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Abstract
We study differentially private (DP) stochastic optimization (SO) with loss functions whose worst-
case Lipschitz parameter over all data points may be extremely large. To date, the vast majority of
work on DP SO assumes that the loss is uniformly Lipschitz continuous over data (i.e. stochastic
gradients are uniformly bounded over all data points). While this assumption is convenient, it
often leads to pessimistic excess risk bounds. In many practical problems, the worst-case (uniform)
Lipschitz parameter of the loss over all data points may be extremely large due to outliers. In such
cases, the error bounds for DP SO, which scale with the worst-case Lipschitz parameter of the loss,
are vacuous. To address these limitations, this work provides near-optimal excess risk bounds that do
not depend on the uniform Lipschitz parameter of the loss. Building on a recent line of work [36, 62],
we assume that stochastic gradients have bounded k-th order moments for some k ě 2. Compared
with works on uniformly Lipschitz DP SO, our excess risk scales with the k-th moment bound
instead of the uniform Lipschitz parameter of the loss, allowing for significantly faster rates in the
presence of outliers and/or heavy-tailed data. For convex and strongly convex loss functions, we
provide the first asymptotically optimal excess risk bounds (up to a logarithmic factor). In contrast
to [36, 62], our bounds do not require the loss function to be differentiable/smooth. We also devise
an accelerated algorithm for smooth losses that runs in linear time and has excess risk that is tight
in certain practical parameter regimes. Additionally, our work is the first to address non-convex
non-uniformly Lipschitz loss functions satisfying the Proximal-PL inequality; this covers some
practical machine learning models. Our Proximal-PL algorithm has near-optimal excess risk.

1. Introduction
As the use of machine learning (ML) models in industry and society has grown dramatically in
recent years, so too have concerns about the privacy of personal data that is used in training such
models. It is well-documented that ML models may leak training data, e.g., via model inversion
attacks and membership-inference attacks [17, 28, 30, 49, 53]. Differential privacy (DP) [27]
ensures that data cannot be leaked, and a plethora of work has been devoted to differentially private
machine learning and optimization [7, 9, 10, 18, 21, 25, 29, 44, 57, 60]. Of particular importance
is the fundamental problem of DP stochastic (convex) optimization (S(C)O): given n i.i.d. samples
X “ px1, . . . , xnq P X n from an unknown distribution D, we aim to privately solve

min
wPW

␣

F pwq :“ Ex„Drfpw, xqs
(

, (1)

where f : W ˆ X Ñ R is the loss function and W Ă Rd is the parameter domain. Since finding
the exact solution to (1) is not generally possible, we measure the quality of the obtained solution
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via excess risk (a.k.a. excess population loss): The excess risk of a (randomized) algorithm A for
solving (1) is defined as EF pApXqq ´ minwPW F pwq, where the expectation is taken over both the
random draw of the data X and the algorithm A.

A large body of literature is devoted to characterizing the optimal achievable differentially
private excess risk of (1) when the function fp¨, xq is uniformly Lf -Lipschitz for all x P X—see
e.g., [7, 10, 13, 29, 44]. In these works, the gradient of f is assumed to be uniformly bounded with
supwPW,xPX }∇wfpw, xq} ď Lf , and excess risk bounds scale with Lf . While this assumption is
convenient for bounding the sensitivity [27] of the steps of the algorithm, it is often unrealistic in
practice or leads to pessimistic excess risk bounds. In many practical applications, data contains
outliers, is unbounded or heavy-tailed (see e.g. [22, 46, 63] and references therein for such appli-
cations). Consequently, Lf may be prohibitively large. For example, even the linear regression
loss fpw, xq “ 1

2pxw, xp1qy ´ xp2qq2 with compact W and data from X “ X p1q ˆ X p2q, leads to
Lf ě diameterpX p1qq2, which could be huge. Similar observations can be made for other useful ML
models such as deep neural nets [42], and the situation becomes even grimmer in the presence of
heavy-tailed data. In these cases, existing excess risk bounds, which scale with Lf , becomes vacuous.

While Lf can be very large in practice (due to outliers), the k-th moment of the stochastic
gradients is often reasonably small for some k ě 2 (see, e.g., Example 1). This is because the k-th
moment rrk :“ E

“

supwPW }∇wfpw, xq}k2

‰1{k depends on the average behavior of the stochastic
gradients, while Lf depends on the worst-case behavior over all data points. Motivated by this
observation and building on the prior results [36, 62], this work characterizes the optimal differen-
tially private excess risk bounds for the class of problems with a given parameter rrk. Specifically, for
the class of problems with parameter rrk, we answer the following questions:

• Question I: What are the minimax optimal rates for (strongly) convex DP SO?

• Question II: What utility guarantees are achievable for non-convex DP SO?

Prior works have made progress in addressing the first question above:1 The work of [62]
provided the first excess risk upper bounds for smooth DP (strongly) convex SO. [36] gave improved,
yet suboptimal, upper bounds for smooth (strongly) convex fp¨, xq, and lower bounds for (strongly)
convex SO. In this work, we provide optimal algorithms for convex and strongly convex losses,
resolving Question I up to logarithmic factors. Our bounds hold even for non-differentiable/non-
smooth F . Regarding Question II, we give the first algorithm for DP SO with non-convex loss
functions satisfying the Proximal-Polyak-Łojasiewicz condition [37, 50]. We provide a summary of
our results for the case k “ 2 in Figure 1, and a thorough discussion of related work in Appendix B.

1.1. Preliminaries
Let } ¨ } be the ℓ2 norm. Let W be a convex, compact set of ℓ2 diameter D. Function g : W Ñ R is µ-
strongly convex if gpαw`p1´αqw1q ď αgpwq`p1´αqgpw1q´

αp1´αqµ
2 }w´w1}2 for all α P r0, 1s

and all w,w1 P W . If µ “ 0, we say g is convex. For convex fp¨, xq, denote any subgradient of
fpw, xq w.r.t. w by ∇fpw, xq P Bwfpw, xq: i.e. fpw1, xq ě fpw, xq ` x∇fpw, xq, w1 ´ wy for all
w1 P W . Function g is β-smooth if it is differentiable and its derivative ∇g is β-Lipschitz. For
β-smooth, µ-strongly convex g, denote its condition number by κ “ β{µ. For functions a and b of

1. [36, 62] consider a slightly different problem class than the class rrpkq, which we consider: see Appendix A. However,
our results imply asymptotically optimal rates for the problem class considered in [36, 62] under mild assumptions:
see Appendix F.3.
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2
-zCDP excess risk for k “ 2, rr “

?
d; we omit logarithms. κ is the condition number of F ; κf “ βf {µ is

the worst-case condition number of fp¨, xq.

input parameters, write a À b if there is an absolute constant A such that a ď Ab for all feasible
values of input parameters. Write a “ rOpbq if a À ℓb for a logarithmic function ℓ of input parameters.
We assume that the stochastic gradient distributions have bounded k-th moment for some k ě 2:

Assumption 1 There exists k ě 2 and rrpkq ą 0 such that E
“

supwPW }∇fpw, xq}k2

‰

ď rrpkq for all
∇fpw, xiq P Bwfpw, xiq. Denote rrk :“ prrpkqq1{k.

Clearly, rr ď Lf “ supt∇fpw,xqPBwfpw,xqu supw,x }∇fpw, xq}, but this inequality is often very loose:

Example 1 For linear regression on a unit ball W with 1-dimensional data xp1q, xp2q P r´106, 106s

having truncated Normal distributions and Varpxp1qq “ Varpxp2qq ď 1, we have Lf ě 1012. On the
other hand, rrk is much smaller than Lf for small to moderate k: e.g., rr2 ď 5, rr4 ď 8, and rr8 ď 14.

For finite k, Assumption 1 is weaker than assuming that fp¨, xq is uniformly Lipschitz for all x since
it allows for the p-th moments of supwPW }∇fpw, xq} to be unbounded for 8 ě p ą k.

Differential Privacy [27] ensures that no adversary—even one with enormous resources—can infer
much more about any person who contributes training data than if that person’s data were absent.

Definition 1 (Zero-Concentrated Differential Privacy (zCDP) [16]) A randomized algorithm A :
X n Ñ W satisfies ρ-zero-concentrated differential privacy (ρ-zCDP) if for all X,X 1 P X n differing
in a single entry and all α P p1,8q, we have DαpApXq||ApX 1qq ď ρα, where DαpApXq||ApX 1qq

is the α-Rényi divergence2 between the distributions of ApXq and ApX 1q.

zCDP lives between pure DP and approximate DP [16]: see Appendix D for the precise statement.

2. Optimal Rates for Non-Smooth (Strongly) Convex Losses (see Appendix F)
We establish asymptotically optimal (up to logarithms) excess risk bounds for DP SCO under As-
sumption 1, without requiring differentiability of fp¨, xq:

Theorem 2 (Informal, see Theorem 10, Theorem 18, Theorem 21, Theorem 23) Let fp¨, xq be
convex. Grant Assumption 1. Then, there is a polynomial-time ϵ2

2 -zCDP algorithm A such

2. For distributions P and Q with probability density/mass functions p and q, DαpP ||Qq :“
1

α´1
ln
`ş

ppxq
αqpxq

1´αdx
˘

[51, Eq. 3.3].
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that EF pApXqq ´ F˚ “ rO
ˆ

rr2kD

ˆ

1?
n

`

´?
d

ϵn

¯pk´1q{k
˙˙

. If fp¨, xq is µ-strongly convex, then

EF pApXqq ´ F˚ “ rO
ˆ

rr22k
µ

ˆ

1
n `

´?
d

ϵn

¯p2k´2q{k
˙˙

. Further, these bounds are minimax optimal

up to a factor of rOprr22k{rr2kq.

The works [36, 62] make a slightly different assumption than Assumption 1: they instead assume
that the k-th order central moment of each coordinate ∇jfpw, xq is bounded by γ1{k for all j P

rds, w P W . We also provide asymptotically optimal excess risk bounds for the class of problems
satisfying the coordinate-wise moment assumption of [36, 62] and having subexponential stochastic
subgradients: see Appendix F.3.

The previous state-of-the-art convex upper bound was suboptimal: O
´

rrD
b

d
n

¯

for ϵ « 1 [36,

Theorem 5.4].3 Their result also required fp¨, xq to be βf -smooth for all x P X , which can be
restrictive with outlier data: e.g. this implies that fp¨, xq is Lf -Lipschitz with Lf ď 2βfD if
∇fpw˚pxq, xq “ 0 for some w˚pxq P W .

Our µ-strongly convex bound also improves over the best previous upper bound of [36, Theorem
5.6], which again required βf -smoothness of fp¨, xq. In fact, [36, Theorem 5.6] was incorrect
as stated in the ICML 2022 version of their paper, as we explain in Appendix C.4 However, after
communicating with the authors of [36], they updated their result and proof in the arXiv version
of their paper. The corrected version of [36, Theorem 5.6]—which we derive in Appendix C for
completeness—is suboptimal by a factor of rOppβf{µq3. In practical applications, the condition
number βf{µ can be very large, especially in the presence of outliers or heavy-tailed data. Our
near-optimal excess risk bounds remove this dependence on βf{µ.

Our Algorithm 3 combines the iterative localization technique of [7, 29] with a clipped noisy
subgradient method5 run on a regularized empirical objective. In each iteration, we use a geomet-
rically decreasing step size, which shrinks the effective variance of the privacy noise over time.
We also geometrically decrease the number of samples used, and we increase the regularization
parameter over time as our iterates get closer to the optimum to improve the stability [14, 38, 41]
of our algorithm. With clipped (hence biased) stochastic gradients and non-smooth/non-uniformly
Lipschitz loss, the excess risk analysis of our algorithm is harder than in the smooth and uniformly
Lipschitz settings. Instead of the uniform convergence analysis used in [36, 62], we derive new results
about the stability and generalization error of (regularized) ERM with non-smooth, non-Lipschitz
losses. In a bit more detail, our upper bound proof consists of the following steps: i) We bound the
excess empirical risk of our noisy clipped subgradient subroutine (Lemma 12). ii) We bound the
on-average model stability [41] of our algorithm (Proposition 16). On-average model stability is a
weaker notion than uniform stability [10, 14]; this is necessary to obtain our learnability guarantees
for non-Lipschitz fp¨, xq. iii) We prove that on-average model stable algorithms generalize well
(Proposition 14), strengthening and extending results from [41, 52] to non-smooth/non-Lipschitz
fp¨, xq. We obtain our strongly convex bound (Theorem 18) by a reduction to the convex case,
ala [29, 32].

3. We write the bound in [36, Theorem 5.4] in terms of Assumption 1, replacing their γ1{kd by rr
?
d.

4. In short, the mistake is that Jensen’s inequality is used in the wrong direction to claim that the T -th iterate of their
algorithm wT satisfies Er}wT ´ w˚

}
2
s ď pE}wT ´ w˚

}q
2, which is false.

5. Clipped noisy subgradient method (Algorithm 2) works as follows: In each round t, we: draw a random minibatch of
samples; compute and then clip (i.e. project onto an ℓ2 ball centered around 0) their stochastic subgradients; average
the clipped stochastic subgradients and add noise; and then take a noisy minibatch stochastic subgradient step.
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We also refine (to describe the dependence on rrkD,µ), extend (to k " 1), and tighten (for µ “ 0)
the lower bounds of [36]: see Theorems 21 and 23.

3. Linear-Time Algorithms for Smooth (Strongly) Convex Losses (see Appendix G)
For convex, β-smooth F , we provide a novel accelerated DP algorithm (Algorithm 4), building
on the work of Ghadimi and Lan [31].6 Our algorithm is linear time and attains excess risk that
improves over the previous state-of-the-art (not linear time) algorithm [36, Theorem 5.4] in practical
parameter regimes (e.g. d Á n1{6). The excess risk of our algorithm is tight in certain cases: e.g.,
d Á pϵnq2{3 or “sufficiently smooth” F (see Remark 27). To prove our upper bound, we give the
first analysis of accelerated SGD with biased stochastic gradients (Proposition 25).

For µ-strongly convex, β-smooth losses, acceleration results in excessive bias accumulation,
so we propose a simple noisy clipped SGD. Our algorithm builds on [36], but uses a lower-bias
clipping mechanism from [8] and a tighter analysis. We attain excess risk that is near-optimal up
to a rOppβ{µqpk´1q{kq factor: see Theorem 30. Our linear-time bound strictly improves over the best
previous bound of [36, Theorem 5.6]. Our analysis leverages a novel bound (Proposition 31) for
SGD with biased stochastic gradients; this bound is tighter than existing results of [3, 6, 36], which
is needed to obtain near-optimal excess risk.

4. First Algorithm for Non-Convex (Proximal-PL) Losses (see Appendix H)
We consider losses satisfying the Proximal Polyak-Łojasiewicz (PPL) inequality [37, 50] (Defini-
tion 34), an extension of the classical PL inequality to the proximal setting. Many practical ML
models satisfy the PPL condition, such as some classes of neural nets, linear/logistic regression, and
LASSO [37, 42]. We propose a DP proximal clipped SGD to attain near-optimal excess risk that
almost matches the strongly convex rate: see Theorem 35. The proof of this result is difficult because
it is unclear how to separate the privacy noise from the non-private terms in the proximal/non-convex
setting. We prove Proposition 36 by building on [45], which analyzed uniformly Lipschitz PPL losses
with unbiased stochastic gradients using techniques from the analysis of objective perturbation [19].

5. Concluding Remarks and Open Questions
This paper was motivated by practical problems in which data contains outliers and potentially heavy
tails, causing the worst-case Lipschitz parameter of the loss over all data points to be prohibitively
large. In such cases, existing bounds for DP SO that scale with the worst-case Lipschitz parameter
become vacuous. Thus, we operated under the more relaxed assumption of stochastic gradient
distributions having bounded k-th order moments. The k-th moment bound is often much smaller
than the worst-case Lipschitz parameter in practice. For (strongly) convex loss functions, we
established the asymptotically optimal rates (up to logarithms), even with non-differentiable losses.
We also provided linear-time algorithms for smooth losses that are optimal in certain practical
parameter regimes, but suboptimal in general. An interesting open question is: does there exist
a linear-time algorithm with optimal excess risk? We also initiated the study of non-convex non-
uniformly Lipschitz DP SO, showing that the optimal strongly convex rates can nearly be attained
without convexity, via the proximal-PL condition. We leave the treatment of general non-convex
losses for future work.

6. In contrast to [36, 62], we do not require fp¨, xq to be β-smooth for all x.
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Appendix

Appendix A. Other Bounded Moment Conditions Besides Assumption 1

In this section, we give the alternate bounded moment assumption made in [36, 62] and a third
bounded moment condition, and discuss the relationships between these assumptions. The notation
presented here will be necessary in order to state the sharper versions of our linear-time excess risk
bounds and the asymptotically optimal excess risk bounds under the coordinate-wise assumption
of [36, 62] (which our Algorithm 3 also attains). First, we introduce a relaxation of Assumption 1:

Assumption 2 There exists k ě 2 and rpkq ą 0 such that supwPW E
“

}∇fpw, xq}k2

‰

ď rpkq,
@∇fpw, xiq P Bwfpw, xiq. Denote r :“ prpkqq1{k.

Assumption 1 implies Assumption 2 for r ď rr. Next, we precisely state the coordinate-wise moment
bound assumption that is used in [36, 62] for differentiable f :

Assumption 3 (Used by [36, 62]7 , but not in this work) There exists k ě 2 and γ ą 0 such
that supwPW E|x∇fpw, xq ´ ∇F pwq, ejy|k ď γ, for all j P rds, where ej denotes the j-th standard
basis vector in Rd. Also, L fi supwPW }∇F pwq} ď

?
dγ1{k.

Lemma 3 allows us compare our results in Section 3 obtained under Assumption 2 to the results
in [36, 62], which require Assumption 3.

Lemma 3 Suppose Assumption 3 holds. Then, Assumption 2 holds for r ď 4
?
dγ1{k.

Since Assumption 2 is implied by Assumption 3, the upper bounds that we obtain under Assump-
tion 2 also hold (up to constants) if we grant Assumption 3 instead, with r Ø

?
dγ1{k. Also,

in Appendix F.3, we will use Lemma 3 to show that our optimal excess risk bounds under Assump-
tion 1 imply asymptotically optimal excess risk bounds under Assumption 3.

Proof [Proof of Lemma 3] We use the following inequality, which can easily be verified inductively,
using Cauchy-Schwartz and Young’s inequalities: for any vectors u, v P Rd, we have

}u}k ď 2k´1
´

}u ´ v}k ` }v}k
¯

. (2)

Therefore,

rk “ sup
wPW

E}∇fpw, xq}k

ď 2k´1

ˆ

sup
wPW

E}∇fpw, xq ´ ∇F pwq}k ` Lk
˙

“ 2k´1

¨

˝ sup
wPW

E

»

–

#

d
ÿ

j“1

|x∇fpw, xq ´ ∇F pwq, ejy|2

+k{2
fi

fl ` Lk

˛

‚

ď p2Lqk ` 2kdk{2 sup
wPW

E

«

1

d

d
ÿ

j“1

|x∇fpw, xq ´ ∇F pwq, ejy|k

ff

,

7. The work of [36] assumes that L À γ1{k
“ 1. On the other hand, [62] assumes that F is β-smooth and ∇F pw˚

q “ 0
for some w˚

P W , which implies L ď 2βD.
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where we used convexity of the function ϕpyq “ yk{2 for all y ě 0, k ě 2 and Jensen’s inequality in
the last inequality. Now using linearity of expectation and Assumption 3 gives us

rk ď 2k
´

Lk ` dk{2γ
¯

ď 2k`1dk{2γ,

since Lk ď dk{2γ by hypothesis.

Appendix B. Additional Discussion of Related Work

DP SCO Without Uniform Lipschitz Continuity: The study of DP SCO without uniformly
Lipschitz continuous loss functions was initiated by [62], who provided upper bounds for smooth
convex/strongly convex loss. The work of [36] provided lower bounds and improved, yet suboptimal,
upper bounds for the convex case. Both of the works [36, 62] require f to be βf -smooth. It is also
worth mentioning that [36, 62] restricted attention to losses satisfying ∇F pw˚q “ 0 for w˚ P W ,
i.e. W is a compact set containing the unconstrained optimum w˚ “ argminwPRd F pwq P W . By
comparison, we consider the more general constrained optimization problem minwPW F pwq, where
W need not contain the global unconstrained optimum.

Here we provide a brief discussion of the techniques used in [36, 62]. The work of [62] used a full
batch (clipped, noisy) gradient descent based algorithm, building on the heavy-tailed mean estimator
of [33]. They bounded the excess risk of their algorithm by using a uniform convergence [58]
argument, resulting in a suboptimal dependence on the dimension d. The work of [36] used
essentially the same approach as [62], but obtained an improved rate with a more careful analysis.8

However, as discussed, the bound in [36] is O
´

rD
b

d
n

¯

when ϵ « 1, which is still suboptimal.9

More recently, DP optimization with outliers was studied in special cases of sparse learning [34],
multi-arm bandits [56], and ℓ1-norm linear regression [61].

DP ERM and DP GLMs without Uniform Lipschitz continuity: The work of [6] provides bounds
for constrained DP ERM with arbitrary convex loss functions using a Noisy Clipped SGD algorithm
that is similar to our Algorithm 5, except that their algorithm is multi-pass and ours is one pass. In a
concurrent work, [23] considered DP ERM in the unconstrained setting with convex and non-convex
loss functions. Their algorithm, noisy clipped SGD, is also similar to Algorithm 5 and the algorithm
of [6]. The results in [23] are not directly comparable to [6] since [23] consider the unconstrained
setting while [6] consider the constrained setting, but the rates in [6] are faster. [23] also analyzes the
convergence of noisy clipped SGD with smooth non-convex loss functions.

The works of [5, 54] consider generalized linear models (GLMs), a particular subclass of
convex loss functions and provide empirical and population risk bounds for the unconstrained DP
optimization problem. The unconstrained setting is not comparable to the constrained setting that
we consider here: in the unconstrained case, a dimension-independent upper bound is achievable,

8. Additionally, [36, Theorem 5.2] provided a bound via noisy gradient descent with the clipping mechanism of [35],
but this bound is inferior (in the practical privacy regime ϵ « 1) to their bound in [36, Theorem 5.4] that used the
estimator of [33].

9. The bound in [36, Theorem 5.4] for k “ 2 is stated in the notation of Assumption 3 and thus has an extra factor of
?
d,

compared to the bound written here. We write their bound in terms of our Assumption 1, replacing their γd term by
r
?
d.
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whereas our lower bounds (which apply to GLMs) imply that a dependence on the dimension d is
necessary in the constrained case.

Other works on gradient clipping: The gradient clipping technique (and adaptive variants of it)
has been studied empirically in works such as [1, 4, 20], to name a few. The work of [20] shows that
gradient clipping can prevent SGD from converging, and describes the clipping bias with a disparity
measure between the gradient distribution and a geometrically symmetric distribution.

Optimization with biased gradient oracles: The works [3, 6] analyze SGD with biased gradient
oracles. Our work provides a tighter bound for smooth, strongly convex functions and analyzes
accelerated SGD and proximal SGD with biased gradient oracles.

DP SO with Uniformly Lipschitz loss functions: In the absence of outlier data, there are a multitude
of works studying Lipschitz DP SO, mostly in the convex/strongly convex case. We do not attempt
to provide a comprehensive list of these here, but will name the most notable ones, which provide
optimal or state-of-the-art utility guarantees. The first suboptimal bounds for DP SCO were provided
in [9]. The work of [10] established the optimal rate for non-strongly convex DP SCO, by bounding
the uniform stability of Noisy DP SGD (without clipping). The strongly convex case was addressed
by [29], who also provided optimal rates in linear times for sufficiently smooth, convex losses. Since
then, other works have provided faster and simpler (optimal) algorithms for the non-smooth DP SCO
problem [7, 11, 12, 40] and considered DP SCO with different geometries [7, 13]. State-of-the-art
rates for DP SO with the proximal PL condition are due to [45].

Appendix C. Correcting the Errors in the Strongly Convex Upper Bounds Claimed in
[36, 62]

While [36, Theorem 5.6] claims an upper bound for smooth strongly convex losses that is tight up to
a factor of rOpκ2f q, we identify an issue with their proof that invalidates their result. A similar issue
appears in the proof of [62, Theorems 5 and 7], which [36] built upon. We then show how to salvage
a correct upper bound within the framework of [36], albeit at the cost of an additional factor of κf .

The proof of [36, Theorem 5.6] relies on [36, Theorem 3.2]. The proof of [36, Theorem 3.2],
in turn, bounds E}wT ´ w˚} ď

pλ`LqpM`1qG
λL in the notation of [36], where L is the smoothness

parameter, λ is the strong convexity parameter (so L ě λ), and M is the diameter of W . Then, it is

incorrectly deduced that Er}wT ´ w˚}2s ď

´

pλ`LqpM`1qG
λL

¯2
(final line of the proof). Notice that

Er}wT ´ w˚}2s can be much larger than pE}wT ´ w˚}q2 in general: for example, if }wT ´ w˚} has
the Pareto distribution with shape parameter α P p1, 2s and scale parameter 1, then pE}wT ´w˚}q2 “
´

α
α´1

¯2
! Ep}wT ´ w˚}2q “ 8. To try to correct this issue, one could use Young’s inequality to

instead bound

Er}wT ´ w˚}2s ď 2

ˆ

1 ´
2λL

pλ ` Lq2

˙

Er}wT´1 ´ w˚}2s `
2G2

pλ ` Lq2

ď

„

2

ˆ

1 ´
2λL

pλ ` Lq2

˙ȷT

}w0 ´ w˚}2 `
2G2

pλ ` Lq2

T´1
ÿ

t“0

„

2

ˆ

1 ´
2λL

pλ ` Lq2

˙ȷt

,

but the geometric series above diverges to `8 as T Ñ 8, since 2
´

1 ´ 2λL
pλ`Lq2

¯

ě 1 ðñ

pλ ´ Lq2 ě 0. Evidently, there is no “easy fix” for the issue in the proofs of [36, Theorem 3.2] and

13



PRIVATE STOCHASTIC OPTIMIZATION WITH LARGE WORST-CASE LIPSCHITZ PARAMTER

[62, Theorem 5] (at least without imposing severe restrictions on λ and L and hence dramatically
shrinking the function class).

Next, we show how to modify the proof of [36, Theorem 5.6] in order to obtain a correct excess
risk upper bound of

rO

¨

˝

γ2{k

µ
d

»

–

pβf{µq3

n
`

˜

a

dpβf{µq3

ϵn

¸p2k´2q{k
fi

fl

˛

‚ (3)

(in our notation). This correction was derived in collaboration with the authors of [36], who have
also updated the arXiv version of their paper accordingly. By waiting until the very of the proof
of [36, Theorem 3.2] to take expectation, we can derive

}wt ´ w˚} ď

ˆ

1 ´
λL

pλ ` Lq2

˙

}wt´1 ´ w˚} `
}r∇F pwt´1q ´ ∇F pwt´1q}

λ ` L
(4)

for all t, where we use their L “ βf and λ “ µ notation but our notation F and r∇F for the
population loss and its biased noisy gradient estimate (instead of their LD notation). By iterating (4),
we can get

}wT ´ w˚} ď

ˆ

1 ´
2λL

pλ ` Lq2

˙T

}w0 ´ w˚} `

T´1
ÿ

t“0

ˆ

1 ´
2λL

pλ ` Lq2

˙t
«

}r∇F pwT´tq ´ ∇F pwT´tq}

λ ` L

ff

.

Squaring both sides and using Cauchy-Schwartz, we get

}wT ´ w˚}2 ď 2

ˆ

1 ´
2λL

pλ ` Lq2

˙2T

}w0 ´ w˚}2 ` T
T´1
ÿ

t“0

ˆ

1 ´
2λL

pλ ` Lq2

˙2t
«

}r∇F pwT´tq ´ ∇F pwT´tq}

λ ` L

ff2

.

Using L-smoothness of F and the assumption made in [36] that ∇F pw˚q “ 0, and then taking
expectation yields

EF pwT q ´ F ˚ À L}w0 ´ w˚}2
ˆ

1 ´
2λL

pλ ` Lq2

˙2T

` TG2L

λ
, (5)

where G2 ě E
”

}r∇F pwT´tq ´ ∇F pwT´tq}2
ı

for all t. It is necessary and sufficient to choose

T “ rΩpL{λq to make the first term in (5) less than the second term (up to logarithms). With this
choice of T , we get

EF pwT q ´ F ˚ “ rO
`

G2κ2f
˘

, (6)

where κf “ L{λ. Next, we apply the bound on G2 for the MeanOracle that is used in [36]; this bound
is stated in the version of [36, Lemma B.5] that appears in the updated (November 1, 2022) arXiv

version of their paper. The bound (for general γ) is G2 “ rO
ˆ

γ2{k

„

Td
n ` d

´?
dT 3{2

ϵn

¯p2k´2q{k
ȷ˙

.

Plugging this bound on G2 into (6) yields (3).
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Appendix D. More Preliminaries

Remark on Terminology: Following [36, 62], we sometimes use the terminology “heavy-tailed”
to refer to distributions satisfying Assumption 1, 2, or 3. However, as discussed, our results are
useful for a broader class of distributions than those typically considered “heavy-tailed”: we are
also interested in bounded data that contains outliers, or data that is unbounded but light-tailed (e.g.
Gaussian), since we may have rr ! Lf in such cases.

Notation: For functions a and b of input parameters, write a À b if there is an absolute constant A
such that a À Ab for all feasible values of input parameters.

More Differential Privacy Preliminaries: Recall the classical definition of differential privacy [27]:

Definition 4 (Differential Privacy) Let ϵ ě 0, δ P r0, 1q. A randomized algorithm A : X n Ñ

W is pϵ, δq-differentially private (DP) if for all pairs of adjacent data sets X,X 1 P X n (i.e.
dhammingpX,X 1q “ 1) and all measurable subsets S Ď W , we have PpApXq P Sq ď eϵPpApX 1q P

Sq ` δ.

If δ “ 0, we say A satisfies pure DP. If δ ą 0, then A satisfies approximate DP. zCDP is weaker
than pure DP, but stronger than approximate DP in the following sense:

Proposition 5 [16, Proposition 1.3] If A is ρ-zCDP, then A is pρ`2
a

ρ logp1{δq, δq for any δ ą 0.

Thus, if ϵ ď
a

logp1{δq, then any ϵ2

2 -zCDP algorithm is p2ϵ
a

logp1{δq, δq-DP.
Our algorithms use the Gaussian mechanism to achieve zCDP:

Proposition 6 [16, Proposition 1.6] Let q : X n Ñ R be a query with ℓ2-sensitivity ∆ :“
supX„X 1 }qpXq ´ qpX 1q}. Then the Gaussian mechanism, defined by M : X n Ñ R, MpXq :“

qpXq ` u for u „ N p0, σ2q, is ρ-zCDP if σ2 ě ∆2

2ρ .

The (adaptive) composition of zCDP algorithms is zCDP, with privacy parameters adding:

Lemma 7 [16, Lemma 2.3] Suppose A : X n Ñ Y satisfies ρ-zCDP and A1 : X nˆY Ñ Z satisfies
ρ1-zCDP (as a function of its first argument). Define the composition of A and A1, A2 : X n Ñ Z
by A2pXq “ A1pX,ApXqq. Then A2 satisfies pρ ` ρ1q-zCDP. In particular, the composition of T
ρ-zCDP mechanisms is a Tρ-zCDP mechanism.

Appendix E. Private Heavy-Tailed Mean Estimation Building Blocks

In each iteration of our SO algorithms, we need a way to privately estimate the mean ∇F pwtq “

Ex„Dr∇fpwt, xqs. If fp¨, xq is Lipschitz, then one can simply draw a random sample xt from
X and add noise to the stochastic gradient ∇fpwt, x

tq to obtain a DP estimator of ∇F pwtq: the
ℓ2-sensitivity of the stochastic gradients is bounded by supx,x1PX }∇fpwt, xq ´∇fpwt, x

1q} ď 2Lf ,
so the Gaussian mechanism guarantees DP (by Proposition 6). However, in the setting that we
consider, Lf (and hence the sensitivity) may be unbounded, so noisy stochastic gradients are not
DP. Thus, we clip the stochastic gradients (to force the sensitivity to be bounded) before adding
noise. Specifically, we invoke Algorithm 1 on a batch of s stochastic gradients at each iteration of
our algorithms. In Algorithm 1, ΠCpzq :“ argminyPB2p0,Cq }y ´ z}2 denotes the projection onto the
centered ℓ2 ball of radius C in Rd. Lemma 8 bounds the bias and variance of Algorithm 1.
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Algorithm 1 ℓ2 Clip MeanOracle1ptxiu
s
i“1; s;C; ϵ

2

2 q [8]

1: Input: X “ txiu
s
i“1, C ą 0, ϵ ą 0. Set σ2 “ 4C2

s2ϵ2
for ϵ

2

2 -zCDP.
2: Draw u „ N p0, σ2Idq and compute rν :“ 1

s

řs
i“1ΠCpxiq ` u.

3: Output: rν.

Lemma 8 ([8]) Let txiu
s
i“1 „ Ds be Rd-valued random vectors with Exi “ ν and E}xi}

k ď rpkq

for some k ě 2. Denote the noiseless average of clipped samples by pν :“ 1
s

řs
i“1ΠCpxiq. Then,

}Erν ´ ν} “ }Epν ´ ν} ď E}pν ´ ν} ď rpkq

pk´1qCk´1 , and E}rν ´ Erν}2 “ E}rν ´ Epν}2 ď dσ2 ` rp2q

s .

Appendix F. Details and Proofs of Results in Section 2

In this section, we establish the optimal rates (up to logarithms) for the class of DP SCO problems
satisfying Assumption 1. We present our result for convex losses in Section 2, and our result
for strongly convex losses in Appendix F.2. In Appendix F.3, we show how our (tight) upper
bounds under Assumption 1 lead to asymptotically tight upper bounds under Assumptions 2 and 3.
In Appendix F.4, we provide lower bounds, which show that our upper bounds are tight.

F.1. Localized Noisy Clipped Subgradient Method for Convex Losses
Our algorithm (Algorithm 3) uses iterative localization [7, 29] with clipping (in Algorithm 2) to
handle heavy-tailed data.10

Algorithm 2 Noisy Clipped Regularized Subgradient Method for DP ERM
1: Input: Data X P X n, T P N, stepsize η, clip thresh. C, regularization λ ě 0, constraint set W .
2: Initialize w0 P W .
3: for t P t0, 1, ¨ ¨ ¨ , T ´ 1u do
4: r∇Ftpwtq :“ MeanOracle1pt∇fpwt, xiquni“1;n;C; ϵ

2

2T q for subgradients ∇fpwt, xiq.

5: wt`1 “ ΠW

”

wt ´ η
´

r∇Ftpwtq ` λpwt ´ w0q

¯ı

6: end for
7: Output: wT .

The main ideas of Algorithm 3 are:

1. Clipping only the non-regularized component of the subgradient to control sensitivity and bias:
Notice that when we call Algorithm 2 in phase i of Algorithm 3, we only clip the subgradients
of fpwt, xjq, not the regularized loss fpwt, xjq ` λ

2 }wt ´ wi´1}2. Compared to clipping the
full gradient of the regularized loss, our selective clipping approach significantly reduces the
bias of our subgradient estimator. This is essential for obtaining our near-optimal excess risk.
Further, this reduction in bias comes at no cost to the variance of our subgradient estimator:
the ℓ2-sensitivity of our estimator is unaffected by the regularization term.

2. Solve regularized ERM subproblem with a stable DP algorithm: We run a multi-pass zCDP
solver on a regularized empirical loss: Multiple passes let us reduce the noise variance in

10. We assume WLOG that n “ 2l for some l P N. If this is not the case, then throw out samples until it is; since the
number of remaining samples is at least n{2, our bounds still hold up to a constant factor.
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Algorithm 3 Localized Noisy Clipped Subgradient Method for DP SCO

1: Input: Data X P X n, stepsize η, clip thresh. tCiu
log2pnq

i“1 , iteration num. tTiu
log2pnq

i“1 , hyperpa-
rameter p ě 1.

2: Initialize w0 P W . Let l :“ log2pnq.
3: for i P rls do
4: Set ni “ 2´in, ηi “ 4´iη, λi “ 1

ηin
p
i

, Ti “ rΘ
´

1
λiηi

¯

, and Di “
2Lf

λi
.

5: Draw new batch Bi of ni “ |Bi| samples from X without replacement.
6: Let pFipwq :“ 1

ni

ř

jPBi
fpw, xjq `

λi
2 }w ´ wi´1}2.

7: Use Algorithm 2 with initialization wi´1 to minimize pFi over Wi :“ tw P W : }w´wi´1} ď

Diu, for Ti iterations with clip threshold Ci and noise σ2
i “

4C2
i Ti

n2
i ϵ

2 . Let wi be the output
of Algorithm 2.

8: end for
9: Output: wl.

phase i by a factor of Ti (via strong composition for zCDP) and get a more accurate solution
to the ERM subproblem. Regularization makes the empirical loss strongly convex, which
improves on-average model stability and hence generalization of the obtained solution (see
Proposition 14 and 15).

3. Localization [6, 29] (i.e. iteratively “zooming in” on a solution): In early phases (small i),
when we are far away from the optimum w˚, we use more samples (larger ni) and large
learning rate ηi to make progress quickly. As i increases, wi is closer to w˚, so fewer samples
and slower learning rate suffice. Since step size ηi shrinks (geometrically) faster than ni,
the effective variance of the privacy noise η2i σ

2
i decreases as i increases. This prevents wi`1

from moving too far away from wi (and hence from w˚). We further enforce this localization
behavior by increasing the regularization parameter λi and shrinking Di over time. We choose
Di as small as possible subject to the constraint that argminwPW pFipwq P Wi. This constraint
ensures that Algorithm 2 can find wi with small excess risk.

Next, we will provide privacy and excess risk guarantees for Algorithm 3. In order to precisely
state our result, we will need to introduce some notation:

For a batch of data X P Xm, we define the k-th empirical moment of fpw, ¨q by

prmpXqpkq “ sup
wPW

sup
t∇fpw,xiqPBwfpw,xiqu

1

m

m
ÿ

i“1

}∇fpw, xiq}k,

where the supremum is also over all subgradients ∇fpw, xiq P Bwfpw, xiq in case f is not differen-
tiable. For X „ Dm, we denote the k-th expected empirical moment by

repkq
m :“ ErprmpXqpkqs

and let
rrk,m :“ prepkq

m q1{k.

17
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Note that rrk,1 “ rrk. Our excess risk upper bounds will depend on a weighted average of the expected
empirical moments for different batch sizes m P t1, 2, 4, 8, ¨ ¨ ¨ , nu, with more weight being given
to rrm for large m (which are smaller, by Lemma 9 below): for n “ 2l, define

rRk,n :“

g

f

f

e

l
ÿ

i“1

2´i
rr2k,ni

,

where ni “ 2´in.

Lemma 9 Under Assumptions 1 and 2, we have: rrpkq “ re
pkq

1 ě re
pkq

2 ě re
pkq

4 ě re
pkq

8 ě ¨ ¨ ¨ ě rpkq.
In particular, rRk,n ď rrk.

Proof Let l P N, n “ 2l and consider

prnpXqpkq “
1

n
sup
w

¨

˝

n{2
ÿ

i“1

}∇fpw, xiq}k `

n
ÿ

i“n{2`1

}∇fpw, xiq}k

˛

‚

ď
1

n

¨

˝sup
w

n{2
ÿ

i“1

}∇fpw, xiq}k ` sup
w

n
ÿ

i“n{2`1

}∇fpw, xiq}k

˛

‚.

Taking expectations over the random draw of X „ Dn yields repkq
n ď re

pkq

n{2. Thus, rRk,n ď rrk by the

definition of rRn.

With this notation, we can give the precise statement of our upper bound:

Theorem 10 Grant Assumption 1. Let fp¨, xq be convex and Lf -Lipschitz for all x, with Lf À

np{2
rR2k,n

˜

1?
n

`

ˆ?
d lnpnq

ϵn

˙
k´1
k

¸

for some p ě 2 and ϵ ď
?
d. Then, there are algorithmic

parameters such that Algorithm 3 is ϵ2

2 -zCDP, and has excess risk

EF pwlq ´ F ˚ À rR2k,nD

¨

˝

1
?
n

`

˜

a

d lnpnq

ϵn

¸
k´1
k

˛

‚.

Moreover, this excess risk is attained in rOpnp`1q subgradient evaluations. If p P r1, 2q, then the
same excess risk bound holds up to logarithmic factors.

The proof of Theorem 10 consists of three main steps: i) We bound the empirical error of the
noisy clipped subgradient subroutine (Lemma 12). ii) We prove that if an algorithm is on-average
model stable (Definition 13), then it generalizes (Proposition 14). iii) We bound the on-average
model stability of regularized ERM with non-smooth/non-Lipschitz loss (Proposition 15), leading to
an excess population loss bound for Algorithm 2 run on the regularized empirical objective (c.f. line 7
of Algorithm 3). By using these results with the proof technique of [29], we can obtain Theorem 10.

We proceed to prove the technical ingredients that will be used in the proof of Theorem 10. First,
we will prove a variant of Lemma 8 that bounds the bias and variance of the subgradient estimator
in Algorithm 2.
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PRIVATE STOCHASTIC OPTIMIZATION WITH LARGE WORST-CASE LIPSCHITZ PARAMTER

Lemma 11 Let pFλpwq “ 1
n

řn
i“1 fpw, xiq` λ

2 }w´w0}2 be a regularized empirical loss on a closed
convex domain W with ℓ2-diameter D. Let r∇Fλpwtq “ ∇ pFλpwtq`bt`Nt “ 1

n

řn
i“1ΠCp∇fpw, xiqq`

λpw ´ w0q ` Nt be the biased, noisy subgradients of the regularized empirical loss in Algo-
rithm 2, with Nt „ N p0, σ2Idq and bt “ 1

n

řn
i“1ΠCp∇fpwt, xiqq ´ 1

n

řn
i“1∇fpwt, xiq. Assume

prnpXqpkq ě supwPW
␣

1
n

řn
i“1 }∇fpw, xiq}k

(

for all ∇fpw, xiq P Bwfpw, xiq. Then, for any
T ě 1, we have:

B̂ :“ sup
tPrT s

}bt} ď
prnpXqpkq

pk ´ 1qCk´1

and
Σ̂2 :“ sup

tPrT s

E}Nt}
2 “ dσ2.

Proof Fix any t. We have

}bt} “

›

›

›

›

›

1

n

n
ÿ

i“1

ΠCp∇fpwt, xiqq ´
1

n

n
ÿ

i“1

∇fpwt, xiq

›

›

›

›

›

ď
1

pk ´ 1qCk´1

«

1

n

n
ÿ

i“1

}∇fpwt, xiq}k

ff

, (7)

by Lemma 8 applied with D as the empirical distribution on X , and xi in Lemma 8 corresponding
to ∇fpwt, xiq in (7). Taking supremum over t of both sides of (7) and recalling the definition of
prnpXqpkq proves the bias bound. The noise variance bound is immediate from the distribution of Nt.

Using Lemma 11, we can obtain the following convergence guarantee for Algorithm 2:

Lemma 12 Fix X P X n and let pFλpwq “ 1
n

řn
i“1 fpw, xiq ` λ

2 }w ´ w0}2 for w0 P W , where
W is a closed convex domain with diameter D. Assume fp¨, xq is convex and prnpXqpkq ě

supwPW
␣

1
n

řn
i“1 }∇fpw, xiq}k

(

for all ∇fpw, xiq P Bwfpw, xiq. Denote prnpXq “
“

prnpXqpkq
‰1{k

and ŵ “ argminwPW pFλpwq. Let η ď 2
λ . Then, the output of Algorithm 2 satisfies

E}wT ´ŵ}2 ď exp

ˆ

´
ληT

2

˙

}w0´ŵ}2`
8η

λ

`

prnpXq2 ` λ2D2 ` dσ2
˘

`
20

λ2

˜

prnpXqpkq

pk ´ 1qCk´1

¸2

,

where σ2 “ 4C2T
n2ϵ2

.

Proof We use the notation of Lemma 11 and write r∇Fλpwtq “ ∇ pFλpwtq`bt`Nt “ 1
n

řn
i“1ΠCp∇fpw, xiqq`

λpw ´ w0q ` Nt as the biased, noisy subgradients of the regularized empirical loss in Algo-
rithm 2, with Nt „ N p0, σ2Idq and bt “ 1

n

řn
i“1ΠCp∇fpwt, xiqq ´ 1

n

řn
i“1∇fpwt, xiq. Denote

yt`1 “ wt ´ r∇Fλpwtq, so that wt`1 “ ΠWpyt`1q. For now, condition on the randomness of the
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algorithm (noise). By strong convexity, we have

pFλpwtq ´ pFλpŵq ď x∇ pFλpwtq, wt ´ ŵy ´
λ

2
}wt ´ ŵ}2

“ xr∇Fλpwtq, wt ´ ŵy ´
λ

2
}wt ´ ŵ}2 ` x∇ pFλpwtq ´ r∇Fλpwtq, wt ´ ŵy

“
1

2η

`

}wt ´ ŵ}2 ` }wt ´ yt`1}2 ´ }yt`1 ´ ŵ}2
˘

´
λ

2
}wt ´ ŵ}2

` x∇ pFλpwtq ´ r∇Fλpwtq, wt ´ ŵy

“
1

2η

`

}wt ´ ŵ}2p1 ´ ληq ´ }yt`1 ´ ŵ}2
˘

`
η

2
}r∇Fλpwtq}2

` x∇ pFλpwtq ´ r∇Fλpwtq, wt ´ ŵy

ď
1

2η

`

}wt ´ ŵ}2p1 ´ ληq ´ }wt`1 ´ ŵ}2
˘

`
η

2
}r∇Fλpwtq}2 ´ xbt ` Nt, wt ´ ŵy,

where we used non-expansiveness of projection and the definition of r∇Fλpwtq in the last line. Now,
re-arranging this inequality and taking expectation, we get

Er}wt`1 ´ ŵ}2s ď ´2ηEr pFλpwtq ´ pFλpŵqs ` E}wt ´ ŵ}2p1 ´ ληq ` η2E}r∇Fλpwtq}2

´ 2ηExbt ` Nt, wt ´ ŵy

ď E}wt ´ ŵ}2p1 ´ ληq ` η2E}r∇Fλpwtq}2 ´ 2ηExbt, wt ´ ŵy,

by optimality of ŵ and the assumption that the noise Nt is independent of wt ´ ŵ and zero mean.
Also,

E}r∇Fλpwtq}2 ď 2
´

E}∇ pFλpwtq}2 ` }bt}
2 ` E}Nt}

2
¯

ď 2
´

2prnpXq2 ` 2λ2D2 ` B̂2 ` Σ̂2
¯

,

where B̂ :“ suptPrT s }bt} ď
prnpXqpkq

pk´1qCk´1 and Σ̂2 :“ suptPrT s E}Nt}
2 “ dσ2. by Lemma 11. We also

used Young’s and Jensen’s inequalities and the fact that ENt “ 0. Further,

|Exbt, wt ´ ŵy| ď
B̂2

λ
`

λ

4
E}wt ´ ŵ}2,

by Young’s inequality. Combining these pieces yields

E}wt`1 ´ ŵ}2 ď

ˆ

1 ´
λη

2

˙

E}wt ´ ŵ}2 ` 4η2
´

prnpXq2 ` λ2D2 ` B̂2 ` Σ̂2
¯

`
2ηB̂2

λ
. (8)
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Iterating (8) gives us

E}wT ´ ŵ}2 ď

ˆ

1 ´
λη

2

˙T

}w0 ´ ŵ}2 `

«

4η2
´

prnpXq2 ` λ2D2 ` B̂2 ` Σ̂2
¯

`
2ηB̂2

λ

ff

T´1
ÿ

t“0

ˆ

1 ´
λη

2

˙t

ď

ˆ

1 ´
λη

2

˙T

}w0 ´ ŵ}2 `

«

4η2
´

prnpXq2 ` λ2D2 ` B̂2 ` Σ̂2
¯

`
2ηB̂2

λ

ff

ˆ

2

λη

˙

“

ˆ

1 ´
λη

2

˙T

}w0 ´ ŵ}2 `
8η

λ

´

prnpXq2 ` λ2D2 ` B̂2 ` Σ̂2
¯

`
4B̂2

λ2

ď exp

ˆ

´
ληT

2

˙

}w0 ´ ŵ}2 `
8η

λ

´

prnpXq2 ` λ2D2 ` B̂2 ` Σ̂2
¯

`
4B̂2

λ2

ď exp

ˆ

´
ληT

2

˙

}w0 ´ ŵ}2 `
8η

λ

´

prnpXq2 ` λ2D2 ` Σ̂2
¯

`
20B̂2

λ2
,

since η ď 2
λ . Plugging in the bounds on B̂ and Σ̂ from Lemma 11 completes the proof.

Our next goal is to bound the generalization error of regularized ERM with non-Lipschitz/non-
smooth convex loss functions. We will use a stability argument to obtain such a bound. Recall the
notion of on-average model stability [41]:

Definition 13 Let X “ px1, ¨ ¨ ¨ , xnq and X 1 “ px1
1, ¨ ¨ ¨ , x1

nq be drawn independently from D. For
i P rns, let Xi :“ px1, ¨ ¨ ¨ , xi´1, x

1
i, xi`1, ¨ ¨ ¨ , xnq. We say randomized algorithm A has on-average

model stability α (i.e. A is α-on-average model stable) if E
“

1
n

řn
i“1 }ApXq ´ ApXiq}2

‰

ď α2. The
expectation is over the randomness of A and the draws of X and X 1.

On-average model stability is weaker than the notion of uniform stability [14], which has been used
in DP Lipschitz SCO (e.g. by [10]); this is necessary for obtaining our learnability guarantees without
Lipschitz continuity.

The main result in [41] showed that on-average model stable algorithms generalize well if fp¨, xq

is βf -smooth for all x, which leads to a restriction on Lf . We show that neither smoothness nor
Lipschitz continuity of f is needed to ensure generalizability:

Proposition 14 Let fp¨, xq be convex for all x and grant Assumption 2 for k “ 2. Suppose
A : X n Ñ W is α-on-average model stable. Then for any ζ ą 0, we have

ErF pApXqq ´ pFXpApXqqs ď
r2

2ζ
`

ζ

2
α2.

Proof Let X,X 1, Xi be constructed as in Definition 13. We may write ErF pApXqq´ pFXpApXqqs “

Er 1n

řn
i“1 fpApXiq, xiq ´ fpApXq, xiqs, by symmetry and independence of xi and ApXiq (c.f. [41,

Equation B.2]). Then by convexity, we have

ErF pApXqq ´ pFXpApXqqs ď
1

n

n
ÿ

i“1

ErxApXiq ´ ApXq,∇fpApXiq, xiqys

ď
1

n

n
ÿ

i“1

E
„

ζ

2
}ApXiq ´ ApXq}2 `

1

2ζ
}∇fpApXiq, xiq}2

ȷ

.
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Now, since ApXiq is independent of xi, we have:

E}∇fpApXiq, xiq}2 “ ErEr}∇fpApXiq, xiq}2|ApXiqss

ď sup
wPW

Er}∇fpApXiq, xiq}2|ApXiq “ ws

“ sup
wPW

Er}∇fpw, xiq}2s

ď r2.

Combining the above inequalities and recalling Definition 13 yields the result.

Using Proposition 14, we will bound the generalization error and excess (population) risk of
regularized ERM in Proposition 16. To prove Proposition 16, we first require the following bound on
the generalization error of ERM with strongly convex loss:

Proposition 15 Let fp¨, xq be λ-strongly convex, and grant Assumption 2. Let ApXq :“ argminwPW pFXpwq

be the ERM algorithm. Then,

ErF pApXqq ´ pFXpApXqqs ď
2r2

λn
.

Proof We first bound the stability of ERM and then use Proposition 14 to get a bound on the
generalization error. The beginning of the proof is similar to the proof of [41, Proposition D.6]: Let
X,X 1, Xi be constructed as in Definition 13. By strong convexity of pFXi and optimality of ApXiq,
we have

λ

2
}ApXq ´ ApXiq}2 ď pFXipApXqq ´ pFXipApXiqq,

which implies

1

n

n
ÿ

i“1

}ApXq ´ ApXiq}2 ď
2

λn

n
ÿ

i“1

”

pFXipApXqq ´ pFXipApXiqq

ı

. (9)

Now, for any w P W ,

n
n
ÿ

i“1

pFXipwq “

n
ÿ

i“1

rfpw, x1
iq `

ÿ

j‰i

fpw, xjqs

“ pn ´ 1qn pFXpwq ` n pFX 1pwq.

Hence

1

n
E

«

n
ÿ

i“1

pFXipApXqq

ff

“

ˆ

n ´ 1

n

˙

E pFXpApXqq `
1

n
E pFX 1pApXqq

“

ˆ

n ´ 1

n

˙

1

n
E

«

n
ÿ

i“1

pFXipApXiqq

ff

`
1

n
EF pApXqq,

by symmetry and independence of ApXq and X 1. Re-arranging the above equality and using
symmetry yields

1

n
E

«

n
ÿ

i“1

pFXipApXqq ´ pFXipApXiqq

ff

“
1

n
E
”

F pApXqq ´ pFXpApXqq

ı

. (10)
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Combining (9) with (10) shows that ERM is α-on-average model stable for

α2 “ E

«

1

n

n
ÿ

i“1

}ApXq ´ ApXiq}2

ff

ď
2

λn
E
”

F pApXqq ´ pFXpApXqq

ı

. (11)

The rest of the proof is where we depart from the analysis of [41] (which required smoothness of
fp¨, xq): Bounding the right-hand side of (11) by Proposition 14 yields

α2 ď
2

λn

ˆ

r2

2ζ
`

ζ

2
α2

˙

for any ζ ą 0. Choosing ζ “ λn
2 , we obtain

α2

2
ď

r2

λnζ
“

2r2

λ2n2
,

and α2 ď 4r2

λ2n2 . Applying Proposition 14 again yields (for any ζ 1 ą 0)

ErF pApXqq ´ pFXpApXqqs ď
r2

2ζ 1
`

ζ 1

2

ˆ

4r2

λ2n2

˙

ď
2r2

λn
,

by the choice ζ 1 “ λn
2 .

Proposition 16 Let fp¨, xq be convex, wi´1, y P W , and ŵi :“ argminwPW pFipwq, where pFipwq :“
1
ni

ř

jPBi
fpw, xjq `

λi
2 }w ´ wi´1}2 (c.f. line 6 of Algorithm 3). Then,

ErF pŵiqs ´ F pyq ď
2r2

λini
`

λi

2
}y ´ wi´1}2,

where the expectation is over both the random draws of X from D and Bi from X .

Proof Denote the regularized population loss by Gipwq :“ Er pFipwqs “ F pwq `
λi
2 }w ´ wi´1}2.

By Proposition 15, we have

ErGipŵiq ´ pFipŵiqs ď
2r2

λini
.

Thus,

λi
2
E}ŵi ´ wi´1}2 ` EF pŵiq “ EGipŵiq

ď
2r2

λini
` Er pFipŵiqs

ď
2r2

λini
`

λi
2

}y ´ wi´1}2 ` F pyq, (12)

since Er pFipŵiqs “ ErminwPW pFipwqs ď minwPW Er pFipwqs “ minwPW Gipwq ď
λi
2 }y´wi´1}2`

F pyq. Subtracting F pyq from both sides of (12) completes the proof.
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We are ready to prove Theorem 10:
Proof [Proof of Theorem 10] We choose σ2

i “
4C2

i Ti
n2
i ϵ

2 for Ci and Ti to be determined exactly later.

Note that for λi and ηi defined in Algorithm 3, we have ηi ď 2
λi

for all i P rls.

Privacy: Since the batches tBiuli“1 are disjoint, it suffices (by parallel composition [48]) to
show that wi (produced by Ti iterations of Algorithm 2 in line 7 of Algorithm 3) is ϵ2

2 -zCDP
for all i P rls. With clip threshold Ci and batch size ni, the ℓ2 sensitivity of the clipped subgra-
dient update is bounded by ∆ “ supw,X„X 1

1
ni

}
řni
j“1ΠCip∇fpw, xjqq ´ ΠCip∇fpw, x1

jqq} “

1
ni

supw,x,x1 }ΠCip∇fpw, xqq ´ ΠCip∇fpw, x1qq} ď
2Ci
ni

. (Note that the terms arising from regular-
ization cancel out.) Thus, by Proposition 6, conditional on the previous updates w1:t, the pt ` 1q-st
update in line 5 of Algorithm 2 satisfies ϵ2

2Ti
-zCDP. Hence, Lemma 7 implies that wi (in line 7

of Algorithm 3) is ϵ2

2 -zCDP.

Excess risk: First, our choice of Di ensures that ŵi P Wi, since

pFipŵiq “
1

ni

ÿ

jPBi

fpŵi, xjq `
λi
2

}ŵi ´ wi´1}2 ď pFipwi´1q “
1

ni

ÿ

jPBi

fpwi´1, xjq

ùñ
λi
2

}ŵi ´ wi´1}2 ď Lf }ŵi ´ wi´1}

ùñ }ŵi ´ wi´1} ď
2Lf
λi

“ Di,

by definition of ŵi and Lf -Lipschitz continuity of fp¨, xjq for all j. Then by Lemma 12, we have

E}wi´ŵi}
2 ď exp

ˆ

´
λiηiTi

2

˙

}wi´1´ŵi}
2`

8ηi
λi

´

prnipBiqp2q ` λ2
iD

2
i ` dσ2

i

¯

`
20

λ2
i

˜

prnipBiqpkq

pk ´ 1qCk´1
i

¸2

,

conditional on wi´1 and the draws of X „ Dn and Bi „ Xni . Taking expectation over the random
sampling yields

E}wi ´ ŵi}
2 ď exp

ˆ

´
λiηiTi

2

˙

}wi´1 ´ ŵi}
2 `

8ηi
λi

´

rep2q
ni

` λ2
iD

2
i ` dσ2

i

¯

`
20

λ2
i

re
p2kq
ni

C2k´2
i pk ´ 1q2

,

where dσ2
i ď

4dC2
i Ti

n2
i ϵ

2 . Choosing Ti “ 1
λiηi

ln
´

D2λi
dσ2

i ηi

¯

À npi ln pnq and η to be determined later
(polynomial in n), we get

E}wi ´ ŵi}
2 À

ηi
λi

`

L2
f ` dσ2

i

˘

`
re

p2kq
ni

λ2
iC

2k´2
i

À η2i n
p
i pL

2
f ` dσ2

i q `
η2i n

2p
i re

p2kq
ni

C2k´2
i

À

˜

η2np

32i

˜

L2
f `

dC2
i Ti

ϵ2n2
i

`
npre

p2kq
ni

C2k´2
i 2pi

¸¸

. (13)
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Note that under Assumption 1, F is L-Lipshitz, where L “ supwPW }∇F pwq} ď r by Jensen’s
inequality. Now, following the strategy used in the proof of [29, Theorem 4.4], we write

EF pwlq ´ F pw˚q “ ErF pwlq ´ F pŵlqs `

l
ÿ

i“1

ErF pŵiq ´ F pŵi´1qs,

where ŵ0 :“ w˚. Using (13), the first term can be bounded as follows:

ErF pwlq ´ F pŵlqs ď L
a

E}wl ´ ŵl}2

À L

g

f

f

eη2l

˜

L2
f `

C2
l d

ϵ2
`

re
p2kq
nl

C2k´2
l

¸

À L

«

η

n2

˜

Lf `

?
dCl
ϵ

`
rrk2k
Ck´1
l

¸ff

À L

»

–

η

n2

¨

˝Lf ` rr2k

˜?
d

ϵ

¸pk´1q{k
˛

‚

fi

fl

if we choose Cl “ rr2k

´

ϵ?
d

¯1{k
. Therefore,

ErF pwlq ´ F pŵlqs À rR2k,nD

¨

˝

1
?
n

`

˜

a

d lnpnq

ϵn

¸
k´1
k

˛

‚, (14)

if we choose

η À
rR2k,nDn2

L
min

˜

1

Lf
,
1

rr2k

ˆ

ϵ
?
d

˙pk´1q{k
¸

¨

˝

1
?
n

`

˜

a

d lnpnq

ϵn

¸
k´1
k

˛

‚“: ηA.

Next, Proposition 16 implies

ErF pŵiq ´ F pŵi´1qs ď
2r2

λini
`

λi
2
E}ŵi´1 ´ wi´1}2

for all i P rls. Hence

l
ÿ

i“1

ErF pŵiq ´ F pŵi´1qs À
r2

λ1n1
` λ1D

2 `

l
ÿ

i“2

«

r2

λini
` λiη

2
i

˜

npi pL
2
f ` dσ2

i q `
n2p
i re

p2kq
ni

C2k´2
i

¸ff

À r2ηnp´1 `
D2

ηnp
`

l
ÿ

i“2

r2ηin
p´1
i `

l
ÿ

i“2

ηi
npi

˜

npi pL
2
f `

dC2
i Ti

ϵ2n2
i

q `
n2p
i re

p2kq
ni

C2k´2
i

¸

À r2ηnp´1 `
D2

ηnp
`

l
ÿ

i“2

ηi

˜

L2
f `

dC2
i n

p
i lnpnq

ϵ2n2
i

`
npi re

p2kq
ni

C2k´2
i

¸

.
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Choosing Ci “ rr2k,ni

ˆ

ϵni?
d lnpnq

˙1{k

approximately equalizes the two terms above involving Ci and

we get

l
ÿ

i“1

ErF pŵiq ´ F pŵi´1qs À r2ηnp´1 `
D2

ηnp
` ηL2

f ` η
l
ÿ

i“2

4´inpi rr
2
2k,ni

ˆ

d lnpnq

ϵ2n2
i

˙
k´1
k

À η

«

r2np´1 ` L2
f ` rR2

2k,nn
p

ˆ

d lnpnq

ϵ2n2

˙
k´1
k

ff

`
D2

ηnp
,

where the last line holds verbatim if p ě 2 and holds up to an additional factor of lnpnq otherwise.
Assume p ě 2. Now, choosing

η “ min

¨

˝ηA,
D

np{2
min

$

&

%

1

rnpp´1q{2
,
1

Lf
,

1

rR2k,nnp{2

˜

ϵn
a

d lnpnq

¸pk´1q{k
,

.

-

˛

‚

yields

l
ÿ

i“1

ErF pŵiq ´ F pŵi´1qs À rR2k,nD

¨

˝

1
?
n

`

˜

a

d lnpnq

ϵn

¸
k´1
k

˛

‚`
LfD

np{2
`

D2

ηAnp

À rR2k,nD

¨

˝

1
?
n

`

˜

a

d lnpnq

ϵn

¸
k´1
k

˛

‚,

by the upper bound that we assumed on Lf . Combining the above pieces completes the excess risk
proof.
Subgradient complexity: Our choice of Ti “ rΘ

´

1
λiηi

¯

À npi ln pnq implies that Algorithm 3 uses
řl
i“1 niTi À lnpnqnp`1 subgradient evaluations.

Remark 17 (Reduced Computational Cost for Approximate DP) If one desires pϵ, δq-DP or pϵ, δq-
SDP instead of zCDP, then the gradient complexity of Algorithm 3 can be improved to Opnp` 1

2 lnpnqq

by using Clipped Noisy Stochastic Subgradient Method instead of Algorithm 2 as the subroutine
in line 7 of Algorithm 3. Choosing batch sizes mi «

?
ni ă ni in this subroutine (and increasing

σ2
i by a factor of Oplogp1{δqq) ensures pϵ, δq-DP by [1, Theorem 1] via privacy amplification by

subsampling. The same excess risk bounds hold for any minibatch size mi P rnis, as the proof
of Theorem 10 shows.

F.2. The Strongly Convex Case

Our algorithm is an instantiation of the meta-algorithm described in [29]: Initialize w0 P W . For
j P rM s :“ rlog2plog2pnqqs, let Nj “ 2j´2n{ log2pnq, Cj “

!

ř

hăj Nh ` 1, . . . ,
ř

hďj Nh

)

, and
let wj be the output of Algorithm 3 run with input data Xj “ pxsqsPCj initialized at wj´1. Output
wM . Assume without loss of generality that Nj “ 2p for some p P N. Then, with the notation
defined in Appendix F, we have the following guarantees:

26



PRIVATE STOCHASTIC OPTIMIZATION WITH LARGE WORST-CASE LIPSCHITZ PARAMTER

Theorem 18 Grant Assumption 1. Let ϵ ď
?
d and fp¨, xq be µ-strongly convex and Lf -Lipschitz

for all x P X , with Lf À np{2
rR2k,n

˜

1?
n

`

ˆ?
d lnpnq

ϵn

˙
k´1
k

¸

for some p ě 2. Then, there is a

polynomial-time ϵ2

2 -zCDP algorithm A based on Algorithm 3 with excess risk

EF pApXqq ´ F ˚ À

rR2
2k,n{4

µ

¨

˝

1

n
`

˜

a

d lnpnq

ϵn

¸
2k´2

k

˛

‚.

Proof Privacy: Since the batches Xj used in each phase of the algorithm are disjoint and Algorithm 3
is ϵ2

2 -zCDP, privacy of the algorithm follows from parallel composition of DP [48].
Excess risk: Note that Nj samples are used in phase j of the algorithm. For j ě 0, let D2

j “

Er}wj ´ w˚}2s and ∆j “ ErF pwjq ´ F ˚s. By strong convexity, we have D2
j ď

2∆j

µ . Also,

∆j`1 ď a rR2k,Nj
Dj

¨

˝

1
a

Nj
`

˜

a

d lnpNjq

ϵNj

¸
k´1
k

˛

‚

ď a rR2k,Nj

d

2∆j

µ

¨

˝

1
a

Nj
`

˜

a

d lnpNjq

ϵNj

¸
k´1
k

˛

‚ (15)

for an absolute constant a ě 1, by Theorem 10. Denote Ej “

«

a rR2k,Nj

b

2
µ

˜

1?
Nj

`

ˆ?
d lnpNjq

ϵNj

˙
k´1
k

¸ff2

.

Then since Nj “ 2Nj`1, we have

Ej
Ej`1

ď 4

˜

rR2k,Nj

rR2k,Nj`1

¸2

ď 8, (16)

where the second inequality holds because for any m “ 2q, we have:

rR2
2k,m{2 “

log2pmq´1
ÿ

i“1

2´i
rr22k,2´pi`1qm “

log2pmq
ÿ

i“2

2´pi´1q
rr22k,2´im “ 2

log2pmq
ÿ

i“2

2´i
rr22k,2´im ď 2 rR2

2k,m.

Now, (16) implies that (15) can be re-arranged as

∆j`1

64Ej`1
ď

d

∆j

64Ej
ď

ˆ

∆0

64E0

˙1{2j`1

. (17)

Further, if M ě log log
´

∆0
E0

¯

, then

∆M

64EM
ď

ˆ

∆0

64E0

˙1{2M

ď

ˆ

∆0

64E0

˙1{ logp∆0{E0q

ď 2A
ˆ

1

64

˙1{ logp∆0{E0q

ď 2A,
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for an absolute constant A ą 0, since ∆0 ď 2L2

µ and E0 ě 2L2

µn implies ∆0{E0 “ n
a2

ď n and

1
logp∆0{E0q

“ 1
logpnq´2 logpaq

ď A
logpnq

for some A ą 0, so that
´

∆0
E0

¯1{ logp∆0{E0q

ď nA{ logpnq ď 2A.
Therefore,

∆M ď 2A64EM “ O

¨

˝

rR2
2k,n{4

µ

¨

˝

1

n
`

˜

a

d lnpnq

ϵn

¸
2k´2

k

˛

‚

˛

‚,

since NM “ n{4.

F.3. Asymptotic Upper Bounds Under Assumption 3

We first recall the notion of subexponential distribution:

Definition 19 (Subexponential Distribution) A random variable Y is subexponential if there is an
absolute constant s ą 0 such that Pp|Y | ě tq ď 2 exp

`

´ t
s

˘

for all t ě 0. For subexponential Y ,
we define }Y }ψ1 :“ inf

␣

s ą 0 : Pp|Y | ě tq ď 2 exp
`

´ t
s

˘

@ t ě 0
(

.

Essentially all (heavy-tailed) distributions that arise in practice are subexponential [47].
Now, we establish asymptotically optimal upper bounds for a broad subclass of the problem

class considered in [36, 62]: namely, subexponential stochastic subgradient distributions satisfy-
ing Assumption 3. These upper bounds are a consequence of Lemma 3 combined with the following
theorem (which uses the notation introduced in Section 2):

Theorem 20 Let fp¨, xq be convex. Assume rr2k ă 8 and Yi “ }∇fpw, xiq}2k is subexponential
with En ě maxiPrns p}Yi}ψ1q @w P W , ∇fpw, xiq P Bwfpw, xiq. Assume that for sufficiently large

n, we have supw,x }∇fpw, xq}2k ď nqrp2kq for some q ě 1 and max
´

En

rp2kq ,
E2

n

prp2kqq2

¯

ln
´

3nDβ
4r2k

¯

ď

n
dq , where }∇fpw, xq ´ ∇fpw1, xq} ď β}w ´ w1} for all w,w1 P W, x P X , and subgradients

∇fpw, xq P Bwfpw, xq. Then, limnÑ8
rR2k,n ď 4r2k. Further, there exists N P N such that for all

n ě N , the output of Algorithm 3 satisfies

EF pwlq ´ F ˚ “ O

¨

˝r2kD

¨

˝

1
?
n

`

˜

a

d lnpnq

ϵn

¸
k´1
k

˛

‚

˛

‚.

If fp¨, xq is µ-strongly convex, then the output of algorithm A (in Appendix F.2) satisfies

EF pApXqq ´ F ˚ “ O

¨

˝

r22k
µ

¨

˝

1

n
`

˜

a

d lnpnq

ϵn

¸
2k´2

k

˛

‚

˛

‚.

While a bound on supw,x }∇fpw, xq} is needed in Theorem 20, it can grow as fast as any
polynomial in n and only needs to hold for sufficiently large n. As n Ñ 8, this assumption is easily
satisfied. Likewise, Theorem 20 depends only logarithmically on the Lipschitz parameter of the
subgradients β, so the result still holds up to constant factors if, say, β ď nppr{Dq as n Ñ 8 for
some p ě 1. Crucially, our excess risk bounds do not depend on Lf or β.
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Under Assumption 3, the upper bounds in Theorem 20 hold with r replaced by
?
dγ1{k (by

Lemma 3). These upper bounds, and the ones in Theorem 20, are tight up to logarithms for their
respective problem classes, by the lower bounds in Appendix F.4.
Proof [Proof of Theorem 20] Step One: There exists N P N such that rr22k,n ď 16r22k for all n ě N .
We will first use a covering argument to show that prnpXqp2kq is upper bounded by 22k`1rp2kq with
high probability. For any α ą 0, we may choose an α-net with Nα ď

`

3D
2α

˘d
balls centered around

points in Wα “ tw1, w2, ¨ ¨ ¨ , wNαu Ă W such that for any w P W there exists i P rNαs with
}w ´ wi} ď α (see e.g. [39] for the existence of such Wα). For w P W , let rw denote the element of
Wα that is closest to w, so that }w ´ rw} ď α. Now, for any X P X n, we have

prnpXqp2kq “ sup
w

#

1

n

n
ÿ

i“1

}∇fpw, xiqq ´ ∇fp rw, xiq ` ∇fp rw, xiq}2k

+

ď 22k sup
w

#

1

n

n
ÿ

i“1

}∇fpw, xiq ´ ∇fp rw, xiq}2k ` }∇fp rw, xiq}2k

+

ď 22k

«

β2kα2k `
1

n
max
jPrNαs

n
ÿ

i“1

}∇fpwj , xiq}2k

ff

,

where we used Cauchy-Schwartz and Young’s inequality for the first inequality, and the assumption
of β-Lipschitz subgradients plus the definition of Wα for the second inequality. Further,

P

˜

22k

n
max
jPrNαs

n
ÿ

i“1

}∇fpwj , xiq}2k ě 22k`1rp2kq

¸

ď Nα max
jPrNαs

P

˜

n
ÿ

i“1

}∇fpwj , xiq}2k ě 22k`1rp2kq

¸

ď Nα exp

˜

´nmin

˜

rp2kq

En
,

prp2kqq2

E2
n

¸¸

,

by a union bound and Bernstein’s inequality (see e.g. [59, Corollary 2.8.3]). Choosing α “
2r2k
β

ensures that Pp22kβ2kα2k ą 22k`1rp2kqq “ 0 and hence (by union bound)

P
´

prnpXqp2kq ě 22k`1rp2kq
¯

ď Nα exp

˜

´nmin

˜

rp2kq

En
,

prp2kqq2

E2
n

¸¸

ď

ˆ

3Dβ

4r2k

˙d

exp

˜

´nmin

˜

rp2kq

En
,

prp2kqq2

E2
n

¸¸

ď
1

nq
,

by the assumption on n. Next, we use this concentration inequality to derive a bound on re
p2kq
n :

rep2kq
n “ E

”

prnpXqp2kq
ı

ď E
”

prnpXqp2kq|prnpXqp2kq ě 22k`1rp2kq
ı 1

nq
` 22k`1rp2kq

ď
supw,x }∇fpw, xq}2k

nq
` 22k`1rp2kq

ď p1 ` 22k`1qrp2kq,
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for sufficiently large n. Thus, rr22k,n ď 16r22k for all sufficiently large n. This establishes Step One.

Step Two: limnÑ8
rR2k,n ď 4r2k.

For all n “ 2l, l, i P N, define hnpiq “ 2´i
rr2
2k,2´in

1tiPrlog2pnqsu. Note that 0 ď hnpiq ď gpiq :“

2´i
rr22k for all n, i, and that

ř8
i“1 gpiq “ rr22k ă 8 (i.e. g is integrable with respect to the counting

measure). Furthermore, the limit limnÑ8 hnpiq “ 2´i limnÑ8 rr2
2k,2´in

exists since Lemma 9
implies that the sequence trr2

2k,2´in
u8
n“1 is monotonic and bounded for every i P N. Thus, by

Lebesgue’s dominated convergence theorem, we have

lim
nÑ8

rR2
2k,n “ lim

nÑ8

8
ÿ

i“1

hnpiq

“

8
ÿ

i“1

lim
nÑ8

hnpiq

ď

8
ÿ

i“1

2´i lim
nÑ8

rr22k,2´in

ď 16
8
ÿ

i“1

2´ir22k

“ 16r22k,

where the last inequality follows from Step One. Therefore, limnÑ8
rR2k,n ď 4r2k. By Theorem 10

and Theorem 18, this also implies the last two claims in Theorem 20.

F.4. Lower Bounds
The work of [36] proved lower bounds under Assumption 3 that are tight (by our upper bounds) in
most parameter regimes for γ “ D “ µ “ 1 and k “ Op1q.11 Our (relatively modest) contribution
in this subsection is: refining these lower bounds to display the correct dependence on γ, r, rr,D, µ;
tightening the convex lower bound [36, Theorem 6.4] in the regime d ą n; and extending [36,
Theorems 6.1 and 6.4] to k " 1. Our first lower bounds hold even for affine functions:

Theorem 21 Let k ě 2, D, γ, rpkq, rrpkq ą 0, βf ě 0, d ě 40, n ą 7202, and ρ ď d. Then, for
any ρ-zCDP algorithm A, there exist W,X Ă Rd such that }w ´ w1} ď 2D for all w,w1 P W , a
βf -smooth, linear, convex (in w) loss f : W ˆ X Ñ R, and distributions D and D1 on X such that:
1. Assumption 1 holds and if X 1 „ D1n, then

EF pApX 1qq ´ F ˚ “ Ω

¨

˝

rrkD

¨

˝

1
?
n

` min

$

&

%

1,

˜ ?
d

?
ρn

¸
k´1
k

,

.

-

˛

‚

˛

‚. (18)

2. Assumption 2 holds and if X 1 „ D1n, then

EF pApX 1qq ´ F ˚ “ Ω

¨

˝rkD

¨

˝

1
?
n

` min

$

&

%

1,

˜ ?
d

?
ρn

¸
k´1
k

,

.

-

˛

‚

˛

‚. (19)

11. The lower bounds asserted in [36] only hold if k À 1 since the moments of the Gaussian distribution that they construct
grow exponentially/factorially with k.
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3. Assumption 3 holds and if X „ Dn, then

EF pApXqq ´ F ˚ “ Ω

¨

˝γ1{kD

¨

˝

c

d

n
`

?
dmin

$

&

%

1,

˜ ?
d

?
ρn

¸
k´1
k

,

.

-

˛

‚

˛

‚.

Proof We will prove part 3 first.
3. We begin by proving the result for γ “ D “ 1. In this case, it is proved in [36] that

EF pApXqq ´ F ˚ “ Ω

¨

˝

?
dmin

$

&

%

1,

˜ ?
d

?
ρn

¸
k´1
k

,

.

-

˛

‚

for fpw, xq “ ´xw, xy with W “ Bd
2p0, 1q and X “ t˘1ud, and a distribution satisfying Assump-

tion 3 with γ “ 1. Then fp¨, xq is linear, convex, and β-smooth for all β ě 0. We prove the first
(non-private) term in the lower bound. By the Gilbert-Varshamov bound (see e.g. [2, Lemma 6])
and the assumption d ě 40, there exists a set V Ď t˘1ud with |V| ě 2d{20, dHampν, ν1q ě d

8 for all
ν, ν1 P V, ν ‰ ν 1. For ν P V , define the product distribution Qν “ pQν1 , ¨ ¨ ¨Qνdq, where for all
j P rds,

Qνj “

#

1 with probability
1`δνj

2

´1 with probability
1´δνj

2

for δνj P p0, 1q to be chosen later. Then EQνj :“ µνj “ δνj and for any w P W , x „ Qν , we have

E|x∇fpw, xq ´ ∇F pwq, ejy|k “ E|x´x ` Ex, ejy|k (20)

“ E|x ´ µνj |k (21)

“
1 ` δνj

2
|1 ´ δνj |k `

1 ´ δνj
2

|1 ` δνj |k (22)

ď 1 ´ δ2νj ď 1 (23)

for δνj P p0, 1q. Now, let p :“
a

d{n and δνj :“
pνj?
d

. Note that EQν :“ µν “
pν
?
d

and wν :“
µν

}µν}
“ ν

}ν}
. Also, }µν} “ p :“ }µ} for all ν P V . Now, denoting FQν pwq :“ Ex„Qνfpw, xq, we

have for any w P W (possibly depending on X „ Qn
ν ) that

max
νPV

E
„

FQν pwq ´ min
w1PW

FQν pw1q

ȷ

“ max
νPV

E
„B

µν
}µ}

, µν

F

´ xw, µνy

ȷ

(24)

“ max
νPV

E r}µ} ´ xw, µνys (25)

“ max
νPV

E p}µ}r1 ´ xw,wνysq (26)

ě max
νPV

E
„

1

2
}µ}}w ´ wν}2

ȷ

, (27)

since }w}, }wν} ď 1. Further, denoting ŵ :“ argminνPV }wν ´ w}, we have }ŵ ´ wν}2 ď

4}wν ´ w}2 for all ν P V (via Young’s inequality). Hence

max
νPV

E
„

FQν pwq ´ min
w1PW

FQν pw1q

ȷ

ě
}µ}

8
max
νPV

E}ŵ ´ wν}2. (28)
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Now we apply Fano’s method (see e.g. [64, Lemma 3]) to lower bound maxνPV E}ŵ ´ wν}2.
For all ν ‰ ν 1, we have }wν ´ wν1}2 ě

}ν´ν1}2

}ν}2
ě 1 since dHampν, ν1q ě d

2 and ν P t˘1ud implies

}ν ´ ν 1}2 ě d
2 and }ν}2 “ d. Also, a straightforward computation shows that for any j P rds and

ν, ν1 P V ,

DKLpQνj ||Qν1
j
q ď

1 `
p

?
d

2

«

log

˜?
d ` p
?
d

¸

` log

˜ ?
d

?
d ´ p

¸ff

(29)

ď log

˜

1 `
p

?
d

1 ´
p

?
d

¸

(30)

ď
3p
?
d
, (31)

for our choice of p, provided p
?
d

“ 1?
n

P p0, 12q, which holds if n ą 4. Hence by the chain rule for
KL-divergence,

DKLpQν ||Qν1q ď 3p
?
d “ 3

d
?
n

for all ν, ν1 P V . Thus, for any w P W , Fano’s method yields

max
νPV

E}w ´ wν}2 ě
1

2

˜

1 ´
3p

?
d ` logp2q

pd{20q

¸

“
1

2

˜

1 ´
60 d?

n
´ 20 logp2q

d

¸

,

which is Ωp1q for d ě 40 ą 20 logp2q and n ą 7202. Combining this with (28) and plugging in

}µ} “

b

d
n shows that

EFQν pApXqq ´ F ˚
Qν

“ Ω

˜

c

d

n

¸

for some ν P V (for any algorithm A), where X „ Qn
ν .

Next, we scale our hard instance for arbitrary γ,D ą 0. First, we scale the distribution Qν Ñ

Q̃ν “ γ1{kQν , which is supported on X̃ “ t˘γ1{kud. Denote its mean by EQν :“ rµν “ γ1{kµν .
Also we scale W Ñ ĂW “ DW “ Bd

2p0, Dq. So our final (linear, convex, smooth) hard instance is
f : ĂW ˆ rX Ñ R, fp rw, rxq “ ´x rw, rxy, rF p rwq :“ E

rx„Q̃ν
fp rw, rxq. Denote F pwq :“ Ex„Qνfpw, xq.

Note that

E|x∇fp rw, rxq ´ ∇ rF p rwq, ejy|k “ E|x´rx ` Erx, ejy|k

“ E|rx ´ rµνj |k

“ E|γ1{kpx ´ µνj q|k ď γ.

Further, we have w˚ :“ argminwPW F pwq “
µν

}µν}
and rw˚ :“ argmin

rwPĂW
rF p rwq “ Dw˚. There-

fore, for any w P W, rw “ Dw P ĂW , we have

rF p rwq ´ rF p rw˚q “ ´x rw, rµνy ` x rw˚, rµνy (32)

“ xDpw˚ ´ wq, γ1{kµνy (33)

“ Dγ1{krF pwq ´ F pw˚qs. (34)
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Thus,
E rF pAp rXqq ´ rF ˚ “ γ1{kDrEF pApXqq ´ F ˚s,

so applying the lower bound for the case D “ γ “ 1 (i.e. for the unscaled F ) yields the desired
lower bound via rF .
1. We will use nearly the same unscaled hard instances used to prove the private and non-private terms
of the lower bound in part 3, but the scaling will differ. Starting with the non-private term, we scale the
distribution Qν Ñ rQν “

rrk?
d
Qν and X Ñ rX “

rrk?
d
X . Also, scale W Ñ ĂW “ DW “ Bd

2p0, Dq.
Let fp rw, rxq :“ ´x rw, rxy, which satisfies all the hypotheses of the theorem. Also,

E
rx„ rQν

„

sup
rw

}∇fp rw, rxq}k
ȷ

“

ˆ

rrk
?
d

˙k

Ex„Qν }x}k ď

ˆ

rrk
?
d

˙k

dk{2 “ rrpkq.

Now rw˚ “ Dw˚ as before and letting rF p¨q :“ E
rx„ rQν

fp¨, rxq, we have

rF p rwq ´ rF p rw˚q “
rrkD
?
d

rF pwq ´ F ˚s

for any rw “ Dw. Thus, applying the unscaled non-private lower bound established above yields a
lower bound of Ω

´

rrD?
n

¯

on the non-private excess risk of our scaled instance.

Next, we turn to the scaled private lower bound. The unscaled hard distribution Q1
ν given by

Q1
ν “

#

0 with probability 1 ´ p

p´1{kν with probability p

(with the same linear f and same W) provides the unscaled lower bound

EF pApXqq ´ F ˚ “ Ω

¨

˝

?
dmin

$

&

%

1,

˜ ?
d

?
ρn

¸
k´1
k

,

.

-

˛

‚,

by the proof of [36, Theorem 6.4]. We scale Q1
ν Ñ rQ1

ν “ rr?
d
Q1
ν , X Ñ rX “ rr?

d
X , and

W Ñ ĂW “ DW . Then for any rw P ĂW ,

E
rx„ĂQ1

„

sup
rw

}∇fp rw, rxq}k
ȷ

“

ˆ

rrk
?
d

˙k

Ex„Q1}x}k “ p}p´1{kν}k “ rrpkq.

Moreover, excess risk scales by a factor of rrD?
d

, as we saw above. Thus, applying the unscaled lower
bound completes the proof of part 1.
2. We use an identical construction to that used above in part 1 except that the scaling factor rrk gets
replaced by rk. It is easy to see that E

“

supwPW }∇fpw, xq}k
‰

“ supwPW E
“

}∇fpw, xq}k
‰

for our
construction, hence the result follows.

Remark 22 The main differences in our proof of part 3 of Theorem 21 from the proof of [36,
Theorem 6.4] (for γ “ D “ 1) are: 1) we construct a Bernoulli product distribution (built on [24,
Example 7.7]) instead of a Gaussian, which establishes a lower bound that holds for all k ě 2
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instead of just k “ Op1q; and 2) we choose a different parameter value (larger p in the notation
of the proof) in our application of Fano’s method, which results in a tighter lower bound: the term
mint1,

a

d{nu in [36, Theorem 6.4] gets replaced with
a

d{n.12 Also, there exist parameter settings
for which our lower bound is indeed strictly greater than the lower bound in [36, Theorem 6.4]: for

instance, if d ą n ą d{ρ and k Ñ 8, then our lower bound simplifies to Ωp

b

d
nq. On the other hand,

the lower bound in [36, Theorem 6.4] breaks as k Ñ 8 (since the k-th moment of their Gaussian
goes to infinity); however, even if were extended to k Ñ 8 (e.g. by replacing their Gaussian with
our Bernoulli distribution), then the resulting lower bound Ωp1 ` d?

ρnq would still be smaller than

the one we prove above.13

Theorem 23 Let k ě 2, µ, γ, rrk, rk ą 0, n P N, d ě 40, and ρ ď d. Then, for any ρ-zCDP
algorithm A, there exist convex, compact sets W,X Ă Rd of diameter D, a µ-smooth, µ-strongly
convex (in w) loss f : W ˆ X Ñ R, and distributions D and D1 on X such that:
1. Assumption 1 holds with D «

rrk
µ , and if X 1 „ D1n, then

EF pApX 1qq ´ F ˚ “ Ω

¨

˝

rr2k
µ

¨

˝

1

n
` min

$

&

%

1,

˜ ?
d

?
ρn

¸
2k´2

k

,

.

-

˛

‚

˛

‚.

2. Assumption 2 holds with D «
rk
µ , and if X 1 „ D1n, then

EF pApX 1qq ´ F ˚ “ Ω

¨

˝

r2k
µ

¨

˝

1

n
` min

$

&

%

1,

˜ ?
d

?
ρn

¸
2k´2

k

,

.

-

˛

‚

˛

‚.

3. Assumption 3 holds, D «
γ1{k

?
d

µ , and if X „ Dn, then

EF pApXqq ´ F ˚ “ Ω

¨

˝

γ2{k

µ

¨

˝

d

n
` dmin

$

&

%

1,

˜ ?
d

?
ρn

¸
2k´2

k

,

.

-

˛

‚

˛

‚.

Proof We will prove part 3 first. 3. We first consider γ “ µ “ 1 and then scale our hard instance. For
fpw, xq :“ 1

2}w´x}2, [36] construct a convex/compact domain W ˆX Ă RdˆRd and distribution
D on X such that

EF pApXqq ´ F ˚ “ Ω

¨

˝dmin

$

&

%

1,

˜ ?
d

?
ρn

¸
2k´2

k

,

.

-

˛

‚

for any k and any ρ-zCDP algorithm A : X n Ñ W if X „ Dn.14 So, it remains to a) prove the
first term (d{n) in the lower bound, and then b) show that the scaled instance satisfies the exact

12. Note that [36, Theorem 6.4] writes
a

d{n for the first term. However, the proof (see Equation 16 in their paper) only
establishes the bound mint1,

a

d{nu.
13. By Lemma 3, lower bounds under Assumption 3 imply lower bounds under Assumption 2 with γ1{k replaced by

r{
?
d. Nevertheless, we provide direct proofs under both assumptions for additional clarity.

14. In fact, W and X can be chosen to be Euclidean balls of radius
?
dp´1{k for p defined in the proof of [36, Lemma

6.3], which ensures that ED P W “ X .
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hypotheses in the theorem and has excess loss that scales by a factor of γ2{k{µ. We start with task a).
Observe that for f defined above and any distribution D such that ED P W , we have

EF pApXqq ´ F ˚ “
1

2
E}ApXq ´ ED}2 (35)

(see [36, Lemma 6.2]), and

E|x∇fpw, xq ´ ∇F pwq, ejy|k “ E|xx ´ Ex, ejy|k.

Thus, it suffices to prove that E}ApXq ´ ED}2 Á d
n for some D such that E|xx ´ Ex, ejy|k ď 1.

This is a known result for products of Bernoulli distributions; nevertheless, we provide a detailed
proof below. First consider the case d “ 1. Then the proof follows along the lines of [24, Example
7.7]. Define the following pair of distributions on t˘1u:

P0 :“

#

1 with probability 1
2

´1 with probability 1
2

and

P1 :“

#

1 with probability 1`δ
2

´1 with probability 1´δ
2

for δ P p0, 1q to be chosen later. Notice that if X is a random variable with distribution Pν (ν P t0, 1u),
then E|X ´ µ|k ď E|X|k ď 1. Also, EPν “ δν for ν P t0, 1u and |EP1 ´ EP0| “ δ (i.e. the two
distributions are δ-separated with respect to the metric ρpa, bq “ |a ´ b|). Then by LeCam’s method
(see e.g. [24, Eq. 7.33] and take Φp¨q “ p¨q2),

max
νPt0,1u

EX„Pn
ν

|ApXq ´ EPν |2 ě
δ2

8
r1 ´ }Pn

0 ´ Pn
1 }TV s .

Now, by Pinsker’s inequality and the chain rule for KL-divergence, we have

}Pn
0 ´ Pn

1 }2TV ď
1

2
DKLpPn

0 ||Pn
1 q “

n

2
DKLpP0||P1q “

n

2
log

ˆ

1

1 ´ δ2

˙

.

Choosing δ “ 1?
2n

ă 1?
2

implies }Pn
0 ´ Pn

1 }2TV ď nδ2 “ 1
2 . Hence there exists a distribution

D̂ P tP0, P1u on R such that

EX„D̂n |ApXq ´ ED̂|2 ě
δ2

8

„

1 ´
1

?
2

ȷ

ě
1

64n

For general d ě 1, we take the product distribution D :“ D̂d on X “ t˘1ud and choose W “

Bd
2p0,

?
dq to ensure ED P W (so that (35) holds). Clearly, E|xD ´ ED, ejy|k ď 1 for all j P rds.

Further, the mean squared error of any algorithm for estimating the mean of D is

EX„Dn}ApXq ´ ED}2 “

d
ÿ

j“1

E|ApXqj ´ EDj |
2 ě

d

64n
, (36)

by applying the d “ 1 result to each coordinate.
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Next, we move to task b). For this, we re-scale each of our hard distributions (non-private
given above, and private given in the proof of [36, Lemma 6.3] and below in our proof of part
2 of the theorem–see (40)): D Ñ

γ1{k

µ D “ rD, X Ñ
γ1{k

µ X “ rX , W Ñ
γ1{k

µ W “ ĂW and

f : W ˆ X Ñ µf “ rf : ĂW ˆ rX . Then rfp¨, rxq is µ-strongly convex and µ-smooth for all rx P rX and

E|x∇ rfp rw, rxq´∇ rF p rwq, ejy|k “ µkE|xrx´Erx, ejy|k “ µkE

ˇ

ˇ

ˇ

ˇ

ˇ

˜

γ1{k

µ

¸

xx ´ Ex, ejy

ˇ

ˇ

ˇ

ˇ

ˇ

k

“ γE|xx´Ex, ejy|k ď γ

for any j P rds, x „ D, rx „ rD, rw P ĂW . Thus, the scaled hard instance is in the required class
of functions/distributions. Further, denote rF pwq “ E rfpw, xq, rw˚ :“ argmin

rwPĂW
rF p rwq “ E rD “

γ1{k

µ ED. Then, for any w P W, rw :“ γ1{k

µ w, we have:

rF p rwq ´ rF p rw˚q “
µ

2
E
“

} rw ´ rx}2 ´ } rw˚ ´ rx}2
‰

(37)

“
µ

2

˜

γ2{k

µ2

¸

E
“

}w ´ x}2 ´ }w˚ ´ x}2
‰

(38)

“
γ2{k

µ
rF pwq ´ F pw˚qs. (39)

In particular, for w :“ ApXq and rw :“ γ1{k

µ ApXq, we get

EA,X„Dn

«

rF

˜

γ1{k

µ
ApXq

¸

´ rF ˚

ff

“
γ2{k

µ
EA,X„Dn rF pApXqq ´ F ˚s

for any algorithm A : X n Ñ W . Writing ÃpX̃q :“ γ1{k

µ ApXq and X̃ :“ γ1{k

µ X for X P X n, we
conclude

E
rA,X̃„D̃n

”

rF
´

ÃpX̃q

¯

´ rF ˚
ı

“
γ2{k

µ
EA,X„Dn rF pApXqq ´ F ˚s

for any rA : rX n Ñ ĂW . Therefore, an application of the unscaled lower bound

EA,X„Dn rF pApXqq ´ F ˚s “ Ω

¨

˝

d

n
` dmin

$

&

%

1,

˜ ?
d

n
?
ρ

¸
2k´2

k

,

.

-

˛

‚,

which follows by combining part 3a) above with [36, Lemma 6.3], completes the proof of part 3.

1. We begin by proving the first (non-private) term in the lower bound: For our unscaled hard
instance, we will take the same distribution D “ P d

ν (for some ν P t0, 1u) on X “ t˘1ud and
quadratic f described above in part 1a with W :“ Bd

2p0,
?
dq. The choice of W ensures ED P W so

that (35) holds. Further,

E
„

sup
wPW

}∇fpw, xq}k
ȷ

“ E
„

sup
wPW

}w ´ x}k
ȷ

ď Er}3x}ks ď p9dqk{2.
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Thus, if we scale f Ñ rf “ µf , W Ñ ĂW :“ rrk
µ

?
9d
W , X Ñ rX :“ rrk

µ
?
9d
X and D Ñ rD “

rrk
µ

?
9d
D,

then rfp¨, rxq is µ-strongly convex and µ-smooth, and

E

«

sup
rwPĂW

›

›

›
∇ rfp rw, rxq

›

›

›

k
ff

“ E

«

sup
rwPĂW

} rw ´ rx}
k

ff

“ µkrrpkq

ˆ

1

µ
?
9d

˙k

E
„

sup
wPW

}∇fpw, xq}
k

ȷ

ď rrpkq.

Moreover, if
´

rrk
3µ

?
d

¯

A “ rA : rXn Ñ ĂW is any algorithm and rX „ rDn, then by (36) and (35), we
have

E rF p rAp rXqq ´ rF ˚ “
µ

2
E} rAp rXq ´ E rD}2 “

µ

2

ˆ

rrk

µ
?
9d

˙2

E}ApXq ´ ED}2 Á
rr2k
µn

.

Next, we prove the second (private) term in the lower bound. Let f be as defined above. For
our unscaled hard distribution, we follow [8, 36] and define a family of distributions tQνuνPV on
Rd, where V Ă t˘1ud will be defined later. For any given ν P V , we define the distribution Qν as
follows: Xν „ Qν iff

Xν “

#

0 with probability 1 ´ p

p´1{kν with probability p
(40)

where p :“ min
´

1,
?
d

n
?
ρ

¯

. Now, we select a set V Ă t˘1ud such that |V| ě 2d{20 and dHampν, ν1q ě

d
8 for all ν, ν1 P V, ν ‰ ν 1: such V exists by standard Gilbert-Varshamov bound (see e.g. [2, Lemma
6]). For any ν P V , if x „ Qν and w P W :“ Bd

2p0,
?
dp´1{kq, then

E
„

sup
wPW

}∇fpw, xq}k
ȷ

“ E
„

sup
wPW

}w ´ x}k
ȷ

ď Er}2x}ks “ 2kpp}p´1{kν}kq “ 2k}ν}k “ 2kdk{2.

Note also that our choice of W and p ď 1 ensures that ErQνs P W . Moreover, as in the proof of [36,
Lemma 6.3], zCDP Fano’s inequality (see [36, Theorem 1.4]) implies that for any ρ-zCDP algorithm
A,

sup
νPV

EX„Qn
ν ,A}ApXq ´ EQν}2 “ Ω

¨

˝dmin

$

&

%

1,

˜ ?
d

n
?
ρ

¸
2k´2

k

,

.

-

˛

‚. (41)

Thus,

EX„Qn
ν ,AF pApXqq ´ F ˚ “ Ω

¨

˝dmin

$

&

%

1,

˜ ?
d

n
?
ρ

¸
2k´2

k

,

.

-

˛

‚

for some ν P V , by (35). Now we scale our hard instance: f Ñ rf “ µf , W Ñ ĂW :“ rrk
2µ

?
d
W ,

X Ñ rX :“ rrk
2µ

?
d
X and D Ñ rD “

rrk
2µ

?
d
D. Then rfp¨, rxq is µ-strongly convex and µ-smooth, and

E

«

sup
rwPĂW

}∇ rfp rw, rxq}k

ff

“ E

«

sup
rwPĂW

} rw ´ rx}k

ff

“ µk
ˆ

rrk

2µ
?
d

˙k

E
„

sup
wPW

}∇fpw, xq}k
ȷ

ď rrpkq.
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Moreover, if
´

rrk
2µ

?
d

¯

A “ rA : rXn Ñ ĂW is any ρ-zCDP algorithm and rX „ rDn, then

E rF p rAp rXqq ´ rF ˚ “
µ

2
E} rAp rXq ´ E rD}2

“
µ

2

ˆ

rrk

2µ
?
d

˙2

E}ApXq ´ ED}2

ě
rr2k

16µd
Ω

¨

˝dmin

$

&

%

1,

˜ ?
d

n
?
ρ

¸
2k´2

k

,

.

-

˛

‚,

by (41).
2. We use an identical construction to that used above in part 1 except that the scaling factor rrk gets
replaced by rk. It is easy to see that E

“

supwPW }∇fpw, xq}k
‰

« supwPW E
“

}∇fpw, xq}k
‰

for our
construction, and the lower bound in part 2 follows just as it did in part 1. This completes the proof.

Remark 24 Note that the lower bound proofs construct bounded (hence subexponential) distribu-
tions and uniformly Lf -Lipschitz, βf -smooth losses that easily satisfy the conditions in Theorem 20.

Appendix G. Details and Proofs of Results in Section 3

G.1. Noisy Clipped Accelerated SGD for Smooth Convex Losses

We present our generic framework for accelerated SO with biased/noisy stochastic graadients
in Algorithm 4. It is built on the AC-SA of [31], and is the first accelerated DP algorithm for
heavy-tailed SO.

Algorithm 4 Generic Framework for DP Accelerated Stochastic Approximation (AC-SA)
1: Input: Data samples X P X n, number of iterations T ď n, convex loss fp¨, xq, step size

parameters tηtutPrT s, tαtutPrT s such that α1 “ 1, αt P p0, 1q for all t ě 2, DP mean estimation
oracle MeanOracle (and its hyperparameters), privacy parameter ρ “ ϵ2{2.

2: Initialize wag0 “ w0 P W and t “ 1.
3: for t P rT s do
4: wmdt :“ p1 ´ αtqw

ag
t´1 ` αtwt´1.

5: Draw new batch Bt (without replacement) of n{T samples from X .
6: r∇Ftpw

md
t q :“ MeanOraclept∇fpwmdt , xquxPBt ;

n
T ;

ϵ2

2 q

7: wt :“ argminwPW

!

αtxr∇Ftpw
md
t q, wy `

ηt
2 }wt´1 ´ w}2

)

.

8: wagt :“ αtwt ` p1 ´ αtqw
ag
t´1.

9: end for
10: Output: wagT .

As a first step towards bounding the excess risk of our algorithm, we provide excess risk
guarantees for Algorithm 4 in terms of the bias and variance of the MeanOracle:
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Proposition 25 (Informal) Consider Algorithm 4 run with a MeanOracle satisfying r∇Ftpw
md
t q “

∇F pwmdt q`bt`Nt, where }bt} ď B (with probability 1), ENt “ 0, E}Nt}
2 ď Σ2 for all t P rT ´1s,

and tNtu
T
t“1 are independent. Assume that F : W Ñ R is convex and β-smooth. Then there are

choices of algorithmic parameters in Algorithm 4 such that:

EF pwagT q ´ F ˚ À
βD2

T 2
`

DpΣ ` Bq
?
T

` BD. (42)

The proof of Proposition 25, given towards the end of this subsection, involves a careful analysis
of the bias and noise that propogates throughout the algorithm, and uses tools from [31].15 We
shall apply Proposition 25 with bt :“ Er∇Ftpwtq ´ ∇F pwtq and Nt :“ r∇Ftpwtq ´ Er∇Ftpwtq for
r∇Ftpwtq given by Algorithm 1. Then, combining Proposition 25 with Lemma 8 yields the main
result of this subsection:

Theorem 26 (Smooth, Convex - Informal) Let ϵ ą 0 and assume F is convex and β-smooth.
Then, there are parameters such that Algorithm 4 instantiated with MeanOracle Algorithm 1 is
ϵ2

2 -zCDP and

EF pwagT q ´ F ˚ À rkD

»

–

1
?
n

` max

$

&

%

˜

ˆ

βD

rk

˙1{4
?
d

ϵn

¸

4pk´1q

5k´1

,

˜?
d

ϵn

¸
k´1
k

,

.

-

fi

fl . (43)

The full statement of Theorem 26 and its proof is given at the end of this subsection.

Remark 27 (Optimal rate for “sufficiently smooth” convex functions) Notice that the upper bound
in Theorem 26 scales with the smoothness parameter β. Thus, for sufficiently small β, the optimal
rates (see Theorem 21) are attained. For example, when k “ 2, the upper bound in (43) matches the

respective lower bound in Theorem 21 when β À
rk
D

´

d5

ϵn

¯1{18
; this would be the case for example if

β and D are constants and d ě pϵnq1{5. In particular, for affine functions–which were not addressed
in prior works [36, 62] since these works assumed ∇F pw˚q “ 0–we have β “ 0, so that Algorithm 4
is optimal (up to constant factors) for all k ě 2.16

Having discussed the dependence on β, let us focus on understanding how the bound in Theo-
rem 26 scales with n, d and ϵ. Thus, let us fix β “ D “ γ “ 1 and r “

?
d for simplicity. If k “ 2, then

the bound in (43) simplifies to O
´
b

d
n ` max

!

d2{3

pϵnq4{9 ,
d3{4
?
ϵn

)¯

, whereas the lower bound in Theorem 21

(part 2) is Ω
´
b

d
n ` d3{4

?
ϵn

¯

. Therefore, the bound in (43) is tight if d3{2 Á ϵn. For general n, d, ϵ, (43)

is nearly tight up to a multiplicative factor of
`

ϵn
d3{2

˘1{18
. By comparison, the previous state-of-the-art

(not linear time) bound for ϵ « 1 was O
´

d?
n

¯

[36, Theorem 5.4]. Our bound (43) improves over [36,

Theorem 5.4] if d Á n1{6, which is typical in practical ML applications. As k Ñ 8, (43) becomes

15. Our analysis can be extended to the strongly convex setting, resulting in a bound that is essentially the same as the
strongly convex bounds in [31, Theorem 1 and Proposition 7], plus a term scaling with BD. However, the bias term
BD is too large to yield near-optimal strongly convex rates, which is why we only use acceleration in the convex case.

16. An affine function is a function that is linear in w: i.e. ∇fpw, xq does not depend on w, hence ∇2
wwfpw, xq “ 0.

The assumption made in [36, 62] that ∇F pw˚
q “ 0 is needed for the mean oracle of [33], which is used in [36, 62].

Also, note that the lower bound construction in Theorem 21 uses an affine function.
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O
´
b

d
n `

`

d
n

˘4{5
¯

for ϵ « 1, which is strictly better than the bound in [36, Theorem 5.4]. Addition-

ally, the gradient complexity of our algorithm is n, which is superior to the Opn2{dq complexity of
the algorithm in [36].

Next, we provide the formal versions and proofs of results presented above.

Proposition 28 (Complete Version of Proposition 25) Consider Algorithm 4 run with a MeanOracle
satisfying r∇Ftpw

md
t q “ ∇F pwmdt q ` bt ` Nt, where }bt} ď B (with probability 1), ENt “ 0,

E}Nt}
2 ď Σ2 for all t P rT ´ 1s, and tNtu

T
t“1 are independent. Assume that F : W Ñ R is

convex and β-smooth, F pw0q ´ F ˚ ď ∆, and }w0 ´ w˚} ď D. Suppose parameters are chosen in
Algorithm 4 so that for all t P rT s, ηt ą βα2

t and ηt{Γt “ η1{Γ1, where

Γt :“

#

1, t “ 1

p1 ´ αtqΓt, t ě 2.

Then,

EF pwagT q ´ F ˚ ď
ΓT η1D

2

2
` ΓT

T
ÿ

t“1

„

2α2
t pΣ

2 ` B2q

Γtpηt ´ βα2
t q

`
αt
Γt

BD

ȷ

.

In particular, choosing αt “ 2
t`1 and ηt “

4η
tpt`1q

, @t ě 1, where η ě 2β implies

EF pwagT q ´ F ˚ ď
4ηD2

T pT ` 1q
`

4pΣ2 ` B2qpT ` 2q

3η
` BD.

Further, setting η “ max
!

2β, T
3{2

?
Σ2`B2

D

)

implies

EF pwagT q ´ F ˚ À
βD2

T 2
`

DpΣ ` Bq
?
T

` BD. (44)

Proof We begin by extending [31, Proposition 4] to biased/noisy stochastic gradients. Fix any
wt´1, w

ag
t´1 P W . By [31, Lemma 3], we have

F pwagt q ď p1 ´ αtqF pwagt´1q ` αrF pzq ` x∇F pzq, wt ´ zys `
β

2
}wagt ´ z}2, (45)

for any z P W . Denote

Υtpwq :“ αtxNt ` bt, w ´ wt´1y `
α2
t }Nt ` bt}

2

ηt ´ βα2
t

and dt :“ wagt ´ wmdt “ αtpwt ´ wt´1q. Then using (45) with z “ wmdt , we have

F pwagt q ď p1 ´ αtqF pwagt´1q ` αtrF pwmdt q ` x∇F pwmdt q, wt ´ wmdt ys `
β

2
}dt}

2

“ p1 ´ αtqF pwagt´1q ` αtrF pwmdt q ` x∇F pwmdt q, wt ´ wmdt ys `
ηt
2

}wt´1 ´ wt}
2 ´

ηt ´ βα2
t

2α2
t

}dt}
2,

(46)
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by the expression for dt. Now we apply [31, Lemma 2] with ppuq “ αtrxr∇Ftpw
md
t , uys, µ1 “

0, µ2 “ ηt, x̃ “ wmdt , and ỹ “ wt´1 to obtain (conditional on all randomness) for any w P W:

αtrF pwmdt q ` xr∇Ftpw
md
t q, wt ´ wmdt ys `

ηt
2

}wt´1 ´ wt}
2

ď αtrF pwmdt q ` x∇F pwmdt q, w ´ wmdt ys

` αtxNt ` bt, w ´ wmdt y `
ηt
2

}wt´1 ´ w}2 ´
ηt
2

}wt ´ w}2.

Next, we combine the above inequality with (46) to get

F pwagt q ď p1 ´ αtqF pwagt´1q ` αtrF pwmdt q ` x∇F pwmdt q, w ´ wmdt ys `
ηt
2

“

}wt´1 ´ w}2 ´ }wt ´ w}2
‰

` ´
ηt ´ βα2

t

2α2
t

}dt}
2 ` αtxNt ` bt, w ´ wty

l jh n

Ut

, (47)

for all w P W . By Cauchy-Schwartz, we can bound

Ut ď ´
ηt ´ βα2

t

2α2
t

}dt}
2 ` }Nt ` bt}}dt} ` αtxNt ` bt, w ´ wt´1y

ď Υtpwq, (48)

where the last inequality follows from maximizing the concave quadratic function qp}dt}q :“

´

”

ηt´βα2
t

2α2
t

ı

}dt}
2 ` }Nt ` bt}}dt} with respect to }dt}. Plugging the bound (48) back into (47)

shows that

F pwagt q ď p1 ´ αtqF pwagt´1q ` αtrF pwmdt q ` x∇F pwmdt q, w ´ wmdt ys `
ηt
2

“

}wt´1 ´ w}2 ´ }wt ´ w}2
‰

` Υtpwq. (49)

Then it can be shown (see [31, Proposition 5]) that the assumptions on ηt and αt imply that

F pwagT q ´ ΓT

T
ÿ

t“1

„

αt
Γt

´

F pwmdt q ` x∇F pwmdt q, w ´ wmdt y

¯

ȷ

ď ΓT

T
ÿ

t“1

ηt
2Γt

r}wt´1 ´ w}2 ´ }wt ´ w}2s

(50)

` ΓT

T
ÿ

t“1

Υtpwq

Γt
, (51)

for any w P W and any T ě 1. Now,
T
ÿ

t“1

αt
Γt

“
1

ΓT

by definition. Hence by convexity of F ,

T
ÿ

t“1

„

αt
Γt

´

F pwmdt q ` x∇F pwmdt q, w ´ wmdt y

¯

ȷ

ď F pwq, @w P W.
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Also, since Γt{ηt “ Γ1{η1 for all t ě 1, we have

ΓT

T
ÿ

t“1

ηt
2Γt

r}wt´1 ´ w}2 ´ }wt ´ w}2s “ Γt
η1
2Γ1

r}w0 ´ w}2 ´ }wT ´ w}2s ď ΓT η1
1

2
}w0 ´ w}2,

since Γ1 “ 1. Substituting the above bounds into (50), we get

F pwagT q ´ F pwq ď ΓT η1
1

2
}w0 ´ w}2 ` ΓT

T
ÿ

t“1

Υtpwq

Γt
, @w P W. (52)

Now, setting w “ w˚ and taking expectation yields

ErF pwagT q ´ F ˚s ď
ΓT η1D

2

2
` ΓT

T
ÿ

t“1

EΥtpw
˚q

Γt
(53)

ď
ΓT η1D

2

2
` ΓT

T
ÿ

t“1

„

1

Γt

ˆ

αtExbt, w
˚ ´ wt´1y `

2α2
t pΣ

2 ` B2q

ηt ´ βα2
t

˙ȷ

(54)

ď
ΓT η1D

2

2
` ΓT

T
ÿ

t“1

„

1

Γt

ˆ

αtBD `
2α2

t pΣ
2 ` B2q

ηt ´ βα2
t

˙ȷ

, (55)

where we used conditional independence of Nt and w˚ ´ wt´1 given wt´1, Young’s inequality,
Cauchy-Schwartz, and the definitions of B2 and Σ2. This establishes the first claim of the theorem.
The second and third claims are simple corollaries, which can be verified as in [31, Proposition 7]
and the ensuing discussion.

Theorem 29 (Complete Version of Theorem 26) Let ϵ ą 0 and assume F is convex and β-smooth.
Then, there are parameters such that Algorithm 4 instantiated with MeanOracle Algorithm 1 is
ϵ2

2 -zCDP. Further, if n ě T :“

R

min

"

´

βD
rk

¯2k{p5k´1q ´
ϵn?
d

¯p2k´2q{p5k´1q

,
b

βD
r n1{4

*V

, then,

EF pwagT q ´ F ˚ À rkD

»

–

1
?
n

` max

$

&

%

˜

ˆ

βD

rk

˙1{4
?
d

ϵn

¸

4pk´1q

5k´1

,

˜?
d

ϵn

¸
k´1
k

,

.

-

fi

fl .

Proof
Privacy: Choose σ2 “ 4C2T 2

ϵ2n2 . First, the collection of all r∇Ftpw
md
t q, t P rT s is ϵ2

2 -zCDP: since
the batches of data drawn in each iteration are disjoint, it suffices (by parallel composition [48])
to show that r∇Ftpw

md
t q is ϵ2

2 -zCDP for all t. Now, the ℓ2 sensitivity of each clipped gradient
update is bounded by ∆ “ supw,X„X 1 }Tn

ř

xPBt
ΠCp∇fpw, xqq ´

ř

x1PB1
t
ΠCp∇fpw, x1qq} “

supw,x,x1 }TnΠCp∇fpw, xqq ´ ΠCp∇fpw, x1qq} ď 2CT
n . Thus, r∇Ftpw

md
t q is ϵ2

2 -zCDP by Proposi-
tion 6. Second, the iterates wagt are deterministic functions of r∇Ftpw

md
t q, so the post-processing

property of differential privacy [16, 26] ensures that Algorithm 4 is ϵ2

2 -zCDP.
Excess risk: Consider round t P rT s of Algorithm 4, where Algorithm 1 is run on input data
t∇fpwt, x

t
iqu

n{T
i“1 . Denote the bias of Algorithm 1 by bt :“ Er∇Ftpwtq´∇F pwtq, where r∇Ftpwtq “
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rν in the notation of Algorithm 1. Also let p∇Ftpwtq :“ µ̂ (in the notation of Lemma 8) and de-
note the noise by Nt “ r∇Ftpwtq ´ ∇F pwtq ´ bt “ r∇Ftpwtq ´ Er∇Ftpwtq. Then we have
B :“ suptPrT s }bt} ď rk

pk´1qCk´1 and Σ2 :“ suptPrT s Er}Nt}
2s ď dσ2 ` r2T

n À dC2T 2

ϵ2n2 ` r2T
n ,

by Lemma 8. Plugging these estimates for B and Σ2 into Proposition 25 and setting C “ rp ϵn?
dT

q1{k,
we get

EF pwagT q ´ F ˚ À
βD2

T 2
`

DpΣ ` Bq
?
T

` BD

À
βD2

T 2
`

CD
?
dT

ϵn
`

rD
?
n

`
rkD

Ck´1

À
βD2

T 2
` rD

»

–

1
?
n

`

˜?
dT

ϵn

¸pk´1q{k
fi

fl . (56)

Now, our choice of T implies that βD
2

T 2 ď rD

„

1?
n

`

´?
dT
ϵn

¯pk´1q{k
ȷ

and we get the result upon

plugging in T .

G.2. Noisy Clipped SGD for Strongly Convex Losses

Our framework for strongly convex losses, given in Algorithm 5, is to run SGD with biased/noisy
stochastic gradients given by some MeanOracle. This general framework is similar to the frame-
works of [36, 62], but with some key differences. The main differences in our approach lie in the
choice of algorithmic parameters (including MeanOracle, step size, and iterate averaging weights),
as well as in our analysis of the algorithm.

Algorithm 5 Noisy SGD Framework for Heavy-Tailed SCO
1: Input: Data X P X n, T ď n, MeanOracle (and truncation/minibatch parameters), privacy

parameter ρ “ ϵ2{2, stepsizes tηtu
T
t“0, averaging weights tζtu

T
t“0.

2: Initialize w0 P W .
3: for t P t0, 1, ¨ ¨ ¨ , T u do
4: Draw new batch Bt (without replacement) of n{T samples from X .
5: r∇Ftpwtq :“ MeanOraclept∇fpwt, xquxPBt ;

n
T ;

ϵ2

2 q

6: wt`1 “ ΠW

”

wt ´ ηt r∇Ftpwtq
ı

7: end for
8: Output: pwT :“ 1

ZT

řT
t“0 ζtwt`1, where ZT “

řT
t“0 ζt.

We have the following privacy and utility guarantees for Algorithm 5:

Theorem 30 (Smooth, Strongly Convex) Let ϵ ą 0, and assume F is µ-strongly convex and β-
smooth with κ “

β
µ ď n{ lnpnq. Then, there are parameters such that Algorithm 5 instantiated with

MeanOracle Algorithm 1 is ϵ2

2 -zCDP, and

EF p pwT q ´ F ˚ À
r2k
µ

¨

˝

1

n
`

˜

a

dκ lnpnq

ϵn

¸
2k´2

k

˛

‚. (57)
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To obtain Theorem 30, we will apply Proposition 31 to the biased noisy stochastic gradients provided
by the private mean oracle Algorithm 1. Combining Proposition 31 with Lemma 8 and a suitable
choice of algorithmic parameters yields the excess risk bounds in Theorem 30. The full proof is
deferred to the end of this subsection. As we saw in Theorem 23, the bound (57) is optimal up to a
factor of rOpκpk´1q{kq.

To prove the excess risk bounds in Theorem 30, we first derive a novel convergence guarantee
for projected SGD with generic noisy biased stochastic gradients:

Proposition 31 Let F : W Ñ R be µ-strongly convex and β-smooth with condition number κ :“ β
µ .

Let wt`1 :“ ΠW rwt ´ ηt r∇Ftpwtqs, where r∇Ftpwtq “ ∇F pwtq ` bt ` Nt, such that the bias
and noise (which can depend on wt and the samples drawn) satisfy }bt} ď B (with probability
1), ENt “ 0, E}Nt}

2 ď Σ2 for all t P rT ´ 1s, and that tNtu
T
t“1 are independent. Then, there

exist stepsizes tηtu
T
t“1 and weights tζtu

T
t“0 such that the average iterate pwT :“ 1

řT
t“0 ζt

řT
t“0 ζtwt`1

satisfies

EF p pwT q ´ F ˚ ď 32βD2 exp

ˆ

´
T

4κ

˙

`
72Σ2

µT
`

2B2

µ
.

Compared to the results in [6] for (non-strongly) convex DP ERM and [3] for non-private uncon-
strained PL losses, Proposition 31 is tighter, since we leverage smoothness and strong convexity. Our
analysis also corrects the issue in [36, 62].
Proof [Proof of Proposition 31] Define gpwtq “ ´ 1

ηt
pwt`1 ´ wtq. Then

E}wt`1 ´ w˚}2 “ E}wt ´ ηtgpwtq ´ w˚}2

“ E}wt ´ w˚}2 ´ 2ηtExgpwtq, wt ´ w˚y ` η2tE}gpwtq}2. (58)

Now, conditional on all randomness, we use smoothness and strong convexity to write:

F pwt`1q ´ F pw˚q “ F pwt`1q ´ F pwtq ` F pwtq ´ F pw˚q

ď xF pwtq, wt`1 ´ wty `
β

2
}wt`1 ´ wt}

2 ` x∇F pwtq, wt ´ w˚y ´
µ

2
}wt ´ w˚}2

“ xr∇Ftpwtq, wt`1 ´ w˚y ` x∇F pwtq ´ r∇Ftpwtq, wt`1 ´ w˚y `
βη2t
2

}gpwtq}2 ´
µ

2
}wt ´ w˚}2

ď xgpwtq, wt`1 ´ w˚y ` x∇F pwtq ´ r∇Ftpwtq, wt`1 ´ w˚y `
βη2t
2

}gpwtq}2 ´
µ

2
}wt ´ w˚}2

“ xgpwtq, wt`1 ´ wty ` xgpwtq, wt ´ w˚y ´ xbt ` Nt, wt`1 ´ w˚y `
βη2t
2

}gpwtq}2

´
µ

2
}wt ´ w˚}2

“ xgpwtq, wt ´ w˚y ´ xbt ` Nt, wt`1 ´ w˚y `

ˆ

βη2t
2

´ ηt

˙

}gpwtq}2 ´
µ

2
}wt ´ w˚}2,
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where we used the fact that xΠWpyq ´ x,ΠWpyq ´ yy ď 0 for all x P W, y P Rd (c.f. [15, Lemma
3.1]) to obtain the last inequality. Thus,

´2ηtExgpwtq, wt ´ w˚y ď ´2ηtErF pwt`1q ´ F ˚s ` 2ηtE

«

´ xbt ` Nt, wt`1 ´ w˚y `

ˆ

βη2t
2

´ ηt

˙

}gpwtq}2

´
µ

2
}wt ´ w˚}2

ff

.

Combining the above inequality with (58), we get

E}wt`1 ´ w˚}2 ď p1 ´ µηtqE}wt ´ w˚}2 ´ 2ηtErF pwt`1q ´ F ˚s ´ 2ηtExbt ` Nt, wt`1 ´ w˚y

(59)

` 2ηt

ˆ

η2t β

2
´ ηt

˙

E}gpwtq}2. (60)

Next, consider

|Exbt ` Nt, wt`1 ´ w˚y| ď |Exbt ` Nt, wt`1 ´ wty| ` |Exbt ` Nt, wt ´ w˚y|

“ |Exbt ` Nt, wt`1 ´ wty| ` |Exbt, wt ´ w˚y|

ď |Exbt ` Nt, wt`1 ´ wty| `
B2

µ
`

µ

4
E}wt ´ w˚}2

by independence of Nt (which has zero mean) and wt ´ w˚, and Young’s inequality. Next, note that
v :“ wt ´ ηtp∇F pwtq ` btq is independent of Nt, so ExNt,ΠWpvqy “ 0. Thus,

|ExNt, wt`1 ´ wty| “ |ExNt, wt`1y|

“ |ExNt,ΠW rwt ´ ηt p∇F pwtq ` bt ` Ntqsy|

“ |ExNt,ΠW rv ´ ηtNtsy|

“ |ExNt,ΠW rvs ´ ΠW rv ´ ηtNtsy|

ď E r}Nt}}ΠW rvs ´ ΠW rv ´ ηtNts }s

ď E r}Nt}}ηtNt}s

ď ηtΣ
2,

by Cauchy-Schwartz and non-expansiveness of projection. Further,

|Exbt, wt`1 ´ wty| “ |Exbt,´ηtgpwtqy|

ď
B2

µ
`

η2t µ

4
E}gpwtq}2,

by Young’s inequality. Therefore,

´2ηtExbt ` Nt, wt`1 ´ w˚y ď 2ηt

„

2B2

µ
`

η2t µ

4
E}gpwtq}2 ` ηtΣ

2 `
µ

4
E}wt ´ w˚}2

ȷ

.
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Plugging this bound back into (59) and choosing ηt ď 1
β ď 1

µ yields:

E}wt`1 ´ w˚}2 ď

´

1 ´
µηt
2

¯

E}wt ´ w˚}2 ´ 2ηtErF pwt`1q ´ F ˚s `
4ηtB

2

µ
` 2η2tΣ

2

` 2ηt

ˆ

η2t β

2
´ ηt `

η2t µ

4

˙

E}gpwtq}2

ď

´

1 ´
µηt
2

¯

E}wt ´ w˚}2 ´ 2ηtErF pwt`1q ´ F ˚s `
4ηtB

2

µ
` 2η2tΣ

2.

Next, we apply Lemma 32 (see below) with rt :“ E}wt ´ w˚}2, st :“ EF pwt`1q ´ F ˚ ´ 2B2

µ ,
a :“ µ

2 , b :“ 2, c “ 2Σ2, and g “ β. We may assume st ě 0 for all t: if this inequality breaks for
some t, then simply return wt`1 instead of pwT to obtain EF pwtq ´ F ˚ ă 2B2

µ . Thus,

1

ΓT

T
ÿ

t“0

γtErF pwt`1q ´ F ˚s ď
1

2

„

32βD2 exp

ˆ

´µT

4β

˙

`
144Σ2

µT
`

2B2

µ

ȷ

Finally, Jensen’s inequality yields the theorem.

Lemma 32 [55, Lemma 3] Let b ą 0, let a, c ě 0, and tηtutě0 be non-negative step-sizes such
that ηt ď 1

g for all t ě 0 for some parameter g ě a. Let trtutě0 and tstutě0 be two non-negative
sequences of real numbers which satisfy

rt`1 ď p1 ´ aηtqrt ´ bηtst ` cη2t

for all t ě 0. Then there exist particular choices of step-sizes ηt ď 1
g and averaging weights ζt ě 0

such that
b

ΓT

T
ÿ

t“0

stζt ` arT`1 ď 32gr0 exp

ˆ

´aT

2g

˙

`
36c

aT
,

where ΓT :“
řT
t“0 γt.

Theorem 33 (Re-statement of Theorem 30) Let ϵ ą 0, and assume F is µ-strongly convex and
β-smooth with κ “

β
µ ď n{ lnpnq. Then, there are parameters such that Algorithm 5 instantiated

with MeanOracle Algorithm 1 is ϵ2

2 -zCDP, and

EF p pwT q ´ F ˚ À
r2k
µ

¨

˝

1

n
`

˜

a

dκ lnpnq

ϵn

¸
2k´2

k

˛

‚. (61)

Proof Privacy: Choose σ2 “ 4C2T 2

ϵ2n2 . Since the batches of data drawn in each iteration are disjoint,
it suffices (by parallel composition [48]) to show that r∇Ftpwtq is ϵ2

2 -zCDP for all t. Now, the ℓ2 sen-
sitivity of each clipped gradient update is bounded by ∆ “ supw,X„X 1 }Tn

ř

xPBt
ΠCp∇fpw, xqq ´

ř

x1PB1
t
ΠCp∇fpw, x1qq} “ supw,x,x1 }TnΠCp∇fpw, xqq ´ ΠCp∇fpw, x1qq} ď 2CT

n . Hence Propo-

sition 6 implies that the algorithm is ϵ2

2 -zCDP.
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Excess risk: For any iteration t P rT s, denote the bias of Algorithm 1 by bt :“ Er∇Ftpwtq´∇F pwtq,
where r∇Ftpwtq “ rν in the notation of Algorithm 1. Also let p∇Ftpwtq :“ ν̂ (in the notation of
Lemma 8) and denote the noise by Nt “ r∇Ftpwtq´∇F pwtq´bt “ r∇Ftpwtq´Er∇Ftpwtq. Then we

have B :“ suptPrT s }bt} ď rpkq

pk´1qCk´1 and Σ2 :“ suptPrT s Er}Nt}
2s ď dσ2 `

r2kT
n À dC2T 2

ϵ2n2 `
r2kT
n ,

by Lemma 8. Plugging these bias and variance estimates into Proposition 31, we get

EF p pwT q ´ F ˚ À βD2 exp

ˆ

´
T

4κ

˙

`
1

µT

ˆ

dC2T 2

ϵ2n2
`

r2kT

n

˙

`
r2kk

C2k´2µ
.

Choosing C “ rk

´

ϵ2n2

dT

¯1{2k
implies

EF p pwT q ´ F ˚ À βD2 exp

ˆ

´
T

4κ

˙

`
r2k
µ

˜

1

n
`

ˆ

dT

ϵ2n2

˙pk´1q{k
¸

.

Finally, choosing T “

R

4κ ln

ˆ

µβD2

r2k

ˆ

n `

´

ϵ2n2

d

¯pk´1q{k
˙˙V

À κ lnpnq yields the result.

Appendix H. Details and Proofs of Results in Section 4

Assume: fpw, xq “ f0pw, xq ` f1pwq; f0p¨, xq is differentiable (maybe non-convex), f1 is proper,
closed, and convex (maybe non-differentiable) for all x P X ; and F pwq “ F 0pwq ` f1pwq “

Ex„Drf0pw, xqs ` f1pwq satisfies the Proximal-PL condition [37]:

Definition 34 (µ-PPL) Let F pwq “ F 0pwq ` f1pwq be bounded below; F 0 is β-smooth and f1 is
convex. F satisfies Proximal Polyak-Łojasiewicz inequality with parameter µ ą 0 if

µrF pwq ´ inf
w1

F pw1qs ď ´βmin
y

„

x∇F 0pwq, y ´ wy `
β

2
}y ´ w}2 ` f1pyq ´ f1pwq

ȷ

, @ w P Rd.

Theorem 34 is an extension of the classical PL inequality [50], allowing for constrained optimization
and/or non-smooth regularizer, depending on the choice of f1. For PPL losses, we propose Algo-
rithm 6, which is a linear time algorithm. Recall that the proximal operator of a convex function g is
defined as

proxηgpzq :“ argmin
yPRd

ˆ

ηgpyq `
1

2
}y ´ z}2

˙

, for η ą 0.

Proximal operators generalize projections: if g “ ιW , then proxgpzq “ ΠWpzq :“ argminyPW }y´

z}2. The privacy and excess risk guarantees of Algorithm 6 are provided in Theorem 35:

Theorem 35 (Proximal-PL) Let ϵ ą 0 and assume F pwq “ F 0pwq ` f1pwq is µ-PPL for β-
smooth F 0, with κ “

β
µ ď n{ lnpnq. Then, there are parameters such that Algorithm 6 is ϵ2

2 -zCDP,
and

EF pwT q ´ F ˚ À
r2k
µ

¨

˝

˜?
d

ϵn
κ lnpnq

¸
2k´2

k

`
κ lnpnq

n

˛

‚.
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Algorithm 6 Noisy Proximal SGD Framework for Heavy-Tailed SO
1: Input: Data X P X n, T ď n, MeanOracle (and truncation/minibatch parameters), privacy

parameter ρ “ ϵ2{2, stepsizes tηtu
T´1
t“0 .

2: Initialize w0 P W .
3: for t P t0, 1, ¨ ¨ ¨ , T ´ 1u do
4: Draw new batch Bt (without replacement) of n{T samples from X .
5: r∇F 0

t pwtq :“ MeanOraclept∇f0pwt, xquxPBt ;
n
T ;

ϵ2

2 q

6: wt`1 “ proxηtf1
´

wt ´ ηt r∇F 0
t pwtq

¯

7: end for
8: Output: wT .

The bound in Theorem 35 nearly matches the smooth, strongly convex lower bound in Theorem 23
up to the rOpκp2k´2q{2q factor, and is attained without convexity. In particular, Algorithm 6 is nearly
optimal.17 To prove Theorem 35, we first derive Proposition 36, a generic convergence guarantee for
Algorithm 6 with biased, noisy stochastic gradients in terms of the bias and variance of the oracle:

Proposition 36 Consider Algorithm 6 with biased, noisy stochastic gradients: r∇F 0
t pwtq “

∇F 0pwtq ` bt ` Nt, and stepsize η “ 1
2β . Assume that the bias and noise satisfy }bt} ď B

(with probability 1), ENt “ 0, E}Nt}
2 ď Σ2 for all t P rT ´ 1s, and that tNtu

T
t“1 are independent.

Assume further that F is µ-PPL, F 0 is β-smooth, and F pw0q ´ F ˚ ď ∆. Then,

EF pwT q ´ F ˚ ď

ˆ

1 ´
µ

2β

˙T

∆ `
4pB2 ` Σ2q

µ
.

Proposition 36 generalizes [3, Theorem 6]–which provides a similar bound for the unconstrained,
classical PL problem–to the proximal setting. However, the proof of Proposition 36 is very different
from the proof of [3, Theorem 6], since the proximal operator makes it difficult to bound the
excess loss without convexity when the stochastic gradients are biased/noisy. Our proof draws
inspiration from the proof of [45, Theorem 3.1] (for the case of unbiased stochastic gradients and
Lipschitz loss function). Specifically, we view each biased/noisy proximal evaluation as an objective
perturbation [19] problem. Then, using techniques from the analysis of objective perturbation, we
bound the difference between the errors of the biased, noisy stochastic proximal gradient steps and
the unbiased noiseless proximal gradient steps, the latter of which can be bounded via the PPL
inequality. Compared to the proof of [45, Theorem 3.1], here we need to carefully handle the bias
term and bound the error without appealing to Lipschitz continuity of f .

17. Since any smooth, strongly function satisfies the PPL condition [37], the lower bounds in Theorem 23 also apply to
the PPL function class considered here.
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Proof [Proof of Proposition 36] Our proof extends the ideas in [45] to generic biased and noisy
gradients without using Lipschitzness of the loss. By β-smoothness, for any r P rT ´ 1s, we have

EF pwr`1q “ ErF 0pwr`1q ` f1pwrq ` f1pwr`1q ´ f1pwrqs

ď E
"

F pwrq `

„

xr∇F 0
r pwrq, wr`1 ´ wry `

β

2
}wr`1 ´ wr}

2 ` f1pwr`1q ´ f1pwrq

ȷ*

` Ex∇F 0pwrq ´ r∇F 0
r pwrq, wr`1 ´ wry

“ EF pwrq ` E

«

x∇F 0pwrq, wr`1 ´ wry `
β

2
}wr`1 ´ wr}

2 ` f1pwr`1q ´ f1pwrq

(62)

` xbr ` Nr, wr`1 ´ wry

ff

´ Exbr ` Nr, wr`1 ´ wry

ď EF pwrq ` E
”

x∇F 0pwrq, wr`1 ´ wry ` β}wr`1 ´ wr}
2 ` f1pwr`1q ´ f1pwrq

(63)

` xbr ` Nr, wr`1 ´ wry
ı

`
B2 ` Σ2

β
, (64)

where we used Young’s inequality to bound

´Exbr ` Nr, wr`1 ´ wry ď
B2 ` Σ2

β
`

β

2
}wr`1 ´ wr}

2. (65)

Next, we will bound E
“

x∇F 0pwrq, wr`1 ´ wry ` β}wr`1 ´ wr}
2 ` f1pwr`1q ´ f1pwrq ` xbr ` Nr, wr`1 ´ wry

‰

.
Denote H

priv
r pyq :“ x∇F 0pwrq, y ´ wry ` β}y ´ wr}

2 ` f1pyq ´ f1pwrq ` xbr ` Nr, y ´ wry

and Hrpyq :“ x∇F 0pwrq, y ´ wry ` β}y ´ wr}
2 ` f1pyq ´ f1pwrq. Note that Hr and H

priv
r are

2β-strongly convex. Denote the minimizers of these two functions by y˚ and y
priv
˚ respectively. Now,

conditional on wr and Nr ` br, we claim that

Hrpy
priv
˚ q ´ Hrpy˚q ď

}Nr ` br}
2

2β
. (66)

To prove (66), we will need the following lemma:

Lemma 37 [43, Lemma B.2] Let Hpyq, hpyq be convex functions on some convex closed set
Y Ď Rd and suppose that H is 2β-strongly convex. Assume further that h is Lh-Lipschitz. Define
y1 “ argminyPY Hpyq and y2 “ argminyPY rHpyq ` hpyqs. Then }y1 ´ y2}2 ď

Lh
2β .

We apply Lemma 37 with Hpyq :“ Hrpyq, hpyq :“ xNr ` br, yy, Lh “ }Nr ` br}, y1 “ y˚, and
y2 “ y

priv
˚ to get

}y˚ ´ y
priv
˚ } ď

}Nr ` br}

2β
.

On the other hand,

Hpriv
r py

priv
˚ q “ Hrpy

priv
˚ q ` xNr ` br, y

priv
˚ y ď Hpriv

r py˚q “ Hrpy˚q ` xNr ` br, y˚y.
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Combining these two inequalities yields

Hrpy
priv
˚ q ´ Hrpy˚q ď xNr ` br, y˚ ´ y

priv
˚ y

ď }Nr ` br}}y˚ ´ y
priv
˚ }

ď
}Nr ` br}

2

2β
, (67)

as claimed. Also, note that wr`1 “ y
priv
˚ . Hence

E
“

x∇F 0pwrq, wr`1 ´ wry ` β}wr`1 ´ wr}
2 ` f1pwr`1q ´ f1pwrq ` xbr ` Nr, wr`1 ´ wry

‰

“ E
„

min
yPRd

Hpriv
r pyq

ȷ

(68)
satisfies

E
„

min
yPRd

Hpriv
r pyq

ȷ

ď E
„

min
y

␣

x∇F 0pwrq, y ´ wry ` β}y ´ wr}
2 ` f1pyq ´ f1pwrq

(

ȷ

`
Σ2 ` B2

β

(69)

ď ´
µ

2β
E rF pwrq ´ F ˚s `

Σ2 ` B2

β
, (70)

where we used the assumptions that F is µ-PPL and F 0 is 2β-smooth in the last inequality. Plugging
the above bounds back into (64), we obtain

EF pwr`1q ď EF pwrq ´
µ

2β
rF pwrq ´ F ˚s `

2pΣ2 ` B2q

β
, (71)

whence

ErF pwr`1q ´ F ˚s ď ErF pwrq ´ F ˚sp1 ´
µ

2β
q `

2pΣ2 ` B2q

β
. (72)

Using (72) recursively and summing the geometric series, we get

ErF pwT q ´ F ˚s ď ∆

ˆ

1 ´
µ

2β

˙T

`
4pΣ2 ` B2q

µ
. (73)

With Proposition 36 in hand, Theorem 35 then follows from substituting the bias and variance
bounds of our MeanOracle (given in Lemma 8) into Proposition 36, and optimizing for clip
threshold and batch size n{T . We provide the detailed proof below:

Theorem 38 (Re-statement of Theorem 35) Let ϵ ą 0 and assume F pwq “ F 0pwq ` f1pwq is
µ-PPL for β-smooth F 0, with κ “

β
µ ď n{ lnpnq. Then, there are parameters such that Algorithm 6

is ϵ2

2 -zCDP, and

EF pwT q ´ F ˚ À
r2k
µ

¨

˝

˜?
d

ϵn
κ lnpnq

¸
2k´2

k

`
κ lnpnq

n

˛

‚.
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Proof We choose σ2 “ 4C2T 2

ϵ2n2 .
Privacy: By parallel composition (since each sample is used only once) and the post-processing prop-
erty of DP (since the iterates are deterministic functions of the output of MeanOracle), it suffices
to show that r∇Ftpwtq is ϵ2

2 -zCDP for all t ě 0. By our choice of σ2 and Proposition 6, r∇Ftpwtq is ϵ2

2 -
zCDP, since it’s sensitivity is bounded by supX„X 1,w

T
n

›

›

ř

xPBt
ΠCr∇f0pw, xqs ´

ř

x1PB1
t
ΠCr∇f0pw, x1qs

›

› ď
T
n supx,x1,w }ΠCr∇f0pw, xqs ´ ΠCr∇f0pw, x1qs} ď 2CT

n .
Excess risk: For any iteration t P rT s, denote the bias of Algorithm 1 by bt :“ Er∇Ftpwtq´∇F pwtq,
where r∇Ftpwtq “ rν in the notation of Algorithm 1. Also let p∇Ftpwtq :“ ν̂ (in the notation of
Lemma 8) and denote the noise by Nt “ r∇Ftpwtq ´ ∇F pwtq ´ bt “ r∇Ftpwtq ´ Er∇Ftpwtq.

Then we have B :“ suptPrT s }bt} ď rk

pk´1qCk´1 and Σ2 :“ suptPrT s Er}Nt}
2s ď dσ2 `

r2kT
n ď

4dC2T 2

ϵ2n2 `
r2kT
n , by Lemma 8. Plugging these bounds on B2 and Σ2 into Proposition 36, and choosing

T “ 2
Q

κ ln
´

∆µ
B2`Σ2

¯U

À κ lnpnq where ∆ ě F pw0q ´ F ˚, we have:

EF pwT q ´ F ˚ ď
5pB2 ` Σ2q

µ
ď

5

µ

ˆ

2r2kT

n
`

2r2kk
pk ´ 1q2C2k´2

`
2dC2T 2

ϵ2n2

˙

,

for any C ą 0. Choosing C “ r
´

ϵ2n2

dT 2

¯1{2k
makes the last two terms in the above display equal,

and we get

EF pwT q ´ F ˚ “ EF pwT q ´ F ˚ À
r2k
µ

¨

˝

˜?
d

ϵn
κ lnpnq

¸
2k´2

k

`
κ lnpnq

n

˛

‚

as claimed.
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