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Abstract
We study the oracle complexity of producing (δ, ϵ)-stationary points of Lipschitz functions, in the
sense proposed by Zhang et al. [20]. While there exist dimension-free randomized algorithms for
producing such points within Õ(1/δϵ3) first-order oracle calls, we show that no dimension-free
rate can be achieved by a deterministic algorithm. On the other hand, we point out that this rate can
be derandomized for smooth functions with merely a logarithmic dependence on the smoothness
parameter. Moreover, we establish several lower bounds for this task which hold for any random-
ized algorithm, with or without convexity. Finally, we show how the convergence rate of finding
(δ, ϵ)-stationary points can be improved in case the function is convex, a setting which we motivate
by proving that in general no finite time algorithm can produce points with small subgradients even
for convex functions.

1. Introduction

We consider the problem of optimizing Lipschitz continuous functions f : Rd → R using a first-
order algorithm, which utilizes values and derivatives of the function at various points. Though
problems of this type are ubiquitous throughout modern machine learning, they are well known
to be impossible to solve at a dimension-free rate without further assumptions such as convexity
or smoothness. For example, it is generally impossible to obtain local minima or approximate-
stationary points of f [14, 20], nor is it even possible to get close to such points within any finite
time independent of d [11]. Seeking to design reachable optimization goals for this large function
class, Zhang et al. [20] proposed the relaxed notion of a (δ, ϵ)-stationary point. Simply put, these
are points for which there exists a convex combination of gradients in a δ-neighborhood whose
norm is less than ϵ (see Section 2 for a formal definition). Their main contribution is a randomized
algorithm, INGD, which produces (δ, ϵ)-stationary points of any Lipschitz, bounded from below
function within Õ(1/δϵ3) iterations. Although INGD initially required access to a slightly nonstan-
dard oracle, follow-up works modified the algorithm such that it will rely on access to a standard
first-order oracle at differentiable points [9, 17]. All of these algorithms are randomized and share
the same oracle complexity of Õ(1/δϵ3).

In this work, we aim towards a better understanding of the oracle complexity of producing
(δ, ϵ)-stationary points in various settings. First, we examine whether the algorithms mentioned
above can be derandomized. Namely, what rate can be achieved by a deterministic algorithm that
produces (δ, ϵ)-stationary points? We solve this question by showing a strong lower bound, proving
that deterministic algorithms cannot achieve any dimension-free rate. On the other hand, we point
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out that if the objective function is even slightly smooth, it is possible to provide a deterministic
algorithm whose rate is Õ(1/δϵ3) with only a logarithmic dependence on the smoothness parameter.

Next, we take the first step towards providing lower bounds which hold for any (possibly ran-
domized) first-order method. In terms of ϵ dependence, we provide a lower bound of Ω(1/ϵ2)
which holds even for convex functions. In terms of δ dependence, we provide an Ω(log(1/δ)) lower
bound for nonconvex functions. Though these results are clearly not tight, there are currently no
randomized lower bounds whatsoever for this setting in terms of neither ϵ nor δ. Noticeably, Zhang
et al. [20] do prove an Ω(1/δ) lower bound, though their proof covers only deterministic algorithms
which have access to the derivative alone (without function value). As we conjecture the lower
bounds are loose, especially with respect to δ, providing tighter and unified lower bounds - in terms
of δ and ϵ - remains an intriguing open question.

Finally, we also examine the complexity of finding (δ, ϵ)-stationary of convex functions. Al-
though the vast majority of convex optimization literature deals with minimizing the function value
[16], some applications require the design of algorithms that produce points with small subgradients
(see [1, 15] and discussions therein). Moreover, while for smooth convex function the picture is rel-
atively well understood in terms of complexity upper and lower bounds [6], for nonsmooth convex
optimization much less is known in terms of minimizing subgradient norm. We start by proving that
even for convex yet nonsmooth functions, it is generally impossible to produce ϵ-stationary points -
namely, with some subgradient of norm at most ϵ (corresponding to δ → 0). In fact, we prove an ex-
plicit δ-dependent lower bound for convex functions, hinting that it might be beneficial to consider
the relaxation of (δ, ϵ)-stationarity in this setting as well. Furthermore, we show that the complexity
of producing a (δ, ϵ)-stationary point of a convex function improves (when compared to the noncon-
vex case) to Õ(1/δ2/3ϵ2) iterations using a randomized algorithm, or (again) even a deterministic
algorithm if the function is slightly smooth. These algorithms have optimal ϵ-dependence as they
match our aforementioned lower bound.

Overall, we hope this work will motivate further understanding of complexity guarantees for
nonsmooth optimization as a whole, and of producing (δ, ϵ)-stationary points in particular.

This paper is structured as follows. In Section 2 we formally introduce the terminology which
we use throughout the paper. In Section 3 we present our results for deterministic algorithms, while
in Section 4 we provide our randomized lower bounds. In Section 5 we turn to analyze the case of
convex functions. We conclude in Section 6 with a discussion of our results and future directions.
The appendices contain a brief account of the notation we use throughout this work, along with the
full proofs of our results.

2. Preliminaries

Nonsmooth analysis. We call a function f : Rd → R L-Lipschitz if for any x, y ∈ Rd : |f(x)−
f(y)| ≤ L ∥x− y∥, and H-smooth if it is differentiable and ∇f : Rd → Rd is H-Lipschitz,
namely for any x, y ∈ Rd : ∥∇f(x)−∇f(y)∥ ≤ H ∥x− y∥. By Rademacher’s theorem, Lipschitz
functions are differentiable almost everywhere (in the sense of Lebesgue). Hence, for any Lipschitz
function f : Rd → R and point x ∈ Rd the Clarke sub-differential set [7] can be defined as
∂f(x) := conv{g : g = limn→∞∇f(xn), xn → x}, namely, the convex hull of all limit points of
∇f(xn) over all sequences of differentiable points which converge to x. Note that if the function is
differentiable at a point or convex, the Clarke sub-differential reduces to the gradient or subgradient
in the convex analytic sense, respectively. We say that a point x is an ϵ-stationary point of f(·) if
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there exists g ∈ ∂f(x) : ∥g∥ ≤ ϵ. Furthermore, given δ > 0 the Goldstein δ-subdifferential [10] of
f at x is the set ∂δf(x) := conv(

⋃
∥z−x∥<δ ∂f(z)), namely all convex combinations of gradients

at points in a δ-neighborhood of x. We say that a point x is a (δ, ϵ)-stationary of f(·) if there exists
g ∈ ∂δf(x) such that ∥g∥ ≤ ϵ. Note that a point is ϵ-stationary if and only if it is (δ, ϵ)-stationary
for all δ > 0 [20, Lemma 7].

Algorithms and complexity. Throughout this work we consider (possibly randomized) iterative
first-order algorithms, from an oracle complexity perspective [14]. Such an algorithm first produces
x1 possibly at random and receives (f(x1), ∂f(x1)).1 Then, for any t > 1 produces xt possibly at
random based on previously observed responses, and receives (f(xt), ∂f(xt)). We are interested in
the minimal number T for which it can guarantee to produce some (δ, ϵ) stationary point. Namely,
given some function class F we look at supf∈F minT∈N PrA[∃t ∈ [T ] : xt is (δ, ϵ)−stationary] ≥
2
3 , where the probability is with respect to the algorithm’s internal randomness when acting upon
f ∈ F (or deterministically, if the algorithm is deterministic).

3. Deterministic algorithms

As discussed in the introduction, [9, 17, 20] all provide randomized algorithms that given any L-
Lipschitz function f : Rd → R and an initial point x1 that satisfies f(x1) − infx f(x) ≤ ∆,
produce a (δ, ϵ)-stationary point of f within Õ(∆L2/δϵ3) oracle calls to f . We start by showing
that this rate, let alone any dimension-free rate whatsoever, cannot be achieved by any deterministic
algorithm.

Theorem 1 For any deterministic first-order algorithm and any iteration budget T ∈ N, there
exists a 1-Lipschitz function f : Rd → R, d = T + 2 such that f(x1) − infx f(x) ≤ 1 yet the
T iterates produced by the algorithm when applied to f are not (δ, ϵ)-stationary points for any
δ ≤ 1

7 , ϵ ≤
1

252 .

We defer the full proof to Section B in the appendix, though the intuition can be described as fol-
lows. For any deterministic first-order algorithm, if an oracle can always return the “uninformative”
answer f(xi) = 0,∇f(xi) = e1 this fixes the algorithm iterates x1, . . . , xT . It remains to construct
a Lipschitz function that will be consistent with the oracle answers, yet all the queried points are not
(δ, ϵ)-stationary. To that end, we construct a function which in a very small neighborhood of each
queried point xt looks like x 7→ e⊤1 (x−xt), yet in most of the space looks like x 7→ max{v⊤x,−1}
which has (δ, ϵ)-stationary points only when x is correlated with −v. By letting v be some vector
which is orthogonal to all the queried points, we obtain the result.

The construction we just described crucially relies on the function being highly nonsmooth -
essentially interpolating between two orthogonal linear functions in an arbitrarily small neighbor-
hood. As it turns out, if the function to be optimized is even slightly smooth, then the theorem above
can be bypassed, as manifested in following theorem.

Theorem 2 Suppose f : Rd → R is L-Lipschitz, H-smooth, and x1 ∈ Rd is such that f(x1) −
infx f(x) ≤ ∆. Then there is a deterministic first-order algorithm that produces a (δ, ϵ)-stationary
point of f within O(∆L2 log(Hδ/ϵ)

δϵ3
) oracle calls.

1. For the purpose of this work it makes no difference whether the algorithm gets to see some subgradient or the
whole subdifferential set. That is, the lower bounds to follow hold even if the algorithm has access to the entire
subdifferential set, while the upper bounds hold even if the algorithm receives a single subgradient.
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The simple idea which proves Theorem 2 is to replace a certain randomized line search in INGD
with a deterministic binary search subroutine, which terminates within O(log(Hδ/ϵ)) steps if the
function is H-smooth. Such a procedure is derived by Davis et al. [9] for any H-weakly convex
function along differentiable directions, and since any H-smooth function is H-weakly convex
and differentiable along any direction, this can be applied as is proving Theorem 2. Although
the algorithmic ingredient to this observation appears inside a proof of Davis et al. [9], they use
it in a different way in order to produce a randomized algorithm for weakly convex functions in
low dimension, with different guarantees suitable for that setting. For completeness we explain in
Section B in the appendix how this leads to Theorem 2.

4. Randomized lower bounds

We now turn to establish complexity lower bounds which will hold for any (possibly randomized)
algorithm based on a first-order oracle, as common in the optimization literature stemming from the
seminal work of Nemirovski and Yudin [14]. Our first lower bound will be for the complexity of
producing (δ, ϵ)-stationary points in terms of ϵ-dependence.

Theorem 3 For any ϵ < 1, δ ≤ 1
12ϵ and any randomized first-order algorithm A, there exists

a 1-Lipschitz convex function f : Rd → R, d = Õ(1/ϵ6) such that f(x1) − infx f(x) ≤ 1 yet
PrA[∃t ∈ [T ] : xt is (δ, ϵ)−stationary] < 1

3 unless T = Ω(1/ϵ2).

An observation we would like to make is that Theorem 3 actually provides an optimal Ω(1/δϵ3)
lower bound in a certain parameter regime. Indeed, since it holds even when δ = Ω(1/ϵ), for such
a choice of δ we have Ω(1/ϵ2) = Ω(1/δϵ3), resulting in the optimal bound. In standard settings in
optimization which involve optimizing with respect to a single complexity parameter (e.g. ϵ-sub-
optimality or ϵ-stationarity) providing a lower bound in a certain parameter regime typically extends
to any parameter regime through rescaling tricks of the form f(x) 7→ C1f(C2 · x). Unfortunately,
this does not seem to be the case for (δ, ϵ)-stationarity as there aren’t enough degrees of freedom
to control the scales of both δ and ϵ, while maintaining the Lipschitz and initial sub-optimality
constant.

The proof of Theorem 3 appears in Section B in the appendix, and is based on the well estab-
lished machinery of high-dimensional optimization lower bounds (see for example Carmon et al.
[4], Nemirovski and Yudin [14], Nesterov [16], Woodworth and Srebro [18]). To sketch the proof
idea, we examine a random orthogonal transformation on top of the so called “Nemirovski func-
tion”, which is approximately of the form x 7→ max{|xi − 1|}. Though the Nemirovski function is
commonly used to prove lower bounds in terms of sub-optimality (i.e. f(xt) − infx f(x)), we de-
velop an analysis of its (δ, ϵ)-stationary points from which a complexity lower bound can be derived.
On the one hand, any oracle response reveals information about a single coordinate which roughly
leads to a lower bound of d queries in order to get information about d coordinates. On the other
hand, the subgradients at points which are not near (1, 1, . . . , 1) ∈ Rd are convex combinations of
±ei for some standard basis vectors ei, thus have norm of at least Ω(1/

√
d) which is smaller than ϵ

only whenever d = Ω(1/ϵ2).
As to δ-dependent lower bounds, we provide the following theorem.

Theorem 4 For any randomized first-order algorithmA and any δ, ϵ ≤ 1
4 , there exists a 1-Lipschitz

function f : R→ R such that f(x1)− infx f(x) ≤ 1, yet PrA[∃t ∈ [T ] : xt is (δ, ϵ)−stationary] <
1
3 unless T = Ω(log(1/δ)).
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Underlying the proof of Theorem 4 is a useful observation on the structure of (δ, ϵ)-stationary
points in dimension one: Although in general it is not true that a (δ, ϵ)-stationary point is necessarily
δ-close to an ϵ-stationary point [11] (yet the opposite implication is trivially true), for univariate
functions these two notions are actually equivalent.

Claim 1 If f : R → R is Lipschitz, then x ∈ R is (δ, ϵ)-stationary if and only if it is δ-close to an
ϵ-stationary point.

We provide a proof of Claim 1 in Section B in the appendix. This claim is useful for our
purposes since it allows us to convert any one-dimensional lower bound for getting δ-close to ϵ-
stationary points, into a lower bound for finding (δ, ϵ)-stationary points. The former can be done
using a technique which appears in [11] which itself is based on a technique for the deterministic
setting due to Nemirovski [13]. The basic idea is to construct a function which is parameterized by
a binary vector, such that optimizing the function essentially reduces to guessing the binary vector.
If the function is constructed such that any oracle response reveals a constant number of bits from
the vector, this implies that the length of the vector can serve as a complexity lower bound for the
optimization problem. Since the result in [11] is asymptotic - for δ → 0, or equivalently for a binary
vector of arbitrary length - providing a specific δ-dependent lower bound boils down to extracting
and improving its δ-dependence through a more careful analysis which appears in Section B in the
appendix.

5. (δ, ϵ)-stationarity for convex functions

Recalling that for convex functions the Clarke sub-differential coincides with the convex subgradient
[7, Proposition 2.2.7], we are interested in the possibility of producing points with small subgradi-
ents of convex Lipschitz functions. It turns out that the same discussed proof idea of Theorem 4
also extends to convex functions, albeit with substantially more technical work to ensure that global
convexity is maintained. This yields the impossibility of producing ϵ-stationary points within any
finite time even for convex functions.

Theorem 5 For any randomized first-order algorithm A and any δ, ϵ ≤ 1
4 , there exists a con-

vex 1-Lipschitz function f : R → R such that f(x1) − infx f(x) ≤ 1, yet PrA[∃t ∈ [T ] :
xt is (δ, ϵ)−stationary] < 1

3 unless T = Ω(
√
log(1/δ)). In particular, no finite time algorithm

can produce a 1
4 -stationary point of 1-Lipschitz convex functions with constant probability.

Following the theorem above, we aim towards achievable relaxations of stationarity for convex
Lipschitz functions. One natural relaxation is getting δ-close to an ϵ-stationary point. While it is
known that without convexity no algorithm can guarantee getting to such points in a dimension-free
rate [11], perhaps not surprisingly, this is not the case for convex functions. Indeed, given a Lipschitz
convex function and a diameter bound dist(x1, argminx f(x)) ≤ R, Davis and Drusvyatskiy [8]
provide a first-order algorithm that produces a point which is δ-close to an ϵ-stationary point of f
within T = Õ( R2

δ2ϵ2
) oracle calls. Furthermore, since any such point is also a (δ, ϵ)-stationary point,

then by Theorem 3 this is the best achievable rate for this task in terms of ϵ-dependence.
As in the rest of this work, we consider the coarser relaxation of (δ, ϵ)-stationary points. It is

important to emphasize that even for convex functions, the two notions of (δ, ϵ)-stationarity and
being δ-close to an ϵ-stationary point are inherently different. Indeed, as we illustrate in Lemma 18
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in the appendix, a (δ, ϵ)-stationary point can be arbitrarily far away from any ϵ-stationary point.2

It turns out that for the sake of producing (δ, ϵ)-stationary points a simple combination of gradient
descent and the INGD algorithm of [20] can provide a better dependence in terms of δ than [8] as
we claim next.

Theorem 6 Suppose f : Rd → R is L-Lipschitz and convex, and x1 ∈ Rd, R > 0 are such
that dist(x1, argminx f(x)) ≤ R. Then there exists a randomized first-order algorithm that
produces a (δ, ϵ)-stationary point of f with probability at least 2

3 within T = Õ
(
L2R2/3

δ2/3ϵ2

)
ora-

cle calls. Moreover, if f is also H-smooth, then there exists such a deterministic algorithm with
T = Õ

(
L2R2/3 log(H)

δ2/3ϵ2

)
.

The proof is provided in Section B in the appendix. We would like to point out is that the
improved rates for convex functions provided by Theorem 6 require the stronger assumption of
a domain bound R := dist(x1, argminx f(x)), as opposed to a sub-optimality bound ∆ :=
f(x1) − infx f(x). This is indeed a stronger assumption since for any L-Lipschitz function we
have ∆ ≤ LR. Furthermore, since the lower bound in Theorem 3 holds for convex functions, and
as we explained why it provides an Ω(1/δϵ3) lower bound for a certain parameter regime, we can-
not expect such an improvement in general without any further assumption. We note that this is
analogous to the smooth convex case for which a gap between ∆-based rate and R-based rate exists
as well [6].

6. Discussion

In this paper, we studied the oracle complexity of producing (δ, ϵ)-stationary points in various set-
tings. Following our results, there are several notes and open ends we would like to point out.

In our opinion, the main open question in this realm is narrowing the gap between the Õ(1/δϵ3)
complexity upper bound of the INGD algorithm, and our Ω(1/ϵ2 + log(1/δ)) complexity lower
bound (which follows by combining Theorem 3 and Theorem 4). We observed that the Ω(1/ϵ2)
lower bound in Theorem 3 actually matches the upper bound in a certain parameter regime, which
we suspect hints that the lower bound can be further improved. This would require in particular a
polynomial lower bound in terms of δ−1 which we do not currently know how to prove.

We also examined the complexity of producing small subgradients of convex Lipschitz func-
tions, showing that no finite algorithm can obtain such points unless a positive δ-relaxation is in-
troduced, similarly to the nonconvex case. Given an additional assumption of a domain bound as
opposed to a sub-optimality bound, we were able to provide improved rates for convex functions.
We would like to point out that although the lower bound in Theorem 3 is stated in terms of a sub-
optimality bound, the same proof can be easily adapted to the bounded domain case. Indeed, by
replacing |xi − 1| in the proof by |xi −R/

√
d|, the same result holds for any δ = O(R).

Another interesting direction for future work is to establish dimension-dependent lower bounds
for producing (δ, ϵ)-stationary points. Although several recent works considered this setting [9, 12],
no complementing lower bounds currently exist.

2. Similar results appear in [11, 17]. However, the former reference provides such a result for nonconvex functions. The
latter reference does provides a result for convex functions, but the construction uses a point which is 2δ-close to an
ϵ-stationary one, rather than arbitrarily far. Accordingly, Lemma 18 strengthens both.
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Appendix A. Notation

We denote by Rd the d-dimensional Euclidean space, any by ⟨·, ·⟩ , ∥ · ∥ the standard inner product
and its associated Euclidean norm, respectively. Given a point x ∈ Rd we denote by xi its i’th
coordinate, and for any subset A ⊂ Rd we denote their distance dist(x,A) := infy∈A ∥x− y∥. We
let ei ∈ Rd be the i’th standard basis vector, N = {1, 2, . . . } be the natural numbers starting from
1, and [N ] = {1, 2, . . . , N} be the natural numbers up to N ∈ N. We denote by Br(x) the open
Euclidean ball around x ∈ Rd of radius r > 0, where d is clear from context. We use standard big-O
asymptotic notation: For functions f, g : R→ [0,∞) we write f = O(g) if there exists c > 0 such
that f(x) ≤ c · g(x); f = Ω(g) if g = O(f). We occasionally hide logarithmic factors by writing
f = Õ(g) if f = O(g log(g + 1)).

Appendix B. Proofs

B.1. Proof of Theorem 1

Fix T ∈ N. Suppose that for any i ∈ [T − 1] the first-order oracle response is f(xi) = 0,∇f(xi) =
e1. Since the algorithm is deterministic this fixes the iterate sequence x1, . . . , xT . We will show this
resisting strategy is indeed consistent with a function which satisfies the conditions in the theorem.

To that end, we denote r := min1≤i ̸=j≤T ∥xi − xj∥ /4 and fix some v ∈ (span{e1, x1, . . . , xT })⊥
with ∥v∥ = 1 (which exists since d = T + 2). For any z ∈ Rd we define

gz(x) := min{∥x− z∥2 /r2, 1}v⊤x+ (1−min{∥x− z∥2 /r2, 1})e⊤1 (x− z) ,

and further define

h(x) :=

{
v⊤x , ∀i ∈ [T ] : ∥x− xi∥ ≥ r

gxi(x) , ∃i ∈ [T ] : ∥x− xi∥ < r
.

Note that h is well defined since by definition of r there cannot be i ̸= j such that ∥x− xi∥ < r
and ∥x− xj∥ < r.

Lemma 7 h : Rd → R as defined above is 7-Lipschitz, satisfies for any i ∈ [T ] : h(xi) =
0,∇h(xi) = e1 and has no (δ, 1

36)-stationary points for any δ > 0.
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Proof We start by noting that h is continuous, since for any z and (yn)
∞
n=1 ⊂ Br(z), yn

n→∞−→ y
such that ∥y − z∥ = r we have

lim
n→∞

h(yn) = lim
n→∞

gz(yn)

= lim
n→∞

(
min{∥yn − z∥2 /r2, 1}v⊤yn + (1−min{∥yn − z∥2 /r2, 1})e⊤1 (yn − z)

)
= lim

n→∞

(
∥yn − z∥2

r2
· v⊤yn +

(
1− ∥yn − z∥2

r2

)
e⊤1 (yn − z)

)
= v⊤y .

Having established continuity, since x 7→ v⊤x is clearly 1-Lipschitz (in particular 7-Lipschitz), in
order to prove Lipschitzness of h it is enough to show that gxi(x) is 7-Lipschitz in ∥x− xi∥ < r
for any xi. For any such x, xi we have

∇gxi(x) =
2v⊤x

r2
(x− xi) +

∥x− xi∥2

r2
v − 2e⊤1 (x− xi)

r2
(x− xi)−

∥x− xi∥2

r2
e1 + e1

v⊥xi=
2v⊤(x− xi)

r2
(x− xi) +

∥x− xi∥2

r2
v − 2e⊤1 (x− xi)

r2
(x− xi)−

∥x− xi∥2

r2
e1 + e1 ,

(1)

hence

∥∇gxi(x)∥ =

∥∥∥∥∥2v⊤(x− xi)

r2
(x− xi) +

∥x− xi∥2

r2
v − 2e⊤1 (x− xi)

r2
(x− xi)−

∥x− xi∥2

r2
e1 + e1

∥∥∥∥∥
≤ 2 ∥v∥ · ∥x− xi∥2

r2
+
∥x− xi∥2

r2
∥v∥+ 2 ∥e1∥ · ∥x− xi∥2

r2
+
∥x− xi∥2

r2
∥e1∥+ ∥e1∥

≤ 2 + 1 + 2 + 1 + 1 = 7 ,

which proves the desired Lipschitz bound. The fact that for any i ∈ [T ] : h(xi) = 0, ∇h(xi) = e1
is easily verified by construction and by Eq. (1). In order to finish the proof, we need to show that h
has no (δ, 1

36) stationary-points. By construction we have

∂h(x) =

{
v , ∀i ∈ [T ] : ∥x− xi∥ > r

∇gxi(x) , ∃i ∈ [T ] : ∥x− xi∥ < r
,

while for ∥x− xi∥ = r we would get convex combinations of the two cases.3 Inspecting the set
{∇gxi(x) : ∥x− xi∥ < r} through Eq. (1), we see that it depends on x, xi only through x− xi and
that actually

{∇gxi(x) : ∥x− xi∥ < r} = {∇g0(x) : ∥x∥ < r} ,

3. Since we are interested in analyzing the δ-subdifferential set which consists of convex combinations of subgradients,
and subgradients are defined as convex combinations of gradients at differentiable points - we do not lose anything
by considering convex combinations gradients at differentiable points in the first place.

9
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which is convenient since the latter set does not depend on xi. Overall, we see that any convex
combination of gradients of h is in the set{

λ1v + λ2

(
2v⊤x

r2
x+
∥x∥2

r2
v − 2e⊤1 x

r2
x− ∥x∥

2

r2
e1 + e1

)
: λ1, λ2 ≥ 0, λ1 + λ2 = 1, ∥x∥ ≤ r

}
=
{
λ1v + λ2

(
2v⊤x · x+ ∥x∥2v − 2e⊤1 x · x− ∥x∥

2e1 + e1

)
: λ1, λ2 ≥ 0, λ1 + λ2 = 1, ∥x∥ ≤ 1

}
=
{
(λ1 + λ2 ∥x∥2)v + 2λ2((v − e1)

⊤x)x+ λ2(1− ∥x∥2)e1 : λ1, λ2 ≥ 0, λ1 + λ2 = 1, ∥x∥ ≤ 1
}

.

We aim to show that the set above does not contain any vectors of norm smaller than 1
36 . Let u be an

element in the set with corresponding λ1, λ2, x as above. If ∥u∥ ≥ 1 then there is nothing to show,
so we can assume ∥u∥ < 1. We have

u⊤v = λ1 + λ2 ∥x∥2 + 2λ2(v − e1)
⊤x · x⊤v

= λ1 + λ2 ∥x∥2 + 2λ2(v
⊤x)2 − 2λ2e

⊤
1 x · x⊤v

≥ λ1 + λ2(v
⊤x)2 + λ2(e

⊤
1 x)

2 + 2λ2(v
⊤x)2 − 2λ2e

⊤
1 x · x⊤v

= λ1 + λ2(v
⊤x− e⊤1 x)

2 + 2λ2(v
⊤x)2

≥ λ1 + λ2(v
⊤x− e⊤1 x)

2

≥ λ2(v
⊤x− e⊤1 x)

2 , (2)

which gives

u⊤(e1 + v) = λ1 + λ2 + 2λ2(v
⊤x− e⊤1 x)(e

⊤
1 x+ v⊤x)

≥ 1− 4λ2|v⊤x− e⊤1 x|
(2)

≥ 1− 4
√

λ2u⊤v .

Hence

1 ≤ |u⊤(e1 + v)|+ 4
√

λ2u⊤v ≤ ∥u∥ · ∥e1 + v∥+ 4
√
∥u∥

≤
√
2 ∥u∥+ 4

√
∥u∥

∥u∥<1

≤
√
2 ∥u∥+ 4

√
∥u∥

=⇒ ∥u∥ ≥ 1

(
√
2 + 4)2

>
1

36
.

Given the previous lemma we can easily finish the proof of the theorem by looking at

f(x) :=
1

7
max{h(x),−1} .

f is 1-Lipschitz (since h is 7-Lipschitz), and satisfies f(x1)− infx f(x) = 0− (−1
7) < 1. Further-

more, for any i ∈ [T ] : h(xi) = 0 > −1 =⇒ f(xi) =
1
7h(xi) = 0, which by the fact that h is

7-Lipschitz implies that for any x ∈ B 1
7
(xi) : h(x) > −1 =⇒ ∂f(x) = 1

7∂h(x). In particular,

∂ 1
7
f(xi) =

1
7∂ 1

7
h(xi) so we conclude using the lemma shows that no xi is a (17 ,

1
7 ·

1
36) = (17 ,

1
252)

stationary point of f .

10
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B.2. Proof of Theorem 2

The proof is based on a slight modification of the INGD algorithm of Zhang et al. [20]. To give some
background, this algorithm is based on a gradient-descent-like procedure, where in each iteration,
given current point xt, it uses a certain element gt ∈ ∂δf(xt), until it finds a gt such that ∥gt∥ ≤ ϵ.
If gt does not satisfy this condition, it is ensured that the function value decreases by at least δϵ/4,
which can happen at most 4∆/δϵ times. gt itself is produced by repeatedly searching in various
directions away from xt, and maintaining a convex combination of elements in ∂δf(x), until either
a sufficient decrease is found or the norm of the convex combination becomes sufficiently small.

In the original INGD algorithm, a given direction is searched by picking a point at random in an
interval starting from xt. If there is no sufficient decrease in that direction, the fundamental theorem
of calculus implies that the derivative along that direction is small on average, hence picking a point
at random is sufficient. In our case, we de-randomize this part of the algorithm, by replacing it with
a deterministic binary search (following Davis et al. [9]).

More formally, we replace the INGD algorithm with Algorithms 1,2,3 below, where the change
is in calling the binary search subroutine (Algorithm 3) instead of picking a point at random. In-
specting Algorithm 2, we see that it maintains a convex combination of elements in ∂δf(x), and calls
the subroutine BinarySearch(x, gk) only whenever ∥gk∥ > ϵ and f(x)− f(x− δ

∥gk∥gk) ≤
δ
4 ∥gk∥.

That being the case, the fundamental theorem of calculus ensures

1

4
∥gk∥2 ≥

∥gk∥
δ

(
f(x)− f

(
x− δ

∥gk∥
gk

))
=

1

δ

∫ δ

0

〈
∇f

(
x− t

∥gk∥
gk

)
, gk

〉
dt .

Namely, on average along the segment [x, x − δ
∥gk∥gk], points have gradients whose dot product

with gk is small. Accordingly, using the fact the∇f is H-Lipschitz, BinarySearch(x, gk) performs
a binary search along this segment and produces a point yk such that ⟨∇f(yk), gk⟩ ≤ 1

2 ∥gk∥
2

within O(log(δH/ ∥gk∥)) = O(log(δH/ϵ)) first-order oracle calls [9, Lemma 3.9]. This is the only
modification to INGD which is introduced to Algorithm 1, when compared to [9, 20]. Accordingly,
MinNorm finds an approximate minimal norm element of ∂δf(xt) within O

(
L2 log(δH/ϵ)

ϵ2

)
first-

order oracle calls [9, Corollary 2.5]. Since we claimed that this can happen at most O(∆/δϵ) times,
overall this produces a (δ, ϵ)-stationary point of f within O

(
∆L2 log(δH/ϵ)

δϵ3

)
oracle calls.

Algorithm 1 INGD(x1, T )

Input: Initialization x1 ∈ Rd, iteration budget T ∈ N.
for t = 1, . . . , T − 1 do

gt ← MinNorm(xt) ▷ Complexity O(L
2 log(δH/ϵ)

ϵ2
)

if ∥gt∥ ≤ ϵ then
return xt

else
xt+1 ← xt − δ

∥gt∥gt
end if

end for
return xT

11
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Algorithm 2 MinNorm(x)

Input: x ∈ Rd, δ, ϵ > 0.
k ← 0
g0 ← ∇f(x)
while ∥gk∥ > ϵ and f(x)− f(x− δ

∥gk∥gk) ≤
δ
4 ∥gk∥ do

yk ← BinarySearch(x, gk) ▷ Finds yk ∈ [x, x− δ
∥gk∥gk] : ⟨∇f(yk), gk⟩ ≤

1
2 ∥gk∥

2

gk+1 ← argminλ∈[0,1] ∥λgk + (1− λ)∇f(yk)∥
k ← k + 1

end while
return gk

Algorithm 3 BinarySearch(x, g)

Input: x, g ∈ Rd, δ,H > 0.
(a, b)← (0, 1)
ḡ ← δ

∥g∥g

while b− a > ∥g∥
8δH do

if f(x− a+b
2 · ḡ) ≥

1
2(f(x− aḡ) + f(x− bḡ)) then

(a, b)← (a, a+b
2 ) ▷ Et∈[a,a+b

2
]⟨∇f(z − tḡ), g⟩ ≤ Et∈[a+b

2
,b]⟨∇f(z − tḡ), g⟩

else
(a, b)← (a+b

2 , b) ▷ Et∈[a,a+b
2

]⟨∇f(z − tḡ), g⟩ > Et∈[a+b
2

,b]⟨∇f(z − tḡ), g⟩
end if

end while
return x− aḡ

B.3. Proof of Theorem 3

We derive the lower bound using the so-called “zero chain” technique [4, 18]. While a full dis-
cussion of this technique can be found in [3, 4], we will only state the relevant definitions and
propositions we will use in our proof.

Definition 8 For x ∈ Rd, we define its α-progress as progα(x) := max{i ∈ [d] : |xi| > α}.

Definition 9 A function f : Rd → R is an α-robust zero-chain if for every x ∈ Rd:

progα(x) < i =⇒ f(y) = f(y1, . . . , yi, 0, . . . , 0) for all y in a neighborhood of x.

Proposition 10 ([3], Proposition 2.3) Let R,α > 0, T ∈ N and d′ ≥ ⌈T + 2R2

α2 log(3T 2)⌉. Let
f : RT → R be an α-robust zero-chain, let U ∈ Rd′×T be a uniformly random orthogonal matrix
and denote fU (x) = f(UTx). If A is a (possibly randomized) algorithm interacting with fU such
that its iterates satisfy

∥∥x(t)∥∥ ≤ R for all t with probability 1, then with probability at least 2
3 over

the draw of U :
progα(U

Tx(t)) < t for all t ≤ T.

12
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Given the proposition, we aim to construct a robust zero chain function which such that all its
(δ, ϵ)-stationary points will have large progress. To that end, for any T ∈ N, α > 0 we define
f : RT → R as follows

fT,α(x) := max
i∈[T ]
{|xi − 1|+ 3α(T − i)} (3)

Lemma 11 For any T ∈ N, α > 0, fT,α is 1-Lipschitz, convex and is an α-robust zero-chain.

The lemma and its proof are similar to [5, Lemma 23], though we provide a proof for completeness.
Proof Let T ∈ N, α > 0 and abbreviate f = fT,α. The Lipschitz property is easily seen since
is a composition of 1-Lipschitz functions. Convexity follows from the fact that the maximum of
convex functions is itself convex. To prove that f is an α-robust zero-chain, let x ∈ RT be such
that progα(x) < i, and y ∈ Bα(x). Note that |xi| ≤ α and that ∀j : |xj − yj | < α. So for any
i+ 1 ≤ j ≤ T we get

|yj − 1|+ 3α(T − j) ≤ |xj − 1|+ 3α(T − j) + α ≤ 1 + 2α+ 3α(T − j)

≤ 1 + 2α+ 3α(T − i− 1) = 1− α+ 3α(T − i)

≤ |xi − 1| − α+ 3α(T − i) ≤ |yi − 1|+ 3α(T − i) .

By Eq. (3) this shows f is an α-robust zero-chain by definition.

From now on we fix some ϵ < 1, δ ≤ 1
12ϵ and set T = 1

4ϵ2
, α = 1

9T . The following lemma
provides a crucial property of the (δ, ϵ)-stationary point of fT,α.

Lemma 12 Let x be a (δ, ϵ)-stationary point of fT,α. Then there exists I ⊂ [T ], |I| ≥ 3T
4 such that

∀i ∈ I : xi ≥ 1
3 . In particular progα(x) ≥ 3T

4 .

Proof Throughout the proof we abbreviate f = fT,α. Denote fi(x) := |xi − 1| + 3α(T − i), and
note that f(x) = maxi∈[T ]{fi(x)}. Consequently,

∂f(x) = conv{∂fi(x) : fi(x) = f(x)}

= conv{gi(x) : fi(x) = f(x)} , gi(x) :=

{
{sign(xi − 1)ei}, xi ̸= 1

{s · ei : −1 ≤ s ≤ 1}, xi = 1

=⇒ ∂δf(x) = conv{gi(y) : fi(y) = f(y), ∥x− y∥ < δ} .

From the representation above we can see that if x satisfies that

∀y ∈ Bδ(x) ∀i ∈ [T ] such that fi(y) = f(y) : |yi − 1| > 0 (4)

then any g ∈ ∂δf(x) is a certain convex combination of vectors of the form ±ei (since in that case
the second condition in the definition of gi is never satisfied). Furthermore, in this case note that
either ei ∈ ∂δf(x) or −ei ∈ ∂δf(x) but not both, since if both of them are in ∂δf(x) then by
convexity of ∂δ there exists some yi − 1 = 0 contradicting Eq. (4). We will now show that if that is
the case, then x is not a (δ, ϵ)-stationary point. Indeed, if x satisfies Eq. (4) then for any g ∈ ∂fδ(x)

13
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there exist S = {i1, . . . , i|S|} ⊆ [T ], λi1 , . . . , λi|S| ≥ 0 :
∑

i∈S λi = 1 and σi1 , . . . , σi|S| ∈ {±1}
such that g =

∑
i∈S λi · σiei. Hence

∥g∥ =
√∑

i∈S
λ2
i

Cauchy Schwarz
≥

(∑
i∈S

1√
|S|

λi

)
=

1√
|S|
≥ 1√

T
= 2ϵ .

This establishes that if x satisfies Eq. (4) then it is indeed not a (δ, ϵ)-stationary point. So if x is a
(δ, ϵ)-stationary point, we deduce that there exist y ∈ Bδ(x), i ∈ [T ] such that fi(y) = f(y) and
also yi = 1. For this y it holds that ∀j ∈ [T ] : fj(y) ≤ f(y) = fi(y), hence

|yj − 1|+ 3α(T − j) ≤ |yi − 1|+ 3α(T − i) = 3α(T − i)

=⇒ |yj − 1| ≤ 3α(j − i) ≤ 3αT ≤ 1

3
.

We see that for all j ∈ [T ] : 2
3 ≤ yj ≤ 4

3 , and recall that ∥x− y∥ < δ. Assuming towards
contradiction that the lemma is not true, we get |J | ⊂ [T ], |J | ≥ T

4 such that ∀j ∈ J : xj <
1
3 and

in particular |xj − yj | > 1
3 . But this means that ∥x− y∥ > 1

3 ·
√

T
4 =

√
T
6 = L

12ϵ ≥ δ which is a
contradiction.

Given the previous lemma, finishing up the proof is done by a standard application of the afore-
mentioned lower bound techniques. All we need to do is to apply a random orthogonal transfor-
mation on top of our constructed function, and to handle “large queries” by extending our function
such that points of large norm do not depend on the orthogonal transformation (see [4, Section 5]).
We do this by defining

f̃U (x) := max{fT,α(UTx), 2(∥x∥ − 2
√
T )} .

On the one hand, if ∥x∥ < 2
√
T then

2(∥x∥ − 2
√
T ) < 0 ≤ fT,α(U

Tx) =⇒ f̃U (x) = fT,α(U
Tx) .

On the other hand, if ∥x∥ > 6
√
T then

fT,α(U
Tx) ≤ ∥Ux∥+ ∥1∥+ 1

3
< (∥x∥+ 2

√
T ) + (∥x∥ − 6

√
T ) = 2(∥x∥ − 2

√
T )

=⇒ f̃U (x) = 2(∥x∥ − 2
√
T ) ,

which does not depend on U . Furthermore, repeating essentially the same calculation as in Lemma 12
shows that the (δ, ϵ)-stationary points of f̃U (·) are exactly the (δ, ϵ)-stationary points of f(UT ·),
which in particular shows they satisfy progα(U

Tx) ≥ 3T
4 . Applying Proposition 10 with R = 6

√
T

finishes the proof.

B.4. Proof of Theorem 5

Let δ ≤ 1
4 , T < 1

6

√
log(1/δ). By Yao’s lemma [19], we may assumeA is deterministic and provide

a distribution over hard functions. Namely, we will construct an index set Σ and a parameterized
subset of convex Lipschitz functions {fσ : σ ∈ Σ} that satisfy for any σ ∈ Σ :

14
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• fσ is convex and 1-Lipschitz.

• fσ attains its minimum with argminx f(x) ⊂ (0, 1). In particular, by Lipschitzness f(x1)−
infx f(x) ≤ 1.

• ∀x /∈ argminx f(x), ∀f ′(x) ∈ ∂f(x) : |f ′(x)| ≥ 1
4 .

Yet, the first T iterates produced by A(fσ) : xfσ1 , . . . , xfσT , satisfy

Pr
σ∼D

[
∃t ∈ [T ] : dist(xfσt , argmin

x
fσ(x)) < δ

]
<

2

3
, (5)

for some distribution D over Σ. In particular, by the third bullet above, with the same probability
and Claim 1 they are not (δ, 14)-stationary.

We start by defining a sequence of segments in [0, 1] parameterized by binary vectors, which
will form the basis for our upcoming function class construction. For any i ∈ N we denote

Ii0 :=

(
1

2
− 2

8i+1
,
1

2
− 1

8i+1

)
⊂ (0, 1)

Ii1 :=

(
1

2
+

1

8i+1
,
1

2
+

2

8i+1

)
⊂ (0, 1) .

We interpret the subscript 0 as ”left” and 1 as ”right”, corresponding to the location of the segment
with respect to the center 1

2 . Denote by ϕi
0, ϕ

i
1 the unique affine functions with positive derivatives

which map (0, 1) to Ii0, I
i
1 respectively - which we think of as “rescaling” the unit segment to the

left or to the right. We can now define for any k ∈ N, (σ1, . . . , σk) ∈ {0, 1}k :

Iσ1,...,σk
:= ϕ1

σ1
◦ · · · ◦ ϕk

σk
(0, 1) ⊂ (0, 1) .

The following lemma shows that the parameterization of the segments above forms a binary
tree structure. This correspondence is given by considering binary vectors as vertices, while its
sub-tree consists of vectors for which it serves as a prefix. Later on we will use this intuition to
construct functions parameterized by binary vectors, in a way that essentially reduces optimization
to traversing the tree. In particular, optimizing the function will require getting to a randomly
selected leave which is unknown in advance to the algorithm.

Lemma 13

1. For any l < k and any σ1, . . . , σl, . . . , σk ∈ {0, 1} : Iσ1,...,σl
⊃ Iσ1,...,σl,...,σk

.

2. If (σ1, . . . , σk−1) ̸= (σ′
1, . . . , σ

′
k−1) then for all σk, σ′

k ∈ {0, 1} : Iσ1,...,σk
∩ Iσ′

1,...,σ
′
k
= ∅.

Proof

1. Iσ1,...,σl,...,σk
= ϕ1

σ1
◦ · · · ◦ ϕl

σl
(ϕl+1

σl+1
◦ · · · ◦ ϕk

σk
(0, 1)) ⊂ ϕ1

σ1
◦ · · · ◦ ϕl

σl
(0, 1) = Iσ1,...,σl

.
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𝐼"# 𝐼$#

ℎ"#

ℎ$#

Figure 1: Illustration of I0, I1 and h0, h1.

2. Let i ≤ k− 1 be the minimal index for which σi ̸= σ′
i, and assume without loss of generality

that σi = 0, σ′
i = 1. If x ∈ Iσ1,...,σk

, then

x ≤ supϕ1
σ1
◦ · · · ◦ ϕi−1

σi−1
◦ ϕi

0 ◦ · · · ◦ ϕk
σk
(0, 1)

≤ supϕ1
σ1
◦ · · · ◦ ϕi−1

σi−1
◦ ϕi

0(0, 1)

< ϕ1
σ1
◦ · · · ◦ ϕi−1

σi−1
(
1

2
)

< inf ϕ1
σ1
◦ · · · ◦ ϕi−1

σi−1
◦ ϕi

1(0, 1)

= inf ϕ1
σ′
1
◦ · · · ◦ ϕi−1

σ′
i−1
◦ ϕi

σ′
i
(0, 1)

≤ inf ϕ1
σ′
1
◦ · · · ◦ ϕi−1

σ′
i−1
◦ ϕi

σ′
i
◦ · · · ◦ ϕk

σ′
k
(0, 1)

= inf Iσ′
1,...,σ

′
k
,

hence x /∈ Iσ′
1,...,σ

′
k
.

With the parameterized family of segments in hand, we are ready to define a corresponding
family of functions. We define the function hi1 : [0, 1] \ Ii1 → R as follows

hi1(x) :=

−
(
8i+1−2
8i+1+2

)
x+ 1 , 0 ≤ x ≤ 1

2 + 1
8i+1(

8i+1−2
8i+1−4

)
x− 2

8i+1−4
, 1

2 + 2
8i+1 ≤ x ≤ 1

,

which is the piecewise linear function which satisfies h(0) = h(1) = 1, h(12 + 1
8i+1 ) = h(12 +

2
8i+1 ) = 1

2 + 1
8i+1 , and also define hi0 : [0, 1] \ Ii0 → R as hi0(x) := hi1(1 − x) - see Fig. 1 for

an illustration. We also denote Φi(x) := ϕi
1(x) − 1

8i+1 which is the affine function which satisfies
Φi(0) = 1

2 , Φ
i(1) = 1

2 + 1
8i+1 , (Φ

i)′ = (ϕi
0)

′ = (ϕi
1)

′.
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Finally, given any N ≥ 2 and σ = (σ1, . . . , σN ) ∈ {0, 1}N we are ready to define f : R → R
as

fN
σ (x) :=



h1σ1
(x) x ∈ [0, 1] \ Iσ1

Φ1 ◦ h2σ2
◦ (ϕ1

σ1
)−1(x) x ∈ Iσ1 \ Iσ1,σ2

Φ1 ◦ Φ2 ◦ h3σ3
◦ (ϕ1

σ1
◦ ϕ2

σ2
)−1(x) x ∈ Iσ1,σ2 \ Iσ1,σ2,σ3

...
Φ1 ◦ · · · ◦ ΦN−1 ◦ hNσN

◦ (ϕ1
σ1
◦ · · · ◦ ϕN−1

σN−1
)−1(x) x ∈ Iσ1,...,σN−1 \ Iσ1,...,σN

Φ1 ◦ · · · ◦ ΦN−1(0) x ∈ Iσ1,...,σN

1− x x < 0

x x > 1

.

The following lemma show that the constructed function satisfies our desired requirements.

Lemma 14 For any N ≥ 2, σ ∈ {0, 1}N :

• fN
σ is 2-Lipschitz and convex.

• fN
σ (x) attains its minimum, and ∀x /∈ argminx f

N
σ (x) ∀g ∈ ∂fN

σ (x) : |g| ≥ 1
2 .

• fN
σ (0)−minx f

N
σ (x) ≤ 1 and ∀x ∈ argminx f

N
σ (x) : |x| ≤ 1.

Proof Let N ≥ 2, σ ∈ {0, 1}N . We start by proving that fN
σ is continuous. It is clear that fN

σ is
piecewise linear since hiσi

, ϕi
σi
,Φi are, So in order to show continuity we need to show continuity

at the endpoints of adjacent linear pieces. Since by Lemma 13 it holds that [0, 1] ⊃ Iσ1 ⊃ Iσ1,σ2 ⊃
· · · ⊃ Iσ1,...,σN , inspecting the definition of fN

σ we see that we need to verify continuity only at the
endpoints of Iσ1,...,σi for any i ∈ [N ]. For any i ∈ [N ], the left endpoint of Iσ1,...,σi satisfies

lim
x→(inf Iσ1,...,σi )

+
fN
σ (x)

= lim
x→(inf ϕ1

σ1
◦···◦ϕi

σi
(0,1))+

Φ1 ◦ · · · ◦ Φi ◦ hi+1
σi+1
◦ (ϕ1

σ1
◦ · · · ◦ ϕi

σi
)−1(x)

= lim
x→0+

Φ1 ◦ · · · ◦ Φi ◦ hi+1
σi+1

(x)

= Φ1 ◦ · · · ◦ Φi( lim
x→0+

hi+1
σi+1

(x))

= Φ1 ◦ · · · ◦ Φi−1 ◦ Φi(1)

= Φ1 ◦ · · · ◦ Φi−1 ◦ Φi ◦ hiσi
(0)

= lim
x→(inf ϕ1

σ1
◦···◦ϕi−1

σi−1
(0,1))−

Φ1 ◦ · · · ◦ Φi−1 ◦ hiσi
◦ (ϕ1

σ1
◦ · · · ◦ ϕi−1

σi−1
)−1(x)

= lim
x→(inf Iσ1,...,σi )

−
fN
σ (x) .

The right endpoint follows a similar calculation, resulting in continuity.
Having established that fN

σ is piecewise linear and continuous, Lipschitzness will follow from
the fact the each linear segment has a bounded slope. To see this holds, recall that

(Φi)′ = (ϕi)′ =⇒ (Φi)′ =
1

((ϕi)−1)′
, (6)

17
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so we get∣∣∣∣(Φ1 ◦ · · · ◦ Φi−1 ◦ hiσi
◦ (ϕ1

σ1
◦ · · · ◦ ϕi−1

σi−1
)−1
)′∣∣∣∣ = ∣∣(hiσi

)′
∣∣ ≤ 8i+1 − 2

8i+1 − 4
= 1 +

2

8i+1 − 4
< 2 .

In order to prove convexity, it is enough to show that each linear segment has slope which is larger
than the segment to its left (hence the derivative is increasing which implies convexity). Recalling
that by Lemma 13 we have [0, 1] ⊃ Iσ1 ⊃ Iσ1,σ2 ⊃ · · · ⊃ Iσ1,...,σN , we see that it is enough to
establish monotonicity between the left linear segments of Iσ1,...,σi , Iσ1,...,σi+1 (in that order) and
between the right linear segments of Iσ1,...,σi+1 , , Iσ1,...,σi (in that order) for any i ∈ [N ]. In order
to do that, first note that by definition of hi1, h

i
0 we have

(h0i )
′(x) =

−
(
8i+1−2
8i+1−4

)
, 0 ≤ x ≤ 1

2 −
2

8i+1(
8i+1−2
8i+1+2

)
, 1

2 −
1

8i+1 ≤ x ≤ 1
,

(hi1)
′(x) =

−
(
8i+1−2
8i+1+2

)
, 0 ≤ x ≤ 1

2 + 1
8i+1(

8i+1−2
8i+1−4

)
, 1

2 + 2
8i+1 ≤ x ≤ 1

. (7)

Denoting by L(Iσ1,...,σi) the left linear segment of Iσ1,...,σi , we see that for any x ∈ L(Iσ1,...,σi) we
have by Eq. (6) and Eq. (7):

(fN
σ )′(x) =

(
Φ1 ◦ · · · ◦ Φi ◦ hi+1

σi+1
◦ (ϕ1

σ1
◦ · · · ◦ ϕi

σi
)−1
)′

(x)

=
(
hi+1
σi+1

)′
(x ∈ L([0, 1])) ≤ −

(
8i+2 − 2

8i+2 + 2

)
,

while for any x ∈ L(Iσ1,...,σi+1) we have

(fN
σ )′(x) =

(
Φ1 ◦ · · · ◦ Φi+1 ◦ hi+2

σi+2
◦ (ϕ1

σ1
◦ · · · ◦ ϕi+1

σi+1
)−1
)′

(x)

=
(
hi+2
σi+2

)′
(x ∈ L[0, 1]) ≥ −

(
8i+3 − 2

8i+3 − 4

)
.

It is easy to verify for all i ∈ N that −
(
8i+3−2
8i+3−4

)
≤ −

(
8i+2−2
8i+2+2

)
, which established the desired

monotonicity. Checking the right linear segments results in the same calculation, overall proving
the first bullet.

For the second bullet, note that fN
σ attains its minimum at Iσ1,...,σN since till then the function is

decreasing, and after that it’s increasing (and on that segment it is constant). Elsewhere we already
saw that the derivatives are ±

(
8i+1−2
8i+1+2

)
,±
(
8i+1−2
8i+1+4

)
which are easily verified to have absolute

value larger than 1
2 for any i ∈ N.

The third bullet easily follows since Iσ1,...,σN ⊂ [0, 1] and fN
σ (0) = 1, Φ1 ◦ · · · ◦ΦN−1(0) > 0.

The following lemma follows immediately from the definition of fN
σ and from Lemma 13,

though we state it for future reference.
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Lemma 15 For any N ≥ 2, σ ∈ {0, 1}N , 1 ≤ k < N , it holds that fN
σ (x), (fN

σ )′(x) do not
depend on σk+1, . . . , σN for x /∈ Iσ1,...,σk

.

Given Lemma 13 and Lemma 15, we state the following lemma which whose proof appears in
[11, Proof of Proposition 1].

Lemma 16 ([11]) For any t ∈ N, 1 ≤ l < k ≤ N :

Pr
σ
[xt+1 ∈ Iσ1,...,σl,...,σk

|x1, . . . , xt /∈ Iσ1,...,σl
] ≤ 1

2k−l−1
.

We now claim that points that are δ close to argminx f
N
σ (x) = Iσ1,...,σN ⊂ Iσ1,...,σN−1 ⊂

Iσ1,...,σN−2 ⊂ . . . are necessarily inside Iσ1,...,σk
with large enough k.

Lemma 17 Let k = ⌊14
√
log(1/δ)⌋ < N ∈ N. Then dist(x, Iσ1,...,σN ) < δ implies x ∈ Iσ1,...,σk

.

Proof Recall that Iσ1,...,σN ⊂ Iσ1,...,σk
, and note that for any i ∈ N :

inf Iσ1,...,σi+1 − inf Iσ1,...,σi = ϕ1
σ1
◦ · · · ◦ ϕi

σi
◦ ϕi+1

σi+1
(0)− ϕ1

σ1
◦ · · · ◦ ϕi

σi
(0)

(∗)
=

 i∏
j=1

(ϕj
σj
)′

 · (ϕi+1
σi+1

(0)− 0
)

≥

 i∏
j=1

2

8j+1

 · (1

2
− 2

8i+2

)

≥ 2i

8
i(i+3)

2

· 1
4
.

where (∗) follows from the fact that for any affine mapping x 7→ ax + b it holds that (ax1 + b) −
(ax2 + b) = a(x1 − x2). Thus

inf Iσ1,...,σN − inf Iσ1,...,σk
=

N−1∑
i=k

(
inf Iσ1,...,σi+1 − inf Iσ1,...,σi

)
≥

N−1∑
i=k

2i

8
i(i+3)

2

· 1
4

>
2k

4 · 8
k(k+3)

2

> δ ,

where that last inequality is a straightforward computation for k = ⌊14
√

log(1/δ)⌋. We conclude
that

inf Iσ1,...,σk
< inf Iσ1,...,σN − δ ,

while the same arguments also show that sup Iσ1,...,σk
> sup Iσ1,...,σN + δ. Overall, we see that for

any x satisfying dist(x, Iσ1,...,σN ) < δ :

inf Iσ1,...,σk
< Iσ1,...,σN − δ < x < sup Iσ1,...,σN + δ < sup Iσ1,...,σk

=⇒ x ∈ Iσ1,...,σk
.

19



ON THE COMPLEXITY OF FINDING SMALL SUBGRADIENTS IN NONSMOOTH OPTIMIZATION

We are now ready to finish the proof. We set k = ⌊14
√

log(1/δ)⌋, N = k+1, σ ∼ Unif{0, 1}N .
We consider the algorithm’s iterates x1, . . . , xT as random variables which depend on the random
choice of the function fσ fed to the algorithm. Denote the stochastic process

Z0 = 0, Zt := max{l ∈ N : ∃s ≤ t, xs ∈ Iσ1,...,σl
} ,

and note that that Zt+1−Zt ≥ 0 with probability 1, yet by Lemma 16: Pr[Zt+1−Zt = m] ≤ 1
2m−1 .

Hence by Lemma 17

Pr
σ

[
∃t ∈ [T ] : dist(xt, argmin

x
fN
σ (x)) < δ

]
≤ Pr

σ
[∃t ∈ [T ] : xt ∈ Iσ1,...,σk

] = Pr
σ
[ZT ≥ k]

≤ 1

k
E[ZT ] =

1

k

T∑
j=1

E[Zj − Zj−1] =
1

k

T∑
j=1

∞∑
m=0

Pr[Zj − Zj−1 = m]

≤ 1

k

T∑
j=1

∞∑
m=0

1

2m−1
≤ 1

k

T∑
j=1

∞∑
m=0

1

2m−1
≤ 1

k

T∑
j=1

4 =
4T

k
<

2

3
.

This proves Eq. (5) for 2-Lipschitz function and 1
2 -stationary points. By rescaling the Lipschitz

constant and ϵ by a factor of 2, we have finished the proof.

B.5. Proof of Theorem 4

The proof is identical to the proof of Theorem 5 which appears above, by replacing the con-
structed family fσ by the family hσ constructed in [11, Proof of proposition 1]. The only mod-
ification throughout the whole proof is that Lemma 17 holds with k = Θ(log(1/δ)) instead of
k = 1

4

√
log(1/δ), affecting the final bound on T appropriately.

B.6. Proof of Theorem 6

It is well known (see for example [2, Theorem 3.2]) that given a Lipschitz convex function, per-
forming projected gradient descent for T1 := L2R2/3

ϵ2δ2/3
iterations and setting xGD := 1

T1

∑T1
j=1 xj

satisfies f(xGD) − infx f(x) ≤ RL√
T1

= R2/3ϵδ1/3. Furthermore, according to [20, Theorem 8], if

we initialize INGD at a point x such that f(x)− infx f(x) ≤ ∆ then with probability 2
3 it produces

a (δ, ϵ) stationary point within T2 = Õ
(
∆L2

δϵ3

)
oracle calls. In particular, initializing at xGD for

which we have ∆ = R2/3ϵδ1/3 yields T2 = L2R2/3

ϵ2δ2/3
and letting T = T1 + T2 proves the claim.

Replacing INGD with its deterministic counterpart from Theorem 2 proves the additional claim.

B.7. Proof of Claim 1

First, if x is δ-close to an ϵ-stationary point it is clear that it is also (δ, ϵ)-stationary. For the nontrivial
implication, suppose x is (δ, ϵ)-stationary. Namely, there exists g ∈ conv(∪x−δ<t<x+δ∂f(t)) with
|g| ≤ ϵ. By Caratheodory’s theorem (for d = 1), this means there exist t1, t2 ∈ (−δ, δ), gi ∈ ∂f(ti)
and λ1, λ2 ∈ [0, 1] satisfying λ1 + λ2 = 1 such that g = λ1g1 + λ2g2. If either g1 or g2 satisfy
|gi| ≤ ϵ then we get that x is δ-close the ϵ-stationary point ti. Otherwise, both gi satisfy |gi| > ϵ,
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but their convex combination is of magnitude smaller than ϵ - thus they necessarily have different
signs. Without loss of generality suppose g1 < 0, g2 > 0. We claim that in this case there exists
t∗ ∈ [t1, t2] such that 0 ∈ ∂f(t∗), finishing the proof since x is δ-close to the stationary point t∗.
Indeed, let A := {t ∈ [t1, t2] : ∀g ∈ ∂f(t), g < 0} and note that by assumption t1 ∈ A, t2 ̸∈ A.
Denote t∗ := supA ∈ [t1, t2] which exists since A is non-empty. On the one hand, by definition
of the supremum there exists a non-decreasing sequence {yn}∞n=1 ⊂ A with limn→∞ yn = t∗.
Note that by definition of A all the sub-differentials at all of yn are negative, thus t∗ has some non-
positive sub-differential (by Bolzano–Weierstrass one can construct a converging sub-sequence of
derivatives). On the other hand, by construction all differentiable points in (t∗, t2) have only positive
differentials, thus x + t∗ has some non-negative sub-differential. Finally, recalling that ∂f(t∗) is
convex we get 0 ∈ ∂f(t∗) as claimed.

Appendix C. Additional Lemma

Lemma 18 For any C > 1, δ < 1 and any ϵ < 1
8C , there exists a 1-Lipschitz convex function

f : Rd → R in dimension d = O(1/ϵ2) and a point x ∈ Rd such that x is a (δ, ϵ)-stationary point
of f , yet is at distance at least Cδ away from any ϵ-stationary point of f .

Proof Fix δ < 1 < C, ϵ < 1
8C , and let d = ⌈ 3

ϵ2
⌉. We denote by A := diag(2ϵ2, 1, . . . , 1) ∈ Rd×d

the diagonal positive-definite matrix whose diagonal is (2ϵ2, 1, . . . , 1), and consider its correspond-
ing Mahalanobis norm f(x) :=

√
x⊤Ax. For any x ̸= 0 we have

∇f(x) = 1√
x⊤Ax

·Ax =⇒ ∥∇f(x)∥2 = x⊤A2x

x⊤Ax
∈ [λmin(A), λmax(A)] = [2ϵ2, 1] .

In particular, we see that for any x ̸= 0 the gradient norm is at least
√
2ϵ2 =

√
2 · ϵ, thus it is not

an ϵ-stationary point. We deduce that f is indeed 1-Lipschitz, and that it has no ϵ-stationary points
except for the origin (which is its minimum, hence stationary). Denote x0 := δ

8ϵe1 and notice that its
distance from the only ϵ-stationary point of f is ∥x0 − 0∥ = δ

8ϵ > Cδ. It remains to show that x0 is a
(δ, ϵ)-stationary point of f . To that end, consider for any 2 ≤ j ≤ d : zj := x0+

δ
2 ·ej =

δ
8ϵe1+

δ
2 ·ej

which are clearly inside a δ-ball around x0. Furthermore,

∇f(zj) =
1√

δ2

32 + δ2

4

·
(
δϵ

4
· e1 +

δ

2
· ej
)

=

√
2

3
· ϵ · e1 +

2
√
2

3
· ej .

Now, define g := 1
d−1

∑d
j=2∇f(zj) and notice that by definition g ∈ ∂fδ(x0) since ∥x− zj∥ <

δ. This establishes that x0 is indeed a (δ, ϵ)-stationary point since

g =
1

d− 1

d∑
j=2

∇f(zj) =
√
2

3
ϵ · e1 +

2
√
2

3(d− 1)

d∑
j=2

ej

=⇒ ∥g∥ =

√
2ϵ2

9
+

8

9(d− 1)2
· (d− 1) =

√
2ϵ2

9
+

8

9(d− 1)
< ϵ ,

where the last inequality is easily verified for d = ⌈ 3
ϵ2
⌉.
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