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Abstract
Some boosting algorithms, such as LPBoost, ERLPBoost, and C-ERLPBoost, aim to
solve the soft margin optimization problem with the ℓ1-norm regularization. LPBoost
rapidly converges to an ϵ-approximate solution in practice, but it is known to take Ω(m)
iterations in the worst case, where m is the sample size. On the other hand, ERLPBoost
and C-ERLPBoost are guaranteed to converge to an ϵ-approximate solution in O( 1

ϵ2 ln m
ν )

iterations. However, the computation per iteration is very high compared to LPBoost.
To address this issue, we propose a generic boosting scheme that combines the Frank-

Wolfe algorithm and any secondary algorithm and switches one to the other iteratively.
We show that the scheme retains the same convergence guarantee as ERLPBoost and
C-ERLPBoost. One can incorporate any secondary algorithm to improve in practice. This
scheme comes from a unified view of boosting algorithms for soft margin optimization.
More specifically, we show that LPBoost, ERLPBoost, and C-ERLPBoost are instances of
the Frank-Wolfe algorithm. In experiments on real datasets, one of the instances of our
scheme exploits the better updates of the secondary algorithm and performs comparably
with LPBoost.

1. Introduction

The ℓ1-norm regularized soft margin optimization problem, defined later, is a formulation of
finding sparse large-margin classifiers based on the linear program (LP). This problem aims
to optimize the ℓ1-margin by combining multiple hypotheses from some hypothesis class H.
The resulting classifier tends to be sparse, so ℓ1-margin optimization is helpful for feature
selection tasks. Off-the-shelf LP solvers can solve the problem, but they are still not efficient
enough for a huge class H.

Boosting is a framework for solving the ℓ1-norm regularized margin optimization even
though H is infinitely large. Various boosting algorithms have been invented. LPBoost [2]
is a practical algorithm and often works efficiently in practice. Although LPBoost ter-
minates rapidly, It is shown that it takes Ω(m) iterations in the worst case, where m is
the number of training examples [8]. Shalev-Shwartz and Singer [7] invented an algorithm
called Corrective ERLPBoost (we call this algorithm C-ERLPBoost for shorthand) in the
paper on ERLPBoost [9]. C-ERLPBooost and ERLPBoost find ϵ-approximate solutions
in O(ln(m/ν)/ϵ2) iterations, where ν ∈ [1, m] is the soft margin parameter. The difference
is the time complexity per iteration; ERLPBoost solves a convex program (CP) for each
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Table 1: Comparison of the boosting algorithms. C-ERLPBoost solves the problem per
iteration by sorting based algorithm, while our work and LPBoost solves linear
programming (LP). ERLPBoost solves convex programming (CP) per iteration.

LPBoost C-ERLPBoost ERLPBoost One of our work

Iter. bound Ω(m) O
(

1
ϵ2 ln m

ν

)
O

(
1
ϵ2 ln m

ν

)
O

(
1
ϵ2 ln m

ν

)
Problem per iter. LP Sorting CP LP

iteration, while C-ERLPBooost solves a sorting-like problem. Although ERLPBoost takes
much time per iteration, it takes fewer iterations than C-ERLPBoost in practical applications.
For this reason, ERLPBoost is faster than C-ERLPBoost. Our primary motivation is to
investigate boosting algorithms with provable iteration bounds which perform as fast as
LPBoost.

This paper has two contributions. Our first contribution is to give a unified view
of boosting for soft margin optimization. We show that LPBoost, ERLPBoost, and C-
ERLPBoost are instances of the Frank-Wolfe algorithm.

Our second contribution is to propose a generic scheme for boosting based on the unified
view. Our scheme combines a standard Frank-Wolfe algorithm and any algorithm and switch
one to the other at each iteration in a non-trivial way. We show that this scheme guarantees
the same convergence rate, O(ln(m/ν)/ϵ2), as ERLPBoost and C-ERLPBoost. One can
incorporate any update rule to this scheme without losing the convergence guarantee, so
that it take advantage of better updates of the second algorithm in practice. In particular,
we propose to choose LPBoost as the second algorithm to combine and we call the resulting
algorithm Modified LPBoost (MLPBoost).

In experiments on real datasets, MLPBoost works comparably with LPBoost and it is
MLPBoost is the fastest among theoretically guaranteed algorithms as expected.

2. Basic definitions

This paper considers binary classification boosting. We use the same notations as in [7]. Let
S := ((xi, yi))m

i=1 ∈ (X × {±1})m be a sequence of m-examples, where X is some set. Let
H ⊂ [−1, +1]X be a set of hypotheses. For simplicity, we assume |H| = |{h1, h2, . . . , hn}| =
n. It is convenient to regard each hj ∈ H as a canonical basis vector ej ∈ Rn. Let
A = (yihj(xi)) ∈ [−1, +1]m×n be a matrix of size m× n. We denote m-dimensional capped
probability simplex as Pm

ν := {d ∈ [0, 1/ν]m | ∥d∥1 = 1}, where ν ∈ [1, m]. We write
Pm = Pm

1 for shorthand. For a set C ⊂ Rn, we denote the convex hull of C as CH(C) :=
{
∑

k wksk |
∑

k wk = 1, wk ≥ 0, {sk}k ⊂ C}. We say that a function f : Rm → R is η-smooth
over a convex set C ⊂ Rm w.r.t. a norm ∥ · ∥ if f(y) ≤ f(x) + (y − x)⊤∇f(x) + η

2∥y − x∥2
for all x,y ∈ C. The Fenchel conjugate f⋆ of a function f : Rm → [−∞, +∞] is defined as
f⋆(θ) = supd∈Rm

(
d⊤θ − f(d)

)
. It is well known that if f is a 1/η-strongly convex function

w.r.t. the norm ∥ · ∥ for some η > 0, f⋆ is an η-smooth function w.r.t. the dual norm
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∥ · ∥⋆. Further, if f is a strongly convex function, the gradient vector of f⋆ is written as
∇f⋆(θ) = arg supd∈Rm

(
d⊤θ − f(d)

)
. You can find the proof of these properties here [1, 7].

We define the soft margin optimization problem as the dual problem of the edge minimiza-
tion problem. The edge minimization problem is defined as γ := mind maxj∈[n](d⊤A)j +f(d),
where f : Rm → {0, +∞} is the barrier function such that f(d) = 0 ⇐⇒ d ∈ Pm

ν . The
quantity (d⊤A)j =

∑m
i=1 diyihj(xi) is often called the edge of the hypothesis hj w.r.t. the

distribution d. [7] proved that the ℓ1-norm regularized soft margin optimization problem
is derived as the Fenchel dual problem of edge minimization: ρ := maxw∈Pn −f⋆(−Aw) =
maxw∈Pn mind∈Pm

ν
d⊤Aw. Since the strong duality holds, γ = ρ. The goal of the soft margin

optimization is to find an optimal combined hypothesis HT =
∑n

j=1 w⋆
j hj , where w⋆ ∈ Pn is

an optimal solution of the soft margin optimization. Although the edge minimization and
soft margin optimization problems are formulated as a linear program, solving the problem
for a huge class H is hard. Boosting is a standard approach to dealing with the problem.

Boosting is formulated by a protocol between two algorithms; the booster and the weak
learner. For each iteration t = 0, 1, 2, . . . , T , the booster chooses a distribution dt ∈ Pm

ν

over the training examples S. Then, the weak learner returns a hypothesis hjt+1 ∈ H to
the booster that satisfies (dt

⊤A)jt+1 ≥ g for some unknown guarantee g > 0. The boosting
algorithm aims to produce a convex combination HT =

∑T
t=1 wT,thjt of the hypotheses

{hj1 , hj2 , . . . , hjT } ⊂ H that satisfies

−f⋆(−AwT ) = min
d∈Pm

ν

d⊤AwT = min
d∈Pm

ν

m∑
i=1

diyiHT (xi) ≥ g − ϵ (1)

for any predefined ϵ > 0. Suppose that the weak learner always returns a max-edge
hypothesis. In that case, the goal is to find an ϵ-approximate solution of the soft margin
optimization.

3. Main results

We first show the unified view of the boosting algorithms via Fenchel duality. From this
view, LPBoost, ERLPBoost, and C-ERLPBoost can be seen as instances of the Frank-Wolfe
algorithm with different step sizes and objectives. Using this knowledge, we derive a new
boosting scheme. Note that all proofs are found in appendix.

3.1. A unified view of boosting for soft margin optimization

This section assumes that the weak learner always returns a hypothesis h ∈ H that maximizes
the edge w.r.t. the given distribution. We start by revisiting C-ERLPBoost. C-ERLPBoost
aims to solve the convex program mind maxj∈[n](d⊤A)j + f̃⋆(d),, where f̃ = f + 1

η ∆. Since
1
η ∆ is a 1

η -strongly convex function w.r.t. ℓ1-norm, so does f̃ . One can easily verify that
the dual problem is maxw∈Pn −f̃⋆(−Aw). Furthermore, f̃⋆ is an η-smooth function w.r.t.
ℓ∞-norm. Thus, the soft margin optimization problem becomes a minimization problem of
a smooth function.

C-ERLPBoost updates the distribution dt ∈ Pm
ν as dt = ∇f̃⋆(θt) = arg mind d

⊤θt+f̃(d),
where θt = −Awt. Then, obtain a hypothesis hjt+1 ∈ H that maximizes the edge; jt+1 ∈
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Algorithm 1 A theoretically guaranteed boosting scheme
Input: A matrix A = (yihj(xi))i,j ∈ [−1, 1]m×n, a Frank-Wolfe rule F , a secondary

algorithm B, and parameters ν > 0 and ϵ > 0.
1: Set w0 = 0.
2: for t = 0, 1, 2, . . . , T do
3: Compute the distribution dt = ∇f̃⋆(−Awt).
4: Obtain a hypothesis hjt+1 ∈ H and set Et+1 = {ejτ }t+1

τ=1.
5: if ϵt := min0≤τ≤t(d⊤

τ A)jτ+1 + f̃⋆(−Awt) ≤ ϵ/2 then Set T = t, break.
6: Compute the Frank-Wolfe weight w

(1)
t+1 = F(A,wt, ejt+1 , Et,dt).

7: Compute the secondary weight w
(2)
t+1 = B(A, Et+1).

8: Update the weight wt+1 ← arg min
w

(k)
t+1:k∈{1,2} f̃⋆(−Aw

(k)
t+1).

9: end for
Output: Combined classifier HT =

∑T
t=1 wT,tht.

arg maxj∈[n](d⊤
t A)j . We can rewrite this step as

arg max
ej :j∈[n]

d⊤
t Aej = arg min

ej :j∈[n]
(−Aej)⊤∇f̃⋆(θt) = arg min

θ∈−APn
θ⊤∇f̃⋆(θt)

Thus, finding a hypothesis that maximizes edge corresponds to solving linear programming
in the Frank-Wolfe algorithm. Further, C-ERLPBoost updates the weights as wt+1 =
wt + λt(ejt+1 −wt), where λt is the short-step, as in algorithm 3. From these observations,
we can say that the C-ERLPBoost is an instance of the Frank-Wolfe algorithm. Since f̃⋆ is
η-smooth, we can say that C-ERLPBoost converges in O(η/ϵ) = O(ln(m/ν)/ϵ2) iterations
for a max-edge weak learner.

Similarly, one can easily verify that ERLPBoost and C-ERLPBoost are also instances of
the Frank-Wolfe algorithm. See the proof in appendix.

Theorem 1 LPBoost, ERLPBoost, and C-ERLPBoost are instances of the Frank-Wolfe
algorithm.

3.2. A generic scheme for margin-maximizing boosting

Algorithm 2 LPBoost rule B(A, Et+1)
Input: A matrix A = (yihj(xi))i,j ∈ [−1, +1]m×n and a set of basis vectors Et+1 ⊂ Pn.
Output: w ← arg maxw∈CH(Et+1) mind∈Pm

ν
d⊤Aw.

Algorithm 3 Short step rule F(A,wt, ejt+1 , Et,dt)

1: w
(1)
t+1 = wt + λt(ejt+1 −wt), where λt = min

{
1, max

{
0,

d⊤
t A(ej+1−wt)

η∥A(ej+1−wt)∥2
∞

}}
.

We propose a Frank-Wolfe-like boosting scheme, shown in algorithm 1. Intuitively, the
Frank-Wolfe rule F is a safety net for the convergence guarantee. Further, the convergence
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analysis only depends on the Frank-Wolfe rule w
(1)
t+1 so one can incorporate any update rule

to B. For example, one can use wE
t+1 as B(A, Et+1). Algorithm 1 becomes ERLPBoost in

this case since wt+1 = w
(2)
t+1 holds for all t.

Recall that our primary objective is to find a weight vector w that optimizes the soft
margin, formulated as LP. The most practical algorithm, LPBoost, solves the optimization
problem over past hypotheses, so using the solution as B is a natural choice. Algorithm 2
summarizes this update. As described in [7], one can compute the distribution dt =
∇f̃⋆(−Awt) by a sorting-based algorithm, which takes O(m ln m) iterations1. Thus, the
time complexity of our scheme depends on the secondary algorithm B. The following theorem
guarantees the convergence rate for algorithm 1. We give the proof in the appendix.

Theorem 2 (A convergence rate for algorithm 1) Assume that the weak learner re-
turns a hypothesis hjt+1 ∈ H that satisfies (d⊤

t A)jt+1 ≥ g for some unknown guarantee g.
Let F be a Frank-Wolfe rule with classic step λt = 2

t+2 , or short-step as in algorithm 3.
Then, for any secondary algorithm B, algorithm 1 outputs HT =

∑T
t=1 wjthjt satisfying (1)

in O
(

1
ϵ2 ln m

ν

)
iterations.

4. Experiments

We compared the boosting algorithms on Gunnar Rätsch’s benchmark dataset 2. We call our
scheme with secondary algorithm 2 as MLPBoost. MLPB. (SS) uses the short-step Frank-
Wolfe algorithm 3. As table 2 shows, MLPB. (SS) terminates much faster than C-ERLPB.
This result indicates that the secondary update significantly improves the objective.

Table 2: Comparison of the computation time (seconds). Some algorithms do not terminate
in a few hours so we abort them within some appropriate time.

m LPB. ERLPB. Frank-Wolfe MLPB. (SS)

Diabetes 768 47.53 1478.77 > 104 201.46
German 1000 77.56 1391.91 > 104 181.43
Heart 270 10.03 193.58 > 103 44.11
Image 2086 8.25 107.52 > 103 32.01
R.norm 7400 22.09 1148.16 > 104 26.76
Splice 2991 19.35 490.92 > 104 122.08
Twonorm 7400 105.40 > 104 > 104 478.22
Waveform 5000 437.29 9018.54 > 104 2243.07

The worst case for LPB. Although LPB. outperforms the running time in Table 2, it
takes m/2 iterations for the worst case [8]. Even in this case, the other algorithms terminate
in 2 iterations.
1. They also suggest a linear time algorithm, see [4].
2. Datasets are obtained from http://theoval.cmp.uea.ac.uk/~gcc/matlab/default.html#benchmarks.
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Appendix A. Fenchel duality review

First, we introduce some additional notations. For a function f : Rm → (−∞, +∞], let
dom f = {d|f(d) < +∞}. For a convex set C ⊂ Rn, define the set of interior points int(C)
as

int(C) = {w ∈ C | ∀d ∈ Rn,∃t > 0, ∀τ ∈ [0, t],w + τd ∈ C}.

For sets A and B over Rn, define A−B = {a− b | a ∈ A, b ∈ B}.
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Theorem 3 ([1]) Let f : Rm → (−∞, +∞] and g : Rn → (−∞, +∞] be convex functions
and a linear map M : Rm → Rn. Define the Fenchel problems

γ = inf
d

f(d) + g(M⊤d), (2)

ρ = sup
w
−f⋆(−Mw)− g⋆(w). (3)

Then, γ ≥ ρ holds. Further, γ = ρ holds if

0 ∈ int
(
dom g −M⊤ dom f

)
. (4)

Further, points d⋆ ∈ Pm
ν and w⋆ ∈ Pn are optimal solutions for problems (2) and (3),

respectively, if and only if −Mw⋆ ∈ ∂f(d⋆) and w⋆ ∈ ∂g(M⊤d⋆).

The following lemma is useful to prove our result.

Lemma 4 Let f, f̃ : Rm → (−∞, +∞] be functions such that ∃c > 0,∀θ, f(θ) ≤ f̃(θ) ≤
f(θ) + c. Then, f⋆(µ)− c ≤ f̃⋆(µ) ≤ f⋆(µ) holds for all µ.

Appendix B. Technical Lemmas

The following lemma shows the maximum value of the relative entropy from the uniform
distribution over the capped probability simplex Pm

ν .

Lemma 5 maxd∈Pm
ν

∆(d) ≤ ln m
ν .

Proof Since the relative entropy from the uniform distribution achieves its maximal value
at the extreme points of Pm

ν , a maximizer has the form

d = (1/ν, 1/ν, . . . , 1/ν︸ ︷︷ ︸
k elements

, s, 0, 0, . . . , 0), s = 1− k

ν
≤ 1

ν

for some k ∈ [m]. Plugging the maximizer into ∆(d), we can write the objective function
as ∆(d) = (k/ν) ln(m/ν) + s ln(sm). If s = 0, ∆(d) = ln(m/ν) holds since k = ν. If s > 0,
k/ν < 1 so that

∆(d) ≤ k

ν
ln m

ν
+

(
1− k

ν

)
ln m

ν
= ln m

ν
.

The next lemma shows the dual problem of the edge minimization.

Lemma 6 Let f : Rm → {0, +∞}, g : Rn → R be functions defined as

f(d) =
{

0 d ∈ Pm
ν

+∞ d /∈ Pm
ν

, g(θ) = max
j∈[n]

θj .
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Then, the dual problem of edge minimization

min
d

f(d) + g(A⊤d) (5)

is the soft margin maximization

max
w∈Pn

−f⋆(−Aw). (6)

Further, the strong duality holds.

Proof We can use Theorem 3 to derive the dual problem. Since

g⋆(w) =
{

0 w ∈ Pn

+∞ w /∈ Pn
,

you can verify the dual form becomes as in (6). To prove the strong duality, it is enough to
prove eq. (4). By definition, dom g = Rn and dom f = Pm

ν and hence

dom g −A⊤ dom f =
{
w −A⊤d | w ∈ Rn,d ∈ Pm

ν

}
.

Obviously, 0 ∈ int(dom g −A⊤ dom f) and thus the strong duality holds.

Since

f⋆(−Aw) = sup
d

[
−d⊤Aw − f(d)

]
= max

d∈Pm
ν

−d⊤Aw = min
d∈Pm

ν

d⊤Aw,

we can write the dual problem (6) explicitly:

max
w∈Pn

−f⋆(−Aw) = − min
w∈Pn

max
d∈Pm

ν

d⊤Aw.

By the same derivation, we get the dual problem for the regularized edge minimization
problem.

Corollary 7 Let f, g be the functions defined in Lemma 6 and let ∆(d) =
∑m

i=1 di ln di +
ln(m) be the relative entropy function from the uniform distribution. Define f̃ = f + (1/η)∆
for some η > 0. Then, the dual problem of

min
d

f̃(d) + g(A⊤d) is max
w∈Pn

−f̃⋆(−Aw).

Appendix C. Proofs

This section is dedicated for the proof of the main result. We first show the fact that
LPBoost and ERLPBoost are also instances of FW. Before getting into the proof, we first
review the Frank-Wolfe algorithm.
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C.1. The Frank-Wolfe algorithms

The original Frank-Wolfe (FW) algorithm is a first-order iterative algorithm invented by [3].
The FW algorithm solves the problems of the form: minx∈C f(x), where C ⊂ Rm is a closed
convex set and f : C → R is an η-smooth and convex function.

In each step t, FW seeks an extreme point st+1 ∈ arg mins∈C s
⊤∇f(xt). Then, it

updates the iterate as xt+1 = xt + λt(st+1 − xt) for some λt ∈ [0, 1]. Although the classical
result [3, 5] suggests λt = 2/(t + 2), there are many choices of λt. For example, one can
choose λt as λt := clip[0,1]

(xt−st+1)⊤∇f(xt)
η∥st+1−xt∥2 , where clip[0,1] x = max{0, min{1, x}}. This is

the optimal solution that minimizes the RHS of the strongly-smooth bound and is often
called a short-step strategy. The FW algorithms converge to an ϵ-approximate solution in
O(η/ϵ) iterations if the objective function is η-smooth w.r.t. some norm over C [3, 5]. The
best advantage of the FW algorithm is the projection-free property; there is no projection
onto C, so the running time per step is faster than the projected gradient methods.

C.2. Proof of Theorem 1

LPBoost and ERLPBoost update the distribution as

(LPBoost) dL
t ∈ arg min

d
max
j∈[n]

(d⊤A)j + f(d),

(ERLPBoost) dE
t = arg min

d
max
j∈[n]

(d⊤A)j + f̃(d).

By definition of the Fenchel problems, these distribution correspond to the (sub)gradient
vectors dL

t ∈ ∂f⋆(θL
t ) and dE

t = ∇f̃⋆(θE
t ), where θL

t = −AwL
t and θE

t = −AwE
t are

(LPBoost) wL
t ← arg max

w∈CH(Et)
−f⋆(−Aw),

(ERLPBoost) wE
t ← arg max

w∈CH(Et)
−f̃⋆(−Aw).

These properties are the immediate consequence of Fenchel duality theorem. Thus, we
can say that LPBoost and ERLPBoost are instances of the fully-corrective Frank-Wolfe
algorithm.

C.3. Proof of our scheme

We prove the convergence guarantee for algorithm 1. Before getting into the main result, we
first justify the stopping criterion.

Lemma 8 Let ϵt := min0≤τ≤t(d⊤
τ A)jτ+1 + f̃⋆(−Awt) be the optimality gap defined in

algorithm 2 and let η = 2 ln(m/ν)/ϵ. Then, ϵt ≤ ϵ/2 implies −f⋆(−Awt) ≥ g − ϵ.

Proof By the weak-learnability assumption, ϵt ≥ g + f̃⋆(−Awt). The statement follows
from Lemma 4.

Note that this criterion is better than the one of C-ERLPBoost.
The following theorem shows the convergence rate for our scheme.
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Theorem 9 (Recap.) Assume that the weak learner returns a hypothesis hjt+1 ∈ H that
satisfies (d⊤

t A)jt+1 ≥ g for some unknown guarantee g. Let F be a FW update with classic
step λt = 2

t+2 , or short-step as in algorithm 3. Then, for any secondary algorithm B,
algorithm 1 outputs HT =

∑T
t=1 wjthjt satisfying (1) in O

(
1
ϵ2 ln m

ν

)
iterations.

Proof First of all, we prove the bound for the classic step size. We start by showing the
recursion

ϵt+1 ≤ (1− λt)ϵt + 2ηλ2
t . (7)

By using the definition of wt+1 and the η-smoothness of f̃⋆,

ϵt − ϵt+1 ≥ f̃⋆(−Awt)− f̃⋆(−Aw
(1)
t )

= f̃⋆(−Awt)− f̃⋆(−Awt + λtA(wt − ejt+1))
≥ λt(A(ejt+1 −wt))⊤∇f̃⋆(−Awt)− 2ηλ2

t , (8)

where eq. (8) holds since A ∈ [−1, +1]m×n and ejt+1 ,wt ∈ Pn. By the non-negativity of the
entropy function and the definition of dt, we get

λt(A(ejt+1 −wt))⊤∇f̃⋆(−Awt) = λtd
⊤
t A(ejt+1 −wt)

≥ λt

[
min

0≤τ≤t
(d⊤

τ A)jτ+1 − d⊤
t Awt −

1
η

∆(dt)
]

= λt

[
min

0≤τ≤t
(d⊤

τ A)jτ+1 + f̃⋆(−Awt)
]

= λtϵt. (9)

Combining eq. (8) and (9), we obtain (7).
Now, we prove the following inequality by induction on t.

ϵt ≤
8η

t + 2 , ∀t = 1, 2, . . . (10)

For the base case t = 1, the inequality (10) holds; ϵ1 ≤ (1 − λ0)ϵ0 + 2ηλ2
0 = 2η ≤ 8η

0+2 .
Assume that (10) holds for t ≥ 1. By the inductive assumption,

ϵt+1 ≤ (1− λt)ϵt + 2ηλ2
t ≤

t

t + 2
8η

t + 2 + 2η

( 2
t + 2

)2
= 8η

t

t + 2
t + 1
t + 2 ≤

8η

t + 3 .

Therefore, (10) holds for all t ≥ 1.
By definition of η, ϵT ≤ ϵ

2 holds after T ≥ 32
ϵ2 ln m

ν − 2 iterations. Lemma 8 yields the
convergence rate.

For the short-step case, we get a similar recursion:

ϵt − ϵt+1 ≥ f̃⋆(−Awt)− f̃⋆(−Aw
(1)
t )

≥ λt(A(ejt+1 −wt))⊤∇f̃⋆(−Awt)−
η

2λ2
t ∥A(wt − ejt+1)∥2∞ (11)

≥ λ(A(ejt+1 −wt))⊤∇f̃⋆(−Awt)− 2ηλ2, ∀λ ∈ [0, 1].

Optimizing λ in RHS and applying the inequality (9), we get ϵt − ϵt+1 ≥ ϵ2
t /8η. With this

inequality, one can easily verify that the same iteration bound (10) holds for this case.
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Algorithm 4 Pairwise rule F(A,wt, ejt+1 , Et,dt)
1: Let wt =

∑
e∈Et

αt,ee be the current representation of wt w.r.t. the basis vectors Et ⊂ Et

with positive coefficients {αt,e}e∈Et .
2: Compute an away basis eAway ∈ arg mine∈Et d

⊤
t Ae and set λt,max = αt,eAway .

3: Compute the step size λt ← arg minλ∈[0,λt,max] f̃⋆(−A(wt + λ(et+1 − eAway))).
Output: w

(1)
t+1 = wt + λt(ejt+1 − eAway).

C.4. Pairwise rule

The FW update rule w
(1)
t+1 of algorithm 3 comes from the FW algorithm with short-step

sizes. One can apply other update rules as F . The pairwise Frank-Wolfe (PFW) is the one
of a state-of-the-art Frank-Wolfe algorithm [6]. The basic idea of PFW is to move the weight
from the most worthless hypothesis to the newly attained one. We can derive a similar
bound for this case. See appendix. As described in the main section, one can apply the
other variants of the FW algorithm. Algorithm 4 summarizes this variant.

Appendix D. Additional experiments

This section includes experiments, not in the main paper. MLPB. (PFW) in the figures and
tables corresponds to MLPBoost with the PFW algorithm 4.

Settings. We set the capping parameters ν ∈ {pm | p = 0.1, 0.2, . . . , 0.5} and the tolerance
parameter ϵ = 0.01, where m is the number of training instances. We use the weak learner
that returns the best decision tree of depth 2. We measure the CPU time and the System
time using /usr/bin/time -v command. We measure the running time with capping
parameters over the capping parameters for each dataset and took their average. Table 4
shows the results. As this table indicates, MLPB. (SS) is faster than ERLPB. We first show
the test error comparison. We performed 5-fold cross validation to find the best capping
parameter ν ∈ [1, m]. After finding the best one, we trained the model on overall dataset
and measure the test data. Table 3 shows the result. Our algorithm somehow achieves the
smallest test error for most dataset.

Next we show the time comparison for all dataset. Table 4 summarizes the result.
Figure 1 shows the convergence curve. As expected, our algorithm converges faster than

ERLPBoost and is competitive with LPBoost.
Further, we compare the test error decrease. Figure 2 shows the test error curves. Our

algorithm somehow achieves low test errors in most datasets.
Now, we compare the Frank-Wolfe algorithms, SS and PFW. SS indicates the short-steps

strategy, and PFW indicates the pairwise strategy. Figure 3 shows the number of iterations
that adopt w

(2)
t+1 as the next iterate.

Finally, we verify the effectiveness of the secondary rule, w
(2)
t+1. For comparison, we

measured the soft margin objective and time for MLPB. (SS), MLPB. (PFW), FW, and
PFW. FW is the classic FW algorithm with short-step strategy and PFW is the Pairwise
FW algorithm. Note that FW is equivalent to C-ERLPBoost. Figure 4 shows the curve. As
this figure shows, the secondary rule, w(2)

t+1 improves the objective value significantly.
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Figure 1: Time vs. soft margin objective with parameters ν = 0.1m and ϵ = 0.01. Note
that the time axis is log-scale. For many datasets, MLPBoost tends to achieve a
large margin rapidly.
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Figure 2: Time vs. test errors for the 0th fold of each dataset with parameters ν = 0.1m
and ϵ = 0.01. Note that the time axis is log-scale. For many datasets, MLPBoost
tends to decrease the test error.
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Figure 3: The number of B updates for each benchmark dataset with parameters ν = 0.1m
and ϵ = 0.01. The dotted line indicates the linear function for comparison. Since
the shape of the titanic dataset is the same as the F. Solar dataset, we omit it.
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Figure 4: Comparison of MLPBoost algorithms. As this figure shows, w(2)
t update yields

huge progress.
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Table 3: Test errors for 5-fold cross validation for the best parameters for each algorithms.

LPB. ERLPB. MLPB. (SS)

Banana 0.28 0.37 0.10
B.Cancer 0.40 0.49 0.28
Diabetes 0.26 0.26 0.24
F.Solar 0.38 0.52 0.69
German 0.28 0.35 0.27
Heart 0.24 0.29 0.17
Image 0.10 0.20 0.02
Ringnorm 0.18 0.18 0.03
Splice 0.11 0.10 0.05
Thyroid 0.09 0.05 0.05
Titanic 0.60 0.60 0.60
Twonorm 0.03 0.04 0.03

Table 4: Comparison of the computation time (seconds). Each cell is the average computa-
tion time over the capping parameters over N . Some algorithm does not terminate
in a few hours so we abort them within some appropriate time.

m LPB. ERLPB. FW PFW MLPB.
(SS)

MLPB.
(PFW)

Banana 5300 168.26 3434.75 > 104 > 104 1418.41 1398.68
B.Cancer 263 3.61 73.45 180.16 270.50 23.43 19.81
Diabetes 768 47.53 1478.77 > 104 3471.77 201.46 270.51
F.Solar 144 2.30 2.46 13.34 80.73 31.64 46.45
German 1000 77.56 1391.91 > 104 5692.32 181.43 201.88
Heart 270 10.03 193.58 > 103 183.09 44.11 24.26
Image 2086 8.25 107.52 > 103 502.83 32.01 10.51
R.norm 7400 22.09 1148.16 > 104 3350.87 26.76 36.73
Splice 2991 19.35 490.92 > 104 943.98 122.08 37.88
Thyroid 215 0.70 0.66 367.51 0.35 2.71 0.61
Titanic 24 0.25 0.13 0.58 0.10 1.96 0.12
Twonorm 7400 105.40 > 104 > 104 989.54 478.22 397.91
Waveform 5000 437.29 9018.54 > 104 > 104 2243.07 1619.56
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