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Abstract
We present Rieoptax, an open source Python library for Riemannian optimization in JAX. We show
that many differential geometric primitives, such as Riemannian exponential and logarithm maps,
are usually faster in Rieoptax than existing frameworks in Python, both on CPU and GPU. We
support a range of basic and advanced stochastic optimization solvers like Riemannian stochastic
gradient, stochastic variance reduction, and adaptive gradient methods. A distinguishing feature
of the proposed toolbox is that we also support differentially private optimization on Riemannian
manifolds.

1. Introduction

Riemannian geometry is a generalization of the Euclidean geometry [57, 76] to general Riemannian
manifolds. It includes several nonlinear spaces such as the set of positive definite matrices [20, 108],
Grassmann manifold of subspaces [5, 17, 38], Stiefel manifold of orthogonal matrices [5, 29, 38],
Kendall shape spaces [68, 69, 81], hyperbolic spaces [27, 110, 111], and special Euclidean and
orthogonal group [44, 100, 104], to name a few.

Optimization with manifold based constraints has become increasingly popular and has been
employed in various applications such as low rank matrix completion [23], learning taxonomy em-
beddings [87, 88], neural networks [45, 62–64, 86, 92], density estimation [51, 59], optimal trans-
port [9, 31, 54, 84, 101], shape analysis [61, 106], and topological dimension reduction [65], among
others.

In addition, privacy preserving machine learning [2, 30, 34–36, 83, 105] has become crucial
in real applications, which has been generalized to manifold-constrained problems very recently
[52, 94, 112]. Nevertheless, such a feature is absent in existing Riemannian optimization libraries
[18, 24, 72, 80, 82, 103, 109].

In this work, we introduce Rieoptax (Riemannian Optimization in Jax), an open source Python
library for Riemannian optimization in JAX [25, 42]. The proposed library is mainly driven by the
needs of efficient implementation of manifold-valued operations and optimization solvers, readily
compatible with GPU and even TPU processors as well as the needs of privacy-supported Rieman-
nian optimization. To the best of our knowledge, Rieoptax is the first library to provide privacy
guarantees within the Riemannian optimization framework.

© S. Utpala, A. Han, P. Jawanpuria & B. Mishra.



RIEOPTAX

1.1. Background on Riemannian optimization, privacy, and JAX

Riemannian optimization. Riemannian optimization [5, 22, 43] considers the following problem

min
w∈M

f(w), (1)

where f : M → R, and M denotes a Riemannian manifold. Instead of considering (1) as a
constrained problem, Riemannian optimization [5, 22] views it as an unconstrained problem on
the manifold space. Riemannian (stochastic) gradient descent [21, 114] generalizes the Euclidean
gradient descent with intrinsic updates on manifold, i.e., wt+1 = Expwt

(−ηt gradf(wt)), where
gradf(wt) is the Riemannian (stochastic) gradient, Expw(·) is the Riemannian exponential map at
w and ηt is the step size. Recent years have witnessed significant advancements for Riemannian
optimization where more advanced solvers are generalized from the Euclidean space to Riemannian
manifolds. These include variance reduction methods [49, 50, 66, 98, 116, 117], adaptive gradient
methods [16, 67], accelerated gradient methods [7, 8, 53, 78, 115], quasi-Newton methods [60, 91],
zeroth-order methods [77] and second order methods, such as trust region methods [4] and cubic
regularized Newton’s methods [6].

Differential privacy on Riemannian manifolds. Differential privacy (DP) provides a rigorous
treatment for data privacy by precisely quantifying the deviation in the model’s output distribution
under modification of a small number of data points [34–37]. Provable guarantees of DP coupled
with properties like immunity to arbitrary post-processing and graceful composability have made
it a de-facto standard of privacy with steadfast adoption in the real applications [3, 11, 33, 39, 85].
Further, it has been shown empirically that DP models resist various kinds of leakage attacks that
can cause privacy violations [14, 28, 93, 97, 102, 118].

Recently, there is a surge of interest on differential privacy over Riemannian manifolds, which
has been explored in the context of Fréchet mean computation [94, 112] and more generally for em-
pirical risk minimization problems on Riemannian manifolds [52]. [52] proposed differentially pri-
vate Riemannian (stochastic) gradient descent methods by perturbing the Riemannian gradient with
noise from the tangent Gaussian distribution before taking step: ζ = gradf(w)+ ϵ, ϵ ∼ Nw(0, σ

2).
More recently, [10] has proposed efficient sampling procedures from the tangent Gaussian distribu-
tion for large scale and stochastic optimization scenarios.

JAX and its ecosystem. JAX [25, 42] is recently introduced machine learning framework which
support automatic differentiation capabilities [15] via grad(). Further some of the distinguishing
features of JAX are just-in-time (JIT) compilation using the accelerated linear algebra (XLA) com-
piler [48] via jit(), automatic vectorization (batch-level parallelism) support with vmap(), and
strong support for parallel computation via pmap(). All the above transformations can be com-
posed arbitrarily because JAX follows the functional programming paradigm and implements these
as pure functions.

Given that JAX has many interesting features, its ecosystem has been constantly expanding in
the last couple of years. Examples include neural network modules (Flax [56], Haiku [58], Equinox
[71], Jraph [46], Equivariant-MLP [40]), reinforcement learning agents (Rlax [13]), Euclidean opti-
mization algorithms (Optax [13]), federated learning (Fedjax [95]), optimal transport toolboxes (Ott
[32]), sampling algorithms (Blackjax [73]), differential equation solvers (Diffrax [70]), rigid body
simulators (Brax [41]), and differentiable physics (Jax-md [99]), among others.
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1.2. Rieoptax

We believe that the proposed framework for Riemannian optimization in JAX is a timely contribu-
tion that brings several benefits of JAX and new features (such as privacy support) to the manifold
optimization community discussed below.

• Automatic and efficient vectorization with vmap(). Functions that are written for in-
puts of size 1 can be converted to functions that take batch of inputs by wrapping it with
vmap(). For example, the function def dist(point a, point b) for computing
distance between a single point a and a single point b can be converted to function that
computes distance between a batch of point a and/or a batch point b by wrapping dist
with vmap() without modifying the dist() function. This is useful in many cases, e.g.,
Fréchet mean computation minw∈M

{
1
n

∑n
i=1 fi(w) :=

1
n

∑n
i=1 dist2(w, zi)

}
. Furthermore,

vectorization with vmap() is usually faster or on par with manual vectorization [25].

• Per-example gradient clipping. A key process in differentially private optimization is per-
example gradient clipping 1

n

∑n
i=1 clipτ (gradfi(w)) , where clipτ ensures norm is atmost

τ . Here, the order of operations is important: the gradients are first clipped and then aver-
aged. Popular libraries including Autograd [79], Pytorch [89] and Tensorflow [1] are heavily
optimized to directly compute the mean gradient 1

n

∑n
i=1 gradfi(w) and hence do not ex-

pose per-example gradients i.e., gradfi(w). Hence, one has to resort to ad-hoc techniques
[47, 75, 96] or come up with algorithmic modifications [26] which inherently have speed
versus performance trade-off. JAX, however, offers native support for handling such scenar-
ios and JAX-based differentially private Euclidean optimization methods have been shown
to be much faster than their non-JAX counterparts [107]. We observe that JAX offer similar
benefits for differentially private Riemannian optimization as well.

• Single Source Multiple Devices (SSMD) paradigm. JAX follows the SSMD paradigm,
and therefore, the code written for CPUs can be run on GPU/TPUs without any additional
modification.

Rieoptax is available at https://github.com/SaitejaUtpala/Rieoptax/.

2. Design and Implementation overview

The package currently implements several commonly used geometries, optimization algorithms
and differentially private mechanisms on manifolds. More geometries and advanced solvers will be
added in the future.

2.1. Core

• rieoptax.core.ManifoldArray: lightweight wrapper of the jax device array with
manifold attribute and used to model array constrained to manifold. It is registered as
Pytree to ensure compatibility jax primitives like grad() and vmap().

• rieoptax.core.rgrad: Riemannian gradient operator.
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2.2. Geometries

Geometry module contains manifolds equipped with different Riemannian metrics. Each Geome-
try contains Riemannian inner product inp(), induced norm norm(), Riemannian exponential
exp(), logarithm maps log(), induced Riemannian distance dist(), parallel transport pt(),
and transformation from the Euclidean gradient to Riemannian gradient egrad to rgrad().

Manifolds include symmetric positive definite (SPD) matrices SPD(m) := {X ∈ Rm×m : X =
X⊤,X ≻ 0}, hyperbolic space, Grassmann manifold G(m, r) := {[X] : X ∈ Rm×r,X⊤X = I}
where [X] := {XO : O ∈ O(r)}, O(r) denotes the orthogonal group and hypersphere S(d) :=
{x ∈ Rd : x⊤x = 1}. We use TxM to represent the tangent space at x and ⟨u, v⟩x to represent the
Riemannian inner product. For more detailed treatment on these geometries, we refer to [5, 22, 111].

• rieoptax.geometry.spd.SPDAffineInvariant: SPD matrices with the affine-
invariant metric [90]: SPD(m) with ⟨U,V⟩X = tr(X−1UX−1V) for U,V ∈ TXSPD(m).

• rieoptax.geometry.spd.SPDLogEuclidean: SPD matrices with the Log-Euclidean
metric [12]: SPD(m) with ⟨U,V⟩X = tr

(
DUlogm(X)DVlogm(X)

)
where DUlogm(X) is

the directional derivative of matrix logarithm at X along U.

• rieoptax.geometry.hyperbolic.PoincareBall: the Poincare-ball model of Hy-
perbolic space with Poincare metric [111], i.e., D(d) := {x ∈ Rd : x⊤x < 1} with
⟨u,v⟩x = 4u⊤v/(1− x⊤x)2 for u,v ∈ TxD(d).

• rieoptax.geometry.hyperbolic.LorentzHyperboloid: the Lorentz Hyper-
boloid model of Hyperbolic space [111], i.e., H(d) = {x ∈ Rd : ⟨x,x⟩L = −1} with
⟨u,v⟩x = ⟨u,v⟩L for u,v ∈ TxH(d), where ⟨u,v⟩L := −u0v0 + u1v1 + · · ·ud−1vd−1.

• rieoptax.geometry.grassmann.GrassmannCanonicalMetric: the Grassmann
manifold with the canonical metric [38], i.e., G(m, r) with ⟨U,V⟩X = tr

(
UTV

)
for U,V ∈

TXG(m, r).

• rieoptax.geometry.hypersphere.HypersphereCanonicalMetric: the hy-
persphere manifold which canonical metric [5, 22], i.e., S(d) with ⟨u,v⟩x = u⊤v for
u,v ∈ TxS(d).

2.3. Optimizers

Optimizers module contains Riemannian optimization algorithms. Design of optimizers follows
Optax [13], which implements every optimizer by chaining of few common transformations. Where
every optimizer

• riepotax.optimizers.first order.rsgd: Riemannian stochastic gradient de-
scent [21].

• riepotax.optimizers.first order.rsvrg: Riemannian stochastic variance re-
duced gradient descent [116].

• riepotax.optimizers.first order.rsrg: Riemannian stochastic recursive gra-
dient descent [66].
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• riepotax.optimizers.first order.rasa: Riemannian adaptive stochastic gra-
dient algorithm [67].

• riepotax.optimizers.zeroth order.zo rgd: zeroth-order Riemannian gradi-
ent descent [77].

2.4. Privacy mechanism

Mechanism module contains differential private mechanisms on Riemannian manifolds.

• rieoptax.mechanism.output perturbation.RieLaplaceMechanism: the Rie-
mannian Laplace mechanism [94] which is used for privatizing Fréchet mean computation.

• rieoptax.mechanism.output perturbation.LogEuclideanMechanism: the
Log-Euclidean mechanism [112] which is used for differentially private Fréchet mean on SPD
matrices with log-Euclidean metric.

• rieoptax.mechanism.gradient perturbation.DPRGDMechanism: noise cal-
ibration for differentially private Riemannian gradient descent [52] based on moments ac-
countant [2] in the autodp library [113].

• rieoptax.mechanism.gradient perturbation.DPRSGDMechanism: noise cal-
ibration for Differentially private Riemannian stochastic gradient descent [52] based on mo-
ments accountant [2] in autodp library [113].

3. Benchmarking Rieoptax

In this section, we benchmark the proposed Rieoptax against existing Riemannian optimization
libraries in Python. These include Pytorch [89] based Mctorch [80] and Geoopt [72], Tensor-
flow [103] based Tensorflow-Riemopt (Tf-Riemopt) [103], Numpy [55] based Pymanopt [109],
and Tensorflow based Geomstats [82]. While Geomstats supports Numpy, Pytorch, and Tensorflow
as backend, currently only the Tensorflow backend provides support for GPUs. Other non-Python
based libraries include Manopt [24] in Matlab and Manopt.jl [18] in Julia [19].

We benchmark the Riemannian exponential (Exp) and logarithm (Log) maps with the proposed
Rieoptax against the aforementioned Python libraries whenever available with 64bitfloat pre-
cision. For CPU benchmarking, we use the AMD EPYC 7B1 processor with 2 cores and 16GB
RAM. For GPU benchmarking, we use CUDA version 11.0 on 16GB Tesla P100.

• Hypersphere: hypersphere S(d) is supported in Geoopt, Tf-Riemopt, Geomstats, McTorch,
and Pyamanopt. McTorch does not support the Exp and Log maps. On GPU, Geomstats
raises an error. We benchmark all expect McTorch and Geomstats for dimensions d ∈
{50, 100, 500, 1 000, 5 000, 10 000, 25 000, 50 000}.

• Lorentz hyperboloid model: the Lorentz hyperboloid model H(d) is supported in Geoopt,
Tf-Riemopt, Geomstats, and Mctorch. While the Exp map is available in Mctorch, it does
not implement the Log map. We benchmark for dimensions d ∈ {50, 100, 500, 1 000, 5 000,
10 000, 25 000, 50 000}.
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Figure 1: Benchmarking of geometric primitives on CPU.
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Figure 2: Benchmarking of geometric primitives on GPU.

• Grassmann: Grassmann manifold G(m, r) is supported in Tf-Riemopt, Pymanopt, McTorch,
and Geomstats. McTorch does not support the Exp and Log maps. Geomstats represents
Grassmann elements in projector matrices form XX⊤ ∈ Rm×m instead of X ∈ Rm×r, which
is prohibitively expensive. We, therefore, exclude these three libraries from benchmark-
ing. We benchmark for matrix sizes (m, r) ∈ {(100, 10), (500, 10), (750, 10), (1 000, 10),
(2 000, 10), (5 000, 10)}.
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• SPD with affine-invariant metric: SPD manifold SPD(m) with the affine-invariant metric
is supported in Geoopt, Tf-Riemopt, Geomstats, and McTorch. McTorch, however, does
not support the Exp and Log maps. We benchmark all except McTorch for matrix sizes
m ∈ {10, 50, 75, 100, 150, 200}.

Figures 1 and 2 present the timing results with CPU- and GPU-based computations, respectively.
Overall, we observe that Rieoptax offers significant time improvements, especially on GPUs. For
the SPDAffineInvariant case, Rieoptax is slightly slower than Geoopt because eighwhich provides
eigen decomposition is slightly slower in JAX compared to Pytorch. Given that JAX is a relatively
new framework, we believe it would be faster even in this case in the near future.
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(a) Non-private PCA.
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(b) (0.1, 10−6)-private PCA.

Figure 3: Timing of Rieoptax for PCA on the TinyImagetNet dataset as optimization on Grassmann
manifold G(12 288, 5) on both CPU and GPU. The GPU implementation achieves a sig-
nificant speedup than CPU on both non-private and private PCA problems.

4. An example on PCA

In this section, we consider the problem of principal components analysis (PCA) by viewing it as
an optimization problem on the Grassmann manifold [5, 22], i.e.,

min
U∈G(m,r)

1

n

n∑
i=1

∥∥zi − UUT zi
∥∥2
2
, (2)

where zi ∈ Rn denote the data points. The Rieoptax implementation for solving the problem (2) is
shown in Listing 3.

We provide timing of Rieoptax on TinyImageNet [74] which has a training set of 105 images in
dimensions of 3× 64× 64 on both CPU and GPU. We take 5 000 images and vectorize each image
to produce a sample matrix of size (n, d) = (5 000, 12 288). We compute the top r = 5 principal
components, which leads to an optimization problem on G(12 288, 5).

For non-private PCA, we run the full Riemannian gradient descent method for 400 epochs. For
private PCA, we run the differentially private Riemannian gradient descent method [52] for 200
epochs with a privacy configuration of ϵ = 0.1, δ = 10−6 and gradient clipping parameter of 0.1.
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from functools import partial
from jax import jit, vmap
from jax.numpy.linalg import norm
from rieoptax.core import rgrad, ManifoldArray
from rieoptax.geometry.grassmann import GrassmannCanonical
from rieoptax.optimizer.first_order import rsgd, dp_rsgd
from rieoptax.mechanism.gradient_perturbation import DP_RGD_Mechanism
from rieoptax.optimizer.update import apply_updates

def fit(params, data, optimizer, epochs, private=False):

@jit
def step(params, opt_state, data):

def cost(params, data):
def _cost(params, data):

diff = data-params.value @ (params.value.T @ data)
return norm(diff)**2

return vmap(_cost, in_axes=(None,0))(params, data).mean()

rgrad_fn = rgrad(cost)
if private:

data = data[:, None]
#per-example gradient
rgrad_fn = vmap(rgrad_fn, in_axes=(None, 0))
#calculates Riemannian gradients
rgrads = rgrad_fn(params, data)
updates, opt_state = optimizer.update(rgrads, opt_state, params)
#update using Riemannian Exp
params = apply_updates(params, updates)
return params, opt_state, loss_value

opt_state = optimizer.init(params)
for i in range(epochs):

params, opt_state, loss_value = step(params, opt_state, data)

#initialization
U_init = ManifoldArray(value=init, manifold=GrassmannCanonical())
# non private PCA
lr, epochs = (3e-3, 400)
optimizer = rsgd(lr)
non_private_U = fit(U_init, Z, optimizer, epochs)
#(eps, delta) differentially private PCA
eps, delta, clip_norm, epochs = (1.0, 1e-6, 0.1, 200)
sigma = DP_RGD_Mechanism(eps, delta, clip_norm, n)
private_optimizer = dp_rsgd(lr, sigma, clip_norm)
private_U = fit(U_init, Z, optimizer, epochs, private=True)

Listing 1: The Rieoptax code for the private and non-private PCA problem. dp rsgd and
rsgd are the private and non-private optimizers, respectively.
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For both the private and non-private algorithms, we choose the same initialization and a learning
rate of 3×10−3. Figures 3(a) and 3(b) show excess risk against runtime (in seconds) for non-private
and private PCA, respectively.

5. Conclusion and future roadmap

In this work, we present a Python library for (privacy-supported) Riemannian optimization, Rieop-
tax, and illustrate its efficacy on both CPU and GPU architectures. Our roadmap includes adding
support for more manifold geometries, optimization algorithms, and a collection of example codes
showcasing the usage of Rieoptax in various applications, especially with differential privacy.
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