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Abstract
We propose a first-order method for convex optimization, where instead of being restricted to the
gradient from a single parameter, gradients from multiple parameters can be used during each step
of gradient descent. This setup is particularly useful when a few processors are available that can be
used in parallel for optimization. Our method uses gradients from multiple parameters in synergy
to update these parameters together towards the optima. While doing so, it is ensured that the
computational and memory complexity is of the same order as that of gradient descent. Empirical
results demonstrate that even using gradients from as low as two parameters, our method can often
obtain significant acceleration and provide robustness to hyper-parameter settings. We remark that
the primary goal of this work is less theoretical, and is instead aimed at exploring the understudied
case of using multiple gradients during each step of optimization.

1. Introduction

Ranging from personal computers to internet-of-things enabled hardware, there exists a plethora
of local computational devices that have capabilities of executing a few parallel processes but are
otherwise limited in their memory and computational capacities. Having optimization procedures
designed for such constrained systems can, therefore, enable wider use of machine learning models.
However, gradient descent based optimizers predominantly only use a single new gradient during
each step of optimization. Perhaps one common way to leverage multiple processes is by splitting
the computation of the gradient for that single parameter (e.g., by distributing data), if possible.
In this paper, we focus on a complementary problem, where we leverage multiple processes for
gradient computation of multiple parameters.

Particularly, we restrict our focus to optimization of convex functions. Formally, for any convex
function f : Rd → R, and a fixed domain Ω ⊂ Rd our goal is to find

θ∗ ∈ arg min
θ∈Ω

f(θ).
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Figure 1: (a) Conventional gradient descent based methods have only one parameter vector which
gets iteratively updated. (b) Proposed method maintains a set of N parameters (here,
N = 4) and the gradients at each of those points are used to directly move the parameters
near the minimizer of the function, marked as ?. Solid arrows depict the gradient and
the proposed method uses them to jump to the points marked with empty circles in the
direction of gradient.

Broadly, popular approaches for finding θ∗ can be grouped into zeroth-order, first-order, or
second-order methods. In the following paragraphs, we briefly review how these approaches can
potentially be used for the desired problem setup. Detailed discussions are deferred to Appendix A.

Zeroth-order methods: Methods like genetic algorithms, evolutionary strategies, etc., work
by evaluating the function f(θ) for multiple values of θ to estimate the optimization geometry and
compute a direction that moves the parameters towards the optima [4, 6]. In our problem setup,
each individual evaluation of f(θ) could ideally be done in parallel. However, especially in high
dimensions, these methods may scale poorly [17], thereby requiring a lot of parallel resources,
which are not often available.

First-order methods: Methods such as gradient descent, ADAM [7], etc., iteratively update
a single parameter vector θ using the gradient ∇f(θ) to move towards the optima. Multiple pro-
cesses can be leveraged by performing independent runs from different initializations and taking
the minimum among the runs. However, over here, optimizing from a given initialization does not
make use of the information available from other parallel searches. Thereby not making an ideal
utilization of the already limited resource. Alternatively, often f : Rd×D → R is a function of data
D. Multiple processes are often leveraged by distributing computation of ∇f(θ;D), for a common
θ, over mini-batches of data and then aggregating all gradients. This approach has the downside
of not capturing information about the function at various points. In this work, we gain advantage
over both the above mentioned approaches and show how f(θ;D), for different values of θ with
mini-batches can be used to improve the search for θ∗.

Second-order methods: Optimizers like Newton’s method make direct use of the Hessian
∇2f(θ) to move θ towards θ∗ [2]. Access to the curvature of the function makes these meth-
ods more robust to hyper-parameters. However, this requires inverting the Hessian, which can be
computationally expensive for our setup. Several quasi-Newton methods exist that minimize the
computation required for estimating the Hessian inverse but still need to keep a matrix having a
large O(d2) memory footprint [12]. Limited memory versions of quasi-Newton methods have also
been developed that only need to store past k sequentially generated gradient evaluations [8].

Contribution Summary: An ideal optimization procedure for our problem setup would meet
the following criteria: (a) It should leverage the availability of the few parallel resources judiciously.
(b) It only uses first-order gradients to be computationally cheap. (c) It does not have large memory
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footprint, so that it can gracefully scale to large problems. (d) Can provide quicker convergence to
θ∗, like the second-order methods. (e) It is robust to hyper-parameters.

In this work, we propose a new optimization algorithm, called Gradient Grouping to satisfy
the above requirements. The key idea behind the proposed algorithm is that it makes use of gra-
dients from N different parameters in synergy, where N can be as low as 2. During each update,
the minima is estimated by extrapolating the N gradients and finding their approximate point of
intersection. All the parameters are then updated towards this point, and the process is repeated.

2. Proposed Method

In this section, we first motivate the underlying principle behind our approach and then derive an
update rule. Unlike existing methods that use only a single gradient from the current timestep
or use multiple gradients obtained in the past, what if we had access to several gradients, from
different parameters, at any update step? In such a case, multiple gradients can provide additional
information about the loss surface and can thus help in both acceleration and automatically choosing
step sizes.

The core idea is illustrated in Figure 1. Given gradient evaluations from N different points, we
propose estimating the optima by extrapolating these gradients and finding their approximate point
of intersection. Formally, given N parameter {θi}, we propose to update each θi ∈ R1×D as

θ̃i = θi + ηi∇f(θi) ∀i ∈ [1, N ], (1)

where ηi is the corresponding step size and is set such that it directly makes the parameters θi jump
to the (approximate) point of intersection of the gradient vectors {∇f(θi)}.

In high dimensions, there is unlikely to be a unique point of intersection. Therefore, we relax
this exact intersection constraint and instead aim at making the parameters update to a point where
they are closest to each other. Let Ψ : Rd×N → R be the desired function of all the θ̃i that is a
(proxy) measure for getting towards the intersection point/area. Our goal is to find,

arg min
{η1,...,ηN}

Ψ(θ̃1, ..., θ̃N ),

and subsequently use the obtained ηi’s to update the respective parameters. Some candidate choices
for Ψ can be a polytope/convex-hull of all the points of intersection, or the radius of the ball con-
taining all the points of intersection. However, it can also quite likely be that, in high dimensions,
there is not even a single point of intersection among the gradients. To still ensure that after the
update to the parameters, {θi}, the resulting set of parameters, {θ̃i}, are as close to each other as
possible, we define Ψ as the following,

Ψ(θ̃1, ..., θ̃N ) :=
N∑
i=1

∥∥∥∥∥θ̃i −
∑

j θ̃j

N

∥∥∥∥∥
2

. (2)

Before proceeding further, we now establish few notations that will be used throughout the
paper. Let ◦ represent Hadamard (entrywise) product between two matrices of same dimensions
defined as (A◦B)i,j = Ai,jBi,j . Let, Θ andG corresponds to matrices with columns containing all
the parameter vectors and their gradients, respectively. Let all the step-sizes, ηi for ith parameters,

3



OPTIMIZATION USING PARALLEL GRADIENT EVALUATIONS ON MULTIPLE PARAMETERS

be in a vector η. Let L represents a Laplacian matrix for a fully connected graph with N vertices
and let 1 denote a ones vector of size N . That is,

Θ := [θ1, ..., θN ] ∈ Rd×N , G := [∇f(θ1), ...,∇f(θN )] ∈ Rd×N ,
η := [η1, ..., ηN ]> ∈ RN×1, 1 := [1, ..., 1]> ∈ RN×1,

L := N · I − 11> ∈ RN×N .

Theorem 1. For any given N > 1

arg min
η

Ψ(θ̃1, ..., θ̃N ) = −(G>G ◦ L)−1(G>Θ ◦ L)1.

Proof For brevity, we denote Ψ(θ̃1, ..., θ̃N ) as Ψ. We begin by expanding (2),

Ψ =
N∑
i=1

∥∥∥∥∥θ̃i −
∑N

i=1 θ̃i
N

∥∥∥∥∥
2

=
N∑
i=1

∥∥∥∥θi + ηi∇f(θi)−
∑

j(θj + ηj∇f(θj))

N

∥∥∥∥2

=

N∑
i=1

∣∣∣∣∣∣∣∣N − 1

N
θi −

∑
j 6=i θj

N
+ ηi

N − 1

N
∇f(θi)−

∑
j 6=i ηj∇f(θj)

N

∣∣∣∣∣∣∣∣2 . (3)

To solve for η that minimizes (3), we first convert (3) into matrix notations. To illustrate the inter-
mediate steps, we define the following,

Mi :=

[
− 1

N
, ...,

N − 1

N
, ...,− 1

N

]
∈ RN×1,

Λi := diag(Mi) ∈ RN×N ,

where ith position in Mi is (N − 1)/N and the rest are −1/N . Therefore, (3) can be expressed as,

Ψ =
N∑
i=1

‖ΘMi +GΛiη‖2. (4)

Solving for η that minimizes (4),

∂Ψ

∂η
= 2

N∑
i=1

(ΘMi +GΛiη)>(GΛi) = 2

N∑
i=1

M>i Θ>GΛi + 2

N∑
i=1

η>Λ>i G
>GΛi.

As Mi = Λi1,

∂Ψ

∂η
= 2

N∑
i=1

1
>Λ>i Θ>GΛi + 2

N∑
i=1

η>Λ>i G
>GΛi = 1

>2
N∑
i=1

Λ>i Θ>GΛi + η>2
N∑
i=1

Λ>i G
>GΛi.

(5)
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Equating (5) to 0 gives η>
∑N

i=1 Λ>i G
>GΛi = −1>

∑N
i=1 Λ>i Θ>GΛi. Therefore,

η> = −1>
(

N∑
i=1

Λ>i Θ>GΛi

)(
N∑
i=1

Λ>i G
>GΛi

)−1

. (6)

To simplify (6), we make use of the following property (See Appendix B for a proof),

Property 1. For any matrix B ∈ RN×N ,
∑N

i=1 Λ>i BΛi = 1
NB ◦ L.

Using Property 1 in (6),

η> = −1>
(

1

N
Θ>G ◦ L

)(
1

N
G>G ◦ L

)−1

= −1>
(

Θ>G ◦ L
)(

G>G ◦ L
)−1

,

Therefore, η = −(G>G ◦ L)−1
(
G>Θ ◦ L

)
1.

3. Exploratory Insights

One step convergence for quadratics with condition number 1: Perhaps interestingly, it can
be shown that updating the parameters with step sizes η = −(G>G◦L)−1

(
G>Θ ◦ L

)
1 converges

to the optima in a single step for a quadratic function f(θ) := 1
2θ
>Aθ, where A is positive-semi-

definite and has condition number ρ = 1. This result holds irrespective of the number of dimensions
d of θ ∈ Rd, and even with N = 2. We refer the readers to Appendix C.1 for details.

Connections to approximate Newton’s method: The proposed approach uses gradient evalua-
tions at various points on the loss surface to estimate the optima. From one perspective, it can be
seen as obtaining the curvature information of the loss surface and using it to obtain the step-sizes.
This is reminiscent of (quasi-) Newton’s methods which use Hessian to estimate the loss surface and
get the appropriate direction and the step-size for parameter update. In Appendix C.2, we discuss
this connection is more details.

4. Empirical Analysis

In this section, we present an empirical comparison on various convex optimization benchmarks
between the proposed approach and popular optimization methods. We call our proposed method
Gradient Grouping (GG). Exact algorithm is presented in Appendix D.

Robustness to Hyper-parameter: We use several multi-class logistic regression datasets to eval-
uate the performance of our method, and the following baselines: stochastic gradient descent, Nes-
terov’s accelerated gradient method [2], ADAM [7], Rmsprop [18], and a first order quasi-Newton
method L-BFGS [8]. Figure 2 provides a comparison of the performance of our method against
performances of the baselines optimized with different values of learning rate.

The plots in Figure 2 correspond to the most challenging setting for our method where (a) the
number of available parallel resources is only 2 and (b) while GG was developed for the determin-
istic gradient, it is typically infeasible to compute the full-batch gradient. Therefore, we use GG
as-is in the setting where function evaluations are stochastic due to mini-batches. Further, as the
proposed method makes use of 2 resources in parallel as opposed to the baselines that use 1, we
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Figure 2: Title of the sub-plots mention the name of the dataset and the dimension of parame-
ters θ used. The plots showcase sensitivity of the baselines to their learning rate hyper-
parameter. Y-axis corresponds to the average loss over the entire training phase. The
reference line (in black) corresponds to the performance of the proposed method ob-
tained without performing any domain specific hyper-parameter tuning. Shaded regions
correspond to standard deviation obtained using 10 trials.

consider a strict setup for a fair comparison by making use of only half the data per computation of
gradient. This ensures that the proposed method neither uses more wall-time nor the total compute
time. Specifically, GG uses a batch size of 32 for computing each gradient and the baselines use a
batch-size of 64.

We notice that across all the domains, even without any hyper-parameter optimization, the pro-
posed algorithm achieves nearly the same performance as that achieved by optimally tuned base-
lines. This showcases the advantage of leveraging parallel resources to compute gradients for dif-
ferent parameter vectors, even in the restricted case when only 2 gradients can be obtained.

In comparison, note that although there exists a learning-rate with which the baselines are able to
achieve the same performance, the baselines are particularly sensitive to it and their performance de-
teriorates significantly when it is not set to the optimal value. Further, the optimal learning rates for
these baselines vary across the domains, thereby necessitating a thorough hyper-parameter search.

Ablation: Impact of N: In problem setups, where more than 2 parallel resources are available,
a natural question to ask is how well does the proposed method perform then? In Appendix F we
present this ablation and showcase that while just 2 parallel gradients sufficed to provide acceleration
in high-dimensional problems, our method further benefits when more resources are available.
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5. Conclusion and Future Work

We presented a convex optimization algorithm that exploits the availability of parallel resources
by computing only the first-order gradients of different parameters in parallel and using them in
synergy to reach the optima. Through empirical results, we demonstrated that even with 2 gradients
computed in parallel, acceleration similar to the best tuned baselines can be achieved. Further, using
gradients in synergy achieves this accelerated performance without requiring any hyper-parameter
tuning. Enjoying both low memory and computationally cost, it can be used for quickly optimizing
large problems on devices with limited compute resources.

An interesting future direction would be to efficiently combine the proposed method that makes
use of gradients computed in parallel, with methods that do curvature correction by making use of
past gradients that are computed sequentially. Addressing this would allow bringing the best of both
the paradigms. Another research question is to extend this approach to non-convex optimizations.
The proposed approach relies upon extrapolating the gradients from N different points. If these
points happen to be in different ‘valleys’, it is not clear how to optimally combine these gradients.
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Appendix A. Detailed Related Work

The literature on convex optimization is vast and no effort is enough to thoroughly review it. Here,
we briefly touch upon the popular paradigms in convex optimization that are related to our approach
and discuss their differences from our method.

Federated Learning: In many use-cases, due to either large amounts of data, or for accessing
data only at a local server, distributed optimization is of prime importance. In such a scenario, data
is partitioned into multiple sub-sets and for a given parameter, gradient computation with respect
to each sub-set is computed in a decentralized fashion. The primary challenge over here includes
how to aggregate these gradients effectively [16, 21, 23]. The proposed method presents a comple-
mentary procedure, where gradient with respect to different set of parameters are used in synergy
to update those parameters towards the optima.

Center of mass/gravity method: In this method, the center of mass (CoM) of a valid search
space is computed and then used to partition the valid search space for narrowing down the space
consisting the minima. This process is iteratively carried out to reduce the domain of search and
obtain the final solution [3]. This method is similar to ours as we also iteratively use gradients
at various points in the domain to narrow down to the region consisting the optima. However,
calculating the center of mass is computationally expensive and makes the CoM method dimension
dependent. Therefore, unlike our approach, this method cannot be scaled to large problems.

Genetic algorithms (GAs)/Evolutionary strategy (ES): Methods along this idea are for set-
tings where computing the gradient is infeasible or computationally expensive. This method main-
tains a set of parameters, similar to our method, where the function value is evaluated. These
evaluations are then used to compute an update direction for all the parameters in the set [4]. In
several cases, this procedure is also combined with gradients. For example, in hyper-parameter op-
timization (like architecture search for neural networks) function evaluation is itself an optimization

9



OPTIMIZATION USING PARALLEL GRADIENT EVALUATIONS ON MULTIPLE PARAMETERS

procedure, where the quality of a hyper-parameter is estimated based on the quality of parameters
obtained after performing gradient-descent using those hyper-parameters [1]. Another line of work
first uses ES as an approximate global search procedure and then runs gradient descent for fine-
tuning with a hope to more accurately estimate the global minima [4]. To make such evolutionary
strategies feasible in high-dimension space, [10] propose to only search in a meaningful sub-space
of parameters that is obtained using recent history of (surrogate) gradients. These still requires a
large population size of parameters.

Quasi-Newton methods: Newton’s method is a second-order optimization method which re-
quires pre-conditioning the gradient with the inverse of the Hessian matrix. Due to this operation,
they scale poorly to problems with large dimensions. Quasi-Newton methods (like SR1, LBFGS,
etc.) aim to use only first-order gradients to approximate Newton’s method and trade-off computa-
tional complexity with convergence rates [12]. While this is more scale-able than Newton’s method,
they still require pre-multiplication of the gradient with a d× d matrix, which can be expensive for
large scale problems. L-BFGS further trades off performance quality by keeping only the past k
gradients that were obtained sequentially [8].

Conjugate gradients: In this update procedure, for any d dimensional space, d orthogonal
vectors are generated (iteratively) and then line search is used to minimize the objective in each of
those directions [3]. Our method can be seen to be doing approximate line search by estimating
the minima along the direction of gradient using N separate gradient evaluations. This avoids the
expensive computation required for both obtaining and iterating over d orthogonal directions, and
doing linear search each time.

Accelerated methods: Accelerated optimization procedures like heavy-ball method, Nesterov’s
method, RMSprop, ADAM, AdaGrad, etc. leverage past gradients to accelerate search [7, 9]. They
are also related to acceleration procedures for ordinary differential equations (ODE), like Runge-
Kutta [5] and Andersons acceleration [19]. Optimizers built around these ODE techniques have also
been developed [15, 22]. Notice that all these methods use past gradients and function values that
were obtained sequentially. In contrast, our method uses multiple parallel gradient evaluations at
any update and is thus complementary to these approaches. For instance, update directions obtained
using any of the above approaches can be substituted in place of∇f(θ) in our framework to leverage
parallel processing. We leave such combinations for future work.

Appendix B. Remaining Proofs

Property 1. For any matrix B ∈ RN×N ,∑
i

Λ>i BΛi =
1

N
B ◦ L.

Proof
As Λi is a diagonal matrix consisting of Mi in the diagonal, ΛB corresponds to row broadcast

using Mi and BΛ corresponds to column broadcast using Mi. Therefore,∑
i

Λ>i BΛi =
∑
i

B ◦MiM
>
i

= B ◦
∑
i

MiM
>
i . (7)
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In the above equations, MiM
>
i corresponds to a matrix where (N − 1)2/N2 is in the (i, i) cell of

the matrix, and both row i and column i contain −(N − 1)/N2,

MiM
>
i =


1/N2 .. −(N − 1)/N2 ... 1/N2

...
−(N − 1)/N2 .. (N − 1)2/N2 ... −(N − 1)/N2

...
1/N2 .. −(N − 1)/N2 ... 1/N2

 ,
∑

iMiM
>
i would imply that every off diagonal entry is a summation of N − 2 terms of 1/N2

and two terms of −(N − 1)/N2. This is because for any entry (i, j), where i 6= j, it has −(N −
1)/N2 either when it is (N − 1)2/N2 in the cell (i, i) or in the cell (j, j). Therefore, each off-
diagonal element will sum to (N − 2)/N2 − 2(N − 1)/N2 = −1/N . Similarly, each diagonal
entry will be a sum N − 1 terms of 1/N2 and one term of (N − 1)2/N2, which is equal to (N −
1)/N2 + (N − 1)2/N2 = (N − 1)/N . Therefore,

∑
i

MiM
>
i =

1

N


N − 1 −1 ... −1
−1 N − 1 ... −1

...
−1 −1 ... N − 1

 =
1

N
L. (8)

Using (8) in (7), ∑
i

Λ>i BΛi =
1

N
B ◦ L.

Appendix C. Exploratory Insights

In this section, we explore some properties of the proposed method for the fundamental case of
quadratic functions, and draw some connections to prior methods.

C.1. One step convergence for quadratics with condition number ρ = 1

Perhaps interestingly, it can be shown that even with N = 2, GG can converge to the optima in
a single step for a quadratic function f(θ) := 1

2θ
>Aθ, where A is positive-semi-definite and has

condition number ρ = 1. This result holds irrespective of the number of dimensions d of θ ∈ Rd.
Recall from (1), the update rule in closed form can be expressed as,

Θt+1 ← Θt +Gdiag(η),

where for the proposed GG,

η = −(G>G ◦ L)−1
(
G>Θ ◦ L

)
1.

Further, as∇f(θ) = Aθ, η can be expressed as,

η = −(G>G ◦ L)−1
(
G>Θ ◦ L

)
1 = −(Θ>A>AΘ ◦ L)−1

(
Θ>A>Θ ◦ L

)
1. (9)
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Now notice that as the condition number of A is one, there exists some c such that A = cI . To see
this, For a quadratic function we can presume A to be symmetric because

θ>Aθ =
1

2
θ>(A+A>)θ,

and so we can replace with A with a symmetric matrix Ā := 1
2(A + A>). Furthermore, convexity

implies that the Hessian of f(θ) must be PSD, therefore A must be PSD.
Now as real-symmetric matrices are diagonalizable, using eigenvalue decomposition we get

A = QΛQ>,

where Q is an orthogonal matrix and Λ is a diagonal matrix consisting of the eigenvalues of A.
Because the PSD condition ensures that all eigenvalues are nonnegative, and the condition number
is 1, (max eigen value of A)/((min eigen value of A)) = 1. This implies that Λ = cI for some
constant c. Therefore,

A = QΛQ> = Q(cI)Q> = cQQ> = cI.

Therefore, (9) can be simplified as the following,

η = −(c2Θ>I>IΘ ◦ L)−1
(
cΘ>I>Θ ◦ L

)
1 = −1

c
(Θ>Θ ◦ L)−1

(
Θ>Θ ◦ L

)
1 = −1

c
1,(10)

when the inverse exists. Here the inverse may not exist when the two gradients are exactly parallel
(for e.g., the parameters in Θ are exactly the same). While this is unlikely in high dimensions, in
Section 4 we discuss a simple practical trick to avoid this. Now, substituting the value of η from
(10) in the update step,

Θt+1 = Θt +Gdiag(η) = Θt −AΘtdiag(
1

c
1). (11)

Finally, the result can be obtained by further simplifying (11),

Θt+1 = Θt − cIΘt
1

c
= Θt −Θt = 0.

As the minima of f(θ) is at θ = 0, the update procedure finds the minima in one update (two
gradient calls when N = 2). This is in contrast with the existing gradient based optimizers that can
solve this in one step if and only if the step-size is chosen appropriately. Further, notice that the
above result can be generalized for any N > 1, and also other functions f with condition number
ρ = 1.

C.1.1. FOR SETTING WITH ρ 6= 1

The goal of this section is to understand the behavior of gradient grouping for the fundamental case
of quadratics when ρ 6= 1. Particularly, in the following paragraphs we provide analysis using Eigen
decomposition for one step update using the gradient grouping algorithm with N = 2. We consider
f(θ) := 1

2θ
>Aθ, where A is a symmetric positive definite matrix. As the optima of f is at 0, by

looking at the norm of the parameters in Θ we can analyze the improvement towards the optima.

12
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To do so, we first expand η’s formula for N = 2. For brevity, we use g1 and g2 to represent the
gradients at the two points θ1 and θ2. From Theorem 1,

η = −(G>G ◦ L)−1
(
G>Θ ◦ L

)
1

= −
[
g>1 g1 −g>1 g2

−g>2 g1 g>2 g2

]−1 [
g>1 θ1 −g>1 θ2

−g>2 θ1 g>2 θ2

]
1

(a)
= − 1

D

[
g>2 g2 g>1 g2

g>2 g1 g>1 g1

] [
g>1 (θ1 − θ2)
−g>2 (θ1 − θ2)

]
= − 1

D

[
(g>2 g2)(g>1 (θ1 − θ2))− (g>1 g2)(g>2 (θ1 − θ2))
(g>2 g1)(g>1 (θ1 − θ2))− (g>1 g1)(g>2 (θ1 − θ2))

]
= − 1

D

[
((g>2 g2)g>1 − (g>1 g2)g>2 )(θ1 − θ2)
((g>2 g1)g>1 − (g>1 g1)g>2 )(θ1 − θ2)

]
= − 1

D

[
((g>2 g2)g1 − (g>1 g2)g2)>A−1(g1 − g2)
((g>2 g1)g1 − (g>1 g1)g2)>A−1(g1 − g2)

]
(b)
= − 1

D

[
((θ>2 A

>Aθ2)θ>1 A
> − (θ>1 A

>Aθ2)θ>2 A
>)(θ1 − θ2)

((θ>2 A
>Aθ1)θ>1 A

> − (θ>1 A
>Aθ1)θ>2 A

>)(θ1 − θ2)

]
= − 1

D

[
((θ>2 A

2θ2)θ1 − (θ>1 A
2θ2)θ2)>A>(θ1 − θ2)

((θ>2 A
2θ1)θ1 − (θ>1 A

2θ1)θ2)>A>(θ1 − θ2)

]
,

where in (a) the notation D represents determinant when computing the inverse, and (b) follows
from expanding the gradient of f(θ) and using the fact that A is a symmetric matrix.

As the labeling of parameters are arbitrary, without loss of generality let us consider only the
first row (step-size for updating θ1) to analyze one (of the two) parameters in the set. Using (1),

θ̃1 = θ1 −
1

D
((θ>2 A

2θ2)θ1 − (θ1A
2θ2)θ2)>A(θ1 − θ2)Aθ1),

where we have used θ̃1 to denote the value of θ1 after one update. Now evaluating the norm of θ̃1,

||θ̃1|| = ||θ1 −
1

D
((θ>2 A

2θ2)θ1 − (θ1A
2θ2)θ2)>A(θ1 − θ2)Aθ1)||

=
1

D
||(D)θ1 − ((θ>2 A

2θ2)θ1 − (θ1A
2θ2)θ2)>A(θ1 − θ2)Aθ1)||

=
1

D
||((θ>1 A2θ1)(θ>2 A

2θ2)− (θ>1 A
2θ2)2)θ1 − ((θ>2 A

2θ2)θ1 − (θ1A
2θ2)θ2)>A(θ1 − θ2)Aθ1)||

=
1

D
||(θ>1 A2θ1)(θ>2 A

2θ2)θ1 − (θ>1 A
2θ2)2θ1 − (θ>2 A

2θ2)(θ>1 Aθ1)Aθ1

+ (θ>2 A
2θ2)(θ>1 Aθ2)Aθ1 + (θ1A

2θ2)(θ>2 Aθ1)Aθ1 − (θ1A
2θ2)(θ>2 Aθ2)Aθ1||

To simplify, we now regroup terms with the matching colors,

||θ̃1|| =
1

D
||((θ>2 A2θ2) ((θ>1 A

2θ1)I − (θ>1 Aθ1)A)θ1︸ ︷︷ ︸
S1

+ (θ>1 A
2θ2) ((θ>2 Aθ1)A− (θ>1 A

2θ2)I)θ1︸ ︷︷ ︸
S2

((θ>2 A
2θ2)(θ>1 Aθ2)− (θ>1 A

2θ2)(θ>2 Aθ2))︸ ︷︷ ︸
S3

Aθ1)||. (12)

13
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Now we bound the behavior of S1, S2, and S3 in terms of the eigenvalues of A. For the follow-
ing, we denote the Eigenvalues of A as λi and the corresponding Eigenvector vi. Note that as A is
positive definite, λi > 0. We decompose both θ1, θ2 in the Eigenbasis and call the coefficients asso-
ciated with each basis vector as αi, and βi, respectively. That is, θ1 =

∑
i αivi and θ2 =

∑
i βivi.

Under this expansion we get the following useful expressions:

θ>1 Aθ1 = (
∑
i

αivi)
>A(

∑
i

αivi) = (
∑
i

αivi)
>(
∑
i

λiαivi) =
∑
i

λiα
2
i

θ>1 Aθ2 = (
∑
i

αivi)
>A(

∑
i

βivi) = (
∑
i

αivi)
>(
∑
i

λiβivi) =
∑
i

λiαiβi

θ>1 A
2θ2 = (

∑
i

αivi)
>A2(

∑
i

βivi) = (
∑
i

αivi)
>(
∑
i

λ2
iβivi) =

∑
i

λ2
iαiβi

θ>1 A
2θ1 = (

∑
i

αivi)
>A2(

∑
i

αivi) = (
∑
i

αivi)
>(
∑
i

λ2
iαivi) =

∑
i

λ2
iα

2
i .

Plugging in these expressions to expand S1,S2 and S3,

||S1|| = ||((θ>1 A2θ1)I − (θ>1 Aθ1)A)θ1||

= ||(
∑
i

α2
iλ

2
i )(
∑
i

αivi)− (
∑
i

α2
iλi)(

∑
i

αiλivi)||

= ||
∑
i

∑
j

(α2
iαjλ

2
i − α2

iαjλiλj)vj ||

= ||
∑
i

∑
j

α2
iαjλ

2
i (1−

λj
λi

)vj ||

= ||
∑
i

∑
j

α2
iαjλ

2
i (
λj
λi
− 1)vj ||

≤ ||
∑
i

∑
j

α2
iαjλ

2
i (ρ− 1)vj ||

= ||
∑
i

∑
j

α2
iαjλ

2
i vj ||(ρ− 1), (13)

where ρ := λmax
λmin

. Similarly,

||S2|| = ||((θ>2 Aθ1)A− (θ>1 A
2θ2)I)θ1||

= ||(
∑
i

αiβiλi)(
∑
i

αiλivi)− (
∑
i

αiβiλ
2
i )(
∑
i

αivi)||

= ||
∑
i

∑
j

βiαiαjλ
2
i (
λj
λi
− 1)vj ||

≤ ||
∑
i

∑
j

βiαiαjλ
2
i vj ||(ρ− 1). (14)

14
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Similarly,

||S3|| = ||(θ>2 A2θ2)(θ>1 Aθ2)− (θ>1 A
2θ2)(θ>2 Aθ2)||

= ||(
∑
i

β2
i λ

2
i )(
∑
i

βiαiλi)− (
∑
i

αiβiλ
2
i )(
∑
i

β2
i λi)||

= ||
∑
i

∑
j

β2
i βjαj(λ

2
iλj − λiλ2

j )||

= ||
∑
i

∑
j

β2
i βjαjλ

2
iλj(1−

λj
λi

)||

≤ ||
∑
i

∑
j

β2
i βjαjλ

2
iλj ||(ρ− 1). (15)

Using (13), (14), and (15) in (12), observe that distance of ||θ1|| from the optimum can be bounded
in terms proportional to (ρ − 1). Notice that similar to discussions in C.1, this also shows that if
ρ = 1 we reach the optimum in 1 step, and that if ρ = 1 + δ, for some small δ, the parameters can
approach the optima quickly. Extending this analysis to characterize the evolution of parameters for
the entire sequence of updates remain an interesting future direction.

C.2. Gradient post-conditioning (instead of pre-conditioning)

The proposed Gradient Grouping approach uses gradient evaluations at various points on the loss
surface to estimate the optima. From one perspective, it can be seen as obtaining the curvature
information of the loss surface and using it to obtain the step-sizes. This is reminiscent of (quasi-)
Newton’s methods which use Hessian to estimate the loss surface and get the appropriate direction
and the step-size for parameter update.

Given a quadratic of the form f(θ) := 1
2θ
>Aθ, the first and second order derivatives are

∇f(θ) = Aθ, and∇2f(θ) = A, respectively. According to the Newton method’s update rule,

θt+1 ← θt −A−1gt.

However, direct pre-multiplication with A−1 requires both matrix inversion and a d × d matrix-
vector multiplication, which can be computationally expensive. Several prior methods have studied
quasi-Newton methods to minimize the computational requirements [2].

In the following, we discuss a complementary method that draws some connections to the pro-
posed GG method. Let the Newton method’s update for a set of points Θ ∈ Rd×N usingG ∈ Rd×N
be,

Θt+1 ← Θt −A−1Gt, (16)

where A−1Gt ∈ Rd×d × Rd×N . To reduce the computational cost, instead of pre-multiplying with
A−1, we aim to post multiply G with another matrix B ∈ RN×N , such that,

A−1Gt ≈ GtB.

To do so, we can estimate B such that,

B = argmin
B
‖A−1Gt −GtB‖2.

15
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Solving for the above equation,

∂‖A−1Gt −GtB‖2

∂B
= G>t (A−1Gt −GtB) = G>t A

−1Gt −G>t GtB.

Equating the derivative to 0,

G>t GtB = G>t A
−1Gt,

B = (G>t Gt)
−1(G>t A

−1Gt). (17)

Now as∇f(θ) = Aθ, we know A−1∇f(θ) = θ. Substituting this in (17),

B = (G>t Gt)
−1(G>t Θt). (18)

Perhaps interestingly, B in (18) shares a striking resemblance with η from Theorem 1. Particu-
larly, as Θt is updated by A−1Gt ≈ GtB in (16), B plays a role similar to η in Line 9 of Algorithm
1. Nonetheless, there are important differences. For instance, B does not have the Laplacian and
the product with the ones vector. This makes B a full-matrix, unlike η.

Notice that while (18) is useful to draw some connections with GG, it is not practically useful.
Unlike how η was obtained from Theorem 1, B was obtained by enforcing a specific quadratic
structure, which is crucial for the above steps. For instance, if f(θ) := θ>Aθ + C>θ, where C is
some vector, then B will depend on additional terms dependent on C which we do not typically
have access to.

Appendix D. Algorithm

In this section, we discuss the proposed algorithm. As we maintain a group of parameters that
compute gradients in parallel and use it to help each other obtain a common goal, we call our
approach Gradient Grouping. A pseudo code is presented in Algorithm 1.

Algorithm 1: Gradient Grouping
Input N ∈ N≥2 . Parameter set size
Randomly Initialize Θ ∈ Rd×N . Parameter set
Zero Initialize G ∈ Rd×N . Gradient set
L = N · I − 11>
for t = 1, 2, 3, ... do

for idx = 1, 2, ..., N (in parallel) do
Gt[:, idx] = ∇f(Θt[:, idx]) . Compute gradients

end

ηt = −(Gt
>Gt ◦ L)−1

(
Gt
>Θt ◦ L

)
1. . Lemma 1.

Θt+1 ← Θt +Gtdiag(ηt) . Update parameters
end

In Line 1, the number of parameters, N , to be considered in parallel is taken as the input.
In Lines 2 and 3, the parameter matrix and the gradient matrix are initialized. As the Laplacian
matrix, L, will always be fixed during updates, Line 4 creates and stores it beforehand. Lines 5 to
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9 correspond to the main optimization loop. To avoid overloading the notation, we use super-script
t to denote the values in the tth iteration of optimization. In Lines 6 and 7, gradients are evaluated
for all the N parameters in parallel. Using Lemma 1, the step-sizes are obtained in Line 8. Finally,
in Line 9, the parameters are updated using the gradients and the step sizes obtained in the Line 8.

D.1. Practical Modifications

Notice that the inverse of (G>G ◦L) may not exist if the gradients are parallel (for e.g., Θ contains
exactly the same parameters, or if the parameters are different but the gradients are facing each
other, etc. ) To ensure that the inverse always exists in practice, we start all the parameters from a
different initialization. To make this condition also holds during the learning process, we multiply
η with a scaling factor 0 < α < 1, such that, η ← αη. This ensures that even when the extrapolated
gradients are intersecting, the parameters will never be at the same point after an update. More
generally, we ensure invertibility of (G>G ◦ L) by clipping its minimum Eigen value to a small
positive constant ε. As the (G>G ◦ L) matrix belongs to RN×N , the computation cost of this
operation is negligible. Specifically, leveraging the Eigen value decomposition, let

G>G ◦ L = V >ΛV.

Note that G>G is PSD and it is known that a Laplacian matrix L is also PSD. Now using Schur’s
theorem, which asserts that the Hadamard product of two PSD matrices is also a PSD matrix, it
can be established that G>G ◦ L is also a PSD matrix [11, Theorem 3.4], [14, 20]. To convert
G>G ◦ L into a PD matrix, we create a Λ+ := clip(Λ,min = ε,max = ∞) and use V >Λ+V
instead of G>G ◦ L every time. As the G>G ◦ L matrix belongs to RN×N , where N < 10 for all
our experiments, the computation cost of this operation is negligible.

The two practical modifications to our method introduced the hyper-parameters: α and ε. In
our experiments, we keep α = 0.9 and ε = 1e − 4 throughout and perform no problem specific
hyper-parameter tuning.

D.2. Computational and Memory Complexity

An important property of our method is that it is cheap in both computational and memory require-
ments. Notice that (G>G ◦L) is a RN×N matrix, irrespective of the number of dimensions d of the
parameters space. As N can be as low as 2, and in general N � d, computational cost of inverting
(G>G ◦ L) is negligible. Apart from that, as each processor only stores one copy of the parameter
θ and its corresponding gradient ∇f(θ), its memory and computational cost is in the same order
as that of gradient descent. Further, the proposed method leverages curvature information by us-
ing the N individual parameters and their respective first-order gradients, and thus second-order
derivatives,∇2f(θ), are never required to be computed.

Appendix E. Experimental Details

Implementations of the baseline algorithms: L-BFGS, SGD, Nesterov’s method, Adam, and Rm-
sprop were based on the default routines available in PyTorch [13]. For the experiments, convexity
was ensured using a single layer neural network implementation in PyTorch [13] with softmax clas-
sification loss.

The following datasets were used to report the empirical results.
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Dataset Input dimensions
CIFAR1 30720
MNIST2 7840

Extended-MNIST 3 29008
STL104 276480
SVHN5 30720

Fashion-MNIST6 7840

For Figures 2 and 3, each hyper-parameter setting was run till 100 epochs. In total 10 different
seeds were used for each hyper-parameter setting to get the standard error. The authors had shared
access to a computing cluster, consisting of 50 compute nodes with 28 cores each, which was used
to run all the experiments.

1. https://www.cs.toronto.edu/ kriz/cifar.html
2. http://yann.lecun.com/exdb/mnist/
3. https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist
4. https://cs.stanford.edu/ acoates/stl10/
5. http://ufldl.stanford.edu/housenumbers/
6. https://github.com/zalandoresearch/fashion-mnist
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Figure 3: Performance improvement of the proposed Gradient Grouping algorithm for all the prob-
lems as the number of available parallel resources increase. The error bars correspond to
standard deviation obtained using 10 trials.

Appendix F. Ablation Study

Impact of N: In problem setups, where more than 2 parallel resources are available, a natural
question to ask is how well does the proposed method perform then? To answer this question,
we conducted experiments with N = (2, 4, 6, 8, 10) for all of the previous domains. The results
are presented in Figure 3. We observe a consistent improvement in performance as the number of
available resources increase. This showcases that while just 2 parallel gradients sufficed to provide
acceleration in high-dimensional problems, our method further benefits when more resources are
available.
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