥z1 − z0∥2

≤ (1 + ηL)(3 + ηL)

2
· ∥z1 − z0∥2.

Moreover, for any c ∈ A(z0), we have

∥z1 − z0∥ = ∥JηA[z0 − ηF (z0)]− JηA[z0 + ηc]∥
≤ η · ∥F (z0) + c∥. (JηA is non-expansive)

Hence ∥z1 − z0∥ ≤ η ·minc∈A(z0) ∥F (z0) + c∥ = η · rtanF,A(z0).

Lemma 14 Assume Assumption 2 holds for some ρ. Let z0 ∈ R
n be any initial point and

{zk, zk+ 1
2
}k≥1 be the iterates of (AS) with step size η > −2ρ.7 Then for all k ≥ 1, we have

Uk+1 ≤ Uk.

Proof Fix any k ≥ 1. We first present several inequalities. Since F is L-Lipschitz, we have(
−(k + 1)2

2

)
·
(
η2L2 ·

∥∥∥zk+ 1
2
− zk+1

∥∥∥2 − ∥∥∥ηF (zk+ 1
2
)− ηF (zk+1)

∥∥∥2) ≤ 0. (17)

Additionally, since F +A is ρ-comonotone, ck ∈ A(zk), and ck+1 ∈ A(zk+1), we have

(−k(k + 1))·
(
⟨ηF (zk+1) + ηck+1 − ηF (zk)− ηck, zk+1 − zk⟩

− ρ

η
∥ηF (zk+1) + ηck+1 − ηF (zk)− ηck∥2

)
≤ 0. (18)

The following identity holds due to Identity (20) in Proposition 15: we treat x0 as z0; xt as
zk+ t−1

2
for t ∈ {1, 2, 3}; yt as ηF (zk+ t−1

2
) for t ∈ {1, 2, 3}; u1 as ηck, and u3 as ηck+1; p as η2L2, q

7. Lemma 14 holds for all step size η, but our potential function is no longer useful when η ≤ −2ρ.
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as k, and r as ρ
η . Note that by the update rule of (AS) , we have ηck =

zk+
1

k+1
(z0−zk)− k

k+1
(1+2 ρ

η
)·ηF (zk)−z

k+1
2

k
k+1

(1+2 ρ
η
)

,

and by definition, we have ηck+1 = zk+
1

k+1(z0−zk)−ηF (zk+ 1
2
)−

2k ρ
η

k+1 · (ηF (zk)+ηck)−zk+1.

Uk − Uk+1 + LHS of Inequality (17) + LHS of Inequality (18)

=
(1− η2L2)(k + 1)2

2
·
∥∥∥zk+1 − zk+ 1

2

∥∥∥2.
Hence, Uk+1 ≤ Uk.

D.1. Proof of Theorem 2

Fix any T ≥ 1. According to Lemma 14, we have UT ≤ U1. Then by definition of UT , we have

UT =

(
T 2

2

(
1 +

2ρ

η

)
− ρ

η
T

)
· ∥ηF (zT ) + ηcT ∥2 + T · ⟨ηF (zT ) + ηcT , zT − z∗⟩

+ T · ⟨ηF (zT ) + ηcT , z
∗ − z0⟩

≥
(
T 2

2

(
1 +

2ρ

η

)
− ρ

η
T

)
· ∥ηF (zT ) + ηcT ∥2 +

ρ

η
T · ∥ηF (zT ) + ηcT ∥2

+ T · ⟨ηF (zT ) + ηcT , z
∗ − z0⟩

=
η(η + 2ρ)T 2

2
· ∥F (zT ) + cT ∥2 + T · ⟨ηF (zT ) + ηcT , z

∗ − z0⟩

≥ η(η + 2ρ)T 2

2
· ∥F (zT ) + cT ∥2 −

η(η + 2ρ)T 2

4
· ∥F (zT ) + cT ∥2

− η

η + 2ρ
∥z0 − z∗∥2

=
η(η + 2ρ)T 2

4
· ∥F (zT ) + cT ∥2 −

η

η + 2ρ
∥z0 − z∗∥2.

In the first inequality, we use the fact that z∗ is a solution of the (CMI) with the ρ-comonotone
operator F +A. In the second inequality, we use ⟨a, b⟩ ≥ − δ

4∥a∥
2 − 1

δ∥b∥
2 for δ > 0.

By Proposition 13 and the assumption that ηL < 1, U1 ≤ (1+ηL)(3+ηL)
2 · ∥z1 − z0∥2 ≤

4∥z1 − z0∥2 ≤ 4
L2 · rtan(z0)2. Therefore,

∥F (zT ) + cT ∥2 ≤
4

η(η + 2ρ)T 2

(
U1 +

η

η + 2ρ
∥z0 − z∗∥2

)
=

4

(η + 2ρ)2T 2

(
(1 +

2ρ

η
)U1 + ∥z0 − z∗∥2

)
≤ 4

(η + 2ρ)2T 2

(
4∥z1 − z0∥2 + ∥z0 − z∗∥2

)
. (ρ ≤ 0)

Appendix E. Auxiliary Propositions

Proposition 15 Let x0, x1, x2, x3, y1, y2, y3, u1, u3 be arbitrary vectors in Rn. Let q > 0, p > 0,
and r ̸= −1

2 be real numbers.
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If u3 = x1 − y2 +
1

q+1(x0 − x1)− x3, then the following identity holds:

q(q + 1)

2
· ∥y1 + u1∥2 + q · ⟨y1 + u1, x1 − x0⟩

−
(
(q + 1)(q + 2)

2
· ∥y3 + u3∥2 + (q + 1) · ⟨y3 + u3, x3 − x0⟩

)
− q(q + 1)

2p
·
(
p · ∥x2 − x3∥2 − ∥y2 − y3∥2

)
− q(q + 1) · ⟨y3 − y1, x3 − x1⟩

− q(q + 1) ·
〈
x1 − y1 − x2 +

1

q + 1
(x0 − x1), x2 − x3

〉
− q(q + 1) · ⟨u3, x3 − x1⟩
− q(q + 1) · ⟨u1, x1 − x2⟩

=
q(q + 1)

2
·
∥∥∥∥x2 − x1 + y1 + u1 +

1

q + 1
(x1 − x0)

∥∥∥∥2
+

(1− p)q(q + 1)

2p
· ∥y2 − y3∥2

+ (q + 1) · ⟨y2 − y3, y3 + u3⟩

(19)

If u1 =
x1+

1
q+1

(x0−x1)− q
q+1

(1+2r)y1−x2
q

q+1
(1+2r)

and u3 = x1+
1

q+1(x0−x1)−y2− 2rq
q+1(y1+u1)−x3,

then the following identity holds:(
q2

2
(1 + 2r)− rq

)
· ∥y1 + u1∥2 + q · ⟨y1 + u1, x1 − x0⟩

−
(
(q + 1)2

2
(1 + 2r)− r(q + 1)

)
· ∥y3 + u3∥2 − (q + 1) · ⟨y3 + u3, x3 − x0⟩

− (q + 1)2

2
·
(
p · ∥x2 − x3∥2 − ∥y2 − y3∥2

)
− q(q + 1) ·

(
⟨y3 + u3 − y1 − u1, x3 − x1⟩ − r∥y3 + u3 − y1 − u1∥2

)
=
(1− p)(q + 1)2

2
· ∥x2 − x3∥2.

(20)

Proof We verify the two identities using MATLAB. Readers can find the verification code here or
go to the next url:

https://github.com/weiqiangzheng1999/Accelerated-Non-Monotone-Inclusion.

Proposition 16 Let {ak ∈ R
+}k≥2 be a sequence of real numbers. Let C1 ≥ 0 and p ∈ (0, 13) be

two real numbers. If the following condition holds for every k ≥ 2,

k2

4
· ak ≤ C1 +

p

1− p
·
k−1∑
t=2

at, (21)
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then for each k ≥ 2 we have

ak ≤ 4 · C1

1− 3p
· 1

k2
. (22)

Proof We prove the statement by induction.
Base Case: k = 2. From Inequality (21), we have

22

4
· a2 ≤ C1 ⇒ a2 ≤ C1 ≤

4 · C1

1− 3p
· 1

22
.

Thus, Inequality (22) holds for k = 2.
Inductive Step: for any k ≥ 3. Fix some k ≥ 3 and assume that Inequality (22) holds for all
2 ≤ t ≤ k − 1. We slightly abuse notation and treat the summation in the form

∑2
t=3 as 0. By

Inequality (21), we have

k2

4
· ak ≤ C1 +

p

1− p
·
k−1∑
t=2

at

≤ C1

1− p
+

p

1− p
·
k−1∑
t=3

at (a2 ≤ C1)

≤ C1

1− p
+

4p · C1

(1− p)(1− 3p)
·
k−1∑
t=3

1

t2
(Induction assumption on Inequality (22))

≤ C1

1− p
+

2p · C1

(1− p)(1− 3p)
(
∑∞

t=3
1
t2

= π2

6 − 5
4 ≤ 1

2 )

=
C1

1− 3p
.

This complete the inductive step. Therefore, for all k ≥ 2, we have ak ≤ 4·C1
1−3p · 1

k2
.
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