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Abstract
We provide a first finite-particle convergence rate for Stein variational gradient descent (SVGD).
Specifically, whenever the target distribution is sub-Gaussian with a Lipschitz score, SVGD with
n particles and an appropriate step size sequence drives the kernel Stein discrepancy to zero at an
order 1/

√
log log n rate. We suspect that the dependence on n can be improved, and we hope that

our explicit, non-asymptotic proof strategy will serve as a template for future refinements.

1. Introduction

Stein variational gradient descent [SVGD, 14] is an algorithm for approximating a target probability
distribution P on Rd with a collection of n particles. Given an initial particle approximation µn0 =
1
n

∑n
i=1 δxi with locations xi ∈ Rd, SVGD (Algorithm 1) iteratively evolves the particle locations

to provide a more faithful approximation of the target P by performing optimization in the space of
probability measures. SVGD has demonstrated encouraging results for a wide variety of inferential
tasks, including approximate inference [14, 22, 23], generative modeling [21], and reinforcement
learning [9, 16].

Algorithm 1 Stein Variational Gradient Descent [14]: SVGD(µ0, r)

Input: Target P with density p, kernel k, step sizes (ϵs)s≥0, approximating measure µ0, rounds r
for s = 0, · · · , r − 1 do

Let µs+1 be the distribution ofXs+ϵs
∫
k(x,Xs)∇ log p(x)+∇xk(x,X

s)dµs(x) forXs ∼ µs.
Output: Updated approximation µr of the target P

Despite the popularity of SVGD, relatively little is known about its approximation quality. A
first analysis by Liu [13, Thm. 3.3] showed that continuous SVGD—that is, Algorithm 1 initialized
with a continuous distribution µ∞0 in place of the discrete particle approximation µn0—converges
to P in kernel Stein discrepancy [KSD, 4, 7, 15]. KSD convergence is also known to imply weak
convergence under various conditions on the target P and the SVGD kernel k [1, 3, 7, 10]. Follow-
up work by Korba et al. [11], Salim et al. [17], Sun et al. [19] sharpened the result of Liu with
path-independent constants, weaker smoothness conditions, and explicit rates of convergence. In
addition, Duncan et al. [5] analyzed the continuous-time limit of continuous SVGD to provide
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conditions for exponential convergence. However, each of these analyses applies only to continuous
SVGD and not to the finite-particle algorithm used in practice.

To bridge this gap, Liu [13, Thm. 3.2] showed that n-particle SVGD converges to continuous
SVGD in bounded-Lipschitz distance but only under boundedness assumptions violated by most
applications of SVGD. To provide a more broadly applicable proof of convergence, Gorham et al.
[8, Thm. 7] showed that n-particle SVGD converges to continuous SVGD in 1-Wasserstein distance
under assumptions commonly satisfied in SVGD applications. However, both convergence results
are asymptotic, providing neither explicit error bounds nor rates of convergence. Korba et al. [11,
Prop. 7] explicitly bounded the expected squared Wasserstein distance between n-particle and con-
tinuous SVGD but only under the assumption of bounded ∇ log p, an assumption that rules out all
strongly log concave or dissipative distributions and all distributions for which the KSD is currently
known to control weak convergence [1, 3, 7, 10]. In addition, Korba et al. [11] do not provide a
unified bound for the convergence of n-particle SVGD to P .

In this work, we derive a first unified convergence bound for finite-particle SVGD to its target.
To achieve this, we first bound the 1-Wasserstein discretization error between finite-particle and con-
tinuous SVGD under assumptions commonly satisfied in SVGD applications and compatible with
KSD weak convergence control (see Theorem 1). We next bound KSD in terms of 1-Wasserstein
distance and SVGD moment growth to explicitly control KSD discretization error in Theorem 2.
Finally, Theorem 3 combines our results with the established KSD analysis of continuous SVGD to
arrive at an explicit KSD error bound for n-particle SVGD.

2. Notation and Assumptions

Throughout, we fix a target distribution P in the set P of probability measures on Rd, a nonneg-
ative step size sequence (ϵs)s≥0, and a reproducing kernel k : Rd × Rd → R with reproduc-
ing kernel Hilbert space (RKHS) H and product RKHS Hd ≜

⊗d
i=1H [2]. For all µ, ν ∈ P ,

we let W1(µ, ν) ≜ infX∼µ,Z∼ν E[∥Z −X∥2] denote the 1-Wasserstein distance between them
and introduce the shorthand mµ ≜ Eµ[∥·∥]2, mµ,P ≜ EX∼µ⊥⊥Z∼P [∥X − Z∥2], and Mµ,P ≜
EX∼µ⊥⊥Z∼P [∥X − Z∥22]. We allow each of these quantities to take on the value ∞ when the ran-
dom variables are not suitably integrable. We further define the Kullback-Leibler divergence as
KL(µ∥ν) ≜ Eµ[log(

dµ
dν )] when µ is absolutely continuous with respect to ν (denoted by µ ≪ ν)

and as ∞ otherwise.
Our analysis will make use of the following standard assumptions on the SVGD kernel and

target distribution.

Assumption 1 (Lipschitz, mean-zero score function) The target distribution P ∈ P has a twice
differentiable density p with an L-Lipschitz score function sp ≜ ∇ log p, i.e., ∥sp(x)− sp(y)∥2 ≤
L∥x− y∥2 for all x, y ∈ Rd. Moreover, EP [sp] = 0 and sp(x⋆) = 0 for some x⋆ ∈ Rd.

Assumption 2 (Bounded kernel derivatives) For any multi-index I = (I1, I2, . . . , Id) with |I| ≜∑d
i=1 Ii ≤ 2, we have supx∈Rd

(
DI

xD
I
yk(x, y)|y=x

)
≤ κ2. Here, DI is the differential operator

defined as DI
x = d|I|

dx
I1
1 dx

I2
2 ...dx

Id
d

.

Assumption 3 (Decaying kernel derivatives) There exists γ > 0 such that

supx,y∈Rd,∥x−y∥2≥r∥∇xk(x, y)∥2 ≤ γ/r.
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To leverage the continuous SVGD convergence rates of Salim et al. [17], we additionally as-
sume that the target P satisfies Talagrand’s T1 inequality [20, Def. 22.1]. Remarkably, Villani [20,
Thm. 22.10] showed that Assumption 4 is equivalent to P being a sub-Gaussian distribution. Hence,
this mild assumption holds for all strongly log concave P [18, Def. 2.9], all P satisfying the log
Sobolev inequality [20, Thm. 22.17], and all distantly dissipative P for which KSD is known to
control weak convergence [7, Def. 4].

Assumption 4 (Talagrand’s T1 inequality [20, Def. 22.1]) EP [∥·∥2] <∞, and there exists λ > 0
such that for all µ with Eµ[∥·∥2] <∞

W1(µ, P ) ≤
√

2KL(µ∥P )/λ.

Finally we make use of the following notation specific to the SVGD algorithm.

Definition 1 (Stein operator) For any vector-valued function g : Rd → Rd, the Langevin Stein
operator [6] for P satisfying Assumption 1 is defined by

(TP g)(x) ≜ ⟨sp(x), g(x)⟩+∇ · g(x).

Definition 2 (Vector-valued Stein operator) For any function h : Rd → R, the vector-valued
Langevin Stein operator [15] for P satisfying Assumption 1 is defined by

(APh)(x) ≜ sp(x)h(x) +∇h(x)

with components

(Aj
Ph)(x) ≜ (sp(x))j h(x) +∇jh(x).

Definition 3 (SVGD transport map and pushforward) The SVGD transport map [14] for a ker-
nel k, target P satisfying Assumption 1, approximating µ ∈ P , and step size ϵ is given by

Tµ,ϵ(x) ≜ x+ ϵEX∼µ[(APk(·, x))(X)].

Moreover, the SVGD pushforward Φϵ(µ) represents the distribution of Tµ,ϵ(X) when X ∼ µ.

Definition 4 (Kernel Stein discrepancy) For a target P satisfying Assumption 1 and measures
µ, ν ∈ P , we define the Langevin kernel Stein discrepancy [KSD, 4, 7, 15] with base kernel k by1

KSDP (µ, ν) ≜ sup∥g∥Hd≤1 Eµ[TP g]− Eν [TP g].

3. Wasserstein Discretization Error of SVGD

Our first main result concerns the discretization error of SVGD and shows that n-particle SVGD
does not stray too far from its continuous SVGD limit when its step sizes are chosen appropriately.

1. Prior work [4, 7, 15] only defined KSDP (µ, ν) for the case ν = P . Definition 4 extends this definition to general ν.
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Theorem 1 (Wasserstein discretization error of SVGD) Suppose Assumptions 1, 2, and 3 hold.
For any µn0 , µ

∞
0 ∈ P , the Algorithm 1 outputs µnr = SVGD(µn0 , r) and µ∞r = SVGD(µ∞0 , r) satisfy

W1(µ
n
r , µ

∞
r ) ≤W1(µ

n
0 , µ

∞
0 ) exp(br−1(A+B exp(Cbr−1)))

for br−1 ≜
∑r−1

s=0 ϵs, A = (c1 + c2)(1 +mP ), B = c1mµn0 ,P
+ c2mµ∞

0 ,P , and C = κ2(3L + d).
Here c1 = max(

√
dκ2L,

√
dκ2L∥x⋆∥2 + dκ2) and c2 = κ2L+ dκ2 + L(γ +

√
dκ2)(1 + ∥x⋆∥2).

The proof of Theorem 1 in Appendix A relies on two lemmas. The first, due to Gorham et al.
[8], shows that the one-step SVGD pushforward Φϵ (Definition 3) is pseudo-Lipschitz with respect
to the 1-Wasserstein distance whenever the score function ∇ log p and kernel k fulfill a commonly-
satisfied pseudo-Lipschitz condition.

Lemma 1 (Wasserstein pseudo-Lipschitzness of SVGD [8, Lem. 12]) For P ∈ P with differen-
tiable density p, suppose that the following pseudo-Lipschitz bounds hold

sup
z∈Rd

∥∇z(sp(x)k(x, z) +∇xk(x, z))∥op ≤ c1(1 + ∥x∥2),

sup
x∈Rd

∥∇x(sp(x)k(x, z) +∇xk(x, z))∥op ≤ c2(1 + ∥z∥2).

for some constants c1, c2 > 0. Then, for any µ, ν ∈ P ,

W1(Φϵ(µ),Φϵ(ν)) ≤W (µ, ν)(1 + ϵcµ,ν),

where Φϵ is the one-step SVGD pushforward (Definition 3) and cµ,ν = c1(1 +mµ) + c2(1 +mν).

The second lemma, proved in Appendix B, controls the growth of the first and second absolute
moments under SVGD.

Lemma 2 (SVGD moment growth) Suppose Assumptions 1 and 2 hold, and let C = κ2(3L+d).
Then the SVGD output µr of Algorithm 1 with br−1 ≜

∑r−1
s=0 ϵs satisfies

mµr ≤ mµ0,P
∏r−1

s=0(1 + ϵsC) +mP ≤ mµ0,P exp(Cbr−1) +mP ,

Mµr,P ≤Mµ0,P
∏r−1

s=0(1 + ϵsC)
2 ≤Mµ0,P exp(2Cbr−1).

4. KSD Discretization Error of SVGD

Our next result translates the Wasserstein error bounds of Theorem 1 into KSD error bounds.

Theorem 2 (KSD discretization error of SVGD) Suppose Assumptions 1 and 2 hold. For any
µn0 , µ

∞
0 ∈ P , the Algorithm 1 outputs µnr = SVGD(µn0 , r) and µ∞r = SVGD(µ∞0 , r) satisfy

KSDP (µ
n
r , µ

∞
r ) ≤ κ(d+ L)w0,n exp(br−1(A+B exp(Cbr−1)))

+ d1/4κL
√
2Mµ∞

0 ,Pw0,n exp(br−1(2C +A+B exp(Cbr−1))/2)

for w0,n ≜W1(µ
n
0 , µ

∞
0 ) and A,B,C defined as in Theorem 1.
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Our proof of Theorem 2 relies on the following lemma, proved in Appendix C, that shows that
the KSD is controlled by the 1-Wasserstein distance.

Lemma 3 (KSD-Wasserstein bound) Suppose Assumptions 1 and 2 hold. For any µ, ν ∈ P ,

KSDP (µ, ν) ≤ κ(d+L)W1(µ, ν)+LE(X∼µ,Y∼ν)⊥⊥Z∼P [∥Y −Z∥2min(2κ,
√
dκ∥X−Y ∥2)]

≤ κ(d+L)W1(µ, ν)+d
1/4κL

√
2Mν,PW1(µ, ν).

Proof of Theorem 2 The result follows directly from Lemma 3, Lemma 2, and Theorem 1. ■

5. A Finite-particle Convergence Rate for SVGD

To establish our main SVGD convergence result, we combine Theorems 1 and 2 with the following
descent lemma for continuous SVGD error due to Salim et al. [17] which shows that continuous
SVGD decreases the KL divergence to P and drives the KSD to P to zero.

Lemma 4 (Continuous SVGD descent lemma [17, Thm. 3.2]) Suppose Assumptions 1, 2, and 4
hold, and consider the outputs µ∞r = SVGD(µ∞0 , r) and µ∞r+1 = SVGD(µ∞0 , r+1) of Algorithm 1
with µ∞0 ≪ P . If max0≤s≤r ϵs ≤ Rα,2 for some α > 1 and

Rα,p ≜ min
(

p
κ2(L+α2)

, (α− 1)(1 + LEµ∞
0
[∥· − x⋆∥2] + 2L

√
2KL(µ∞0 ∥P )/λ)

)
for p ∈ {1, 2},

then

KL(µ∞r+1∥P )− KL(µ∞r ∥P ) ≤ −ϵr
(
1− κ2(L+α2)

2 ϵr

)
KSDP (µ

∞
r , P )

2. (1)

By summing the result (1) over r = 0, . . . , t, we obtain the following corollary.

Corollary 1 Under the assumptions and notation of Lemma 4, suppose max0≤r≤t ϵr ≤ Rα,1 for

some α > 1, and let πr ≜
c(ϵr)∑t
r=0 c(ϵr)

for c(ϵ) ≜ ϵ
(
1− κ2(L+α2)

2 ϵ
)

. Since ϵ
2 ≤ c(ϵ) < ϵ, we have∑t

r=0 πrKSDP (µ
∞
r , P )

2 ≤ 1∑t
r=0 c(ϵr)

KL(µ∞0 ∥P ) ≤ 2∑t
r=0 ϵr

KL(µ∞0 ∥P ).

Finally, we arrive at our main result that bounds the approximation error of n-particle SVGD in
terms of the chosen step size sequence and the initial discretization error W1(µ

n
0 , µ

∞
0 ).

Theorem 3 (KSD error of finite-particle SVGD) Suppose Assumptions 1, 2, 3, and 4 hold, fix
any µ∞0 ≪ P and µn0 ∈ P , and let w0,n ≜ W1(µ

n
0 , µ

∞
0 ). If max0≤r<t ϵr ≤ ϵt ≜ Rα,1 for some

α > 1 and Rα,1 defined in Lemma 4, then the Algorithm 1 outputs µnr = SVGD(µn0 , r) satisfy

min0≤r≤t KSDP (µ
n
r , P ) ≤

∑t
r=0 πrKSDP (µ

n
r , P ) ≤ at−1 +

√
2

Rα,1+ bt−1
KL(µ∞0 ∥P ), (2)

for πr as defined in Lemma 4, (A,B,C) as defined in Theorem 1, bt−1 ≜
∑t−1

r=0 ϵr, and

at−1 ≜ κ(d+ L)w0,n exp(bt−1(A+B exp(Cbt))) (3)

+ d1/4κL
√
2Mµ∞

0 ,Pw0,n exp(bt−1(2C +A+B exp(Cbt−1))/2).
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Proof By the triangle inequality and Theorem 2 we have

|KSDP (µ
n
r , P )− KSDP (µ

∞
r , P )| ≤ KSDP (µ

n
r , µ

∞
r ) ≤ ar−1

for each r. Therefore∑t
r=0 πr(KSDP (µ

n
r , P )− ar−1)

2 ≤
∑t

r=0 πrKSDP (µ
∞
r , P )

2 ≤ 2
Rα,1+ bt−1

KL(Q∞
0 ∥P ), (4)

where the last inequality follows from Corollary 1. Moreover, by Jensen’s inequality,∑t
r=0 πr(KSDP (µ

n
r , P )− ar−1)

2 ≥
(∑t

r=0 πrKSDP (µ
n
r , P )−

∑t
r=0 πrar−1

)2
. (5)

Combining (4) and (5), we have∑t
r=0 πrKSDP (µ

n
r , P ) ≤

∑t
r=0 πrar−1 +

√
2

Rα,1+ bt−1
KL(Q∞

0 ∥P ).

We finish the proof by noticing that
∑t

r=0 πrar−1 ≤ max0≤r≤t ar−1 = at−1.

The following corollary, proved in Appendix D, provides an explicit SVGD convergence bound
and rate by choosing the step size sum to balance the terms on the right-hand side of (2).

Corollary 2 (A finite-particle convergence rate for SVGD) Instantiate the notation and assump-
tions of Theorem 3, let (w̄0,n, Ā, B̄, C̄) be any upper bounds on (w0,n, A,B,C) respectively, and
define the growth functions

ϕ(w) ≜ log log(ee + 1
w ) and ψB̄,C̄(x, y, β) ≜

1
C̄
log( 1

B̄
max(B̄, 1β log 1

x−y)).

If the step size sum

bt−1 =
∑t−1

r=0 ϵr = min
(
ψB̄,C̄

(
w̄0,n

√
ϕ(w̄0,n), Ā, β1

)
, ψB̄,C̄

(
w̄0,n ϕ(w̄0,n), Ā+ 2C̄, β2

))
,

for β1 ≜ max
(
1, ψB̄,C̄

(
w̄0,n

√
ϕ(w̄0,n), Ā, 1

))
and

β2 ≜ max
(
1, ψB̄,C̄

(
w̄0,n ϕ(w̄0,n), Ā+ 2C̄, 1

))
then

min
0≤r≤t

KSDP (µ
n
r , P )

≤


κ(d+ L)w̄0,n + d1/4κL

√
2Mµ∞

0 ,P w̄0,n +
√

2
Rα,1

KL(µ∞0 ∥P ) if bt−1 = 0

κ(d+L)+d1/4κL
√

2Mµ∞0 ,P√
ϕ(w̄0,n)

+

√
2KL(µ∞

0 ∥P )

Rα,1+
1
C̄

log( 1
B̄
(

log(1/(w̄0,n ϕ(w̄0,n)))

max(1,ψB̄,C̄ (w̄0,n,0,1))
−Ā−2C̄))

otherwise.
(6)

= O

(
1√

log log(ee+ 1
w̄0,n

)

)
. (7)

If, in addition, µn0 = 1
n

∑n
i=1 δxi for xi

i.i.d.∼ µ∞0 with Mµ∞
0

≜ Eµ∞
0
[∥·∥22] <∞, then

w̄0,n ≜
Mµ∞0

log(n)I[d=2]

δ n1/(2∨d) ≥ w0,n (8)

with probability at least 1− cδ for a universal constant c > 0. Hence, with this choice of w̄0,n,

min0≤r≤t KSDP (µ
n
r , P ) = O

(
1√

log log(nδ)

)
with probability at least 1− cδ.
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Appendix A. Proof of Theorem 1: Wasserstein discretization error of SVGD

We first show that the pseudo-Lipschitzness conditions of Lemma 1 hold given our assumptions.
According to Assumption 2, we have

∇zik(x, z) = ⟨∇zik(z, ·), k(x, ·)⟩H ≤ (∇zi∇z′i
k(z, z′)|z′=zk(x, x))

1/2 ≤ κ2,

∥∇zk(x, z)∥2 =
√∑d

i=1(∇zik(x, z))
2 ≤

√
dκ2.

∇zj∇xik(x, z)=⟨∇zjk(z, ·),∇xik(x, ·)⟩H ≤ (∇zj∇z′j
k(z, z′)|z′=z∇xi∇x′

i
k(x, x′)|x′=x)

1/2≤κ2,

∥∇z∇xk(x, z)∥op ≤ ∥∇z∇xk(x, z)∥F =
√∑d

i=1

∑d
j=1(∇zj∇xik(x, z))

2 ≤ dκ2,

Recall that x⋆ satisfies sp(x⋆) = 0 by Assumption 1. Then, by the triangle inequality, the definition
of ∥·∥op, and Cauchy-Schwartz,

∥∇z(sp(x)k(x, z) +∇xk(x, z))∥op
=

∥∥(sp(x)− sp(x
⋆))∇zk(x, z)

⊤∥∥
op

+ ∥∇z∇xk(x, z)∥op
≤ sup∥u∥2≤1(∥sp(x)− sp(x

⋆)∥2|∇zk(x, z)
⊤u|) + dκ2

≤ L∥x− x⋆∥2∥∇zk(x, z)∥2 + dκ2

≤
√
dκ2L(∥x∥2 + ∥x⋆∥2) + dκ2

≤ max(
√
dκ2L,

√
dκ2L∥x⋆∥2 + dκ2)(1 + ∥x∥2).

Letting c1 = max(
√
dκ2L,

√
dκ2L∥x⋆∥2 + dκ2) and taking supremum over z proves the first

pseudo-Lipschitzness condition. Similarly, we have

∥∇x(sp(x)k(x, z) +∇xk(x, z))∥op
= ∥∇sp(x)∥opk(x, z) +

∥∥(sp(x)− sp(x
⋆))∇xk(x, z)

⊤∥∥
op

+
∥∥∇2

xk(x, z)
∥∥
op

≤ κ2L+ L∥x− x⋆∥2∥∇xk(x, z)∥2 + dκ2, (9)

where we used the Lipschitzness of sp from Assumption 1 and

k(x, z) = ⟨k(x, ·), k(z, ·)⟩H ≤
√
k(x, x)k(z, z) ≤ κ2,∥∥∇2

xk(x, z)
∥∥
op

≤
∥∥∇2

xk(x, z)
∥∥
F
=

√∑
|I|=2(D

I
xk(x, z))

2 ≤ dκ2.

The last inequality is due to

|DI
xk(x, z)| = |⟨DI

xk(x, ·), k(z, ·)⟩H| ≤
√
k(z, z)DI

xD
I
x′k(x, x′)|x′=x ≤ κ2.

According to Assumption 3, there exists γ > 0 such that ∥∇xk(x, z)∥2 ≤ γ∥x− z∥−1
2 . Therefore,

for ∥x− z∥2 ≥ 1,

∥x− x⋆∥2∥∇xk(x, z)∥2 ≤ γ∥x− x⋆∥2/∥x− z∥2
≤ γ(1 + ∥z − x⋆∥2/∥x− z∥2)
≤ γ(1 + ∥z − x⋆∥2). (10)

9



A FINITE-PARTICLE CONVERGENCE RATE FOR STEIN VARIATIONAL GRADIENT DESCENT

And for ∥x− z∥2 < 1,

∥x− x⋆∥2∥∇xk(x, z)∥2 ≤
√
dκ2(∥x− z∥2 + ∥z − x⋆∥2)

≤
√
dκ2(1 + ∥z − x⋆∥2). (11)

Combining (10) and (11),

∥x− x⋆∥2∥∇xk(x, z)∥2 ≤ (γ +
√
dκ2)(1 + ∥z − x⋆∥2)

≤ (γ +
√
dκ2)(1 + ∥x⋆∥2 + ∥z∥2). (12)

Plugging (12) back into (9), we can show the second pseudo-Lipschitzness condition holds for
c2 = κ2L+ dκ2 + L(γ +

√
dκ2)(1 + ∥x⋆∥2).

Now that the pseudo-Lipschitzness conditions hold, by repeated application of Lemma 1 and
the inequality (1 + x) ≤ ex, we have

W1(µ
n
r+1, µ

∞
r+1) =W1(Φϵr(µ

n
r ),Φϵr(µ

∞
r )) ≤ (1 + ϵrDr)W (µnr , µ

∞
r )

≤W1(µ
n
0 , µ

∞
0 )

∏r

s=0
(1 + ϵsDs) ≤W1(µ

n
0 , µ

∞
0 ) exp(

∑r

s=0
ϵsDs) (13)

for Ds = c1(1 +mµns ) + c2(1 +mµ∞
s
).

Using the result from Lemma 2, we have

Ds+1 ≤ A+B exp(Cbs)

for A = (c1 + c2)(1 +mP ), B = c1mµn0 ,P
+ c2mµ∞

0 ,P , and C = κ2(3L+ d). Therefore∑r
s=0 ϵsDs ≤ max0≤s≤rDs

∑r
s=0 ϵs

≤ br(A+B exp(Cbr−1))

≤ br(A+B exp(Cbr)).

Plugging this back into (13) proves the result.

Appendix B. Proof of Lemma 2: SVGD moment growth

From Assumption 2 we know

|k(y, x)| ≤ |⟨k(y, ·), k(x, ·)⟩H| ≤ ∥k(y, ·)∥H∥k(x, ·)∥H =
√
k(y, y)k(x, x) ≤ κ2,

|DI
yk(y, x)| = |⟨DI

yk(y, ·), k(x, ·)⟩H| ≤
√
k(x, x)DI

yD
I
y′k(y, y

′)|y′=y ≤ κ2,∥∥∇2
yk(y, x)

∥∥
op

≤
∥∥∇2

yk(y, x)
∥∥
F
=

√∑
|I|=2(D

I
yk(y, x))

2 ≤ dκ2.

The last inequality implies

∥∇yk(y, x)−∇zk(z, x)∥2 ≤ dκ2∥y − z∥2.

10
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Let µ be any probability measure. Using the above results, Jensen’s inequality and the facts that
EP [sp(·)] = 0 and EZ∼P [(APk(·, x))(Z)] = 0, we have

∥Tµ,ϵ(x)− x∥2
≤ ϵ∥EX∼µ[(APk(·, x))(X)]∥2
= ϵ∥EX∼µ[(APk(·, x))(X)]− EZ∼P [(APk(·, x))(Z)]∥2
= ϵ∥EX∼µ⊥⊥Z∼P [k(Z, x)(sp(X)− sp(Z)) + (k(X,x)− k(Z, x))(sp(X)− EP [sp(·)])
+ (∇Xk(X,x)−∇Zk(Z, x))]∥2

≤ ϵEX∼µ⊥⊥Z∼P [|k(Z, x)|∥sp(X)− sp(Z)∥2 + (|k(X,x)|+ |k(Z, x)|)∥sp(X)− EP [sp(·)]∥2
+ ∥∇Xk(X,x)−∇Zk(Z, x)∥2]

≤ ϵEX∼µ⊥⊥Z∼P [κ
2L∥X − Z∥2 + 2κ2∥sp(X)− EY∼P [sp(Y )]∥2 + dκ2∥X − Z∥2]

≤ ϵEX∼µ⊥⊥Z∼P [κ
2(L+ d)∥X − Z∥2] + ϵ · 2κ2LEX∼µ⊥⊥Y∼P [∥X − Y ∥2]

= ϵκ2(3L+ d)EX∼µ⊥⊥Z∼P [∥X − Z∥2]
= ϵCmµ,P . (14)

The last step used the definitions mµ,P ≜ EX∼µ⊥⊥Z∼P [∥X − Z∥2] and C = κ2(3L + d). Then,
applying triangle inequality and (14), we have

mµr+1,P = EX∼µr+1⊥⊥Z∼P [∥X − Z∥2]
= EX∼µr⊥⊥Z∼P [∥Tµr,ϵr(X)− Z∥2]
≤ EX∼µr⊥⊥Z∼P [∥Tµr,ϵr(X)−X∥2 + ∥X − Z∥2]
≤ ϵrCEX∼µr⊥⊥Z∼P [∥X − Z∥2] + EX∼µr⊥⊥Z∼P [∥X − Z∥2]
= (1 + ϵrC)mµr,P , (15)

Mµr+1,P = EX∼µr+1⊥⊥Z∼P [∥X − Z∥22]
= EX∼µr⊥⊥Z∼P [∥Tµr,ϵr(X)− Z∥22]
≤ EX∼µr⊥⊥Z∼P [∥Tµr,ϵr(X)−X∥22 + 2∥Tµr,ϵr(X)−X∥2∥X − Z∥2 + ∥X − Z∥22]
≤ (ϵ2rC

2 + 2ϵrC)m
2
µr,P

+Mµr,P

≤ (1 + 2ϵrC + ϵ2rC
2)Mµr,P

= (1 + ϵrC)
2Mµr,P , (16)

where the second last step used Jensen’s inequality m2
µr,P

≤ Mµr,P . Then, we repeatedly apply
(15) and (16) together with the inequality 1 + x ≤ ex to get

Mµr,P ≤Mµ0,P
∏r−1

s=0(1 + ϵsC)
2 ≤Mµ0,P exp(2C

∑r−1
s=0 ϵs) ≤Mµ0,P exp(2Cbr−1),

mµr = Eµr [∥X∥2] ≤ mµr,P + EP [∥Z∥2] ≤ mµ0,P
∏r−1

s=0(1 + ϵsC) +mP

≤ mµ0,P exp(Cbr−1) +mP .

11
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Appendix C. Proof of Lemma 3: KSD-Wasserstein bound

Our proof generalizes that of Gorham and Mackey [7, Lem. 18]. Consider any g ∈ Hd satisfying
∥g∥2Hd ≜

∑d
i=1∥gi∥

2
H ≤ 1. From Assumption 2 we know

∥g(x)∥22 ≤
∑d

i=1 κ
2∥gi∥2H ≤ κ2, (17)

∥∇g(x)∥2op ≤ ∥∇g(x)∥2F =
∑d

i=1

∑d
j=1 |∇xigj(x)|2 ≤

∑d
i=1

∑d
j=1 κ

2∥gj∥2H ≤ dκ2, and (18)

∥∇(∇ · g(x))∥22 =
∑d

i=1

(∑d
j=1∇xi∇xjgj(x)

)2
≤ d

∑d
i=1

∑d
j=1 |∇xi∇xjgj(x)|2 ≤ d2κ2.

Suppose X,Y, Z are distributed so that (X,Y ) is a 1-Wasserstein optimal coupling of (µ, ν) and Z
is independent of (X,Y ). Since sp is L-Lipschitz with EP [sp] = 0 (Assumption 1), g is bounded
(17), and g and ∇ · g are Lipschitz (18), repeated use of Cauchy-Schwarz gives

Eµ[TP g]− Eν [TP g]
= E[∇ · g(X)−∇ · g(Y )] + E[⟨sp(X)− sp(Y ), g(X)⟩] + E[⟨sp(Y )− sp(Z), g(X)− g(Y )⟩]
≤ κ(d+ L)W1(µ, ν) + LE[∥Y − Z∥2min(2κ,

√
dκ∥X − Y ∥2)].

Since our choice of g was arbitrary, the first advertised result now follows from the definition
of KSD (Definition 4). The second claim then follows from Cauchy-Schwarz and the inequality
min(a, b)2 ≤ ab for a, b ≥ 0, since

E[∥Y − Z∥2min(2κ,
√
dκ∥X − Y ∥2)] ≤M

1/2
ν,P E[min(2κ,

√
dκ∥X − Y ∥2)2]1/2

≤
√
2Mν,Pd

1/4κE[∥X − Y ∥2]1/2 =
√
2Mν,PW1(µ, ν)d

1/4κ.

Appendix D. Proof of Corollary 2: A finite-particle convergence rate for SVGD

We begin by establishing a lower bound on bt−1. Let

b
(1)
t−1 = ψB̄,C̄(w̄0,n

√
ϕ(w̄0,n), Ā, β1) and b

(2)
t−1 = ψB̄,C̄(w̄0,n ϕ(w̄0,n), Ā+ 2C̄, β2)

so that bt−1 = min(b
(1)
t−1, b

(2)
t−1). Since β1, β2, ϕ(w̄0,n) ≥ 1, we have

β1 = max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,n

√
ϕ(w̄0,n)

−Ā)))

≤ max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,n

√
ϕ(w̄0,n)

)))

≤ max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,n
))) and

β2 = max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,nϕ(w̄0,n)
−Ā− 2C̄)))

≤ max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,nϕ(w̄0,n)
)))

≤ max(1, 1
C̄
log( 1

B̄
(log 1

w̄0,n
))).

12
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Hence, ϕ(w̄0,n) ≥ 1 implies that

b
(1)
t−1 ≥ 1

C̄
log( 1

B̄
(

log 1

w̄0,n

√
ϕ(w̄0,n)

max(1, 1
C̄

log( 1
B̄
(log 1

w̄0,n
)))

−Ā))

≥ 1
C̄
log( 1

B̄
(

log 1
w̄0,n ϕ(w̄0,n)

max(1, 1
C̄

log( 1
B̄
(log 1

w̄0,n
)))

−Ā− 2C̄)) and (19)

b
(2)
t−1 ≥ 1

C̄
log( 1

B̄
(

log 1
w̄0,n ϕ(w̄0,n)

max(1, 1
C̄

log( 1
B̄
(log 1

w̄0,n
)))

−Ā− 2C̄)).

We divide the remainder of our proof into four parts. First we prove each of the two cases in the
generic KSD bound (6) in Appendices D.1 and D.2. Next we show in Appendix D.3 that these two
cases yield the generic convergence rate (7). Finally, we prove the high probability upper estimate
(8) for w0,n under i.i.d. initialization in Appendix D.4.

D.1. Case bt−1 = 0

In this case, the error bound (6) follows directly from Theorem 3.

D.2. Case bt−1 > 0

We first state and prove a useful lemma.

Lemma 5 Suppose x = f(β) for a non-increasing function f : R → R and β = max(1, f(1)).
Then x ≤ f(x).

Proof If β = 1 ≥ f(1), then x = f(β) = f(1) ≤ 1. Because f is non-increasing, f(x) ≥ f(1) =
x. Otherwise, β = f(1) > 1, and hence x = f(β) ≤ f(1) = β since f is non-increasing. Since
x ≤ β and f is non-increasing, we further have f(x) ≥ f(β) = x as advertised.

Since ψB̄,C̄ is non-increasing in its third argument, Lemma 5 implies that

b
(1)
t−1 ≤ ψB̄,C̄(w̄0,n

√
ϕ(w̄0,n), Ā, b

(1)
t−1) ≤ ψB̄,C̄(w̄0,n

√
ϕ(w̄0,n), Ā, 1) = β1.

Rearranging the terms and noting that

B̄ < 1
β1

log 1

w̄0,n

√
ϕ(w̄0,n)

−Ā ≤ 1

b
(1)
t−1

log 1

w̄0,n

√
ϕ(w̄0,n)

−Ā

since b(1)t−1 ≥ bt−1 > 0, we have

w̄0,n exp(b
(1)
t−1(Ā+ B̄ exp(C̄b

(1)
t−1))) ≤ 1√

ϕ(w̄0,n)
. (20)

Similarly, we have b(2)t−1 ≤ ψB̄,C̄(w̄0,n log log
1

w̄0,n
, Ā+ 2C̄, b

(2)
t−1) and

√
w̄0,n exp(b

(2)
t−1(2C̄ + Ā+ B̄ exp(C̄b

(2)
t−1))/2) ≤ 1√

ϕ(w̄0,n)
. (21)

13
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Since bt = min(b
(1)
t−1, b

(2)
t−1), the inequalities (20) and (21) are also satisfied when bt is substituted

for b(1)t−1 and b(2)t−1. Since the error term at (3) is non-decreasing in each of (w0,n, A,B,C), we have

at ≤ (κ(d+ L) + d1/4κL
√
2Mµ∞

0 ,P )/
√
ϕ(w̄0,n).

Since bt−1 = min(b
(1)
t−1, b

(2)
t−1), the claim (6) follows from this estimate, the lower bounds (19), and

Theorem 3.

D.3. Generic convergence rate

The generic convergence rate (7) holds as, by the lower bounds (19), bt−1 = min(b
(1)
t−1, b

(2)
t−1) > 0

whenever

e−(B̄e+Ā+2C̄) > w̄0,nϕ(w̄0,n) and B̄(B̄e+Ā+2C̄)/C̄ > w̄0,nϕ(w̄0,n) log(1/w̄0,n)
(B̄e+Ā+2C̄)/C̄ ,

a condition which occurs whenever w̄0,n is sufficiently small since the right-hand side of each in-
equality converges to zero as w̄0,n → 0.

D.4. Initializing with i.i.d. particles

We begin by restating an expected Wasserstein bound due to Lei [12].

Lemma 6 (Lei [12, Thm. 3.1]) Suppose µn0 = 1
n

∑n
i=1 δxi for xi

i.i.d.∼ µ∞0 withMµ∞
0

≜ Eµ∞
0
[∥·∥22] <

∞. Then, for a universal constant c > 0,

E[W1(µ
n
0 , µ

∞
0 )] ≤ cMµ∞

0

log(n)I[d=2]

n1/(2∨d)
.

Together, Lemma 6 and Markov’s inequality imply that

W1(µ
n
0 , µ

∞
0 ) ≤ E[W1(µ

n
0 , µ

∞
0 )]/(cδ) ≤Mµ∞

0

log(n)I[d=2]

n1/(2∨d) /δ

with probability at least 1− cδ, proving the high probability upper estimate (8).
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