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Abstract
Optimization using gradient descent (GD) is a ubiquitous practice in various machine learning
problems including training large neural networks. Noise-free GD and stochastic GD–corrupted
by random noise–have been extensively studied in the literature, but less attention has been paid
to an adversarial setting, that is subject to adversarial corruptions in the gradient values. In this
work, we analyze the performance of GD under a proposed general adversarial framework. For the
class of functions satisfying the Polyak-Łojasiewicz condition, we derive finite time bounds on a
minimax optimization error. Based on this bound, we provide a guideline on the choice of learning
rate sequence with theoretical guarantees on the robustness of GD against adversarial corruption.

1. Introduction

Optimization using gradient descent (GD) is central to training machine learning models. In this
work, we consider the dynamics of GD under adversarial corruptions, which to our knowledge is
a novel formulation. Optimization using corrupted gradients has been studied in many forms [e.g.,
2, 8, 20], as discussed in section 1.2 depending on the practical problem of interest. Contrary
to these studies, our framework is not limited to a specific real-world application, but rather at-
tempts to understand the robustness of gradient descent under the worst possible corruption. In this
framework, at each GD iteration n, an adversary corrupts the values of the gradients, up to a bud-
get constraint. We refer to this framework as adversarial GD (Adv-GD). The Adv-GD framework
yields a mini-max performance measure: the optimization error minimized by GD and maximized
by the adversary; that can also be interpreted as a game between the optimization algorithm and
the adversary. Compared to stochastic GD with random corruptions, adversarial corruptions are
more challenging to analyze for at least two reasons. In stochastic GD, it is typically assumed that
the noisy gradient is an unbiased estimator of the true gradient. Adversarial corruptions, however,
may introduce bias to the GD dynamics which are more challenging to keep track of. In addition,
in stochastic GD, typically a constant upper bound on the variance of the noisy gradients is as-
sumed. In Adv-GD framework, however, the adversary is allowed to spend an arbitrary amount of
its budget, which can be relatively large, to corrupt a gradient observation.
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In this work, we focus on the objective functions satisfying the PL condition, which is a very
general and practically relevant class of functions, including many machine learning models, e.g.,
overparameterized neural networks [e.g., see, 5]. Our contributions can be summarized as follows:

• We introduce a novel framework for the analysis of GD under adversarial corruptions, and
prove finite time minimax error bounds for the class of functions satisfying the PL condition.
(see, Section 2)

• We generalize the measure of corruption from l2 norm —the case of variance— to arbitrary
lq norms, with q ≥ 1, which may be of broader interest. (see, Section 2)

• We provide a guideline on the choice of learning rate sequence with theoretical guarantees on
the robustness of GD algorithm against adversarial corruption. (see, Section 3)

1.1. Motivation

We provide a general framework for evaluating the robustness of GD to adversarial corruption.
In typical analytical results for GD, the corruption is modeled as a stochastic noise (usually with
bounded variance), and the convergence is given in expectation. Alternatively, we provide a worst-
case error under a corruption budget assumption. This interpretation of convergence can be gener-
ally applied to all the use cases of GD as an upper bound on the optimization error when the nature
of corruption is unknown.

In many modern machine learning applications, such as in IoT and federated learning, the gra-
dients of the model are communicated to a server [3, 14]. The gradients may be arbitrarily corrupted
due to communication issues. The communication may also be intercepted maliciously with the aim
of adversarially corrupting the performance. In these cases, the assumption of stochastic corruption
is not suitable. Our results provide bounds on the convergence error of GD based on the amount of
corruption. In simple words, we characterize the amount of corruption in gradient values (in terms
of lq norm) that is tolerable for GD optimization.

1.2. Related Work

For strongly convex and smooth functions, GD with an appropriately selected constant learning rate
converges to the global minimum at a linear rate [e.g., see, 18]. In the stochastic setting, with a
bounded noise variance, the optimization error of stochastic GD, after n iterations, is bounded by
O( 1n), for an appropriately selected learning rate sequence [21]. Under the PL condition, GD and
stochastic GD are shown to converge to a global minimum, respectively, at linear [19] and O( 1n)
rates [12]. In this work, we provide complementary results on the convergence rate of Adv-GD
under PL condition.

A different approach to adversarial optimization has been considered under the well-established
online learning literature. In this approach, a sequence of typically convex objective functions are
selected by an adversary. The performance is measured as the total loss compared to the cumulative
value of the objective functions evaluated at a single point. Several gradient based algorithms [e.g.,
online GD, 9, 10, 26], and non gradient based algorithms [e.g., follow the (perturbed) leader, 1, 11]
are introduced in this setting. See [16, 22] for surveys. In contrast, in Adv-GD framework, the ad-
versary directly corrupts the gradient values. In addition, the adversary can allocate the corruptions
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arbitrarily (see the minimax optimization error defined in (3)). With any growing budget, this vio-
lates the assumptions in the online learning setting. Due to their inherently different assumptions,
our results cannot be directly compared with the ones given in the online learning setting.

Several existing works considered GD under adversarial corruption of gradients. The work
of [2] considered Byzantine stochastic GD in a distributed stochastic optimization setting, where
a fraction of machines which compute stochastic gradients in every iteration are Byzantine, and
may behave adversarially. In this setting, the main focus of the problem is on detecting Byzantine
machines in the presence of available true gradient values. Similarly, [8] and [20] considered an
adversary corrupting a fraction of sample gradients. Their work focused on detecting the corrupted
samples as outliers. This line of work is different from ours in that, in our setting, the adversary
is allowed to arbitrarily allocate the corruptions through the optimization sequence, leading to a
minimax (worst case) performance measure.

Another sequence of works of adversarial optimization is related to zero-order optimization
method, such as bandit [e.g., 6, 13, 24]. In their settings, adversarial corruption is applied to the
reward function and hence the agent could only receive the corrupted reward. The agent’s goal is
to maximize the expected reward without corruption. Similar to our Adv-GD framework, they also
assume that their adversary can arbitrarily allocate the corruption under a total corruption budget.
However, the optimization method we studied is GD, which belongs to first-order optimization.

2. Gradient Descent with Adversarial Corruptions

In this section, we present the Adv-GD framework, as well as other relevant notations and defini-
tions. Consider the problem of minimizing a differentiable objective function f : X → R, where
the domain X is a compact subset of Rd. The goal is to get as close as possible to a global minimum
x∗ ∈ argminx∈X f(x). Recall the standard iterative updating rule of (stochastic) GD:

xk = xk−1 − ηkg̃(xk−1), (1)

where k = 1, 2, . . . is a discrete iteration index, the iterations start at an arbitrary (possibly random)
initial point x0, and (ηk ∈ R)∞k=1 is the sequence of learning rates. In vanilla GD, we have simply
g̃(xk−1) = g(xk−1), using the notation g(·) = ∇f(·) for the gradient. In stochastic GD, g̃(xk−1)
is typically assumed to be an unbiased estimator of g(xk−1) with bounded variance [e.g., see, 7,
and references therein]. That is, in stochastic GD, we have randomly corrupted gradient estimates
g̃(xk−1) = g(xk−1) + ξk, where ξk is a zero mean random observation noise at iteration k, with
bounded variance, independent and identically distributed over iterations.

In the Adv-GD framework, we consider adversarially corrupted gradient values. Specifically, at
each iteration k, the optimizer asks for the value of gradient g(xk−1). The gradient values, however,
may be adversarially corrupted, so that the optimizer receives g̃(xk−1) ∈ Rd. We are interested in
the dynamics of GD update rule (1), under this setting.

Budget Constraint: With no constraints, the setting is not interesting, as the adversarial cor-
ruptions can set the sequence (xk)

∞
k=1 to any values in Rd. It is therefore natural to set a budget

constraint on adversarial corruptions. In particular, consider a distance measure D(., .) : Rd×Rd →
R≥0. Let c(k) := D(g(xk−1), g̃(xk−1)) quantify the amount of corruption in the gradient value,
allocated by the adversary, at iteration k. Then, the total corruption budget b : N → R>0 imposed
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on the adversary is a positive and non-decreasing sequence limiting the amount of corruption:∥∥∥∥[c(k)]nk=1

∥∥∥∥
lp
≤ b(n), ∀n ∈ N, (2)

where ∥ · ∥lp denotes the lp norm. We use the notation ∥ · ∥ exceptionally in the case of l2 norm.
Given a budget, let us define the set of admissible corruptions as follows.

Definition 1 For a given budget b and time n, the set of admissible corruptions Cn
b,p is defined as

Cn
b,p =

{
(ck ∈ R≥0)

n
k=1 : ∀ n′ ≤ n,

∥∥∥∥[ck]n′
k=1

∥∥∥∥
lp
≤ b(n′)

}
.

Performance Measure: In the Adv-GD framework, the finite time performance of the optimizer
is measured in terms of a minimax optimization error; minimized by the optimizer and maximized
by the adversary. Specifically, at each iteration n, the minimax optimization error is defined as

rn = sup
(ξk)

n
k=1:(c(k))

n
k=1∈Cn

b,p

(f(xn)− f(x∗)), (3)

where ξk = g̃(xk−1) − g(xk−1). Recall that xn is the point after n-th iteration in the GD update
rule, x∗ ∈ argminx∈X f(x) is a global minimum, and c(k) = D (g(xk−1), g̃(xk−1)) is the amount
of corruption at iteration k. The sup is taken over all admissible corruption sequences.

Game Theoretic Interpretation: The Adv-GD framework can be interpreted as a zero-sum game
between the optimizer and the adversary. Before starting the GD iterations, the optimizer selects the
learning rate sequence (ηk)

n
k=1. With the knowledge of the learning rate sequence, the adversary

selects the gradient corruption sequence (ξk)
n
k=1 subject to the admissibility constraint: (c(k))nk=1 ∈

Cn
b,p. At the end of n iterations, the optimizer incurs a loss of f(xn) − f(x∗), while the adversary

incurs a loss of f(x∗)− f(xn). The goal of each player is to minimize their own loss.

Corruption Measure: We measure the corruption at each iteration, using lq norm of the distance
between the true and corrupted gradient values. In particular, in our analysis, we consider

D(g(xk−1), g̃(xk−1)) = ∥ξk∥lq .

In the case of stochastic GD, a typical assumption is the boundedness of the variance of the noisy
gradients at each iteration; E[∥ξk∥2] is assumed bounded. This can be interpreted as measuring
the random corruptions in terms of l2 norm. In this sense, we generalize the typical measure of
corruption from l2 norm to lq norm (in addition to considering adversarial corruptions, in contrast
to random ones). Considering also the freedom in choosing p for the norm of corruption sequence
in eq. 2, we investigate a quite general setting of gradient corruption in gradient descent. We present
our results for the class of functions satisfying the following assumptions:

Definition 2 (PL Condition) We say that a function satisfies the PL condition with parameter α ∈
R>0, if ∥g(x)∥2 ≥ α(f(x) − f(x∗)), ∀x ∈ X . Recall the notation g(·) = ∇f(·). We use the
notation Fα

PL to denote the class of functions satisfying the PL condition with parameter α.
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X Domain rn Minimax optimization error
f Objective function c(k) Budget spent at time k

g(·) Gradient b(n) Budget up to time n included
g̃(·) Corrupted gradient (xk)

n
k=1 Iteration indexed points in domain

ηk Learning rate at time k ξk Corruption at time k
α PL parameter γ Upper bound on gradient norm

a ∨ b max{a, b} µ Strong convexity parameter
a ∧ b min{a, b} β Smoothness parameter
a+ max(a, 0)

Table 1: Notations

Definition 3 (Strong Convexity) We say that a function is strongly convex with parameter µ, if
f(x′) ≥ f(x) + ⟨g(x),x′ − x⟩+ µ

2∥x
′ − x∥2, ∀x ∈ X .

Definition 4 (Smoothness) We say that a function is smooth with parameter β, if f(x′) ≤ f(x) +

⟨g(x),x′ − x⟩ + β
2 ∥x

′ − x∥2, ∀x ∈ X . We use the notation Fβ
S to denote the class of smooth

functions with parameter β.

3. Minimax Error Bounds under the Adv-GD Framework

In this section, we present our main result on the finite time minimax (worst-case) optimization
error bound under the Adv-GD framework. We prove error bounds which depend on the error at the
initialization and the corruption budget.

Theorem 5 (Adv-GD: Finite Time Optimization Error) Consider the Adv-GD framework for-
malized in Section 2. Assume f ∈ Fα

PL ∩ Fβ
S , and ∥g(x)∥ ≤ γ for all x ∈ X . Let ηk =(

2
α

(
1− ( k

k+1)
ω
)
∧ 1

β

)
for a fixed ω ≥ 1. Define n0 = min

{
n ∈ N : 2

α

(
1−

(
n

n+1

)ω)
≤ 1

β

}
.

Define dq = d
( 1
2
− 1

q
)+ . We have the following bound on the minimax optimization error defined

in (3).

rn ≤ An (f(x0)− f(x∗)) +Bp,nb(n) + Cp,n(b(n))
2,

where (An ∈ R>0)
∞
n=1, (Bp,n ∈ R>0)

∞
n=1 and (Cp,n ∈ R>0)

∞
n=1 are sequences satisfying:

♢ For n < n0: An = (1 − α
2β )

n, Bp,n = 0, Cp,n ≤ d2q
2β when 1 ≤ p ≤ 2, and Cp,n ≤ d2q

α when
p > 2.

♢ For n ≥ n0: An ∈ O(n−ω), Bp,n ∈ O(dqn
− 1

p ), and
Cp,n ∈ O

(
d2qn

−(ω∧2)) , when 1 ≤ p ≤ 2 and ω ≥ 1,

Cp,n ∈ O
(
d2qn

−ω
)
, when p > 2 and 1 ≤ ω < 1 + 2/p,

Cp,n ∈ O
(
d2qn

−ω(log n)1−2/p
)
, when p > 2 and ω = 1 + 2/p,

Cp,n ∈ O
(
d2qn

−1−2/p
)
, when p > 2 and ω > 1 + 2/p.
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Proofs and further details are provided in the Appendix A. Theorem 5 provides very general con-
ditions for the robustness of GD under adversarial corruptions, covering various measures for the
corruptions in terms of lp norm of cumulative effect of corruptions over iterations, and lq norm of
corruption at each iteration. In Corollary 6, we specialize this theorem for the case of p = 1, that
corresponds to simply adding the corruptions over iterations

∥∥[c(k)]Nk=1

∥∥
l1
=
∑n

k=1 c(k).

Corollary 6 (Adv-GD: Finite Time Optimization Error with p = 1) Under the setting of Theo-
rem 5, set ω = 2 which amounts to ηk =

(
2
α

(
1− ( k

k+1)
2
)
∧ 1

β

)
∼ 1

k . We then have the following.
For the case of p = 1:

f(xn)− f(x∗) ∈ O
(
f(x0)− f(x∗)

n2
+

dqb(n)

n
+

(dqb(n))
2

n2

)
.

Recall D (g(xk−1), g̃(xk−1)) = ∥ξk∥lq . The case of q = 2 is similar to the typical stochastic GD
setting, where, the random corruptions are subject to a bound on their expected l2 norm. In Adv-GD
framework, d2 = 1, by definition. As q grows larger, dq grows closer to

√
d.

Remark 7 The particular choice of the learning rate comes from the tradeoff between corruption
free optimization and removing the corruption. A larger learning rate (up to a constant value
smaller than 1) is preferred for corruption free GD. That however cannot efficiently control the
corruption. A very small learning rate can efficiently remove the effect of corruption. It however
results in a very slow convergence for the corruption free part of the optimization. Efficiently trading
off these two directions leads to our choice of learning rate. The details of this trade off can be found
in our analysis in the Appendix A.

Remark 8 Theorem 5 readily holds true under strong convexity (replacing the PL condition). This
follows from the fact that strong convexity with parameter µ implies PL condition with parameter
α = 2µ.

Numerical Evaluations We provide numerical experiments for the Adv-GD framework in Ap-
pendix B. The experimental results corroborate our theoretical findings.

4. Conclusion

We introduced the novel framework of Adv-GD, in which gradients are corrupted by an adversary,
limited by a given budget. Thus, our results are applicable for the worst-case scenario of gradient
corruption that might happen in practice. We provided finite time upper bounds on the worst-case
optimization error, for the family of smooth PL functions. We also show that the robustness of GD
algorithm can be achieved via a proper choice of learning rate sequence based on Theorem 5 or
Collorary 6. It remains unknown whether the error bounds are optimal. Future works may also
look into obtaining lower bounds for the error, to compare with our upper bounds, and investigate
the question of what is the optimal adversarial corruption. Furthermore, it would be interesting
to extend our framework to SGD, in which the gradient is corrupted by both random noise and
adversarial corruption. We believe that the novel framework proposed in this study will inspire
further theoretical work to address all the open questions.
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Appendix A. Proofs and Details of Theoretical Analysis

In this section, we provide a proof for Theorem 5. As a consequence of smoothness assumption
(f ∈ Fβ

S ), we have

f(xk) ≤ f(xk−1) + ⟨g(xk−1), (xk − xk−1)⟩+
β

2
∥xk − xk−1∥2

= f(xk−1)− ⟨g(xk−1), ηkg̃(xk−1)⟩+
β

2
∥ηkg̃(xk−1)∥2

= f(xk−1)− ηk⟨g(xk−1), (g(xk−1) + ξk)⟩+ (βη2k/2)∥g(xk−1) + ξk∥2

= f(xk−1)− ηk(1− βηk/2)∥g(xk−1)∥2 − ηk(1− βηk)⟨g(xk−1), ξk⟩+ (βη2k/2)∥ξk∥2.

The second line follows from the GD update rule (1); the third line follows from the definition
of g̃; the fourth line is a rearrangement of the terms. For simplicity of notation, let us use yk =

f(xk)− f(x∗) and ck = ∥ξk∥lq . Also, recall the notation dq = d
( 1
2
− 1

q
)+ . We can rearrange the last

line as follows

yk ≤ yk−1 − ηk(1− βηk/2)∥g(xk−1)∥2 − ηk(1− βηk)⟨g(xk−1), ξk⟩+ (βη2k/2)∥ξk∥2

≤ yk−1 − ηk(1− βηk/2)∥g(xk−1)∥2 + γdq|ηk(1− βηk)|ck + (βd2qη
2
k/2)c

2
k

≤ yk−1 − αηk(1− βηk/2)yk−1 + γdq|ηk(1− βηk)|ck + (βd2qη
2
k/2)c

2
k.

The second line follows from ∥ · ∥ ≤ dq∥ · ∥lq . Note that we have ∥ · ∥ ≤ ∥ · ∥lq for q ≤ 2, and

∥ · ∥ ≤ d
1
2
− 1

q ∥ · ∥lq for q > 2. The third line follows from the PL condition (f ∈ Fα
PL). Note that

ηk(1 − βηk/2) ≥ 0, by definition of ηk in the statement of the theorem. Further simplifying the
notation and defining

αk = 1− αηk(1− βηk/2),

γk = γdqηk|1− βηk|,
βk = βd2qη

2
k/2,

we can write

yk ≤ αkyk−1 + γkck + βkc
2
k, (4)

We use this recursive relation to bound yn at iteration n based on the following lemma.

Lemma 9 Let (yi ∈ R≥0)
∞
i=0 be a sequence satisfying

yi ≤ αiyi−1 + γici + βic
2
i , ∀i ∈ N,

where αi, γi, βi, ci ∈ R≥0, for all i ∈ N. Define cn = [c1, ..., cn]. Then, for p ≥ 1,

yn ≤ Any0 +Bp,n∥cn∥p + Cp,n∥cn∥2p, (5)
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where

An = λ0,n, (6a)

Bp,n =

{
max1≤k≤n γkλk,n , if p = 1

(
∑n

k=1 (γkλk,n)
p1)1/p1 , if p > 1

, (6b)

Cp,n =

{
max1≤k≤n βkλk,n , if 1 ≤ p ≤ 2

(
∑n

k=1 (βkλk,n)
p2)1/p2 , if p > 2

, (6c)

and, λk,n =
∏n

i=k+1 αi; p1 and p2 are chosen in a way that 1/p+ 1/p1 = 1, and 2/p+ 1/p2 = 1.

The proof of Lemma 9 is given in Section A.1. The bounds given in Theorem 5 then are derived
by characterizing the coefficients An, Bp,n, Cp,n for the choice of learning rate sequence ηk in the
statement of the theorem. Further details are provided in Section A.2.

Optimality of the Bound on yn in Lemma 9: We further prove that An, Bp,n and Cp,n given in
Lemma 9 are optimal in the following sense. For all (Ã, B̃, C̃) ∈ R3 such that Ã < An, B̃ < Bp,n,
or C̃ < Cp,n, the bound on yn given in Lemma 9 does not hold true, with Ã, B̃, and C̃ replacing
the corresponding coefficients. In other words, the parameters given in (6) in Lemma 9 yield the
tightest coefficients to which (5) holds true for all systems of inequalities of the form of (4). This
observation is formalized in the following proposition.

Proposition 10 Fix p ≥ 1 and n ∈ N, and let p1, p2, An, Bp,n, Cp,n, (αi)
∞
i=1, (γi)∞i=1, (βi)∞i=1

be defined as in Lemma 9. For all (Ã, B̃, C̃) ∈ R3 such that Ã < An, B̃ < Bp,n, or C̃ < Cp,n,
there exist sequences (yi ∈ R>0)

∞
i=0 and (ci ∈ R>0)

∞
i=1 satisfying the recursive relation yi ≤

αiyi−1 + γici + βic
2
i , ∀i ∈ N, and violating (5), with Ã, B̃, and C̃ replacing the corresponding

coefficients:
yn > Ãy0 + B̃∥cn∥p + C̃∥cn∥2p, (7)

where cn = (c1, ..., cn) similar to Lemma 9.

Proof is provided in Section A.3. We emphasize that Proposition 10 considers the cases where only
one of the coefficients Ã, B̃ or C̃ is smaller than the corresponding one in Lemma 9, and not all of
them together; the latter would be a weaker statement.

In Lemma 9, we established a recursive relation on the optimization error yk = f(xk)− f(x∗),
as follows

yk ≤ αkyk−1 + γkck + βkc
2
k,

using the following notations

αk = 1− αηk(1− βηk/2), γk = γdqηk|1− βηk|, βk = βd2qη
2
k/2. (8)

Furthermore, in Lemma 9, we established a bound on yn. In this section, we provide a proof of
Lemma 9, the details of analysis for the learning rate ηk =

(
2
α

(
1− ( k

k+1)
ω
)
∧ 1

β

)
as a conse-

quence of Lemma 9, as well as a proof of Proposition 10.

10
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A.1. Proof of Lemma 9 (The Bound on yn Based on the Recursive Relation for yk)

It is clear that

yn − λ0,ny0 =
n∑

k=1

λk,n(yk − αkyk−1) ≤
n∑

k=1

λk,n(γkck + βkc
2
k) = ⟨un, cn⟩+ ⟨vn,dn⟩

where un = (λk,nγk)
n
k=1, vn = (λk,nβk)

n
k=1, and dn = (c21, ..., c

2
n). It follows by Hölder’s

inequality that ⟨un, cn⟩ ≤ ∥un∥p1∥cn∥p, and

⟨vn,dn⟩ ≤
{

∥vn∥∞∥dn∥1 = ∥vn∥∞∥cn∥22 ≤ ∥vn∥∞∥cn∥2p , if 1 ≤ p ≤ 2

∥vn∥p2∥d∥p/2 = ∥vn∥p2∥cn∥2p , if p > 2
.

This proves the lemma.

A.2. The Analysis of Error Bound for the Choice of ηk in Theorem 5

Recall

ηk =
2

α

(
1−

(
k

k + 1

)ω)
∧ 1

β
, n0 = min

{
k ∈ N :

2

α

(
1−

(
k

k + 1

)ω)
≤ 1

β

}
.

It follows by (8) that

ηk = 1
β , αk = 1− α

2β , γk = 0, βk = 1
2βd

2
q , if 1 ≤ k < n0

ηk = 2
α

(
1−

(
k

k+1

)ω)
, αk ≤

(
k

k+1

)ω
, γk ≤ γdqηk βk = β

2d
2
qη

2
k , if k ≥ n0

.

Hence λk,n =
∏n

i=k+1 αi is given by

λk,n =
(
1− α

2β

)n−k
, if 0 ≤ k ≤ n < n0

λk,n ≤
(
1− α

2β

)n0−k−1 (
n0
n+1

)ω
, if 0 ≤ k < n0 ≤ n

λk,n ≤
(
k+1
n+1

)ω
, if n0 ≤ k ≤ n

The coefficients given in (6) are then as follows:

• If 0 ≤ n < n0, then An =
(
1− α

2β

)n
, Bp,n = 0, and

Cp,n=
d2q
2βmax1≤k≤n

(
1− α

2β

)n−k
≤ d2q

2β ∀p∈[1,2]

Cp,n=
d2q
2β

(∑n
k=1

(
1− α

2β

)(n−k)p2
)1/p2

≤ d2q
2β

(
1−
(
1− α

2β

)p2)−1/p2
≤d2q

α ∀p>2

where the last inequality holds since d2q
2β

(
1−

(
1− α

2β

)p2)−1/p2
is monotonically decreasing

for p2 ∈ [1,∞) and takes value d2q/α at p2 = 1.

11
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• If n ≥ n0, then An ≤
(
1− α

2β

)n0−1 (
n0
n+1

)ω
, and Bp,n is given by

B1,n≤2γdq
α maxn0≤k≤n

(k+1)ω−kω

(n+1)ω ≤2γdq
α

(
1−
(

n
n+1

)ω)
≤2γdq

α
ω

n+1

Bp,n≤2γdq
α

(∑n
k=n0

(
(k+1)ω−kω

(n+1)ω

)p1)1/p1
≤2γdq

α
ω

n+1

(
1+ n+1

1+p1(ω−1)

)1/p1
∀p>1

where the second last inequality holds since

n∑
k=n0

((
k+1

n+1

)ω

−
(

k

n+1

)ω)p1

≤
n∑

k=n0

(
ω

n+1

(
k+1

n+1

)ω−1
)p1

≤
(

ω

n+1

)p1

1+

n−1∑
k=n0

(
k+1

n+1

)p1(ω−1)
≤

(
ω

n+1

)p1
(
1+(n+1)

∫ 1

n0+1
n+1

tp1(ω−1)dt

)

≤
(

ω

n+1

)p1(
1+

n+1

1+p1(ω−1)

)
.

For 1 ≤ p ≤ 2, Cp,n is given by

Cp,n≤

[
d2q
2β

max
1≤k<n0

(
1− α

2β

)n0−k−1( n0

n+1

)ω
]
∨

[
2βd2q
α2

max
n0≤k≤n

(
1−
(

k

k+1

)ω)2(
k+1

n+1

)ω
]

≤
d2q
2β

(
n0

n+1

)ω

∨
2βd2q
α2

max
n0≤k≤n

(
ω

k+1

)2(k+1

n+1

)ω

=


d2q
2β

(
n0
n+1

)ω
∨2βd2qω

2

α2
1

(n0+1)2−ω(n+1)ω
, if 1≤ω≤2

d2q
2β

(
n0
n+1

)ω
∨2βd2qω

2

α2
1

(n+1)2
, if ω>2

For p > 2, Cp,n is given by

Cp2
p,n≤

n0−1∑
k=1

(
d2q
2β

(
1− α

2β

)n0−k−1( n0

n+1

)ω
)p2

+
n∑

k=n0

(
2βd2q
α2

(
1−
(

k

k+1

)ω)2(
k+1

n+1

)ω
)p2

≤

(
d2q
2β

(
n0

n+1

)ω
)p2

1

1−
(
1− α

2β

)p2 +
(
2βd2q
α2

)p2 n∑
k=n0

((
ω

k+1

)2(k+1

n+1

)ω
)p2

≤2β

α

(
d2q
2β

(
n0

n+1

)ω
)p2

+

(
2βd2q
α2

ω2

(n+1)ω

)p2 n∑
k=n0

(k+1)p2(ω−2).

To analyze the second term, let us use the notation ω̃ = p2(ω − 2) and note that∑n
k=n0

(k+1)ω̃≤
∫ n+1
n0

t−1dt=logn+1
n0

, if ω̃=−1∑n
k=n0

(k+1)ω̃≤
∫ n+1
n0

tω̃dt=
(n+1)ω̃+1−nω̃+1

0
ω̃+1 , if ω̃∈(−∞,−1)∪(−1,0]∑n

k=n0
(k+1)ω̃ ≤(n+1)ω̃+

∫ n+1
n0+1t

ω̃dt

=(n+1)ω̃+ (n+1)ω̃+1−(n0+1)ω̃+1

ω̃+1

, if ω̃>0

12
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Therefore,

Cp2
p,n ≤ 2β

α

(
d2q
2β

(
n0
n+1

)ω)p2
+
(
2βd2q
α2

ω2

(n+1)ω

)p2 n
p2(ω−2)+1
0

|p2(ω−2)+1| , if p2(ω − 2) < −1

Cp2
p,n ≤ 2β

α

(
d2q
2β

(
n0
n+1

)ω)p2
+
(
2βd2q
α2

ω2

(n+1)ω

)p2
log n+1

n0
, if p2(ω − 2) = −1

Cp2
p,n ≤ 2β

α

(
d2q
2β

(
n0
n+1

)ω)p2
+
(
2βd2q
α2

ω2

(n+1)2

)p2
n+1

p2(ω−2)+1 , if p2(ω − 2) ∈ (−1, 0]

Cp2
p,n ≤ 2β

α

(
d2q
2β

(
n0
n+1

)ω)p2
+
(
2βd2q
α2

ω2

(n+1)2

)p2 (
n+1

p2(ω−2)+1 + 1
)

, if p2(ω − 2) > 0

To sum up,

An ∈ O (n−ω) , if p ≥ 1, ω ≥ 1

Bp,n ∈ O
(
dqn

−1/p
)

, if p ≥ 1, ω ≥ 1

Cp,n ∈ O
(
d2qn

−(ω∧2)) , if 1 ≤ p ≤ 2, ω ≥ 1

Cp,n ∈ O
(
d2qn

−ω
)

, if p > 2, 1 ≤ ω < 1 + 2/p

Cp,n ∈ O
(
d2qn

−ω(log n)1−2/p
)

, if p > 2, ω = 1 + 2/p

Cp,n ∈ O
(
d2qn

−1−2/p
)

, if p > 2, ω > 1 + 2/p

For example, for the case of p = 1 and ω = 2, we have

An ∈ O
(
n−2

)
, B1,n ∈ O

(
n−1

)
, C1,n ∈ O

(
n−2

)
Therefore,

f(xn)− f(x∗) ≤ An(f(x0)− f(x∗)) +B1,n∥cn∥1 + C1,n∥cn∥21

∈ O

(
f(x0)− f(x∗)

n2
+

∥cn∥1
n

+
∥cn∥21
n2

)
.

(9)

A.3. Proof of Proposition 10

As stated in Proposition 10 the parameters given in (6) in Lemma 9 yield the tightest coefficients
to which (5) holds true for all systems of inequalities of the form of (4). In this section, we prove
Proposition 10.

Let un and vn be as in the proof of Lemma.9.

• Suppose Ã < An. One may take yk =
∏k

i=1 αi and ck = 0 for each k, so that both (4) and
(7) are satisfied.

• Suppose B̃ < Bp,n. It follows by Hölder’s inequality that for any r > 0, there exists cn =
(c1, ..., cn) ∈ Rn

≥0 so that ∥cn∥p = r and ⟨un, cn⟩ = ∥un∥p1r. Take non-negative sequence
(yi)

∞
i=0 so that (4) holds with inequalities replaced by equalities, then (recall that Bp,n =

∥un∥p1 and vn ≥ 0)

yn = Any0 + ⟨un, cn⟩+ ⟨vn,dn⟩ ≥ Any0 +Bp,nr

where dn = (c21, ..., c
2
n). Then (7) holds by taking r > 0 and y0 > 0 so that

C̃r <
1

2
(Bp,n − B̃), (Ã−An)y0 <

1

2
(Bp,n − B̃)r,

13
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• Suppose C̃ < Cp,n. For any r > 0, we can construct cn = (c1, ..., cn) ∈ Rn
≥0 so that

∥cn∥p = r and ⟨vn,dn⟩ = Cp,nr
2 (here dn = (c21, ..., c

2
n)) as follows:

– If p > 2, by Hölder’s inequality, there exists dn = (d1, ..., dm) ∈ Rn
≥0 so that ∥dn∥p/2 =

r2 and ⟨vn,dn⟩ = ∥vn∥p2r2 = Cp,nr
2. Take ck =

√
dk.

– If 1 ≤ p ≤ 2, take

ck =

{
r , if k = k0
0 , otherwise

where k0 ∈ argmax1≤k≤n βk
∏n

i=k+1 αi, then ⟨vn,dn⟩ = ∥vn∥∞r2 = Cp,nr
2.

Take non-negative sequence (yi)∞i=0 so that (4) holds with inequalities replaced by equalities,
then (recall that un ≥ 0)

yn = Any0 + ⟨un, cn⟩+ ⟨vn,dn⟩ ≥ Any0 + Cp,nr
2.

Then (7) holds by taking r > 0 and y0 > 0 so that

B̃ <
1

2
(Cp,n − C̃)r, (Ã−An)y0 <

1

2
(Cp,n − C̃)r2.

Appendix B. Numerical Evaluations

In this section, we provide experimental results on the worst-case optimization error of the GD with
adversarial corruptions.

B.1. Experimental Setup

GD Loop: The experiments use a GD loop based on the GD update rule given in (1). In particular,
provided an initial point x0, objective function f and its gradient g, the number n of iterations
and the corruption sequence (ξk)

n
k=1, we iteratively obtain (xk)

n
k=1 based on (1). Recall x∗ =

argminx∈X f(x). Let
Rn ((ξk)

n
k=1) = f(xn)− f(x∗)

denote the optimization error corresponding to a particular choice of corruption sequence (ξk)
n
k=1.

In contrast, the worst-case optimization error rn defined in (3) corresponds to the maximum value
of Rn ((ξk)

n
k=1), for the worst case choice of (ξk)nk=1 subject to the budget constraint. The learning

rate sequence (ηk)
n
k=1 is selected according to Corollary 6.

Adversary: The adversary chooses the corruption sequence (ξk)
n
k=1 in a way that maximizes

Rn ((ξk)
n
k=1), and satisfies the budget constraint with p = 1. We formulate this as a constrained op-

timization problem, and solve it using the Sequential Least Squares Programming (SLSQP) method
from scipy.optimize package in the SciPy Python library. This module takes Rn : Rn → R
and a random initialization (ξ̂k)

n
k=1 of the corruption sequence as the inputs and returns a numerical

approximation of the worst case corruptions (ξ̂∗k)
n
k=1. We then use Rn((ξ̂

∗
k)

n
k=1) as a numerical

approximation of the minimax error rn.

Budget: We choose b(n) ∼ snτ for various values of scale s ∈ R>0 and exponent τ ∈ [0, 1]
parameters. In particular, rather than a smooth budget b(n) = snτ , we create b(n) randomly, in
a way that it scales with snτ . In order to do this, we choose b(n) = s(

∑n
k=1 εk)

τ , where εk are
independent uniform random variables in [0.5, 1.5].

14
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More Experimental Details: In our experiments, the domain X is selected as [−2, 2] interval.
Since X is one dimensional, we use x to denote x, and use ξk to denote ξk in the subsequent
context. Without loss of generality we choose x∗ = 0. The parameters α, β, and γ are obtained by
α = minx∈X

|f ′(x)|2
f(x) , β = maxx∈X |f ′′(x)|, γ = maxx∈X |f ′(x)|. For GD Loop, we set x0 = 2.

Furthermore we restrict the iterations to stay within X . For adversary, the parameters of the SLSQP
method are given as ftol = 1e− 12, eps = 1e− 14, maxiter = 10000. Our experiments are run
in our internal cluster with 10 CPU servers managed by IBM Spectrum LSF. Each CPU server has
32 CPU cores and 256G RAM. The operating system of these servers are Ubuntu 20.04 LTS. Other
implementation details can be found in our source code, which will be released after the review
period.

B.2. Assumptions on Objective Functions

A line of research has investigated other conditions which permit establishing analytical results
while conforming to practical considerations. Examples include: essential strong convexity [15],
weak strong convexity [17], restricted secant inequality [25], and quadratic growth [4]. An interest-
ing condition which is weaker and more general than all mentioned above is the Polyak-Łojasiewicz
(PL) condition, which does not even require convexity.

In this experiment, we consider various objective functions: a quadratic objective function re-
ferred to as fQ and a strongly convex one referred to as fSC. In addition, we consider two other
functions satisfying the PL condition referred to as fPL,1 and fPL,2; non of them convex; the former
is locally convex around x∗ and the latter is not. The expression of these objective functions and
their plots are given in Table 2 and Figure 1, respectively.

Function Type Symbol Function Instance
Quadratic fQ f(x) = x2

Strongly Convex fSC f(x) = x2 − cos(x) + 1
Locally Convex Near Optimum fPL,1 f(x) = x2 + 0.5 ∗ sin2(2x)

Non-Convex Near optimum fPL,2 f(x) = x2 + 2.1 ∗ sin(|x|−1) ∗ |x|4

Table 2: Functions used in the experiments. Note that all functions satisfy the PL condition

B.3. Convergence of the Worst-case Optimization Error

Figure 2 shows the worst-case optimization error of GD for the four objective functions described
above. The corruption budget is set to b(n) ∼

√
n. The optimization errors reported in the figures

are average over three Monte Carlo runs with different random initialization (ξ̂k)
n
k=1 of the cor-

ruption sequence for the adversary (the SLSQP method mentioned above). The theoretical bounds
proven in Corollary 6 are also plotted for comparison. In all cases, the theoretical bounds hold true.

B.4. The Effect of Corruption Budget

Figure 3 (a) and (b) show the numerical results on the worst-case optimization error for various
corruption budgets by varying their scale and exponent parameters. The corresponding theoretical
bounds from Corollary 6 are also plotted for comparison. All the experiments are consistent with
the theoretical findings. As expected, optimization error is larger for a greater corruption budget.
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Figure 1: Functions used in the experiments, as well as their first and second order derivatives.

Eventually for a linear budget b(n) ∼ n the optimization error does not vanish. We used fPL,2 as
the objective function for this experiment.

B.5. Adversarial Corruptions

In all previous experiments, we used SLSQP method from scipy.optimize package [23] (which
is under the liberal BSD license) to find a numerical approximation of the worst case corrup-
tion sequence. Let us refer to this adversary as Â

∗
. In this experiment, we compare the opti-

mization error using Â
∗

versus other adversaries which exploit the available budget in a greedy
way. In particular, let bused(n) =

∑n
k=1 c(k) denote the amount of budget used up to time n in-

cluded. Then, the available budget at time k is b(k) − bused(k − 1). The adversary A1 selects
ξA1
k = (b(k)− bused(k − 1)) sgn(−g̃(xk−1)). That is a greedy way to push the GD iterates as far

as possible from the minimum, while respecting the budget. We also consider a different adversary,
referred to as A2, which selects ξA2

k = ξA1
k εk, where εk are independent uniform random variables

in [0.5, 1.5]. Note that A2 may violate the budget constraint. It however respects the budget in
expectation. Furthermore, we compare these adversaries with the case without adversary, denoted
as A0. Figure 3(c) shows a comparison between the performances of these adversaries; Â

∗
leads to

a significantly higher worst-case optimization error compared to A1 , A2 and A0. Besides, A0 leads
to the lowest worse-case optimization error since it has no adversary. This experiment is run using
the objective function fPL,2.
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Figure 2: Numerical results on the worst-case optimization error against the number of GD itera-
tions, for various objective functions in logarithmic scale. The x-axis is the number of
GD iterations, and the y-axis is the worse-case minimization error. Theoretical bounds
on the optimization error from Corollary 6 are also plotted for comparison. The dotted
vertical line shows the value of n0. Grey lines show n−1 and n

−1
2 for comparison. Each

error bar shown at each point is the twice standard deviation.

B.6. The Effect of Learning Rate Sequence

In this experiment, we compare the learning rate sequence given in Corollary 6, denoted as (η∗k)
n
k=1,

with other learning rate sequences:
(
η
(1)
k = 1

k

)n
k=1

,
(
η
(2)
k = 1

k2

)n
k=1

, and
(
η
(.5)
k = 1

k0.5

)n
k=1

. The
first one is based on Corollary 6, the others are the similar learning rate sequences but with vary-
ing power in their denominators. Figure 3(d) shows a comparison between these learning rate
sequences. The worst-case optimization errors of η∗k and η

(1)
k decrease steadily, while the errors

of η(2)k and η
(.5)
k stop decreasing after a certain number of GD iterations. This experiment demon-

strates that our theorem provides a guideline on learning rate sequences which make GD robust
against adversarial corruption.
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Figure 3: (a) and (b) are numerical results on the worst-case optimization error (solid lines) against
the number of GD iterations for various values of the corruption budget in logarithmic
scale. The cases of b(n) ∼ nτ with τ = 0.25, 0.5, 0.75 and 1 are shown on the left
panel. The cases of b(n) ∼ s

√
n with s = 0.1, 0.3, 1, 3 and 10 are shown on the right

panel. Theoretical bounds from Corollary 6 are plotted (dashed lines) for comparison.
This experiment uses fPL,2 as the objective function. The dotted vertical line shows the
value of n0. Grey lines show n−1, n−1/2 and n−3/2 for comparison. (c) and (d) are
optimization error against the number of GD iteration for various adversaries and various
learning rate sequences in logarithmic scale (see text for description).

18



GRADIENT DESCENT: ROBUSTNESS TO ADVERSARIAL CORRUPTION

B.7. Discussion

In these experiments, we compare the theoretical bounds with the results of numerical experiments
on a few example objective functions satisfying the PL condition; including quadratic, strongly
convex and non-convex ones. We show how the theoretical and empirical optimization errors are
affected by the budget and compare the adversarial corruption with other types of gradient pertur-
bations and other types of learning rate sequences.

However; these experiments indicate that the order of bounds may need to be be improved,
at least based on the cases studied here. Furthermore, we use the SLSQP method implemented
in the scipy.optimize.minimize package to simulate the adversarial corruption. We only have an
approximation of the worst-case corruptions in our experiments, and that is likely to be the reason for
the gap between the theoretical upper bound and the results on optimization error in the experiments.
The analytical result, however, is a theoretical upper bound and may not realize with all problem
instances.
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