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Abstract
Distributed algorithms have been playing an increasingly important role in many applications such
as machine learning, signal processing, and control. In this work, we provide a fresh perspective to
understand, analyze, and design distributed optimization algorithms. Through the lens of multi-rate
feedback control, we show that a wide class of distributed algorithms, including popular decentral-
ized/federated schemes, can be viewed as discretizing a certain continuous-time feedback control
system, possibly with multiple sampling rates, such as decentralized gradient descent, gradient
tracking, and federated averaging. This key observation not only allows us to develop a generic
framework to analyze the convergence of the entire algorithm class, more importantly, it also leads
to an interesting way of designing new distributed algorithms. We develop the theory behind our
framework and provide examples to highlight how the framework can be used in practice.

1. Introduction
Distributed computation has played an important role in machine learning, partly due to the dra-
matically increased size of the models and the datasets; see [3, 13] for a few recent surveys. Het-
erogeneous computational and communication resources in the distributed system create a number
of different scenarios in distributed learning. For example, in a decentralized optimization (DO)
setting, the communication and computation resources are equally important, so the algorithms al-
ternatingly perform communication and communication steps [4, 17, 20, 32, 33]; In the Federated
Learning (FL) setting, the communication is the bottleneck of the system, so the algorithms typi-
cally perform multiple local updates before one communication step [1, 10, 14, 34]; Additionally,
in order to identify the the optimal decentralized algorithms that utilize the minimum computation
and communication rounds, it is typically required to perform multiple communication steps before
one local update [25, 31].

Despite the proliferation of distributed algorithms, there are a few concerns and challenges.
First, for some hot applications, there are simply too many algorithms available, so much so that
it becomes difficult to track all the technical details. Is it possible to establish some general guide-
lines to understand the relations between, and the fundamental principles of, those algorithms that
provide similar functionalities? Second, much of the recent research on this topic appears to be in-
creasingly focused on a specific setting (e.g., those mentioned in the previous paragraph). However,
an algorithm developed for FL may have already been rigorously developed, analyzed, and tested
for the DO setting; and vice versa. Since developing algorithms and performing analyses take sig-
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nificant time and effort, it is desirable to have some mechanisms in place to reduce the possibility
of reinventing the wheel.

Our main contribution is to build such a unified framework for distributed algorithms, us-
ing tools from multi-rate feedback control systems. Specifically, we first show that, a special
continuous-time feedback control system is well-suited to capture a number of key properties of
distributed algorithms. We then show that when such a continuous-time system is discretized ap-
propriately (in which different parts of the system are discretized using different rates, hence the
name “multi-rate” system), it recovers a wide range of decentralized/federated algorithms. Finally,
we provide a generic convergence result that covers different feedback schemes as well as discretiza-
tion patterns. The major benefits of our proposed framework can be summarized as:

1) Using our framework, we can establish the connection between different subclasses of dis-
tributed algorithms that are developed for different settings; in some sense, they can be viewed as
applying different discretization schemes to certain continuous-time control system;

2) Our framework helps predict the algorithm performance, and facilitates algorithm design –
as long as the continuous-time control system and the desired discretization pattern are identified,
our framework readily provides the various system parameters that are needed to ensure algorithm
convergence (an example is provided in the appendix to showcase how this can be done).

Note that there are many existing works which analyze optimization algorithms using control
theory, but they mainly focus on some very special class of algorithms. For examples, [24, 27, 30]
study a restrictive class of simple convex optimization algorithms; the paper [9, 12, 19] investi-
gates the acceleration approaches for centralized problems in discrete time; [19, 30] focus on the
continuous-time system and ignore the impact of the discretization to these algorithms; [5, 28, 29]
investigate the connection between continuous-time system and discretized gradient descent algo-
rithm, but their approaches and analyses do not generalize to federated/decentralized algorithms.
It is also important to note that, to our knowledge, none of the above referred works provide any
insights about relationship between difference classes of distributed algorithms (i.e., between DO
and FL), nor do they facilitate the design of new algorithms.

2. Continuous-time System
In this section, we provide a general description of the continuous-time multi-agent feedback control
system. We start by giving a general system structure and discuss the property of each controller
and how the controllers are related to the discrete-time optimization algorithms. Then we provide
the convergence properties of the system.

2.1. System Description
The Decentralized Optimization Problem. Consider a distributed system with N agents con-
nected by a strongly connected graph G = (V, E), each optimizes a smooth and possibility non-
convex local function fi(x). The global optimization problem is formulated as [30]

min
x∈RNdx

f(x) :=
1

N

N∑
i=1

fi(xi) s.t. (A⊗ I) · x = 0, (1)

where x ∈ RN×dx stacks N local variables x := [x1; . . . ;xN ]; xi ∈ Rdx , ∀ i ∈ [N ]; ⊗ denotes
the Kronecocker product; the incidence matrix A contains the graph connectivity pattern with the
following definition: if edge e(i, j) ∈ E connects vertex i and j with i > j, thenAei = 1,Aej = −1

2



FRAMEWORK TO UNDERSTAND DECENTRALIZED OPTIMIZATION ALGORITHMS

and Aek = 0, ∀k 6= i, j. Let us use Ni ⊂ [N ] denote the neighbors for agent i. For simplicity of
notation, the Kronecocker products are ignored in the latter analyses.
The Continuous-Time Double-Feedback System.

Figure 1: The proposed continuous-time
double-feedback system for modeling the decen-
tralized optimization problem (1).

Figure 2: Discretized system using ZOH on
both the GCFL and LCFL control loops with
possibly different sampling times τg, τ`.

To optimize problem (1), our approach is to design a continuous-time feedback control system,
in such a way that the system enters its stable state if and only if the state variables of the system
precisely correspond to a first-order stationary solution of (1). Towards this end, let us use x ∈
RN×dx to denote the main state variable of the system. Let us introduce two feedback loops, referred
to as the global consensus feedback loop (GCFL) and local computation feedback loop (LCFL),
where the former incorporates the dynamics from multi-agent interactions, while the latter helps
better stabilize the system. More specifically, these loops can be specified as below:
• (The GCFL). Define an auxiliary state variable v := [v1; . . . ; vN ] ∈ RNdv , with vi ∈ Rdv , ∀ i;
define y := [x;v] ∈ RN(dx+dv); define a feedback controller Gg(·;A) : RN(dx+dv) → RN(dx+dv).
The GCFL performs inter-agent communication based on the incidence matrix A, and it controls
the consensus of the global variable y. Specifically, at time t, define the output of the controller as
ug(t) = Gg(y(t);A), which can be further decomposed into two outputs ug(t) := [ug,x(t);ug,v(t)],
one to control the consensus of x and the other for v. After multiplied by the control gain ηg(t) >
0, the resulting signal will be combined with the output of the LCFL, and be fed back to local
controllers.
• (The LCFL). Define an auxiliary state variable z := [z1; . . . ; zN ] ∈ RNdz , with zi ∈ Rdz , ∀ i;
define a local feedback controller G`(·; fi) : Rdx+dv+dz → Rdx+dv+dz , one for each agent i and
parameterized by different fi’s. The LCFL optimizes the local function fi(·)’s for each agent. At
time t, the ith local controller takes the local variables xi(t), vi(t), zi(t) as inputs and produces a
local control signal. To describe the system, let us denote the output of the local controllers as
ui,`(t) = G`(xi(t), vi(t), zi(t); fi), ∀ i ∈ [N ]; further decompose it into three parts:

ui,`(t) := [ui,`,x(t);ui,`,v(t);ui,`,z(t)].

Denote the concatenated local controller outputs as: u`,x(t) := [u1,`,x(t); . . . ;uN,`,x(t)], and define
u`,v(t), u`,z(t) similarly. After multiplied by the control gain η`(t) > 0, the resulting signal will be
combined with the output of GCFL, and be fed back to the local controllers.

The overall system is described in Fig. 1. The GCFL controller Gg(·;A) is designed to have the
following properties:
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P 1 (Control Signal Direction) The output of the controller Gg aligns with the direction that re-
duces the consensus error, that is:

〈(I −R) · y, Gg(y;A)〉 ≥ Cg · ‖(I −R) · y‖2 , ∀ y,

for some constant Cg > 0. Further, the controller Gg satisfies:

〈1, Gg(y;A)〉 = 0, ∀ y, which implies 〈1, ug(t)〉 = 0, ∀ t.

P 2 (Linear Operator) The controller Gg is a linear operator of y, that is, we have Gg(y;A) =
WAy for some matrixWA ∈ RN(dx+dv) parameterized byA, and its eigenvalues satisfy: |λ(WA)| ∈
[0, 1].

Combining P1 and P2, we have:

C2
g ‖(I −R) · y‖2 ≤ ‖Gg(y;A)‖2 ≤ ‖(I −R) · y‖2 , and R ·WA = 0. (2)

The local controllers are designed to have the following properties:

P 3 (Lipschitz Smoothness) The controller is Lipschitz continuous, that is:∥∥G`(xi, vi, zi; fi)−G`(x′i, v′i, z′i; fi)∥∥ ≤ L∥∥[xi; vi; zi]− [x′i; v
′
i; z
′
i]
∥∥ ,

∀ i ∈ [N ], xi, x
′
i ∈ Rdx , vi, v′i ∈ Rdv , zi, z′i ∈ Rdz .

P 4 (Control Signal Direction and Size) The local controllers are designed such that there exist
initial values xi(t0), vi(t0) and zi(t0) ensuring that the following holds:

〈∇fi(xi(t)), ui,`,x(t)〉 ≥ α(t) · ‖∇fi(xi(t))‖2 , ∀ t ≥ t0,

where α(t) > 0 satisfies limt→∞
∫ t
t0
α(τ)dτ →∞.

Further, for any given xi, vi, zi, the sizes of the control signals are upper bounded by those of
the local gradients. That is, for some positive constants Cx, Cv and Cz:

‖ui,`,x‖ ≤ Cx ‖∇fi(xi)‖ , ‖ui,`,v‖ ≤ Cv ‖∇fi(xi)‖ , ‖ui,`,z‖ ≤ Cz ‖∇fi(xi)‖ .

The more detailed description of properties of different controllers are given in Appendix A. To
close this subsection, we note that the continuous-time system we have presented so far (cf. Figure 1)
can be described using the following dynamics:

v̇(t) = −ηg(t) · ug,v(t)− η`(t) · u`,v(t)
ẋ(t) = −ηg(t) · ug,x(t)− η`(t) · u`,x(t), ż(t) = −η`(t) · u`,z(t). (3)

Additionally, throughout the paper, we will use ug and Gg, u` and G` interchangeably.
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2.2. Convergence Properties

We proceed to analyze the convergence of the continuous-time system. Towards this end, we define
an energy-like function:

E(t) := f(x̄(t))− f? +
1

2
‖(I −R) · y(t)‖2 . (4)

Note that E(t) ≥ 0 for all t ≥ 0. It follows that its derivative can be expressed as:

Ė(t) = −
〈
∇f(x̄(t), η`(t) ·

1
T

N
u`,x(t)

〉
+ 〈(I −R) · y(t), ηg(t)ug(t) + η`(t)u`,y(t)〉 . (5)

To proceed, we require that the system satisfies the following property:

P 5 (Energy Function Reduction) The derivative of the energy function, Ė(·) as expressed in (5),
satisfies the following:

−
∫ t

0

(〈
∇f(x̄(τ), η`(τ) · 1

T

N
u`,x(τ)

〉
+ 〈(I −R) · y(τ), ηg(τ)ug(τ) + η`(τ)u`,y(τ)〉

)
dτ

≤ −
∫ t

0

(
γ1(τ) ·

∥∥∥∥∇f(x̄(τ))

∥∥∥∥2 + γ2(τ) · ‖(I −R) · y(τ)‖2
)
dτ, (6)

where γ1(τ), γ2(τ) > 0 are some time-dependent coefficients.

P5 is a property about the entire continuous-time system. Although one could show that by using
P1 - P4, and by selecting ηg(t) and η`(t) appropriately, this property can be satisfied with some
specific γ1(τ) and γ2(τ) (cf. Corollary 4 in Appendix A.), here we still list it as an independent
property, because at this point we want to keep the choice of γ1(τ), γ2(τ) general. Under P5, the
continuous-time system will converge to the set of stationary points, and that x will converge to the
set of stationary solutions of problem (1) and the following holds:

min
t

{
‖∇f(x̄(t))‖2 + ‖(I −R) · y(t)‖2

}
= O

(
max

{
1∫ T

0 γ1(τ)dτ
,

1∫ T
0 γ2(τ)dτ

})
. (7)

The above result indicates that if P5 is satisfied, not only will the system asymptotically converge
to the set of stationary points, but more importantly, we can use {γ1(t), γ2(t)} to characterize the
rate in which the stationary gap of problem (1) shrinks. Please see Appendix A for more detailed
discussion on the convergence property and the proofs for the above results.

So far, we have completed the setup of the continuous-time feedback control system, by speci-
fying the state variables, the feedback loops, and by introducing a few desired properties of the local
controllers and the entire system. In particular, we show that property P5 is instrumental in ensuring
that the system converges to the set of stationary points. However, there is a key question remain to
be answered: How to map the continuous-time system to a distributed optimization algorithm, and
to transfer the convergence guarantees of the former to the latter? This question will be addressed
in the main technical part of this work to be presented shortly.

3. System Discretization
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Figure 3: The discretization
block that has a switch and
a Zero-Order Hold.

In this section, we discuss the impact of system discretization on
the proposed double-feedback control system. Since our continuous-
time control system involves two different feedback loops GCFL and
LCFL, special attention will be given to the two loops that are dis-
cretized differently. Interestingly, we will show that many state-of-
the-art algorithms for decentralized learning can be precisely mapped
to some versions of discretized double-feedback control system, by
properly choosing a specific discretization scheme, and by specializing the global and local con-
trollers.

3.1. Modeling the Discretization

Typically, a continuous-time system is discretized by using a switch that samples the input with
sample time τ , followed by a Zero-Order Hold (ZOH) that keeps the sampled signal as constant
between the consecutive sampling instances [11]; see Figure 3 for an illustration. Note that the
continuous-time system is equivalent to the case where the sampling time τ = 0 and the switch is
constantly on.

Let us begin by using such a block to discretize the proposed double-feedback continuous-time
control system. By examining Fig. 2, we see that the discretization can happen at the two points A
and B, where the local states are about to enter the controllers.

It is important to observe that, depending on which place (or places) that the discretization
blocks are implemented, and depending on the actual sampling rate for each of the discretization
block, the original continuous system can be discretized in many different ways. In a high-level,
each of these discretization scheme will corresponds to a multi-rate control system, in which differ-
ent parts of the system runs on different sampling rates. To precisely understand the effect of such
kind of multi-rate system, let us define the sampling intervals for the GCFL and LCFL as τg and τ`,
respectively.

3.2. Decentralized Algorithms as Multi-Rate Discretized Systems

In this section, we make the connection between different classes of decentralized algorithms and
different discretization patterns. For convenience, let tk denote the times at which the inputs of the
ZOHs get sampled by both the global and local controllers. Note that when the sampling interval is
zero, the corresponding ZOH samples all the time.
Case 1 (τg > 0, τ` = 0): In this case, the local updates are continuous and the global consensus
signal is updated every τg time interval. The system becomes

v̇(t) = −ηg(t) · ug,v(tk)− η`(t) · u`,v(t)
ẋ(t) = −ηg(t) · ug,x(tk)− η`(t) · u`,x(t) (8)

ż(t) = −η`(t) · u`,z(t).

By A4, we know that with only u`, the dynamic system finds a stationary point of the local problem
that ‖∇fi(xi)‖2 = 0. So with (8), the dynamic system finds a stationary point that u`+

ηg(t)
η`(t)

ug = 0,
which is the stationary solution of the following problem for each agent:

f ′i(xi(t)) := fi(xi(t)) +
ηg(t)

ηl(t)
〈ui,g(tk), yi(t)〉 .
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Therefore, from t0 to t0+τg, each agent minimizes a perturbed local problem to γ(τ) accuracy. This
system has the same form as the distributed algorithms that require to solve some local problems to
a given accuracy, before any local communication steps take place; see for examples FedProx [14],
FedPD [34] and NEXT [4].
Case 2 (τg = 0, τ` > 0): In this case, the global consensus signal is continuous and the local updates
are updated every τ` time interval. The system becomes

v̇(t) = −ηg(t) · ug,v(t)− η`(t) · u`,v(tk)

ẋ(t) = −ηg(t) · ug,x(t)− η`(t) · u`,x(tk) (9)
ż(t) = −η`(t) · u`,z(tk).

Similar to Case I, between τ` time interval, the dynamic system finds the first-order stationary point
the following problem ∥∥∥∥(I −R)y +

η`(t)

ηg(t)
u`,y(tk)

∥∥∥∥2
to certain accuracy. This system has the same form as the algorithms that require to solve some

networked problems to a certain accuracy, see for example [7, 8, 25].
Case 3 (τg = τ` > 0): In this case, the system is discretized with the same sampling time. The
update of the system can be written as:

x(tk+1) = x(tk)− η′`(tk) · u`,x(tk)− η′g(tk) · ug,x(tk),

v(tk+1) = v(tk)− η′`(tk) · u`,v(tk)− η′g(tk) · ug,v(tk), (10)

z(tk+1) = z(tk)− η′g(tk) · u`,z(tk),

where η′`(tk) =
∫ tk+τg
tk

η`(t)dt, η′g(tk) =
∫ tk+τg
tk

ηg(t)dt. The above updates can be shown to be
equivalent to many existing DO algorithms, such as DGD, D2 [16], DLM, which perform one step
local update, followed by one step of communication.
Case 4 (τg > τl > 0): In this case, we assume that τg = Q · τl, which means that each agent
performs Q times local computation steps between two communication steps. This update strategy
has the same spirit as the class of (horizontal) FL algorithms [1].
Case 5 (τl > τg > 0): In this case, we assume that τl = K ·τg, which means that the agents perform
K times communication steps before two local computation steps. This update strategy is similar
to the line of works that are trying to achieve optimal communication complexities [15, 25].

We summarize the above discussion in Table 1 and provide some examples of the algorithms.
Note that the above discussion about relations of algorithms and discretization settings is still a bit
vague, but later in Appendix B and C, we will provide specific examples to showcase how one can
precisely map an existing algorithm into a discretization setting.

Such kinds of connections are useful in the following sense: First, it suggests that different
classes of algorithms may be rooted in the same continuous-time system, so they are likely to share
some common properties, and it is plausible that they can be covered by a single analysis frame-
work. Second, by properly utilizing such kinds of connections, we can develop a systematic way
of designing new, and application-specific algorithms. More specifically, we can begin by design-
ing and analyzing a continuous-time control system (say, with a specific controller), then choose
a desirable discretization scheme, and transfer the theoretical results to such a particular setting.
Therefore, it will be important to have a systematic way of transferring the theoretical results from
the continuous-time system to different discretization settings.
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Case τ`, τg Communication Computation Related Algorithm
I τg > 0, τl = 0 Slow Continuous NEXT [4], FedProx [14]
II τg = 0, τl > 0 Continuous Slow GPDA [8]

III τg = τl > 0 Same rate DGD [32], DGT [33]
IV τg > τl > 0 Slow Fast Scaffold [10], NIDS [15]
V τl > τg > 0 Fast Slow AGD [31], xFilter [25]

Table 1: Summary of different discretization settings, and their corresponding distributed learning algo-
rithms.
3.3. Convergence Result of Discretized Multi-Rate Systems

For a given distributed algorithm, we can first find its continuous-time counterpart, then perform
discretization based on the requirements of each part of the system. This procedure allows the new
algorithm to share some desirable properties of the original algorithm. However, the discretization
procedure will introduce instability to the system as the sampled control signal will deviate from
the continuous-time control signal. As the sampling interval increases, the deviation also increases.
Understanding how the deviations introduced by different discretization schemes affect the system
is crucial to transferring the theoretical results from the continuous-time system to discretized sys-
tems. The following result provides a way to analyze the convergence for all different discretization
schemes.

Theorem 1 (Dynamics of E for discretized system) Suppose GCFL and LCFL satisfies proper-
ties P1-P5 and consider the discretize-time system with τ` ≥ 0, τg ≥ 0. Then we have the following:

Ė(t) ≤ −
(
γ1(t)

2
− C3(t)

)∥∥∥∥∥
N∑
i=1

∇fi(x̄(t))

∥∥∥∥∥
2

−
(
γ2(t)

2
− C4(t)

)
‖(I −R)y(t)‖2 , (11)

where C3(t) and C4(t) are some constants depending on N,Cg, L, η`(t), ηg(t), τ`, τg,K,Q.

This result indicates that by proper choice of τ`, τg,K,Q, such that
(
γ1(t)
2 − C3(t)

)
> 0 and(

γ2(t)
2 − C4(t)

)
> 0, the discretized algorithm preserves the convergence rate of the continuous-

time system and only slows down by a constant factor

max

{
γ1(t)

/(
γ1(t)

2
− C3(t)

)
, γ2(t)

/(
γ2(t)

2
− C4(t)

)}
.

The detailed convergence analyses and discussions are omitted due to page limitation.

4. Summary

In this work, we have designed a framework to understand distributed optimization algorithms from
a control perspective. We have shown that a multi-rate double-feedback control system can represent
a wide range of deterministic distributed optimization algorithms. Furthermore, we have provided
a set of properties the system should satisfy and established the theoretical guarantees for both
continuous-time and discretized systems. We use a few example algorithms in Appendix B to
demonstrate how the proposed framework can help understand the connection between algorithms,
and further provide the new algorithm design procedure with theoretical analysis and numerical
experiments in Appendix C.
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Appendix A. Additional Discussions for Section 2

In this section, we describe the details of the controllers in the continuous-time system described in
Fig. 1.

To have a rough idea of how the GCFL and LCFL loops can be mapped to a distributed algo-
rithm, let us consider the NEXT algorithm [4], whose updates (in discrete time) are:

x(k + 1/2) = arg minx f̃(x;x(k)) + 〈Nv(k)−∇f(x(k)),x− x(k)〉 ,
x(k + 1) = W (x(k) + α · (x(k + 1/2)− x(k))) ,

v(k + 1) = Wv(k) +∇f(x(k + 1))− z(k), z(k + 1) = ∇f(x(k + 1)),

where f̃ is some surrogate function; k indicates the iteration index; α > 0 and c > 0 are some
stepsize parameters. By using the common choice that f̃(x;x(k)) = 〈∇f(x(k)),x− x(k)〉 +
η
2 ‖x− x(k)‖2 , (where η > 0 are some constant) the algorithm can be simplify as:

x(k + 1) = Wx(k)−Nα/η · v(k), z(k + 1) = x(k + 1),

v(k + 1) = Wv(k) +∇f(x(k + 1))−∇f(z(k)).
(12)

Here, x is the optimization variable, v tracks the average of the gradients, z records the one-step-
behind state of x. The corresponding controllers are given by:

Gg(x,v;A) :=

[
(I −W ) · x
(I −W ) · v

]
, G`(xi, vi, zi; fi) :=

 vi
∇fi(zi)−∇fi(xi)

zi − xi

 . (13)

Next, we describe in detail the properties of the two feedback loops.

A.1. Global Consensus Feedback Loop

The GCFL performs inter-agent communication based on the incidence matrix A, and it controls
the consensus of the global variable y := [x;v]. Specifically, at time t, define the output of the
controller as ug(t) = Gg(y(t);A), which can be further decomposed into two outputs ug(t) :=
[ug,x(t);ug,v(t)], one to control the consensus of x and the other for v. After multiplied by the
control gain ηg(t) > 0, the resulting signal will be combined with the output of the LCFL, and be
fed back to local controllers.

We require that the global controller Gg(·;A) to have the following properties:

P 6 (Control Signal Direction) The output of the controller Gg aligns with the direction that re-
duces the consensus error, that is:

〈(I −R) · y, Gg(y;A)〉 ≥ Cg · ‖(I −R) · y‖2 , ∀ y,

for some constant Cg > 0. Further, the controller Gg satisfies:

〈1, Gg(y;A)〉 = 0, ∀ y, which implies 〈1, ug(t)〉 = 0, ∀ t.

P 7 (Linear Operator) The controller Gg is a linear operator of y, that is, we have Gg(y;A) =
WAy for some matrixWA ∈ RN(dx+dv) parameterized byA, and its eigenvalues satisfy: |λ(WA)| ∈
[0, 1].
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Combining P1 and P2, we have:

C2
g ‖(I −R) · y‖2 ≤ ‖Gg(y;A)‖2 ≤ ‖(I −R) · y‖2 , and R ·WA = 0. (14)

It is easy to check that both P1 and P2 hold in most of the existing consensus-based algorithms.
For example, when the communication graph is strongly connected, we can choose Gg(y;A) =
(I − W ) · y. It is easy to verify that, Cg = 1 − λ2(W ) where λ2(·) denotes the eigenvalue
withe the second largest magnitude [3, 32]. As another example, consider the accelerated averaging
algorithms [6], where we have

Gg(y, A) =

[
I − (c+ 1) ·W c · I

−I I

] [
x
v

]
, with c :=

1−
√

1− λ2(W )

1 +
√

1− λ2(W )2
.

In this case, one can verify that Cg = 1− λ2(W )

1+
√

1−λ2(W )2
≥ 1− λ2(W ).

By using P1, we can follow the general analysis of averaging systems [21], and show that the
GCFL will behave as expected, that is, if the system only performs GCFL and shuts off the LCFL,
then the consensus can be achieved. More precisely, assuming that η`(t) = 0, ηg(t) = 1, then under
P1, the local state y converges to the average of the initial states linearly:

‖(I −R) · y(t)‖2 ≤ e−2Cgt ‖(I −R) · y(0)‖2 . (15)

A.2. The Local Computation Feedback Loop

The LCFL optimizes the local function fi(·)’s for each agent. At time t, the ith local controller takes
the local variables xi(t), vi(t), zi(t) as inputs and produces a local control signal. To describe the
system, let us denote the output of the local controllers as ui,`(t) = G`(xi(t), vi(t), zi(t); fi), ∀ i ∈
[N ]; further decompose it into three parts:

ui,`(t) := [ui,`,x(t);ui,`,v(t);ui,`,z(t)].

Denote the concatenated local controller outputs as: u`,x(t) := [u1,`,x(t); . . . ;uN,`,x(t)], and
define u`,v(t), u`,z(t) similarly. Note that we have assumed that all the agents use the same local
controller G`(·; ·), but they are parameterized by different fi’s. After multiplied by the control gain
η`(t) > 0, the resulting signal will be combined with the output of GCFL, and be fed back to the
local controllers.

The local controllers are designed to have the following properties:

P 8 (Lipschitz Smoothness) The controller is Lipschitz continuous, that is:∥∥G`(xi, vi, zi; fi)−G`(x′i, v′i, z′i; fi)∥∥ ≤ L∥∥[xi; vi; zi]− [x′i; v
′
i; z
′
i]
∥∥ ,

∀ i ∈ [N ], xi, x
′
i ∈ Rdx , vi, v′i ∈ Rdv , zi, z′i ∈ Rdz .

P 9 (Control Signal Direction and Size) The local controllers are designed such that there exist
initial values xi(t0), vi(t0) and zi(t0) ensuring that the following holds:

〈∇fi(xi(t)), ui,`,x(t)〉 ≥ α(t) · ‖∇fi(xi(t))‖2 , ∀ t ≥ t0,

where α(t) > 0 satisfies limt→∞
∫ t
t0
α(τ)dτ →∞.
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Further, for any given xi, vi, zi, the sizes of the control signals are upper bounded by those of
the local gradients. That is, for some positive constants Cx, Cv and Cz:

‖ui,`,x‖ ≤ Cx ‖∇fi(xi)‖ , ‖ui,`,v‖ ≤ Cv ‖∇fi(xi)‖ , ‖ui,`,z‖ ≤ Cz ‖∇fi(xi)‖ .

Let us comment on these properties. P3 is easy to verify for a given realizations of the local con-
trollers; P4 abstracts the convergence property of the local optimizer. This property implies that the
update direction−ui,`,x(t) points to a direction that decreases the local objective. Note that it is pos-
tulated that xi, vi and zi are initialized properly, because in some of the cases, improper initial values
lead to non-convergence of the local controllers (or equivalently, the local algorithm). For example,
for accelerated gradient descent method [2, 31], zi(t0) should be initialized as∇fi(xi(t0)).

By using P4, we can follow the general analysis of the gradient flow algorithms (e.g., [22]),
and show that the LCFL will behave as expected, in the sense that the agents can properly optimize
their local problems. More precisely, assume that ηg(t) = 0, η`(t) = 1, that is, the system shuts off
the GCFL. Assume that G`(·; ·) satisfies P4, then each local system produces xi(t)’s that satisfy:

min
τ
‖∇fi(xi(t+ τ))‖2 ≤ γ(τ) · (fi(xi(t))− f i), (16)

where {γ(τ)} is a sequence of positive constants satisfying:

γ(τ) =
1∫ t

0 α(τ)dτ
→ 0, as τ →∞. (17)

A.3. Convergence Property

In the following, we study the convergence of E(t) and characterize the set of stationary points
that the states satisfy Ė(t) = 0. We do not attempt to analyze the stronger property of stability,
not only because such kind of analysis can be challenging due to the non-convexity of the local
functions fi(·)’s, but more importantly, analyzing the convergence of E(t) is already sufficient for
us to understand the convergence of the state variable x to the set of stationary solutions of problem
(1), as we will show shortly.

First, we define the first order stationary point of a problem as:

Definition 2 (First-order Stationary Point) We define the first-order stationary solution and the
ε-stationary solution respectively, as:

N∑
i=1

∇fi
(

1

N

N∑
i=1

xi

)
= 0, x− 11

T

N
x = 0, (18a)

∥∥∥∥∥ 1

N

N∑
i=1

∇fi
(

1

N

N∑
i=1

xi

)∥∥∥∥∥
2

+

∥∥∥∥x− 11
T

N
x

∥∥∥∥2 ≤ ε. (18b)

We refer to the left hand side (LHS) of (18b) as the stationarity gap of (1).

Recall that the energy-like function E(t) is defined as:

E(t) := f(x̄(t))− f? +
1

2
‖(I −R) · y(t)‖2 . (19)
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Note that E(t) ≥ 0 for all t ≥ 0. It follows that its derivative can be expressed as:

Ė(t) = −
〈
∇f(x̄(t), η`(t) ·

1
T

N
u`,x(t)

〉
+ 〈(I −R) · y(t), ηg(t)ug(t) + η`(t)u`,y(t)〉 . (20)

Next, we will show that under P5, the continuous-time system will converge to the set of stationary
points, and that x will converge to the set of stationary solutions of problem (1).

Theorem 3 Suppose P5 holds true. Then we have the following results:
1) Further, suppose that P1, P2 and P4 hold, then Ė = 0 implies that the corresponding state
variable xs is bounded, and the following holds:

ẋs = 0, v̇s = 0, żs = 0, ug = 0, u` = 0. (21)

Additionally, let us define the set S as below:

S :=
{
v, z

∣∣ η`u`,v + ηgug,v = 0, u`,z = 0, η`u`,x + ηgug,x = 0
}
.

If we assume that S is compact for any state variable x that satisfies the stationarity condition (18a),
then the auxiliary state variables {v(t)} and {z(t)} are also bounded.
2) The control system asymptotically converges to the set of stationary points, in that x(t) is bounded
∀t ∈ [0,∞), and Ė → 0. Further, the stationary gap can be upper bounded by the following:

min
t

{
‖∇f(x̄(t))‖2 + ‖(I −R) · y(t)‖2

}
= O

(
max

{
1∫ T

0
γ1(τ)dτ

,
1∫ T

0
γ2(τ)dτ

})
. (22)

Proof To show part (1), consider a set of states xs,vs, zs in which Ė(xs,vs) = 0. P5 implies that
∇f(x̄s) = 0, and P4 implies ‖u`‖ ≤ (Cx + Cv + Cz) ‖∇f(x̄s)‖ = 0. Similarly, with P1 and P2
we have that 〈ug, (I −R)ys〉 = 0 and 1Tug = 0 so ug = 0. Therefore ẋs = 0, v̇s = 0, żs = 0.
Combining ∇f(x̄s) = 0 and the coercive assumption on the problem implies that xs is bounded.
Note that the value of v(t), z(t) may not be bounded, even if the system converges to a stationary
solution. Using the compactness assumption on the set S, it is easy to show that v(t), z(t) are also
bounded.

To show part (2), we can integrate Ė(t) from t = 0 to T to obtain:∫ T

0
γ2(t) ‖(I −R) · y(t)‖2 dt+

∫ T

0
γ1(t) ‖∇f(x̄(t))‖2 dt ≤ E(0)− E(T ),

divide both sides by
∫ T
0 γ1(t)dt or

∫ T
0 γ2(t)dt, we obtain(7). By P5 we know

∫ t
0 Ė(τ)dτ ≤ 0, ∀t,

but since E(t) ≥ 0, it follows that limt→∞ Ė(t) = 0.

Note that without the compactness assumption, v and z can be unbounded. As an example,
FedYogi uses AdaGrad for LCFL [23] where v(t) accumulates the norm of the gradients and does
not satisfy the compactness assumption, so limt→∞ v(t) → ∞. Although such unboundedness
does not affect the convergence of the main state variable in part (2), from the control perspective it
is still desirable to have a sufficient condition to guarantee the boundedness of all state variables.

Part (2) of the above result indicates that if P5 is satisfied, not only will the system asymptot-
ically converge to the set of stationary points, but more importantly, we can use {γ1(t), γ2(t)} to
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characterize the rate in which the stationary gap of problem (1) shrinks. This result, although rather
simple, will serve as the basis for our subsequent system discretization analysis.

Below we show that for a generic system that satisfies properties P1 – P4, when the control
gains ηg(t), η`(t) are selected appropriately, then P5 will be satisfied.

Corollary 4 Suppose that P1, P3, P4 are satisfied. By choosing ηg(t) = 1, η`(t) = O(1/
√
T )),

P5 holds true with γ1(t) = O(η`(t)), γ2(t) = O(1) Further,

min
t

{
‖∇f(x̄(t))‖2 + ‖(I −R) · y(t)‖2

}
= O

(
1∫ T

0 η`(τ)dτ

)
= O

(
1√
T

)
.

The proof of the above result follows the steps used in analyzing distributed gradient flow algo-
rithm [28] and is omitted in this section due to page limitation.

Additionally, one can also verify P5 in a case-by-case manner for individual systems. In this
way, it is possible that one can obtain larger gains η`(t), ηg(t), hence larger coefficients γ1(t) and
γ2(t) to further improve the convergence rate estimate. In fact, verifying property P5, and computing
the corresponding coefficients is a key step in our proposed analysis framework for distributed
algorithms. Shortly in Appendix C, we will provide an example to showcase how to verify that the
continuous-time system which corresponds to the DGT algorithm satisfies P5 with γ1(t) = O(1)
and γ2(t) = O(1), leading to a convergence rate of O(1/T ).

Appendix B. Discussions on the Existing Algorithms

In this section, we discuss some of the applications of the proposed framework. We first show that
by properly choosing the two controllers and the discretization scheme, the proposed framework
can be specialized to a number of popular decentralized learning algorithms. Second, we show how
the proposed framework can help us identify the relationship between different algorithms, as well
as facilitate development of new algorithms.

B.1. Existing Decentralized Algorithms as Discretized Multi-Rate Systems

We map some of the existing distributed algorithms into the discretized multi-rate system with
specific GCFL and LCFL.

First let us begin with the DO algorithms:
DGD [20]: The update step of DGD is:

x(k + 1) = Wx(k)− c∇f(x(k)),

where c > 0 is the stepsize. So it is the discretization Case III of the system with the corresponding
continuous-time controllers:

ug,x = (I −W )x, u`,x = ∇f(x).

DLM [17]: The update step of Decentralized Linearized-ADMM (DLM) algorithm is:

x(k + 1) = x(k)− η (∇f(x(k)) + c(I −W )x(k) + v(k)) ,

v(k + 1) = v(k) + c(I −W )x(k + 1).
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So it is the discretization Case III of the system with the corresponding continuous-time controllers:

ug,x = c(I −W )x + v, ug,v = (I −W )x,

u`,x = ∇f(x), u`,v = 0.

Then we list some of the FL algorithms:
FedAvg [1]: The update step of FedAvg and Local GD is:

x(k + 1) =

{
x(k)− η∇f(x(k)), k mod Q 6= 0,

Rx(k)− η∇f(x(k)), k mod Q = 0.

We can see that FedAvg cannot be translated into a continuous-time system as it does not have a
persistent GCFL:

ug,x =

{
0, t 6= kτg,

(I −R)x(t)δ(t), t = kτg = 0,

where δ(t) denotes the Dirac delta function.
FedProx [14]: By assuming the local problem of FedProx is solve by gradient descent, the update
step of FedProx is:

x(k + 1) =

{
x(k)− η1∇f(x(k))− η2(x(k)− x(k0)), k mod Q 6= 0, k0 = k − (k mod Q),

Rx(k)− η1∇f(x(k))− η2(x(k)− x(k0)), k mod Q = 0, k0 = k.

So it is the discretization Case I or IV of the system with the corresponding continuous-time con-
trollers:

ug,x = (I −R)x, u`,x = ∇f(x).

FedPD [34]: By assuming the local problem of FedPD is solve by gradient descent, the update step
of FedPD is:

x(k + 1) = x(k)− η1(∇f(x(k)) + z(k) + η2(x(k0)−Rx(k0))), k0 = k − (k mod Q),

v(k + 1) =

{
Rx(k), k mod Q = 0

v(k), k mod Q 6= 0,

z(k + 1) =

{
z(k) + 1

η2
(x(k)− v(k)), k mod Q = 0

z(k), k mod Q 6= 0,

So it is the discretization Case I or IV of the system with the corresponding continuous-time con-
trollers:

ug,x = x− v, ug,v = v −Rx,
u`,x = ∇f(x) + z, u`,v = 0, u`,z = −(x− v).

17



FRAMEWORK TO UNDERSTAND DECENTRALIZED OPTIMIZATION ALGORITHMS

We can observe that v is tracking Rx. Replacing v with Rx we have the following controllers:

ug,x = (I −R)x,

u`,x = ∇f(x) + z u`,z = −(I −R)x.

Finally, we give an example of the rate-optimal algorithms:
Scaffold [10]: The update step of Scaffold is:

x(k + 1) = x(k)− η1(∇f(x(k))− z(k) + v2(k0)), k0 = k − (k mod Q),

v1(k + 1) =

{
v1(k) + η2R(x(k)− v1(k)), k mod Q = 0

v1(k), k mod Q 6= 0,

v2(k + 1) =

{
v2(k)−R(v2(k)− 1

Qη1
(v1(k)− x(k))), k mod Q = 0

v2(k), k mod Q 6= 0,

z(k + 1) = z(k)− 1

Q
v2(k)− 1

Qη1
(x(k + 1)− x(k)),

So it is the discretization Case IV of the system with the corresponding continuous-time controllers:

ug,x = v2, ug,v = [R(v1 − x);Rv2 −
1

η1
R(v1 − x)],

u`,x = ∇f(x)− z, u`,v = 0, u`,z = v2 +
1

η1
ẋ.

xFilter [25]: The update step of xFilter is:

x(k + 1) = η1((1− η2)I − η2(I −W ))x(k) + (1− η1)x(k − 1) + η2η1v(k0), k0 = k − (k mod K)

v(k + 1) =

{
v(k) + (z1(k)− z2(k))− (I −W )x(k), k mod K = 0

v(k), k mod K 6= 0,

z1(k + 1) =

{
x(k)− η3∇f(x(k)), k mod K = 0

z1(k), k mod K 6= 0,

z2(k + 1) =

{
z1(k), k mod K = 0

z2(k), k mod K 6= 0,

So it is the discretization Case V of the system with the corresponding continuous-time controllers:

ug,x =
η2

2− η2
Wx, ug,v = Wx,

u`,x =
η2

2− η2
v, u`,v = (z1 − z2), u`,z = [η3∇f(x);−(z1 − z2)].

B.2. Existing Algorithms Connections

From the previous section, we have identified the controllers used by each algorithm in their continuous-
time counterparts.
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Algorithm Global Consensus Local Computation FL RO DO
DGD (I −W )y ∇f(x) FedProx – DGD
DLM c(I −W )x + v ∇f(x) FedPD – DLM

xFilter (I −W )x + v u`,v = −∇̇f(x) Scaffold xFilter –

Table 2: The summary of the controllers used in different algorithms. In GCFL and LCFL we
abstract the most important steps of the controller.

We can summarize the above interpretation of the existing algorithm into Table 2. From the
table, we can see that some of the algorithms corresponds to the same continuous-time dynamic
system and the only difference in the way we discretize the system. For examples, FedPD and DLM
have the same continuous-time dynamics while DLM corresponds to Case III that GCFL and LCFL
have the same sampling intervals, while FedPD correspond to Case I,IV that τg = Qτ`; Scaffold
and xFilter also have the same continuous-time dynamics.

From the table we can see that there are many missing blanks. Each of these blanks represents
a new algorithm. Also, we cam combine different GCFL and LCFL to create new algorithms that
are not in this table. In the next section, we use DGT as an example to show how it can be extended
to Case I,IV and to a different GCFL.

Appendix C. Example: Analysis and Extensions of Gradient Tracking

In this section, we use the well-known gradient tracking algorithm as an example to illustrate how
our proposed framework can be used in practice to analyze algorithm behavior, and to facilitate the
development of new algorithms.

C.1. The Gradient Tracking Algorithm

The iteration of the original gradient tracking algorithm is given below:

x(k + 1) = Wx(k)− cv(k),

v(k + 1) = Wv(k) +∇f(x(k + 1))−∇f(x(k)),
(23)

where c > 0 is some stepsize. Note that the algorithm only has one auxiliary consensus state v.
Under the assumption that a) W is symmetric and doubly stochastic; b) fi’s has Lipschitz gra-

dients and non-convex; c)
∑

i fi is lower bounded, this algorithm converges to the stationary point
of the problem at a rate of O(1/T ) [18, 26].

Our approach is to first analyze the corresponding continuous-time double-feedback system,
and apply appropriate discretization schemes and utilize the corresponding convergence results.

C.2. Continuous-time Analysis

We begin by analyzing the continuous-time counterpart of the gradient tracking algorithm. First,
notice that the gradient tracking algorithm falls into the case that τg = τ`, because communication
and computation happen at the same time-scale. By letting τg = τ` → 0, we obtain the following
continuous-time dynamic:

ẋ(t) = −ηg(t)(I −W )x(t)− η`(t)(cv(t)),

v̇(t) = −ηg(t)(I −W )v(t) + η`(t)(∇ḟ(x)).
(24)
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where ηg(t) = 1, η`(t) = 1,∀ t. In the above system, the global controllers given by:

ug,x = (I −W )x(t), ug,v = (I −W )v(t),

and local update controllers given by:

u`,x = ηv(t), u`,v = −∇ḟ(x(t)),

where∇ḟ(x(t)) :=
〈
∇2f(x(t)), ẋ(t)

〉
.

Next, let us verify the properties P1-P5. First, it is straightforward to prove P2 with the definition
of ug. For P1, we know that W is doubly-stochastic and symmetric and the communication graph
is connected and 1 is an eigenvector of I − W . Therefore y is an averaging system with linear
convergence rate Cg equals to the eigenvalue of I −W with the second smallest magnitude.

For P3, we can verify it by the following steps:∥∥G`,x(x, v; fi)−G`,x(x′, v′; fi)
∥∥ = η

∥∥v − v′∥∥∥∥G`,v(x, v; fi)−G`,x(x′, v′; fi)
∥∥ =

∥∥〈∇2fi(x), ẋ
〉
−
〈
∇2fi(x

′), ẋ′
〉∥∥

≤ (
∥∥∇2fi(x)

∥∥+
∥∥∇2fi(x

′)
∥∥)
∥∥ẋ− ẋ′∥∥

≤ 2cLf
∥∥v − v′∥∥ ,

whereLf is the constant of the Lipschitz gradient. So the smoothness constant of the local controller
g` can be expressed as L = cmax{2Lf , 1}.

Finally, to check whether the LCFL satisfies P4, let us initialize v(t) = ∇f(x(t)), and assume
that ηg(t) = 0 in (24), that is, the GCFL is inactive. Then we have:

v(t+ τ) = ∇f(x(t+ τ)) (25)

ẋ(t+ τ) = −cv(t+ τ) = −c∇f(x(t+ τ)). (26)

The algorithm becomes the gradient flow algorithm that satisfies P4 [24].
Finally, we verify P5. We can compute Ė(t) as follows:

Ė(t) = −

〈
∇f(x̄(t)),

1

N

N∑
i=1

u`,x(t)

〉
− 〈(I −R) · y(t), ug,y(t) + u`,y(t)〉

(24)
= −〈∇f(x̄(t)), cv̄(t)〉 − 〈(I −R) · y(t), (I −W ) · y(t)〉 (27)
− 〈(I −R) · x(t), cv(t)〉+ 〈(I −R) · v(t),∇f(x(t))−∇f(z(t))〉 .

Then we bound each term on the RHS above separately, and finally integrate. The detailed derivation is
omitted due to space consideration.The final bound we can obtain is:∫ t

0

Ė ≤ − c
2

∫ t

0

‖∇f(x̄(τ))‖2 dτ − c− 8Lfc
2/β

2

∫ t

0

‖v̄(τ)‖2 dτ

− (Cg −
c+ 2cLf + β + 16cLf/β

2
) ·
∫ t

0

‖(I −R) · y(τ)‖2 dτ.

By choosing β < Cg/2,
C2

g

64Lf
≤ c ≤ C2

g

32Lf
, we can verify that the dynamics of the continuous-time system

(24) satisfy (6), with γ1(t) ≥ C2
g

128Lf
and γ2(t) ≥ Cg

4 . Applying Theorem 3, we know that continuous-time
gradient tracking algorithm converges in O(1/T ).
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C.2.1. NEW ALGORITHM DESIGN

Now that we have verified properties P1-P5 for the continuous-time system (24), we can derive a number of
related algorithms by adjusting the discretization schemes, or by changing the GCFL.

Let us first consider changing the discretization scheme from Case III to Case IV, where τg = Qτ` > 0.
In this case, there will be Q local computation steps between every two communication steps. This kind of
update scheme is closely related to algorithms in FL, and we refer to the resulting algorithm the Decentralized
Federated Gradient Tracking (D-FedGT) algorithm. Its steps are listed below (where k0 = k − (k mod Q)):

x(k + 1) = x(k)− τ`v(k)− τg(I −W )x(k0),

v(k + 1) = v(k) +∇f(x(k + 1))−∇f(xk)− τg(I −W )v(k0).
(28)

By applying Theorem 1, we can directly obtain that this new algorithm also converges with rate O( 1
T ) with

properly chosen constant τ`, τg and Q.
Second, we can replace the GCFL of the DGT with an accelerated consensus controller [6]. This leads

to the a new Accelerated Gradient Tracking (AGT) algorithm:

x(k + 1) = x(k)− η′`v(k)− η′g(1 + c)x(k) + cvx(k),

v(k + 1) = v(k) +∇f(x(k + 1))−∇f(x(k))− ηg(1 + c)v(k) + cvv(k),

vx(k + 1) = x(k), vv(k + 1) = v(k), where c :=
1−

√
1− λ2(W )

1 +
√

1− λ2(W )2
.

(29)

Then by examining P1, we know that the network dependency of the new algorithm improved from Cg

to Ĉg = Cg ·
√

Cg+
√

2−Cg√
Cg+Cg

√
2−Cg

> Cg. Then according to the derivation in the last subsection, we have

γ2(t) ≥ Ĉg

4 . Finally, we can apply Theorem 1, and asserts that the new algorithm improves the convergence
speed from O( 1

CgT
) to O( 1

ĈgT
).

C.3. Numerical Results
We provide numerical results for implementations of Continuous-time (CT) DGT, the D-FedGT and D-AGT
algorithms discussed in the previous subsection. We first verify an observation from Theorem 1, that dis-
cretization slows down the convergence speed of the system. Towards this end, we conduct numerical exper-
iments with different discretization patterns and compare the convergence speed in terms of the stationarity
gap. Then we compare the convergence speed of CT-DGT and CT-AGT, to demonstrate the benefit of chang-
ing the controller in the GCFL from the standard consensus controller to the accelerated one.

In the experiments, we consider the non-convex regularized logistic regression problem:

fi(x; (ai, bi)) = log(1 + exp(−bixTai)) +

dx∑
d=1

βα(x[d])2

1 + α(x[d])2
,

where ai denotes the features and bi denotes the labels of the dataset on the ith agent. We set the number
of agent N = 20 and each agent has local dataset of size 500. We use an Erdős–Rényi random graph with
density 0.5 for the network and optimize the weight matrix W to achieve the optimal Cg . We set c = 1 for
gradient tracking algorithm.

We first compare CT-DGT (τg = τ` = 0) and D-FedGT (τg = 0.1, τ` = 0.005, Q = 20), the result of CT-
DGT and D-FedGT is showed in Figure 4(a)subfigure. We can see that by discretizing each loop, the system
converges slower as compared with the continuous time system. Figure 4(b)subfigure shows the convergence
behavior of the D-FedGT algorithm with different τg . We observe that by increasing the sampling interval
for GCFL, the convergence of the system slows down and it eventually diverges. Figure 4(c)subfigure and
Figure 4(d)subfigure show the convergence results of D-AGT compared with DGT in both continuous time
and in Case III. We observe that by changing the GCFL, D-AGT converges faster than DGT.
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(a) The evoluation of the Energy func-
tion E(t) of CT-CGT, D-FedGT.

(b) Energy function E(t) of D-FedGT
with different intervals τg.

(c) The evolution of the Energy function
E(t) of CT-DGT and CT-D-AGT.

(d) The evolution of the Energy function
E(t) of DGT and D-AGT.

Figure 4: The performance of Continuous-GT, D-FedGT, D-MGT and AGT.
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